Complex Systems 6 (1992) 1-12

Can Spurious States Be Useful?

Eduardo R. Caianiello
Dipartimento di Fisica Teorica e S.M.S.A., Universita’ di Salerno,
84081 Baronissi, Salerno, Italy

Michele Ceccarelli
Istituto di Ricerca sui Sistemi Informatici Paralleli, IRSIP-CNR
80125 Napoli, Italy

Maria Marinaro
Dipartimento di Fisica Teorica e S.M.S.A., Universita’ di Salerno,
84081 Baronissi, Salerno, Italy

Abstract. Additive automata are analyzed and used as associative
memories. Their storage capacity is computed as well as the attraction
basin of each memorized pattern. We show how such systems can be
used when the patterns to be memorized have a subset of relevant
features; “spurious states” become meaningful as carriers of additional
information, and storage capacity is thereby increased.

1. Introduction

A problem in the study of associative network models that deserves further
investigation is how the storage capacity of the network depends on the struc-
ture of the patterns being memorized. Previous work (see for example [8])
on this subject, making use of a statistical approach, determined the depen-
dence of the theoretical limit of the capacity on the correlation among the
patterns, and proved that the storage capacity increases with the correla-
tion. To our knowledge, the influence of other types of relationships among
patterns on storage capacity has not yet been fully analyzed, though further
knowledge would be very useful both from a theoretical point of view and for
applications, as it might allow the construction of specific-purpose networks
with large capacity.

In this paper we investigate this problem for the particular class of net-
works known as additive automata [6, 15]. We shall show that, preassigned
p arbitrary patterns in {0,1,...,k — I}N, N > p, it is possible to construct
an additive automaton of N processing elements, “neurons,” which stores kP
patterns; these patterns are not arbitrary, but are related among themselves
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by being linear combinations of the p preassigned patterns. Each of the k?
stable states has a well-defined basin of attraction whose cardinality is k=7,
and each basin is simply a translation of a fixed linear subspace of the state
space.

In section 2 we study the evolution of an additive automaton and show
that all of its well-known properties can be determined by computing the
rank of the synaptic matrix and of its powers. In section 3, by considering
additive automata that act as associative memories, we compute their storage
capacity and give a learning algorithm to construct the matrix of connections
once p arbitrary patterns are preassigned. A simple example that utilizes
spurious states for this purpose is given.

In the following we shall use the name “net” or “automaton” indifferently.

2. Description and properties of the model

Let us indicate the state of the net of N processing elements at time ¢ with
the N-component vector ' = (¢f,&5,...,&4), where & € {—1,+1}. The
evolution law, by using a discretization of time, is

E=0FE)] o &=0olR(ET) (1)

where 7 is the time unit, o[z] = +1 (z > 0) or —1 (z < 0) for z # 0, and
olz] means that o is applied to each component of the vector z. It is well
known [2] that for any F; we can write

2N-1
&= fanl” (2)
a=0
where the coefficients f% are constants whose values are given in terms of the
function F, and 7, is a monomial of variables {;‘T, 7=1,...,N. The sum
over « covers all the distinct monomials of the N boolean variables ET".
In this paper we shall be interested in systems for which the evolution law
is additive with respect to the Hadamard product (the product component-
wise, denoted by *) between two or more states, that is,

a[F(&; *&,)] = o[F(§,)] * o[F(§,)]-

In a previous work [3] it was shown that in order to have such additive
evolution it is necessary and sufficient that, for all i, the sum in (2) has one
and only one coefficient not equal to 0 and equal to 1.

So, we have that, for additive systems, the evolution law is a monomial:

G=8"-8". .- 3)

Because of the isomorphism between the two groups ({—1,+1},:) and
({0,1}, +2) where +; is summation modulo 2, equation (3) can be written as

P t—1
zi=p > af (4)
J=11,825000r

with ot € {0,1},i=1,...,N.
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The above considerations are based only on the additivity of systems, and
can be generalized to the case in which the neuron can assume at each time
one of k different states. In the following we study the generalized case and
write the evolution law as

2T =, Z aw-x; (5)
j

with z%,a;; € Zp = {0,1,...,k — 1} and k a prime. Equation (5) written in
vectorial form is

S = Art g e {01, k- 1)V (6)

where A is an N x N matrix with elements in Z; as in (5), and =; means
that the equality is taken modulo k. It is worth noting that the evolution law
(6) is additive with respect to the sum of the states, that is, 2! = ' +y* =
2T =, 2t 4 yt-l—’r' -

As a consequence of the simple evolution law (6) the additive automata
verify the following properties:

1. The state z, whose components are all equal to zero is stable:
Az =, 29

2. The number of immediate predecessors of a given state, namely the
states that in one step evolve into it, does not depend on the state. In
fact, let Ny be the number of states that evolve in one step in z,, and
call Hy the subspace containing all these states. It is evident that the
N, states obtained as a sum of a state z of the automaton and one of
the states in Hy

z=pztj, J,€H
go all into the same state Az.

