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Abstract . Connectionist feed-forward networks, t rained with back­
propagat ion, can be used both for nonlinear regression and for (dis­
crete one-of-C ) classification. This paper presents approximate Bayes­
ian meth ods to statistical components of back-propagat ion: choosing
a cost funct ion and penalty term (interpreted as a form of prior prob­
ability), pruning insignifican t weights, est imat ing the uncertainty of
weights, predict ing for new pat terns ("out -of-sample") , est imating the
uncertainty in the choice of this predict ion ("erro r bars" ), estimat­
ing the generalizat ion erro r, comparing different network st ructures,
and handling missing values in the t raining patterns. These meth­
ods extend some heurist ic techniques suggested in the literature, and
in most cases require a small addit ional facto r in comput at ion during
back-propagat ion, or computation once back-pro pagat ion has finished.

1. I nt roduction

Back-propagati on [32] is a popular scheme for t raining feed- forward connec ­
t ionist networks. It can be applied to bo th the tasks of classification (predic­
t ion of discret e variables t aking one of C mutually exclusive and exhaust ive
va lues) and regression (predi ct ion of real va riables ). Design issues in t his
scheme are primarily computa t ional- for inst ance, what varia t ions of gradi­
ent descent should be used- or probabilistic - for inst ance, what cost func­
tion should be used and how generalizat ion err or can be pred ict ed . Here we
frame t he probabilistic component of back-prop agation in a Bayesian conte xt
[6, 3, 7, 27]. In adopt ing a Bayesian justi fica t ion for t he method s present ed ,
we are not claiming any neurological validity for our metho ds. We view
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feed-forward networks as a vehicle for massive par allelism in classification ,
regression , and learn ing.

Some of the material presente d here is review in that it is an application
of existing Bayesian theory and approx imat ion methods. This app lies, for
inst an ce, to the results on generalization erro r in section 7.1, and to the basic
posterior probabi liti es present ed in Lemma 4.1 (see, for inst anc e, [37]). We
only address the case in which there is a single real or discrete var iab le being
predicted , alt hough the discret e variab le may have multiple values ; extension
to the multiple-variab le case is quit e st raightforward . We also only address
problems in which noise or uncertainty exists in classification or predict ion
because noise-free problems are rare in pr acti ce and the mathematical be­
havior of the noise-free case is qui te different .

Section 2 gives some theoretical background and motivation for using
Bayesian meth ods; an d discusses some alte rnative approac hes . Section 3 out­
lines the notat ion and describes some simp le network form s that corres pond
to var iations of standard probabi lity functions. A good feed-forward network
system should therefore subsume the tasks of severa l spec ial-purpose statis­
tical syst ems, albeit at some computational cost . Sect ion 4 present s a prob­
abilist ic ana lysis of the training of feed-forward neural networks. Sect ion 5
expands on the imp ortant issue of designing a pri or distribution over network
weights. Section 6 uses t hese results to present Bayesian embellishments
for the standard back-pr opagation algor ithm: cost functions and weight ­
evaluation measures. Several minimum encoding approac hes [40, 2, 33] are
also exp lained in section 6.3. Finally, sect ion 7 discusses some extensions to
back-propagation that involve weight pruning st rategies , predicti on of vari­
ables and generalization erro r , and handling of missing values.

2. On Bayesian m ethods

Bayesian methods are usually considered attract ive because, in the context
of average-case analysis, they offer a rigorous framework for making all as­
sumptions in a learn ing problem explicit, and they come with a gua rantee of
average case opt imality condit ioned on the assumpt ions made. T he opt imal­
ity prop erties of Bayesian methods hold because the methods are "normative"
or "rationa l" [3, 15]; any other approach not approximating them should not
perform as well on average. For the learning problem, t he ent ire method is
derived as an approximat ion to applying the single simple principle

posterior cc prior· sample-likelihoo d

to the training problem , toge ther with some principles for reasoning about
the pri or knowledge available about networks. The te rm "probabilit ies" here
corres ponds to a relat ive measure of belief in the many possible network

f

weights. Since we can never det ermine the "correct" or "best " weights, we
should carefully reason about the many reasonable possibilit ies for network
weights.
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T he Bayesian framework carefully separates the components of a learning
problem:

U tilities: the utility or loss functions for the problem, which represent the
goa l of learni ng and correspond to quantities such as minimum errors
or least squares,

N et work likelihood model: the likelihood function for the network, such
as a "Gauss ian error model" as used in regression , which gives a statis­
t ical model of the network arid how t he data is expected to have bee n
generated initi ally.

Priors: t he priors! on networks and network weights , which represent our
exp ectations about networks before receiving any data, and correspond
to penalty terms or regu lari zers .

See also [14] for a discussion in t he uni form convergence framework.
Notice that in general there can be no "correct" pr ior, error model, or

likelihood since by defin it ion these vary from problem to problem . It is chal­
lenging to make a choice that seems appropriate in a given circumstance, and
Bayesians place considerable emphasis on these modeling tasks . 'T he opti­
mality of Bayesian methods rests on modeling assumptions that correspond
to the above components:

(I) The choice of models or hypotheses (in our case the network likelihood
model) being searched must contain t he "t rue" model (in practice this
means a fairly accurate approximation to the "true" model) .

(II) T he choice of a pr ior over these models sho uld represent a reaso nable
initi al pr eference for models in the search space. There is considerable
literatur e on how to choose a prior to minimize the assumptions implicit
in the prior [3].

Bayesian methods then guarantee best average-case performance given these
two assumptions and a third assumpt ion:

(II I) T he approximations made in implementation are sufficiently accurate.

Poor modeling will lead to strong but inappropriate assumptions. For ex­
ample, a single -layer pe rceptron network cannot capture certain higher-order
funct ions , so it is inappropriate for tasks known to have higher-order com­
ponents.

There is a subtle distinction between some statistical mechanics formu­
lations and a Bayesian approach. Statist ical mechanics theory has been de­
veloped in the context of training a perceptron in a noise-free environment
to estimate the generalization error [35]. The statistical mechanics idea of

1We use the te rm "pr ior" to mean a pr ior distribut ion, pr ior probability, or prior
probability density funct ion, Likewise for posterior.



606 Wray L. Buntine and Andreas S. Weigend

an ensemble of networks [22] corresponds to the Bayesian post erior. No­
tions such as the "t rue" subject ive probab ility function [13], the "correct"
likelihood funct ion derived from th e addit ive energy funct ion [22], and the
use of probabili st ic mod eling in the context of "unrealizable" models [35J
(when ass umpt ion (I) fails so the search space does not contain the "true"
model) are only par ti ally consiste nt wit h a Bayesian approach . Apar t from
some philosophical distincti ons such as these, the approaches are equiva lent .
Seun g, Sompo linsky, and T ishby suggest Gibbs sampling? to approximate
the posterior distribution of network weights, whereas in the approac h de­
scribe d here we use more efficient bu t somet imes less accurate Gau ssian ap­
pr oximations around local maxima of the posterior distribution of network
weight s.

Bayesian met hods should not be confused with results that back­
propagation met hods are Bayes optimal [17J. Bayes optimal refers to the
propert y that back-p rop agation methods should produce a network that
approaches the greatest lower bound on error (or , more generally, risk) as
the tr aining sample size approaches infinity. Bayesian met hods descri bed
here share this pro perty but also have a more powerful property : they are
approximat ing a method t hat produces a classifier / regression that will on
average have equal or lower erro r (risk) than a classifier/ regression produced
by any other method applied to the same t raining sample. Not ice, this
holds for the curre nt tr aining sample, not just the infinite one considered
by Bayes op timality. It does, however , rely on the modeling assumpt ions
listed above.

Uniform convergence methods [4, 14], the basis for earlier computational
learn ing theory, approximate Bayesian methods when the sample size is large
[7, section 4.2]. Uniform convergence met hod s require a sample size that
is large enough that the prior term found in Bayesian method s becomes
insigni fican t (and so can be ignored). Uniform convergence metho ds make no
ass umptions ," bu t instead have to ignore useful information in the training set
[7, sect ion 4.2]. As a consequence , they can only guarantee goo d performan ce
inthe worst case , so they sac rifice the guarantee of average-case optimality .
Notice that for larger samples the worst case and the average case converge, So
uniform convergence methods are simpler and adequate. For smaller samp les
the worst and average cases can be far different [7J, so the extra effort involved
in the Bayesian approach is worth it.

It is imp ortant to bear in mind , however , that Bayesian methods are not
a replacement for un iform convergence methods, as indeed they are not a
replacement for ot her techniques such as cross-validation or minimum en.­
coding methods. All met hods have particular algor ithmic, complexity, and
statistical properties that make them mor e appropria te in one engineering
contex t or ano ther. Minimum encoding met hods such as MML [40] and
MDL [33] are ofte n viewed as approximate Bayesian met hods and are used

2See [121 for a mot ivat ed tuto rial introduct ion to th is widely used technique .
3The model space does not have to contain th e "t rue" mod el and no prior is needed .
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as a useful met aphor , and their imp lementation is somewhat simp ler than a
full Bayesian ap proach with averaging [6, 36].

3. Multi-layer networks

The networks we consider consist of a direct ed acyclic graph, giving the net­
work struct ure toge ther with the act ivation functions at each uni t or node,
which relat e inputs to activat ion output . T he network deals with real num­
bers int ernally, alt hough the inputs may be discrete but represente d as real
numbers 0 and 1. We first explain the notati on we use in sect ion 3.1, and
then describ e some simple networks in sect ion 3.2 that form the basis of lat er
examples.

3.1 Notation

Denote the input variables to the network as a vector of values x and denote
the response var iab le that the network is intend ed to pr edict as y. In the case
of regression , the network output corr esponds to the pr edicted regression or
expected value for y condit ioned on the values of the input variables x. In the
case of one-of-C classification, the network outputs a condit ional probability
distribution over C possible (mu tually exclusive and exhaus tive) values for
the discret e variable y , conditi oned on the values of the input variables.
The output comes from C nod es and corresponds to a vecto r of real values
summing to 1. The ith value is the est imated condit ional probabili ty that
the output vari abl e should have the ith discret e value.