3. The main characteristics of the evolution or the number of transient
states, the number of fixed states, the number of cycles and their lengths
are all directly connected with the properties of the synaptic matrix A.

The constraint of additivity produces severe restrictions on the computa-
tions that can be performed by such systems; in fact, the prescription about
the evolution of a set of states also fixes the evolution of their “linear”
combinations.! To show this we observe that the additive system is com-
pletely specified by fizing, a priori, the transition of N linearly independent
states. In fact, if M is an N X N matrix whose columns are N linearly in-
dependent states and M’ contains the corresponding states at the next step
we want a matrix A such that

AM = M,.

'Here and in what follows we say that a vector z € Z{ is a linear combination of
vectors z,,...,z; € Z}CV if | constants ¢i,...,¢; € Zi, not all vanishing, exist such that
T =g 12y + 22y + ...+ gy
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Since M is non-singular
A =k M/M_1

where M~ is the inverse of M computed in algebra modulo k.
The knowledge of the matrix A allows us to determine the complete be-
havior of the additive automaton; first we prove the following.

Theorem 1. If r = rank(A) and m is the minimum integer such that
rank(A™) = rank(A™"1), then

(a) the transient states disappear in at most m steps; and
(b) the number of states that survive is k™ —(m—1N
Proof. First we observe that, since the columns in A’ are linear combinations
of the columns in A", rank(A') < rank(A'"'). We indicate with 7 > r; >
79 > --- the ranks of the matrices A, A%, A% ..., respectively, and with ¢ the
matrix containing all the ¥V vectors in Z such that

h
bin = {E}modk i ~1 02 hds” -1
where |z] is the greatest integer equal to or less than z. Afterwards we
construct the matrices

¢1 = A¢> ¢2 = A2¢7 ¢)3 = A3¢a iy
which contain a decreasing number of distinct states
K>k >k?> -

Since r; > 0, a number m such that r,,_; = r,, exists. At this point the
application of A causes only a permutation of the distinct states of ¢,,,—1; we
deduce that all these states are on cycles. This proves point (a), while to
prove (b) we observe that as a consequence of property (2) each state in ¢,
has &V~ immediate predecessors, and this is true also for the states in ¢s.
Thus

k’l‘
.71 _ 1.2r—N
k= TN = k
By applying the same considerations to ¢s, ..., ¢, we obtain

Tm = Tm—1 =mr —(m—1)N
Thus the states that survive are
kmr—(m—l)N ]
The number m indicates the maximum depth of the attraction basins,
that is, the maximum number of steps after which the system reaches an

attractor; since mr — (m — 1)N > 0, it is bounded by N/(N —r) for 7 # N,
while it is zero for r = N.
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As a consequence of the previous theorem we have the following corollary.

Corollary.
1. The number of transient states is given by

kN _ kmr—(m—l)N

2. The cardinality of the attraction basin of a stable state is

km(N—r)

8. The cardinality of the attraction basin of a length i cycle is given by

ikm(N_T)

Theorem 2. The number of cycles of length I, denoted by ny, is given by

_ kN—vl _ Zj kN—v]-

n; = l
where v; = rank(A! — I) and the sum is over all j that divide [.

Proof. If [ is a prime and z belongs to a cycle of length [, we have Alz =
z = (A" — )z = 0. Then it is clear that the number of distinct states
belonging to cycles of length [ is k¥~ because the Ker(A — I) contains
N — vy linearly independent states, and, as a consegence of the additivity,
all these states and their linear combinations belong to cycles of length .
Generalization to the case in which [ is divisible is immediate. B

Finally we prove that the lengths of the cycles are not arbitrary, but have
to satisfy the following condition.

Theorem 3. The lengths of the cycles divide ¢ = max{i : n; # 0,4 > 1}.

Proof. If z belongs to cycle of length ¢ (A% = z), and y belongs to a cycle
of length v (A%y = y), we suppose ab absurdo that a v < g, v # 1 exists
such that n, # 0 and MCD(v,q) = 1. Then the state z + y will belong to
a cycle of length vq, A%(z +vy) = A%z + A"y = 2+ y, and qu = lem(q, v)
is the least length of the cycle of z 4+ y. The fact that vg > ¢ proves the
theorem. B -

These results will be useful for analyzing in a straightforward manner the
behavior of such systems for association tasks, as shown in the next section.
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3. Associative memory

In this section we consider additive automata that act as associative memories
and, for the sake of simplicity, we study Instantaneous Associative Memories
(IAMs) [6, 7], in which the system, starting from any initial state, reaches a
stable state in one step of the evolution. It is very simple to characterize an
IAM: indeed as a consequence of Theorems 1 and 2 we have that an additive
automaton is an TAM if and only if r = N — v, where r = rank(A) and
v = rank(A — I). On the other hand, we can construct an IAM by using
the results found in the previous section. In fact, if we want to memorize p
arbitrary linearly independent states z;,z,,...,z,, we can build an N x N
matrix ¢ whose columns are formed by the vectors z;, z,, . .., z, and by other
N — p arbitrary vectors Jy,. .., Jy_, such that all N vectors form a basis of
ZN. A convenient notation for ¢ is the following:

P (§17£27 chals 7£p1lls A $lN—p)'

We want the next step evolution of the states to be given by the matrix ¢/,
(pl = (£17£27 Gl a&pa&OalO) W 7&0)7

whose first p columns coincide with those of matrix ¢ while the other N —p

have all the elements equal to zero. The synaptic matrix A of this automaton
is given by [10, 11, 12, 14]

A= ot (7)
The automaton so constructed is obviously an IAM and has k? stable states:
the states z;,2,,...,z, and all their linear combinations. The basin of at-

traction of each stable state has cardinality £V =7; in fact, if we call H; the
subspace of Z} spanned by J;,...,.J N—p, it is evident that the attraction
basin of any other state z,, contains the £V=? vectors

z=z,+y, Yy €Hn=1,..p

and the structure of the attraction basins is completely characterized by the
choice of the vectors Jy, ..., Jy_,.

Until now we have shown that an additive net of N neurons can memorize
a very large number of states, k? (p < N), which of course are not arbitrary,
being combinations of p linearly independent states. Each of the stored states
has a well-defined basin of attraction of cardinality £V=?. The structure of
the basin is determined by the VP vectors that belong to the attraction
basin of the state z,.

Relation (7) is characteristic of associative network models that make
use of spectral algorithms [11, 12, 13, 15]. For such algorithms the matrix
@ is not square, and ¢! is replaced by the so-called generalized inverse.
However, there are other methods to construct the matrix of connections
that make use of outer-product algorithms [8, 14]. In the following we give
two outer-product algorithms: the first memorizes one pattern at each ap-
plication and maintains the properties of (7) (IAM); the second performs
hetero-associations among states. Both algorithms start with an N x N
matrix with all elements equal to zero, A® = Oy.
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Algorithm 1. At the ith step, when 7 — 1 states have been stored and we
want to store another state é(l), we put

A®D =, ACD 4 (A(‘i—l)é(i) _ é(i))ﬂ(i)T (8)

where the second term of the right side is an outer product of two vectors
and

(a) AG-1Y is the synaptic matrix that stores the i — 1 previous states;

(b) n® € {0,1,...,k — 1}V is a vector such that
ﬂ(i) = Zj—l[gj _ ﬁj(A(i_l))] :

(c) z=x A(i—l)é(i) - é(i) :
(d) j is chosen such that z; # 0;

(e) e; has all the components equal to zero except the jth, which is equal
to 1; and

(f) rT(AGY) is the jth row of AG—D.
If £9 is already stable then z® = 0.

Theorem 4. The rule (8) allows the memorization of the new pattern §(i)
and preserves the previous ones.