Let the non-ou tput nodes in the network be indexed n = 1,2 ,. .. . In
regression the output node has activation 0 , and in one-of-C classification
t he output nodes have activation 01 , . .. , 0c . The act ivat ion of any non­
output nod e n. is deno ted U n , whi ch is a real number. T he act ivation function
for the node m is a funct ion of the act ivat ions U n for nodes n inputting to
nod e m , and the fun ction is par am eterized by a vecto r of param eters W m

(= wm ,l , W m ,2 , · · . ) .

The exac t details of the act ivation functions relating inputs to a nodes
act ivation is not important for the analysis here, except that they are pa­
rameterized by network weight s. A typical act ivat ion function for a node n
with vector of weights W n would be the sigmoid acting on the weighted sum
of it s inputs Ul , . . . , Ut ,

1
U(Ul, . . . , U t) = ( ).

1 + exp L: i=l, ...,l W n ,iUi + w n ,o

Some other act ivation fun ctions that have been used are indep end ent Gau s­
sians found in radial basis, exponent ial, and various trigonometric functi ons
[10].

In t he case of one-of-C classification , the output act ivat ions need to be
non-negative and sum to one. To do this, the output act ivation functions
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may normalize a set of non-negative act ivat ions from nodes in the pr evious
layer Ul , . . . , Uc using the function

U i
Oi ( U l,"" uc) = '"

L.j=l , .. ,c U j

We call this fun ction a normalizing act ivation function. A similar act ivat ion
function , the Softmax function [5] , firs t uses the exponential fun ction to
ensur e positivity.

3.2 Probabilistic neural networks

Two key issues in network design are whether the network can sufficiently
approximate the "true" function that needs to be computed, and whether
the network st ructure and weights have an int erpretation or intrinsic form
that can be explained as the "knowledge" in the network rather than t reat ­
ing the network as a black box. This second issue is more important than
one might think. If network weights have some clear int erpret ation then we
can configure the network in coherent ways, an expe rt can view the knowl­
edge represented by the network, and we can more readily assign meaningful
priors or some other initialization for the network weight s (for instance, a
non-probabili stic scheme for initialization of weight s is describ ed in [38]).
Probabilistic interpret ati ons of networks are also discussed in [5, 26].

In this section we pre sent network structures in which these issues are
well underst ood . One of the advantages of the general network approach,
however , is that the one-network package can be used to implement all these
network types and more, just by replacing the network act ivat ion functions
and their derivatives. While we call t hese probabilistic neural networks, they
should not be confused with the probabilistic networks that are used in ar­
t ificial intelligence [2S]. The neural networks are probabilistic in the sense
that they implement a well-known probability functio n. Logistic networks
and regression networks, both discussed below, are well known in the connec­
ti onist community. We include them here for complete ness , and as a basis
for section 5.

3.2.1 Lqgistic networks

Logistic networks generalize the sigmoid activation function to produce a
family of simple networks that reproduce logistic stat ist ical model s for dis­
criminat ion and regression [24]. They are used for classification where the
output vari abl e y is discret e with values 1, ... , C .

Suppose we have key features of the input vari abl es that may t ake the
form of bool ean functi ons on bin ary variables XI X 4 , X3X4, or X 2X3XS, or
quadratic and possibly multivariat e functions on real vari abl es xi or XIX 2 . In
general the key features are represent ed by real-valued functi ons Cb ... , cf of
the input variables. Then an exponent ial distribution [24] on (x,y) can be
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(1)

otherwise.

for y = 1,

defined in terms of these features,

Pr( x ,y) = exp (ao ,y+ i=f:.,j ai,YCi(X) ) ,

where ai ,y are some paramet ers. We are int erested in th e condit ional proba­
bility dist ribution of y given x , so we take th e condit ional version of this,

P (I )
exp (ao,y + Li~l , ...,jai,yci( X))

r y x ,a= ( ) .
L y exp aO,y + L i=I,...,j ai,yC; (x )

The representation in terms of a is redundant , however. To see this, divide
both sides by exp(aO,1+ L i=I,...,j ai ,lci(X)) and change vari ables (ai ,y - ai ,l)
to Wi,y. This gives an equivalent form without redundant vari ables,

{

I + L Y'>1 ex p(wo,y' ~ L i=I,...,j Wi,y'Ci (X))
Pr(y I x , w) =

exp(WO,y+ L i=I,.. ,j Wi,yCi(X))

Not ice that, for y binary and the features c;(x) taking the simple form Xi, we
recover the sigmoid function . By introducing enough higher-order features,
any condit ional probabili ty distribution on binary variables can be rep re­
sented . In pr actice, higher-ord er features would have to be carefully chosen
to represent th ose kinds of features expected in th e data.

These functional forms can be implemented as networks in the following
manner. The first layer computes the higher-order features, if any. The
second layer computes from the first t he C - 1 exponent ial functions (for
y' > 1), where the weight s are Wi,y'. The final layer is a standa rd normalizing
layer with one input nod e always set to 1.

3.2.2 Regression networks

Another statist ical model that has a simple network representation is linear
regression [18], where th e mean of the response var iable is usually given by

y = L w;fi(x )
i=I,...,K

for "basis functions" Ii and "para meters" or weights uu, A corresponding
network has K hidden nod es with out weight s, which compute th e functions
j; (x) , leading into linear out put nodes that compute th e linear regression.
The regression is called linear because it is a linear function of the weights
uu, whereas the functions I. can be ar bitra ry.

The various techn iques such as smoothing , penalized least-squares, and
cross validation applied to th ese systems can then be cast in a network frame­
work ; see MacKay [23] for a Bayesian int erpret ation. The choice of basis func­
tions depend s on the anticipated behavior of y. Some choices are products
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of sin n i x i and cos n ixi for integer n i when X i E [- 7r , 7r]; or comb inations of
Legendre po lynomials or their integrals when Xi E [-1, 1] and y is expected
to be in the form of a po lynomial; or combinations of Hermit e funct ions
when Xi E [-00, 00] and y is expected to be in the form of a product of
exp(- L~l xl / 2) and some polynomial in x . Not ice each of these choices
may require rescalin g the x ;'s init ially.

Of course , in the more general case, we can use a semi-linear model such
as

y = _2:: wo,di (2:: W i ,j Xj ) ,
, - l, ...,K J

which again has a st raight forward network interp retati on .

4. Probabilistic analysis

T his sect ion covers each component of a Bayesian analysis in turn : inter­
pret ing networks as a probability function in sect ion 4.1; thereby calculati ng
t he likelihood of the training sample for a given network and weight s, in sec­
t ion 4.2; and finally considering posteriors for the weights in a network , in
sect ion 4.4. A more thorough treatment of priors for the weights in a network
is left until sect ion 5.

The expected value notati on desc ribed below is used throughout the sub­
sequent analysis. EAIB (J(A ,B )) denotes the exp ected (mean) value of the
functi on f (A,B ) when A is distributed according to the prob abili ty functi on
or probabi lity den sit y function Pr(A I B) . T hat is, B is given , and we wish
to find the mean of f (A ,B ). If A is conti nuous , this is calculated wit h an
integral

E AIB (J (A ,B )) == Lf (A ,B ) Pr(A I B ) dA,

and if A is discrete this is calculated wit h a sum

E AIB (J(A ,B)) == 2:: f (A ,B) Pr(A IB) .
A

For mixed cont inuous and discret e variab les, combinations of these formulas
apply. Similarly, the notation v AlB (J (A , B )) denotes the var iance of f(A ,B ),
usually calculated as

V AlB (J(A ,B)) == E AIB ((J (A,B) - E AIB (J(A ,B ))r) .
4.1 The network likelihood function

To do Bayesian or likelihood an alys is on feed-forward networks, we have to
use the network output o(x ,w) , a function of the inputs X and the weights w,
to const ru ct a likelihood function l (y I x, w) for the observed pattern (x , y).
T his likelihood funct ion gives the condit ional prob ability distribution for the
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output vari able y condit ioned on the inpu t variables x , given a particular
network and weights. This likelihood function is the basis of all subsequent
analysis.

In the case of classification , the likelihood function is a probabili ty dis­
t ribution repr esent ing the network 's est imate of the "t rue" conditional dis­
t ribut ion for y given x . The C network outputs therefore give a conditional
probability vecto r. The ith out put Oi(X,W) represents the conditional prob­
ability that the discrete output variable y takes its ith value. So

l(y I x ,w) = Oy(x ,w) .

In the case of regr ession , the likelihood function is a pro bab ility density
function (it integrates over the dom ain of y to 1) of the form l(y I x ,w , F) for
the output vari ab le y condit ioned on x , the network weight s, and some other
informati on F such as a st andard deviat ion of error. T he network output is
usually defined to be the mean of the likelihood function given by

o(x ,w) == ~ y l(y I x, w , F ) dy.

The likelihood is usually defined in terms of some error model tha t is a fun c­
tion of y , the mean o(x ,w), and some other error param eters. An error
model commonly used is the Gaussian distribution with mean o(z ,w) and
standard deviation a that is unknown (so has to be est imated along with the
weight s w) . This means the t ru e y is expected to vary about the mean o(x ,w)
with constant standard deviation a . It is more realistic that the standard
deviation itself should also be a function of x . In this case , a second output
node can be connected to the network to est imate the standard deviation ; we
denote its output by o'(x ,r), an d note that the weights r may have param­
eters in common wit h w. Vapnik [39] has also suggested using the Lap lace
distribution as an erro r model when the experimental cond it ions may vary
with maximal uncertainty, bu t the standard deviat ion is st ill ind ependent of
x . This leads to the following choice of error models: with known/unknown
standard deviation a of

_ 1 ( (y - o(x ,wW)la (y I x,w , a ) = ~. exp - 2 ;
V 27ra 2a

with x-dependent standard deviation o'(x ,r) of

1 ( (y-o(X ,W))2 )
laD(y I x ,w, r ) == VZ:;o'(x ,r) exp - 2o'(x ,r)2 ;

and with experiment-dependent standard deviation of

_ 1 ( IY - O(X,W)I )lL(y I x, w , t>.) = 2t>. exp t>. .

While ot her err or mod els may be approp riate for a given problem , these three
are sufficient to demonstrate our methods.
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A similar calculat ion can be done for the Laplacian error model with unknown
standard deviation ~ , and this time

E ( ~) _ _ 1_ ~
L:> lw ,x ,y - N _ 1 . L..J

,= l, ... ,N
IYi - O(Xi , w)l ·

To summarize, post erior probab ilit ies for a set of network weight s ware
as follows.

Lemma 4 .1. Consider the classificat ion and regression fram eworks de­
scrib ed above for neural networks. Posterior probabili ties of network weights
are as follows. For regression with Gaussian error and unknown (J with prior
Pr((J I x ,w) = 1/ (J ,

Pr(w I x ,y ) ex: Pr(w, y I x )

Pr(w I x ) f (N/ 2)
N/ 2 '

2rrN/2 (2::i=l, .. ,N(Yi - O(Xi ,W))2)

for regression with Laplacian error and unknown ~ with prior Pr (~ I x ,w) =
1/~ ,

Pr(w I x , y ) ex: Pr(w,y I x )

Pr(w I x ) r(N) .
2N (L=l, .. ,N IYi - o(xi,w )I( '

and for classification ,

Pr(w I x ,y ) ex: Pr(w, y I x ) = Pr(w I x ) II 0y;(Xi ' w).
i = l ,... ,N

These posterior probabilities, together wit h suitable priors, define the Bayes­
ian solution to the problem of t raining networks. High posterior weight s w
shift the weights away from the maximum likelihood (or minimu m err ors)
solut ion toward a solution with higher pr ior Pr(w I x ). Wi th a Gau ssian
error model, the trade-off is with mean-square error ; with a Lap lacian error
model, the average ab solut e deviati on . In all cases , as the sample size N gets
large, the shift due to the pr ior term will become negligible.

In the noise-free case, either the training sample agrees with the network
output , or not . In this simple case the likelihood function becomes a delta
function, so the post erior becomes the projection of the prior onto the sub­
space of networks whose output is everywhere consistent wit h the training
sample.

P ( I ) P ( I) - { p r (w Ix) if w consistent wit h (y ,x),
r w x , y ex: r w , y x - 0 ot herwise.

This is very different to analyze mathematically than the noisy cases above,
and we do not consider this here (see, for instan ce, [16, 27]).
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A prior for a network is related to the notions of "penalty te rm" or "regular­
izer" used in the statist ics literatur e [18], weight decay [29] and weight elim­
ination [41], and the "complexity te rm" used in minimum enco ding methods
[2]. Rather than using the weights that give minimum error , as for instance
plain back-propagat ion t ries to do, priors allow a shift in weight spac e toward
a set of weights yielding for inst an ce a "smoother" network. T he use of pri­
ors gives a probabili sti c regim e for mod ulat ing this shift and , as mentioned
in sect ion 2, can make a difference in performance with smaller t ra ining
samp les.

We suggest a few priors here; however , we believe more experience and
research is needed in designing priors for feed-forward networks. In general
there is no "correct" prior, becau se each learning problem is unique. However ,
it is imp ortant to use a pr ior that has reasonab le properties, and to cho ose
a particular pri or that matches the pr operties of the prob lem. See [6] where
a number of different priors are discussed for t rees, and [23] where several
priors are t ried and compared for a single network learning probl em .

Priors for networks fall int o thr ee broad sty les.
First , t here are priors that say how accurate the pr edictions should be

on individual examples. In regression , this correspo nds to say ing you ex­
pect the varian ce (J"2 to be "just so," small or large, whatever that might
be. In classificat ion this corresponds to saying you expect the class pr ob­
ability vector given by the network output s, (Ol(X ,w) , . .. ,oc(x ,w)) , to be
extreme (one probability is near 1.0 and the ot hers near 0.0) , or roughly
aro und the po pulation base rate, and so forth . For instance, in the two­
class case, sup pose 90% of examples in the population as a whole are known
to be of class 1, so 10% are of class 2. Then you might say you expe ct
network outputs for a par ti cular example to vary little from this, or to
vary quite widely. These kinds of priors, when well chosen, can improve
the out -of-sample accuracy of t ree algorit hms by several percent [6]. En­
tropic priors, described in sect ion 5.1, are concern ed wit h this accuracy of
pr edicti on .

Second, there are pr iors that say how "smoot h" you expect the pr edic­
ti ons to be, that is, how pr edictions var y as you change the network inputs.
"Penalty terms" and "smoot hers" are used in stat ist ics to achieve this. The
idea is that you expe ct a priori a fairly smooth function of the input , or you
expect output to be of a certain magnitude. When ther e is lit tl e da ta to fit ,
you therefore choose the smoot her fit over the rougher fit. While this should
not be true in genera l, it is a proper ty that one aims for by judicious choice
of "key" input var iables, or by careful st ructur ing of the network to capture
key features such as "spat ial invari an ce." We describe smoothness measur es
for both logist ic and regression networks in sect ions 5.2 and 5.3. Following
that , we discuss in section 5.4 how these measures can be used to cons truct
a prior. We believe similar strateg ies can be develop ed for the more general
networks used in pr act ice, but we do not present any here.
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Fin ally, there are priors that embody much more specific information than
general notions of "smoothness" or "accuracy." Schemes for initializat ion of
weights as described in [38] are a step in this direct ion .

5 .1 Entropic priors

Entropic priors [34J are becomin g accepted as a st andard of the so-called
non-informative priors. They take the form (we ignore the "measure term"
here)

Pr (B) ex: exp (- al zlo(B)) ,

where a is a negative or positive prior par ameter , and l Zlo(B) denotes the
ent ropy of z when B is known. T he function

l Zlo(B) = - JPr (z IB) log Pr (zIB) dz

is the usual ent ropy function giving the entropy for z distribut ed as Pr(z IB) ,
which is a function of B. When a = 1, these include Zellner 's maximal data
informat ion pr ior [42], which can be used to yield most of the t extb ook "non­
informat ive" priors. For a posit ive, these pr iors prefer a more informative
prediction about a network output . So in regression they prefer a low varian ce
(J"2, and for classificat ion they prefer class probabilit ies (Oy (x ,w)) to be output
that make one of the classes highly likely.

When doing classifica tion, we are construct ing a network for t he condi­
tional distribution Pr (y I x ,w) . For these we need a prior distribu tion on th e
weights w condit ioned on knowing the input vectors x == X l," " xN from the
t raining sample, Pr( w I x ). An entropic prior can be formed as follows:

Pr(wlx) ex: eXP (- (Ix!x + EXlx (IYIX,w(W)) ) )

ex: exp ( - Exlx (IYlx,w(w)) )

~ exp ( - ~ElY1Xd,w(W)) .

The ent ropy of x , namely l xix, is ignored since it is independent of w. The
last line est imates the expect at ion Exlx (.) with th e empirical average from
th e sample of input vectors x .

For the classification case,

c
- L O;(Xd' w) logo;(xd,w),

i = l

N C
Pr(w I x ) ex: II II o;(Xd,W)Oi(xd,wl/N.

d= l ; = 1
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For the regression case wit h x-dependent standard deviation of 0'(x,r) ,

Pr(w, 7' 1x)

log 0'(Xd ,r ) + const ant ,

N 1

ex: Qo'(xd,r)1/N '

Notice that this pr ior is independ ent of the weights w . This is because the
ent ropic prior is only concern ed about informat ion cont ent of network out­
puts, which in turn is a fun cti on of variance or err or and not of the pr edict ed
value for y. Applying the same ent ropic construct ion to the case of regres­
sion , wit h unknown (J or ~, we reconst ru ct the priors used in Lemma 4.1 for
(J and ~.

5.2 Smoothness of logistic networks

A measur e of smoothness on logistic network s that can be readily calculated
is the mean square change in log-odds. W hile we do not claim this is in any
sense the "best" measure of smoothness, it is at leas t a qu adratic function .
We develop this here for the simple case where all input variables and the
output variable yare binary. T his corr esponds to the case where there is
a single sigmoid in the network receiving input from higher-order binary
features of the inp ut variables. The network output is

1
01(X,W) = ( ) "

1 + exp Wo+ 2:i =l ,u ,j WiCi(X)

Here , the functi ons Ci (X) t ake t he value °(off) or 1 (on), and we will rest rict
them to be conjunct ions of the inputs, such as C1(X) = X1 X3X6·

Supp ose the input x is an A-dimensional binary vector tak ing values such
as (0,0,1,0,1,1) when A = 6. A part icular input x has a set of neighbor values
nbr (x) that differ from x in just one place. For x = (0, 0, 1, 0, 1, 1) these are
given by

b ((0 °1 °1 1) ) = { (1, 0, 1, 0, 1, 1) , (0, 1, 1, 0, 1, 1) , (0, 0, 0, 0, 1, 1) , }
n r " '" (0, 0, 1, 1, 1, 1) , (0, 0, 1, 0, 0, 1) , (0, 0, 1, 0, 1, 0) .

A local measure of the smoothn ess at t his input x is t he mean square change
in log-odds between x and it s neighbors, given by

L I 2 02(X,w)01 (x' ,w)
x'Enbr( x) og 01(X,W)02(X' ,w) '

An average measure of smoothness for a network is then

S (W) = ~ L L log2 02(X ,W)Ol( X: ,W) / L 1
2 x x' Enbr(x) 01(X ,W)02(X ,w) x

L WiWjSi,j ,
i ,j
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where

Si,j = ~ I: I: (Ci(X) - Ci(X' ))( Cj (x) - Cj(X')) / I: 1.
x x' Enbr (x ) x

Notice the bias Wo does not appear in this express ion . The diagonals of
the quadratic form, Si,i , give the propor ti on of cases the binary feature c;
changes when the input is changed by one variable. The off-diagonals of
the quadr ati c form , Si,j , measure how ofte n the featur es c; and Cj change
toget her. (Ci (X) - Ci(X') )(Cj(x) - Cj(x' )) is 1 if both featur es change to on
or to off, - 1 if both featur es change bu t in different ways, and 0 if anyone
feature is const ant .

To evaluate the quadrat ic form S we need addit ional te rms, which we will
expla in using CI(X) = XIX3X6, C2(X) = XIX3XS, C3(X) = X2X3, and C4 (X) = Xl '

confli,j : number of conflict ing lit erals between the conjuncts for c, and Cj '

Samei ,j number of equivalent literals between the conjunc ts for e; and Cj '

sePi,j : number of lit erals only in one or the ot her of Ci and Cj .

Then conflI,2 = 1 (due to X3 ), confl2,3 = 0, same j, = 1 (due to Xl ), same-, =
1, sePI 2 = 2 (due to Xs and X6), and seP23 = 3.

Tw~ features e; and Cj can only be 'both on if they have 0 conflicts,
confl., = O. Changing a single variab le such as X3 can only cause both fea­
t ur es to go on toget her if the var iable X3 is shared by the features. Likewise,
changing a sing le var iable can only cause one feature to go off and one to go
on if t he variable is conflict ing. Therefore,

{

Samei,j
2 samei ,i + sepi ,j

Si,j = - 1
~Samei ,j +sePi ,j + I

confli,j = 0,

confl.j = 1,

ot herwise.

Not ice that confl.; = 0 and sarne, is the number of literals in the conjun ct
for c., so the diagonals Si,i are hand led in the first case above. So, in the
simple example above, S I,I = 3/8 , SI ,3 = - 1/ 16, S3,3 = 1/2 , and S2,4 = 1/ 8.

If t he features are simple linear terms e;(x) = Xi-SO t he network com­
putes a sigmo id of Wo + L i=I A wixi-then t he smoothness measure be­
comes S (w ) = L i W;' If t he ' i~atures are quadr atic terms Ci,j(X ) = XiXj
for j < i and Ci ,i(X) = Xi = XiXi- SO t he network computes a sigmoid of
Wo + Lj~i= I , ...,AWi,jx ix j-then t he smoot hness measure becomes

S(W) = I: W;'i + ~ . I: ( (Wi,i + Wj,J)Wi,j + 2w;'j)
t J<t=l l''' IA

1 1 1+8" I: Wi,jWi,k + 8" I: Wj,iWk,i +4 I: Wi,jWk,i'
j ,k<i j,k>i k>i>j
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5.3 Smoot hness of regression networks

For regression networks, pr iors say how we expe ct the mean of y given x to
vary wit h the inp ut x. Some things we might know abo ut a priori are the
typical smoothness or curvat ure of y, the order of magn it ude of y , or the
typical slope of y . T his sect ion develops a measur e of smoothness for linear
regression networks. Incorporation of information such as typ ical magnitude
or slope could be done to develop a more sophist icated measure.

Smoothness is relat ed to curvature , which is measured by the second
derivat ive of y. Wi th x defined over the multi-dimensional space X , the
averag e magnitude of the second derivative of y is given by

S(W) = l EX II~:~ IIw( x )dx ,

Here w (x ) is some weight ing in t he space X with JXEXw(x )dx = 1, for
inst an ce, given by w( x) = 1/ JXEXdx . The norm II · II is an average measur e
of the size of th e second derivative at a single po int . This is given by the
average change in y about a ball in x-space of fixed rad ius from x (i.e.,
x + b.x where Ib.xl = 1) du e to the second derivat ive. Using a second order
expansion,

for large A.

1 1 ~:q j~XI=l (~ itl b.x i b.Xj O~~Xj ) 2db.x / j~XI= l d/s«

(
d
2y

) 2 for A = 1,
dxi

>':;j _1 (t o2y o2y + 2 t (~)2)
4A2 i,j=lox~ ax; i,j=l OXiOXj

The deri vation of this approximat ion is detailed but fairly st raightforward , so
we do not reproduce it here. We use the approximat ion since it is proporti onal
to the exact calculation when A = 1. To interpret this measure noti ce
that if y represents the top of a sphere of radius a in any dim ension , then
II d2y/dx2

11 = l /a2.
T his measure of smo othness evaluates on regression models as follows.

Subs t it ut ing into S(w ), and using the regression mod el y = L:i=l,H ,K Wdi( X),
we get

K

S(w ) = L wmwnSm,n,
m 1n= 1

where
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Values of Sm ,n for a given set of basis fun ct ions f nU only have to be
calculated once, bu t usually lead to a complex matrix. If the basis functions
and their derivat ives are somewhat ort hogonal, then a diagonal approxima­
t ion to the matr ix is quite good , as shown below. For basis funct ions such as
{I , X, x 2

, x 3
, . . . } , changing the x 3 term has dramatic consequences to the x 2

term, and so forth, so this orthogonality property does not hold . We there­
fore aim to choose basis functions in which orthogonality holds quite well (in
the sense that off-diagonal terms of Sm ,n will be small).

As an example, for the simple case of one-dimensional inpu ts with basis
functions,

{1, cos x , cos 2x , cos 3x , . . . , sin x , sin 2x , sin 3x , . .. }

the matrix becomes

0 0 0 0 0 0 0 0 0
cos ::z: 0 1.178 0 0 0 0 2 - 2.531 3.2
co s 2x 0 0 18 .85 0 0 -1 0 16. 2 -16
cos 3x 0 0 0 95 .43 0 0.8437 - 10 .8 0 61.71
cos4x 0 0 0 0 301.6 - 0.8 8 - 46 .29 0

sinx 0 0 - 1 0 .8437 - 0 .8 1.1781 0 0 0
s in 2x 0 2 0 -10.8 8 0 18.85 0 0
sin 3x 0 -2.531 16 .2 0 - 46 .29 0 0 95.43 0
s in 4x 0 3.2 -16 61.71 0 0 0 0 301.6

Here th e diagonal terms are in the form 31rn4/8 and the non-zero terms in
the block off-diagonals are in the form (3n 3m 2 )/ (n2- m 2 ) . Not ice the matrix
is largely diagonally dominant , so we can use a diagonal approximation. In
the mul t ivar iate case, consider basis funct ions of the form

fn(X l , .. . , XA) = II sin n.z , II cos n.z ,
iEl n i¢J n

where n = (nl " '" n A, In) and index set In ~ {I , . . . , A}. Then the diagonal
terms are given by

5.4 Smoothness pr iors

Previous sect ions showed how to develop quadratic smoothness functions on
different kinds of networks. This sect ion shows how to take a penalty term
such as quadratic smoothness and construct a pr ior th at requires no set t ing of
additional hyperparameters or decay fact ors [29, 41, 23]. Unfortunat ely the
approach does not work for the penalty te rm of weight elimination [41], which
has constant tails, because the imp ortant marginalization step of equa tion (4)
has no solut ion. We can interpret this by saying that the decay factor (a
below, but usually >.) in weight elimination cannot be set using Bayesian
meth ods, bu t should be chosen from prior informat ion alone.
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Historically, pe nalty terms on weight s w such as smoothness S(w) have
been interpreted as log-posteriors, where some const ant has been added . T his
has been done because of the similarity of the Bayesian log-posterior wit h
pe nalized least squares, ridge regression, and regularization [18, 23]. T hat is,
we put a prior on w in the general form

Pr (w I a) <X a 1wl/2
. exp (- as(w)) , (3)

for some constant a. Since S (w) is quadratic t his defines a multivariate
Gaussian over weight space. T he term a 1wl/ 2 is included for normalizati on ,
and Iwl is the dimensionality of the weight space.

Given this pr ior , changing to ort hogonal coordinates an d then polar co­
ordin ates and simp lifying yields t he pr ior distribut ion on smoothness it self.
Noti ce this is all we need since , by equation (3) , po ints in weight space of
equal smoothness are also equiprobable a priori:

Pr(S(w) I a) <X S(w)lwl/ 2- 1 . exp (-as(w)) .

T his prior distribu tion on S(w) is from the Gamma family [3], so a priori we

expec t S(w) to have mean Iwl/2a and standard deviation ~/(V2a) . For

a large number of weights , as is usually t he case in networks, ~ « Iwl.
T his says we have a very strong idea a pri ori that S(w) should be near
Iwl/2a. Also, given a part icular value of a, t he prior will ensure that the a
posteriori smoothness found aft er t raining will most probab ly be quite near
Iwl/2a . Of course, this is wrong . We expect smoothness S(w) to be small,
but a priori we cannot even spe cify the value roughly. T his pri or is therefore
very sens it ive to the "correct " setting for a and is not appropriate in general.

MacKay overcomes this poor choice of prior by making a a "hyper­
parameter" and setting it using a Bayesian maximum a post eriori approach .
Better st ill , we can marginal ize out " a and thus sidestep the need to deter­
mine a . Since a ap pears as a facto r of S(w) it is a scaling quantity, so a
suitable prior is [3] Pr (a) <X l/a. T his gives the Gamma integral , so

P r(w) l=P r(w I a) Pr(a) da

<X S(w)-lw1/2.

(4)

Using the same t rick as before we find that this corr esponds to a pr ior on
the smoothness of

Pr(S(w)) <X S(W )-l .

This says we a priori expect smoothness S(w) to be small, wit h no restric­
ti ons on how small. Noti ce that this is the prior we should have used for
smoo thness originally since smoothness is a magnit ude (a quantity where
scale is imp ortan t ) [3]. This prior is improper (it cannot be normalized) ;
however , this is adequate for subseq uent analyses in many cases.

5That is, calculate Pr (w) from P r(w la ) and so remove a from the prob lem.
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We can illustrate this prior by graphing the different kinds of regression
curves that result when using one prior or anot her. We use one input variab le
x and the sine and cosine basis funct ions of the previous section up to sin 30x
and cos 30x . We ignore the constant basis function , 1, so that all regression
curves will cente r abo ut the origin o. Weights are dr awn acco rding to the
pr ior , and then the correspo nding curve is dr awn. The top graph in figur e 1
shows the case for the smoothing prior just derived , an d the bottom graph
shows the case for the prior correspo nding to weight decay [29],

Pr(w) ex exp ( - ;;= w;),
where all weight s are distributed ident ically and ind epend ently. Not ice how
the curves for the smo othing pr ior give a ran ge of different scales and curva­
tures, but mor e curves tend to be smoother. In the second graph, allowing
weights for sin 30x to be of similar size to weights for sin x mean s high-order
frequencies dominate the curves. Use of this second pr ior means that these
high-frequency curves will tend to be chosen to fit small samples rather than
the smoother curves in the top graph .

During gradient descent , the important contribut ion from the pr ior is

8 - log P r(w)

8Wi
Iwl 8 10g S(w)
2 8Wi

Iwl 8S(w)
2S (w) 8Wi .

If we compare this with the derivative of the or iginal prior Pr(w la ) in equa­
t ion (3), then it follows that a could also be set dynam ically with

where w is the weight value at the current point in t he search.

6 . A naly zing we ights

The section describes how we can use the posterior analysis given in sec­
tion 4.4 to assist basic tasks done during network t raining . In sect ion 6.1
we describe how we derive "cost functi ons" for a given set of weight s from
the post erior formulas, and section 6.2 describes how we can evaluate one
set of weight s with another. The cost function allows us to find a locally
optimum set of weights , and the evaluat ion allows us to compare the quality
of one local optimum wit h another. We do not consider here the import ant
computat ional problem of how the minimization of the cost fun ct ion should
be done.

6.1 Cost functions

T he posterior probabi lit ies of sect ion 4.4 represent functions of the weight s
that should be maximized. Calculation is usually done in logari thms to
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pr event arithmetic underflow, to turn products into sums, and because log­
likelihoods are similar to the "error fun ctions" that t radit ionally have been
minimized in neural networks. Hence when searching for a high posterior set
of weights we would like to minimize the "cost fun ction" - log Pr(w I x , y ).
Not ice that

- log Pr(w I x , y ) = - log Pr(w, y I x ) + log P r(y I x ),

and since the term log Pr(y I x) is constant in wand difficult to calculate in
general, we can instead minimize the cost funct ion

Cost(w) = -logPr(w,y I x) ,

which can be computed dir ectly using Lemma 4.1. Below we ignore constant
terms, such as the normalizing cons tant for the prior on the weights Pr(w I x )
(t hat is, t he prior is not ignored , just it s normalizing constant). T his is
corre ct when different weight s ware being compared using the same pri or
on weight s. If ent irely different network st ruc tures are being compared, then
the constant terms should be included.

These cost functions differ from maximum likelihood methods for network
tr aining [8, 11] in that they introduce the important prior te rm. The cost
fun ctions also differ becau se they somet imes have "nuisance" paramete rs
eliminated . For inst an ce, wit h regression o is te rmed a "nuisance" par am eter
when trying to determine a goo d set of weights to do predict ion. Estimates
of a can be recovered afte r a goo d set of weights are found using techn iques
developed later , such as equation (13) . Involving "nuisance" parameters like
a in the search process is an extra complication (compare wit h [23]).

Wit h maximum a post eriori analysis we would minimize in the regression
case wit h Gaussian error and unknown a:

-logPr (w,y I x )
N= - log L (y; - o(x;,W))2- log Pr(w I x ) + constant , (5)
2 ;= l ,...,N

where the logari thm of the prior is determined as before. If the value of a is
kn own , the cost to be mini mized is

1
2 L (y;- o(x ;,w))2 - log Pr(wl x)+N log u +constant. (6)

2u i = l, ...,N

Not ice the difference between these above two cost functi ons. In the second
case, the cost function is propo rt ional to the mean squared error plus a
penalty term; but in the first case, when a is unknown, the logari thm of the
mean squared error is taken .

A common tr aining approach [29, 41] is to minimize a penalized error
term such as

1 L (Yi - o(x;,W)) 2+ '\S (w).
2 ;= l, ...,N
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T his compares with the cost function of equation (6) if we mult iply it by cy2

). can therefore be interpr eted as a combinat ion of cy2 with prior param eters in
the log-prior term - log Pr(w I x ). Perhap s this explains why). is inherently
hard to "set ," and is oft en set dynam ically dur ing learning.

If in regression the value of the standard deviat ion (CY) is det ermined
from the inputs as well, as o'(xi,r), the cost to be minimized is now the
log-posterior of both weights wand r toget her , -logPr(w, r ,y I x ), given
by

i=E ,N 2o'(: i,r)2 (Yi - O(Xi'W)? + i=E,N log o' (xi,r)

- log Pr(r, w I x) + constant.

Minimization has to be done for r and w concurre nt ly. A prior for Twas
given in section 5.l.

In the classification case , the overall cost is given by

- log Pr(w, y I x) =

L log oy;(xi' w ) - log Pr(w I x ) + constant .
i=l,... ,N

(7)

If the out put variable is binar y and represent ed as 1 for true and 0 ot herwise,
then the first sum expands to

L (Yi log 01(Xi,w) + (1 - Yi) 10g(1 - 0 1 (Xi,w))) .
i=l,...,N

Not ice this is the familiar cross ent ropy error for the sample.
Not ice that the formulation given here seems to imply that learning should

be done in batch (or epoch) mode becau se the cost fun ctions are expressed in
te rms of the full training sample. This is not the case . The sums above can
readily be approximated on a sub-sa mple as is common in back-pr opagation
implementat ions, alt hough , to ensur e accuracy, batch learning should be done
on the full sample when near a local minimum of the cost functi on .

6 .2 Weight evaluat ion

To obtain a measure of the quality of each local maximum a post eriori est i­
mat e wfound during search , an estimate of the local area under the post erior
around w is usually done. T he actual pos terior value itself is not the best
measure of quality becau se some peaks may be thinner than ot hers so they
contain much less of the post erior pr obability in their vicinity. For inst an ce,
consider an idealized learning problem where the scalar param eter a is being
learned. Suppose a has post erior given in figure 2. Notic e the left peak is
higher but much thinner. The expect ed value of a, E ; (a), and ot her fun c­
tions would therefore come more from the fat ter peak on the right . This be­
comes more pronounced in higher dimensions, or when comparing networks
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a

Figure 2: Posterior for a.

of different dimension. This local area est imate of quality lets different local
maximum a posteriori est imates be compared on an equa l footing, for in­
stance networks with different numbers of layers or connect ions. T his local
area est imate and successively coarser approximations to it correspond to
the various encoding measures such as MML [40] and MDL [33], discussed
in the next sect ion.

To make t his est imate, we approximate the log-posterior at the local
maximum wby a quadratic function of the weights, giving

Pr(w I x , y)

~ Pr(w I x , y )exp ( - ~ (w - w f I (w)(w - w) + O((w - W)3)) ,

(8)

where I (w) is a second derivative of the cost function , such as the log­
poste rior equat ions (5) or (7),

d2 10g Pr (w, y I x)
dwdw

I (w) =
d2 10g Pr (w I x ,y)

dw dw
d2Cost (w)

dwdw

Notice the different ials are dw rather tha n ow because the derivative repr e­
sents the full matrix of second derivatives with respect to the different weight s
wn,m' Because the const ants in equat ions (5) and (7) are ind ependent of w,
they can be ignored when evalua t ing the derivative.

Roughly, this approximat ion is valid for large sample size N because
the post erior is found by normalizing for w a formula of the form g(w)N
(see, for instan ce, [3, page 224]). Generally, the sample size N should be at
least some factor of the number of weights in the network . In some simple
non-network mod els- such as distributions from the exponent ial family [3],
class probability t rees, and Bayesian networks on discrete vari ables [6]-the
post erior can be dealt with exac tly so the approximat ion using I(w) is not
necessary.

We shall refer to the second derivat ive evaluated at the local maximum,
I (w ), as the information matrix. When using a uniform prior , I (w) is referred
to as the observed Fisher information matrix , and its determinant is referred
to as the Fisher information. We lat er develop an approximat ion, given in
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equat ion (10), called the expected Fisher informat ion matrix. T hese play a
central part in stat ist ical theory [1 , 3].

The local post erior area for w near wis found by integrat ing out w using
the mult ivar iate Gaussian approximation, and is given by

_ _ (27l')lwl/2
Pr(nearw I x , y) ;::0 Pr(w I x , y) det(I(w))1/2 '

where Iwl is the dimensionality of the variable set wand detf) is the matrix
det erminant.

T he desired quality measure is now given by the negative logarit hm of
the local area (and adding in the constant -log Pr(y I x ))

Eval(w) - logPr(nearw, y I x)

- logPr(y Iw,x) -log Pr(w I x)

- 1 ~ I Iog (27l' ) + ~ 10g det (I (w)), (9)

which wants to be minimized. Not ice the first and second terms toget her
give Cost(w). We separate them out here because they corre spond to the
likelihood and pr ior components , resp ect ively.

The determinant det(I(w)) could be approximat ed by looking only at t he
diagonals or block diagonals (block corresponds to one node that is square
in the number of weights for the node). Individual second derivatives can
be determined using a number of methods [9]. Fortunately, this only has to
be done once for each local minimum w found , instead of repeat edly during
search, so a fast approximation is not essent ial.

Several subsequent uses of the informat ion matrix I(w) require computing
the inverse. This will not exist if the matrix has zero eigenvectors. Zero eigen­
vectors themselves will usually exist only if the weight space is redundant , in
the sense that there are ways of altering weight values wit hout altering the
input-output behavior of the network. For instance, the parameterization of
the sigmoid activation function given by

1

1 + exp (a (2:i=l,...,1W iUi) + b)
is redu ndant be cause the a paramet er can be absorbed into the weights uu.
T he act ivation function as given is spec ified by I + 2 parameters , but only
requires 1+ 1 paramet ers . The logistic networks of sect ion 3.2 were designed
to remove redundancy between weights at different nodes.

6. 3 M inimum enco ding methods

Qua lity measures similar to Eval(w) can be derived using various quantiza­
tion, encod ing , and approximation methods. We discuss these br iefly her e
to draw the strong connections between Eval(w) and the ofte n discuss ed en­
cod ing measures given in [40, 2, 33]. We view these met hods as potentially
usefu l approximations , part icularly the MML measur e given second, but do
not cons ider t heir application here .
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Rissanen's MDL

Rissan en develops his min imum descrip tion language (MDL) measure [33J as
an upper bound on - log Pr(w, y I x ). For exposition purposes, we develop
a related bound here. I(w) is a positive ind efinit e symmetric matrix (since
w is a local minimum), S0 6

d I ( ~ ) ( traCeI(W)) IWI
et w ::::: [wi '

where trace A is the sum of the diagonal entries in the matri x A. Now, for
large N , traceI(w)/N is a mean and thus is approximately Gauss ian , with
mean O(lwl) and standard deviation O(lwl/VN). Therefore, with probabi l­
ity approaching 1 as N gets larger ,

1 ~ Iw[
"2 logdet I (w ) = z log N + O (lw llog Iwl).

We get that

Eval(w) - log Pr(y Iw,x) - log Pr(w I x ) + 1~llog N

+ O(lwl log Iwl).

T his is an approximation developed by Schwar z and ot hers [2]. The corre­
sponding MDL form ignores the term log Pr(w I x ), which is probably O (lwl)
anyway, and has an addit ional term (lw l/2) log Iwl. In our case, O(lw l log Iw l)
is quite large because we are dealing with networks with many weights. It
is not unu sual in pr acti ce for the number of weight s to be a similar ord er of
magnitude to the sample size N , so ignoring terms of ord er O(lwl log Iwl), as
this approximat ion does, is probably unwise. We conclude that this approx­
imation is inform ative but perhaps too crude.

Wallace and Freeman's and Barron and Cover's measures

Wallace and Freeman [40] and Barron and Cover [2] interpret a form like
Eval(w) as the cost of encoding y and w given x. Wallace et al. refer to
this as the minimum message length (MML). Of course , y and wcan only be
encoded to finite precision (in classification , y is finite already) . The precision
of y is impli cit in the supplied data, so if the volume of the precision for the
data vector y is 0 then the cost of encoding y given w and x is

- log Pr( y Iw,x) -log o.

Because y is encoded given W, we must encode wwithout knowledge of y.
The second , third an d four th terms of equat ion (9) are not an appro pri­
ate code length, however , because I (w ) is dependent on y . The third and

6The determinant is a product of eigenvalues whereas the trace is a sum of eigenvalues ,
which in this case are all non-negative. The inequali ty follows by maximizing ITi Ai given
a fixed value for I:i x..
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fourth terms of equation (9) essentially corres pond to the "precision" of w.
To see this, suppose the cont inuous space for w is qu antified. T hen the
cell in the neighborhood of whas prior probability given approximate ly by
Pr(w)Area( w) , where Area( w) is the area ofthe cell. T herefore -log Area(w)
is the pr ecision to which w is spec ified, and this mat ches wit h the third and
fourth te rms of equation (9). To interpret this pr ecision compo nent , notice
that if the weight s w happened to be a post eriori independent (an unlikely
event) , then there would be no off-diagonal ent ries in the information matrix
and

Iwl 1 ( (82
Cost (w) ) -1/2)

-- log(21f)+- logdet(I(w))~ -L log 2.51 · 8 2 .

2 2 n,m w n ,m

We show later in sect ion 7.2 that the inverse square root of the second deriva­
tive with respe ct to w n ,m is app roximate ly the posterior standard deviation
for the weight w n ,m. The recommend ed pr ecision for encoding each weight
is therefore ap proximate ly 2.5 times the post erior standard deviation for the
weight .

Wallace et al. and Barron et al. make the four th te rm in equat ion (9)
independent of y using an involved quantification argument. We can interpret
this by noting

1 ~ Iw l 1 ( 1 )2 Iogdet(I(w)) = 2 log N + 2logdet N1(w) .

The term (l /N)I(w) is now in the form of an average since, in genera l, I(w)
is a sum across the N points in the sample plus a fixed prior term. We now
rep lace this "average" information matrix (l /N)I(w) by what is called the
expecte d Fisher information matrix, I(w) , to get

Coding(y, w) = - log P r (y Iw, x) - log <5 - log Pr(w I x)

- ~ log(21f) - ~ + ~ logN + ~ log det (I (w)).
2 2 2 2

The expected Fisher informat ion matrix is the expec ted value of the infor­
mation matrix for a single pattern, given by"

I(w) = E (d2
Iog p r (x , y Iw))

x,Y lw dwdw '

where (x,y) in this formul a denot es a single pattern rather than the train ­
ing sample (x ,y) . This simplifies using properties of the expec ted Fisher

7Wallace et al. and Barron et al. develop th eir fram ework to deal wit h likelihoods of
th e form p(x [w) for data x and paramet ers w, whereas we are considering cond it ional
likelihoods such as p(y [w,x) . Here we give our interpretat ion of their methods in t his
different contex t.
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l(w) =

information matrix [37, page 35] to

E (dlog pr( X,y I w)dlog Pr(x ,y I W)T)
x,Ylw dw dw

E(E (dlog pr( x ,y I w) dlogPr(x ,y I W)T))
x y lw ,x dw dw

;:::; ~ '" E (dlogpr(x ,y I w) d log Pr(x, y I W)T)
N . L Ylw ,x ; dw dw .

t=l ,... ,N

(10)

The term d log Pr(x , y I w) / dw denotes a column vector of first derivatives.
Notice that the last formula is an estimat e of (l/N)I (w) involving knowledge
of the sample inputs x but not the sample out puts y . It is therefore a valid
inclusion in the code length of w .

For instance, in this case of classification , the approximat e expec ted
Fisher information becomes

l(w)

Here j runs over output classes and i runs over patterns. In the case of
regression with Gaussian error , the approximate expec ted Fisher inform ation
can be simplified to

- 1 '"I(w) ;:::; N(J2 . L
,=l ,...,N

dO(W , Xi) dO(W ,Xi) T
dw dw

The adva ntage of this formul a over the original information matrix I(w)
is that it can be compute d from first derivative informat ion , from the results
of back-propagation, withou t the need for second deri vatives.

7. Applications to network training

This secti on describ es some applicati ons of the tools developed above. This
illustrates how the tools can be applied to address mor e pr agmati c problems
in the use of feed-forward networks.

7.1 Prediction and generalization error

Once search has locat ed some local minimum wof the cost function , it can
be used in inference on new patterns. A first approxima tion is to say that w
must now be wand to make inference about y and (J2 , and so forth , based
entirely on this local minimum w using y = o(x' ,w), and so on . This is
naive becau se we cannot be sure that the "t rue" or "opt imum" w is w. For
inst an ce, with a sample twice the size we might change our est ima te of w
quite dramatically. A full Bayesian ap proach takes int o account the many
other valu es of w near w or even some other local minimum, becau se ot her
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values just might happen to be the "true" weights . Onl y when we have a
really large sample (for instan ce, when uniform convergence bounds tell us
the sample is large enough [14]) can we be sure that w is a sufficient ly good
est imate so that no other minima need be considered .

In principle we want to calculate for a new pattern x ' the post erior ex­
pect ed value of the network output and of the variance, Ew1x,y(o(x' ,w)) and
Ew,alx,y((J2 ), and so forth. These values give us the post erior average of the
qu antities o(x', w) and (J2 that give better pr edi cti ons for these quantities on
average than those calculated at the local minimum w = w. Unfort unately,
we cannot calculate the full post erior of w , P r (w I x , y) , in reasonabl e t ime,
and only have the Gau ssian approximat ion to the posterior described above.

This sect ion describes how these pr edictions can be approximated using
the post erior approximat ions available. These approximat ions all make use
of the second derivatives of the cost function and the approximate weight
vari an ce discussed above. While it is hard to predict how accurate these
approximat ions will be in practi ce, their form at least gives some idea of the
interaction between weight variances and the behavior of the network output
for w in the vicinity of w.

P redi ctions are given for three qu antities.

Ewl x,y (o(x', w)): the post erior expec te d output of the network given input
x' . In classification this can be used to get an est imate of the post erior
probability for different pr edictions y given x' , and can be used to
pr edi ct generalizati on erro r for classification . In regression this gives
an est imate of the post erior mean of y.

VWlx ,y(o(x' ,w)): the posterior variance of the network output . This is
a measure of how uncertain we are about our pr ediction above for
the network output. Not ice that as the samp le size gets large this
uncertain ty will shrink to zero. We give two versions of this uncertainty
depending on which approximation to Ew1x,y (o(x', w)) is used .

Ew,alx,y((J2): the posterior expec te d regression vari an ce. This pr edict s
generalization error for regression with Gaus sian error model and un­
known standard deviation .

The form s given for generaliza t ion err or, equations (11) and (13) , are Bayes­
ian version s of those in [25].

Predictions from t he single "best" local m inimum

The first set of pr edictions we give handle the case in which we have found
a single "best " local minimum and make an approxima t ion based entirely
on this without considering the effect s of other local minima. To indicate
that an assumption is being mad e, we condition probabi liti es with the form
"near w," which indicat es we are assuming the "t rue" w is near the local
minimum w.
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In what follows, we use the notation Ew1x,y,nearw(U(w)) to denote the ex­
pectation of the quantity U(w) when averaged accord ing to the approximate
Gau ssian post erior for w in the vicinity of w. That is,

Ew1x,y,nearw(U(w))

r det(I(w))1/2 (1 ~ T ~ ~ )
= Jw U(w) (27l")lwl/2 exp - "2(w - w) I (w)(w - w) dw.

We evaluate these integrals by using standard moments of the mult ivar iate
Gau ssian [3], and by approximating U(w) in the vicini ty of w using the
second-order Tay lor expansion , which in vector notation is as follows:

U(w) ~ U(w) + (w - wf . dU(w)I
dw ~

W =W

1 T d
2U(w)

I+ (w-w) . _ - ·(w-w).
2 dwdw ~

w =w

Again , do(x' ,w)/ dw deno tes a vector of first derivatives, and the second
derivative denotes a matrix. T his gives

( )) ( ~ 1 ( (~ -1 d
2
U(w) I )Ewlx ynearw(U w ~ U w) + - t rac e I w) . --- ,, , 2 dwd w ~

w=w

where, again , t race A denotes t he sum of the diagonal entries of the matrix
A. If any of the approximate weight variances are large, then good approx­
imations will require accurate est imates of U(w) for w far from w. In t his
case , the Taylor expansion will be a poor approximation and our approxi­
ma te predictions will be poor. Not ice that we could also use the diagonal
approximat ion for the matrices I (w) and the second deriva tives of U(w);
however , the esti mates may then become very poor and be useful only to
indicate where potential problems lie. T hese and other approximations are
discussed in [30] .

Ew1x,y,nearw(o(x' ,w)) : the post erior expected output of th e network given
input x', averaged over weights in the vicinity of w. This is approxi­
mated by

1 ( d
2
o(x' w)1 )

o(x' ,w) + "2trace I (w)- 1 dwdw w=w .

T his mod ifies t he output o(x' ,w) to account for how the output o(x' ,w)
varies in the neighborhood of W, tempered by the post erior variance­
covariance of w . In the case of classification , this gives an esti mate of
out-of-sample accur acy for the network given by

EW,xlx,y,nearw (m; x oy(x ,w)) ~ ~ t Ew1x,y,nearw (m;xoy(xi,w))
t = l
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1 N
:;::::: N Lmax oy(xi' W)

i= l y

1 (1(-)-1 d
2
2:~1 maXy Oy (Xi'w) I )+ -N trace w d d .

2 w w -w=w
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(11)

Ew1x,y,nearw((o(x' ,w) - o(x', W))2) : when using o(x' ,w) to est imate o(x' ,w) ,
the expected variance of the output in the neighborhood of W. This
gives a measure of variance for our post erior uncer tainty when using
o(x' ,w) to est imate o(x' ,w) . For inst an ce, in the regression case o(x' ,w)
corresponds to an estimate of the mean value of y conditio ned on x' .
The varian ce of our estimate for the network output is approximated
by

do(x' ,w) IT .1(w)- 1 . do(x' ,w) I
dw - dw -w=w w=w

(12)

Vwlx,y,nearw(o(x' ,w)) : t he var iance of the est imate Ew1x,y,nearw(o(x' ,w)) in
the neighb orhood of W. T his is approximated by

do(x' ,w) IT .1(W)-1 . do(x' ,w) I
dw - dw -w = w w=w

1 (1 ( - )-1 d
2o(

x' ,w) [ )- -trac e w . .
4 dw dw -w =w

Not ice that this is lower than the previous var iance est imate of equa­
tion (12) due to the second term , which corrects for the fact that we
are now using a better est imate for o(x' ,w) .

E w,crlx,y ,near w(0- 2
) : th e post erior expe cted value of 0-

2 in the regression case
with Gau ssian error and unk nown 0- . T his is somet imes termed the
generalizat ion error. T his is approximated using equat ion (2) and sim­
plified to

N N ( d
2

s
2

I )-- S2 _ + t rac e 1(W)-1 . -- .
N - 2 Iw=w 2(N - 2) dw dw w=w

(13)

Not ice that the first t erm is the var ian ce esti mate assuming the local
minimum w is correct , and the second term increases this becau se th e
post erior uncertainty in the weights w induces add it ional variance.

P redictions from multiple local minima

If multiple local minima wof similar qu ality have been found during restarts
with different initi aliza tions of w , then the expected values above can be
averaged over the different local minima wto pr oduce a pooled estimat e. This
same "mult iple models" approach can produce significant improvement in
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out-of-samp le predict ion when learning classification t rees [6]. It corresponds
to a Monte Carlo estimat ion of the full pos te rior for w , rather than just
an approximat ion abo ut w. Suppose a small set W of local minima are
found , and for each we have a proporti on p(w I x ,y ) to be used in the
Monte Carlo est imat ion below, where 2: ;;JEWP(w I x ,y) = 1. For instance,
these pro portions could be const ructed proporti onal to P r(near w, y I x ),
alt hough equal pro portio ns are som et imes used in Monte Carlo est imat ion .
The est imate of the post erior for the weight s w is now a weighted sum of the
Gaussians in the neighborhood of each w:

Pr(w I x ,y ) ~ L p(w I x ,y ) Pr(w I x ,y ,near O) ,
;;JEW

where the Gaussian approximat ion described at the beginning of this sect ion
is used for each P r(w I x ,y, near w).

T his leads to the following correct ions for the previous predictio ns. To
find the expected out put of the network for different weights, we pool the
expected outpu ts for the individual local minima in W:

E w lx ,y (o(x' ,w)) ~ L p(w I x ,y )Ew1x,y,near;;J (o(x', w)).
;;JEW

To find the variance of this value, we pool the var iances for indi vidual lo­
cal minima toge ther wit h a measure of how much the output varies from
minimum to minimum:

V w !x ,y (o(x' ,w)) ~ L p(w I x ,y )Vw1x,y,near;;J (o(x', w))
;;JEW

+ V;;Jlx,y (Ew1 x,y,near;;J (o(x' , w))) .

7 .2 Weight variance and network pruning

The Gau ssian approximat ion to the likelihood near a local maximum a pos­
teriori also gives a stat ist ically sound met ho d for the pruning of networks
[20]. The idea here is that we might significantly redu ce the size of a network
bu t st ill retain a network t hat is a posteriori nearly as good as t he original
network. The pru ning is not done because we expect it to improve general­
ization error , because weights have already been redu ced (mos t likely) due
to the effect of the pr ior in the cost function. We pr une merely to redu ce the
size of the network.

The mat rix inverse of the infor mation mat rix I (w), nam ely I (w)- 1 , is an
approximate post erior variance-covar iance matrix for w [3, page 224]. It tells
us how much we curre nt ly believe the "true" weights might var y about our
est imate w. T hat is, in the notation of the previous sect ion ,
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This follows from the functi onal form of equation (8). This mean s, for in­
stance , that the posterior var iance of the weight wn,m in the neighb orhood
of iii,

is given by the diagonal ent ry for wn •m in t he matrix I (iii)- l. If t his var iance
is large, then the weight wn •m is poorly det ermined by the dat a.

We can use the post erior variance-covariance mat rix for w to test if a
weight is significant ly different from zero . T hose that are not can be set
to zero. Notice we are not intending this be used as a met ho d of handling
"overfitt ing," or as some substit ute to cross-validat ion or weight elimination
[41]. We are there fore not int erested in just decreasing some of the weights,
but in removing them enti rely from the network (zeroing them) to pr odu ce
a smaller network. There is a very useful side effect of this technique: it
will tend to remove weigh ts with high post erior vari an ce (i.e., we are unable
to loca te even an approximate value for the "bes t" value of certain weights
because the data is insufficient in quan ti ty) since we cannot be sure that these
are sufficiently different from zero. These high variance weights cont ribute
to ill-condi ti oning'' of the matrix I (iii), t hus making it difficult to compute
the posterior vari ance-covar iance matrix for w , nam ely I (iii)-l

A simple test is as follows. We use the diagonal approximation to the
inform at ion matrix I (iii) to est imate the posterio r variance of the weight
wn .m in the neighb orhood of iii,

/

o IOg p r (w IX'Y)I
v w lx ,y (wn .m ) ~ v w!x ,y .near w (wn •m ) ~ - 1 ow ow ~ .

n ,m n ,m w =w

Because iii is a local maximum for the post erior , t he second derivat ive must
be non-posit ive so the variance est imate is non-negative. A zero variance
estimate mean s some other esti mat e will have to be made. A large variance
means the samp le gave us lit t le idea as to what value the weight should be.
So if the magnitude of a weight is within a standard deviation , the weight
can safely be set to zero [19].

A more thorough test follows. T he quadrat ic te rm (w - iiif I (iii)(w - iii)
appears in the mult ivariate Gaussian approximat ion for the posterior for the
weights w , equat ion (8) . For large N, t his quadratic term is approximate ly
chi-squared with [wi degrees of freedom. The X % confidence region (for
inst ance, X = 99.0) for the weight s w is the set of weights within the upper
X % point of the Xiwi distribution , Xlw l,x , giving

For instan ce, the upper 99% point for 30 weight s is given from standard
chi-squared tabl es as 50.89. We therefore pr oceed as follows. We repeatedly

8 An ill-conditioned matrix has some sma ll eigenvalues (so its inverse has some large
eigenvalues) , and it is difficul t to compute the matrix inverse accurate ly.
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set weights to zero while the result ant weight s remain in the X % confidence
region. Weights could be set to zero in an order leading to the least increase in
the quad ratic term. We might also wish to zero groups of weights to remove
ent ire nodes from the network. Since this procedure follows from a quadratic
expansion around the local minimum iii of the cost funct ion , and since our
objective is to test if the network wit h zeroed weights is significant ly different
from the network at the local minimum , it is not necessar y- and indeed it is
incorr ect-to recompute I (iii) as we zero weights. Not ice also that this simple
tes t can be done direct ly from I (iii ) wit hout having the exp ensive calculat ion
of a determi nant or inverse, so it could also be performed at stages during
the back-propagation cycle.

7.3 Adjust m ents for missing values

In many pr actical probl ems, training patterns are supplied wit h some values
of vari abl es missing , unknown , or undetermined . Of course, if a pat tern has
its out put value missing, the pat tern can just be ignored. If an input variable
has a value missing, however , we need to deal wit h it . Approximate methods
for dealin g with this kind of problem exist when learn ing tree classifiers [31]:

• One can ignore the training pattern wit h missing values. Stochastic
learning can proceed init ially using only the patterns without missing
values .

• One can replace the missing value by some simple est imate such as the
modal or mean value. For inst an ce, if the binar y input variable X i is
either 0 (false) or 1 (t rue) and if it is un known , set it to be abo ut 0.5.

• One can complete the pattern in var ious ways (to fill in missing val­
ues) and treat each of these complet ions as a partial pattern (so the
sum of fractional pat tern s add s to 1) . We explain this idea in the con­
text of feed-forward networks below. Tree learni ng algorit hms do this
complet ion in an efficient demand-driven manner (i.e., t hey complete a
missing value only when the value is asked for by the algorit hm) that
unfortunately is not available wit h feed-forward networks.

The second app roach works quit e well and is the simplest to implement;
however , the third ap proach gives the best perform ance in terms of out-of­
sample pre dict ion.

In this section we develop a modified algorithm for handling missing val­
ues related to the third approach above. It also approximates the Bayes­
ian normative approach for handling missing values because we derive the
approach here using standard laws of probability. T he method is another
example of the use of mixture models [26J used for adaptive mixtures of local
exper ts, and the equations derived have a related form. We do the analysis
for the regression pr oblem wit h Gau ssian error and unkn own standard de­
viation . T he other cases are similar. We assume we have a model of some
kind , denoted F , t hat gives a rough pr ediction of the missing values from
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the kn own values . T he model F might corre spond to simple linear mod els
or some ot her form readily calculat ed from t he data.

The training sample consists of input vectors Xl, . . . ,XN and correspo nd­
ing output values Yl,"" YN. But in t his case some of the input vectors
Xi have missing values. Let unkn own f.c. ] denote t he set of variables in
t he ith input vector Xi that have missing values. For instance, given t he
i t h pattern Xi = (1,0 , 7,0, 7, 7) , where 7 deno tes a missin g value , t hen t he
unknownlz.] are t he t hird , fifth , and sixth variables . Given an ass ignment
to t hese, x' E unknown lz.) , let Xi X' denote one p ossible complet ion for the
input vect or Xi . T hen t he likelihood of t he pattern is now given by

I(Yi I Xi ,W,U , F ) = E X' Eunknown(x;}lxi ,F (l(y I XiX' ,W,u )) ,

where t he expectat ion is done usin g t he mod el F for predicting t he unknown
values . We can approximate this stochastically by select ing a few possible
complet ions compltz.) and weighting them to give

I(Yi I xi ,w, u, F ) ::::; I: p(x' I xi, F )I(y I xiX',w,u),
x' Eco mpl(x;}

(14)

where the weight s p(x' I Xi , F ) indicate t he likelihood of t he different com­
pletions based on t he model F. T his formula can now be evaluated because
each likelihood l(y I XiX' ,W,U) can be determined as in section 4.1. For in­
stance, in t he example above, we may select t hree complet ions accord ing to
t he model for predict ing missin g values as

compljz .] = {(1,0,0,0,0,1) , (1 ,0,0,0,1 , 1) , (1,0,1 ,0, 1,0) }

and give them equal weighting of 1/ 3 each . Comp let ions and weight ings
can be determined once before the network training begins. Not ice that the
crudes t est imate is to use only t he single modal or mean value for the missing
values with a weight of 1, as is ofte n done.

Network training now consists of using these modifi ed likelihoods. In t he
regression case we are conside ring , t he standard deviati on can no lon ger be
marginalized ou t (t hat is , no longer integrated out using t he technique for
Lemma 4.1) so t he cost fun ction is now - log Pr(w, u, Y IF, x ). Suppose t he
patterns in missing have missing values and t hose in complete have all values
given , then the cost is:

1I: - 2 (Yi - O( Xi' W))2+ (N + 1) log a - log Pr(w) + constant
iEcomp lete 2u

I: lOgC( I: P(X'IXi ,F) exP ( -~ (Yi - O (XiX"W) ) 2) ).
i Emissing x' Ecom pl(x; ) 2u

While this looks more involved than the original cost fun cti on of equat ion (5),
it s derivatives are not that different:
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1

8Cost(w)

8wn ,m

810gPr (w)

8wn ,m

'" ( ( ))80( Xi'W)2 2 6 Yi - 0 Xi,W 8
(J i Eco mplet e w n,m

(15)

1 '" '" ( ' I ) ( ( ' ))80(XiX' ,w)2 6 6 w X Xi , F, 0" . Yi - 0 XiX ,W 8 '
20 i Emissing x' Ecompl(x t) W n ,m

where the proport ions W(X' IXi ,F, 0" ) are calculated as

W(X' [Xi, F, 0")
p(x' [ Xi,F) exp (( - 1/ 20"2 )(Yi - O(X;X',W))2 )

= I:x' Ecompl(xi ) p(x' I Xi, F ) exp (( - 1/ 20"2)(Yi - O(XiX' ,W))2)'

Com pare the two sums in equat ion (16). In t he second, the term for the
completion xi;r;' appears weighted by the propo rt ion W(X'I Xi' F, 0" ), but in
the term for the first sum each (already complete ) pattern Xi is effectively
weighted by 1. For this reason we say each complet ion par ticipat es as a
partial pat tern . Not ice also that the pr oportions w(x'[xi, F, O" ) essent ially
pick ou t the complet ion z ' that gives the lowest squared err or. Since the
derivative of o(Xi X' ,w) wit h respect to the complet ion x' is available afte r
the back-propagat ion ste p , we could dynamically alter the complet ions x '
du ring each learni ng step so the mean-squar e error for each is lowered .

T he derivative of Cos t wit h respect to 0" is in a similar form , but this
time a fixed-point equation (0" also occur s on the right -hand side) for 0" can
be derived :

0" N 1 1 ( L (Yi - O(Xi,W))2
+ i Eco mplete

+ L L W(X' IXi, F' 0" ) '(Yi - O(X;X',W ))2 ) .
iE miss ing x ' Ecompl(x i )

T he standard deviation 0" can be updated iteratively along with the weight s
W in each cycle. Again we see the "part ial patt erns" alter the usual form for
the variance. This is a common resul t in mixture models.

A disadvan tage of this method is tha t each pattern with missing val­
ues now produces a number of completed pattern s, each of which must be
run through the network. For instan ce, if every pattern has missing values
and c different completions are used for each , then computat ion is increased
by a factor of c. One way around this would be to have the network first
learn for patterns with no missing values, and then to fine tune by includ­
ing the remaining pat terns. Of course , the ext ra computat ion should give
improved performance as c is increased due to the normative just ificati on
of the approach . Also, the complete d pat tern s can be alte red dynamically
during t raining with lit tle ext ra overhead to produce completions wit h lower
mean-square err or.
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This paper has covered Bayesian theory relevant to the problem of training
feed-forward connect ionist networks. We now sketch out how this might be
put together in prac t ice, and conclude with a br ief discussion of research
Issues.

For network train ing, the pr inciple steps are as follows.

(1) Choose an appropriate network st ruct ur e and size based on pr ior kn owl­
edge about the applica tion (see, for instance, the discussion in [21] re­
garding choice of network) , and select a prior on the weights . Not ice
that a small number of different st ructure s could be select ed , and the
method will then select the best .

(2) As discussed in sect ion 7.3, const ruct complet ions and their proport ions
P(X'IXi ,F) for each training pattern with miss ing values. If stochast ic
traini ng is used instead of epoch training, each set of complet ions should
always be run through the network toget her so that the appropriate
term in equat ion (16) can be calculated .

(3) Train to a local minimum was per the usual , but incorporate the ad­
justments for missing values described in sect ion 7.3. Appropriate cost
functi ons are given in sectio n 6.1. In principle, the weight variances,
weight evaluations , and pr edict ions apply only if the wfound is a true
local minimum of the cost fun ction , so epoch training might have to be
used in the last few cycles to ensure this.

(4) If possible, use the weight pruning strategy of secti on 7.2 to force some
weights to zero , and continue tr aining the network wit h forced weight s
remaining at zero .

(5) Once a local minimum is found , est imate the quality of th e local mini­
mum by finding second derivati ves for every train ing pat tern and com­
bining them in the evaluat ion measure (Eval(w)) of sect ion 6.2. Cal­
culation of second derivatives is described in [9].

(6) Perform random restar ts of the network to rep eat the last three
steps and find ot her local minima. T he est imated weight varian ces
V wlx ,y ,near w (wn,m ) or I (w) and the evaluat ion measur e Eval(w ) should
be ret ained for each saved low cost local minima w. If several different
network st ru ctur es are being t ried , repeat the last thr ee steps for these
as well.

(7) Choose a few networks with the best evaluat ion (Eval(w)) . Notice that
the networks or local mini ma should not be chosen on the basis of their
generalizat ion erro r (as given in sect ion 7.1) because the generaliza tio n
error for a particular local minima wis est imated based on the assum p­
tion that the network st ructure is "correct" and the "true" weights are
in fact quite near w. That is, use of generaliza t ion error assumes we
know already what we are trying to determine .
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(8) Est imate the genera lizat ion error (for out-of-sample pr edict ion ) using
the equat ion (11) or (13), possibly combined using the pooled versions
at the end of sect ion 7.1. Now that a high post erior st ru ct ure and a
set of weights have been chosen , the assumpt ions behind the formulas
are reasonab le.

Once some local minima have been found, inference can be done on new
patterns . Relevant approximate pr edict ions are describ ed in section 7.1 that
apply if the weight var ian ces are small. Standard inference does forward
propagation of the inputs for the new pa ttern to obtain the output . The
adjustments described involve approxima tion of post erior variance of the
output , better ap proximat ion of expected output an d variance, and averaging
over multi ple local minima.

T hese adjustments to the standard back-propagation pr ocedur e increase
computation dur ing back-propagation in most cases by at most a small fac­
to r. Subsequ ent inference such as calculating variances requires standard
matrix calculations . While these methods come with the normat ive back­
ing of Bayesian statist ics, implementation often reveals lessons on how the
various approximat ions and optimizat ions could be mad e bet ter.

T here are several imp or tan t areas in whi ch additional research is requi red .
First , what is the quality of the Gaussian approximation to the posterior of
the weight s of section .6.2? Since the whole approac h rests on this, more
evaluation, experience, and better approximations are required , for instance,
in taking expected values and estimating generalization error. Second , priors
or "penalty terms" have been discussed here only for simple network typ es.
What form s are useful for the wider class of network s used in pr acti ce? Third ,
a smooth transiti on also needs to be developed between Bayesian and un iform
convergence met ho ds to han dle those cases in which training samples become
larger , and to improve the robustness of Bayesian method s when , for instan ce,
the choice of error mod el is poor. Finally, how might probabilist ic method s
be applied to ease the computational problems inherent in back-propagation?
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