Proof. If we multiply A® by §(i), according to (8), we obtain
A(i)f(i) e A(i—l)g(i) + (A(i—l)g(i) _ §(i))n(i)T§(i)' (9)
Since

Q(i)Tﬁ(i) = zj—l[gg“ — t]T(A(i_l))]é(i)

=k
i—1) (2 i i i—1) ~(2 _—
(Z A Ed - & ’) (s}-) - e i’) =1,

k k

equation (9) becomes

ADE® = ¢6)

Furthermore, the patterns §(1) ,...,é(i_l) remain memorized because, for
g6,
ﬂ(i)Té(i—l) _ Z]_—1(£J(_z—1) _ Z a;-f,:l)ﬁ,(f—l)) _ Zj-l(fj(‘i_l) _ £J(i—1)) -0
k

and obviously
ADEED = AG-DE=D) | (AG-DglimD) _ gm0 OT =D
A(i—l)é(i—l) = E(i_l)- ]
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The matrices generated by Algorithm 1 are very sparse, and each ap-
plication of (8) adds only one column different from zero to the matrix of
connections, so the space required to store a matrix that memorizes p lin-
early independent states of length N is O(pN), and, as a consequence, there
is no waste of space using this kind of system for associative memories. The
efficiency of a network model can be defined as the ratio between the total
number of bits stored in the net and the number of bits needed to store the
synaptic matrix of the connections. For most network models studied thus
far (see [1] for a review), the efficiency is generally very low and decreases
with N. In our case the efficiency is maximal, O(1), and there is still a
distributed representation and a noise-correction capability as shown below.

Let j1,...,7, be the sequence of the choices of the index j at each ap-
plication of the algorithm. This sequence gives a specific associative task to
the system, that is, it determines the structure of the attraction basins. It
corresponds to the choice of the vectors Jy, Jy, ..., Jy_, of the matrix ¢ in
(7), with the only constraint being that such vectors have only one compo-
nent different from zero and equal to one. If arbitrary vectors J;,...,Jy_
are used, then the following algorithm can be applied.

P

Algorithm 2. The hetero-association among the states in Z}", §(i) — Q(i)
can be performed as follows:?

A® = AGD 4 (A(i—l)é(i) - ﬂ(i))g(i)T (10)

)T

where p®7T is a vector with elements belonging to Z}, such that the following

holds:

0 =0 j=1,...,i—1

(11)

Also in this case there is a choice that characterizes the structure of the
evolution because many vectors p(*) satisfying the condition in (11) can exist.
In this way we could classify the algorithms as “unsupervised” learning if the
choice is random, and as “supervised” learning if the choice is guided from
the outside.

Theorem 5. The rule (10) memorizes the association §_(i) — Q(i) and pre-
serves the previous ones.

Proof. The proof is the same as that of Theorem 4:
A(i)ﬁ(i) - A(i_l)f(i) + (A(i—l)f(i) _ 77(i))p(i)Tf(i) = n(i)

The proof that the previous associations are preserved is trivial. B

?Note that é(i) could be equal to n*).
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Figure 1: The memorized patterns are the seven bars constituting the
figure.
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Figure 2: Some attractors of the network.

As an example we memorize seven binary patterns of dimensions 16 x
16 pixels each representing a bar of figure 1. The memorization is carried
out with Algorithm 1 and a random choice of the index j at each step.
The system so constructed has 128 attractors, which are the combinations
of the seven patterns given. Here a novel situation arises, which justifies
the title of this paper: it seems that “spurious states” may turn out to
be an asset instead of a liability. Indeed, a number of combinations of the
seven basic patterns memorized (which are customarily considered “spurious”
and therefore unwanted) turn out to be meaningful and thereby useful. For
instance, we find in figure 2 eighteen meaningful patterns that come out in
addition to those originally stored. Furthermore, the same result is obtained
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Figure 3: Noisy patterns well classified by the network. All the pat-
terns in each row are attracted, after just one step of the evolution,
by the pattern in the first column.
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Figure 4: Exact recall vs. noise percent rate.

if we start from any seven independent combinations of the original patterns,
for example “0,” “1,” “2,” “3,” “4,” “5,” and “7.”

To appreciate this fact we may consider what happens in this case with the
standard Hopfield model [13]. If we start with the original set of (orthogonal)
patterns we retrieve the same situation as with our algorithm; if we start
instead with (not orthogonal) combinations of them, we lose convergence
even to the primitive set.

Finally, our procedure shows a remarkable noise correction ability: fig-
ure 3 shows how some quite noisy patterns are exactly recognized in one step.
To evidence the noise correction ability we plot in figure 4 the exact recall
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probability as a function of the noise percentage both for the Hopfield model
and for the additive network constructed with Algorithm 1 for the same set
of patterns. We used as a training set the seven bars constituting figure 1. A
test set was generated by constructing 200 noisy vectors for each pattern of
figure 2 and for each noise percentage. The recalling ability of the additive
automaton compares favorably with that of the Hopfield model with the
advantage of maximal efficiency and instantaneous recalling.

4. Conclusions
Spurious states as syllables

If we think of the basic seven patterns as “letters” of an alphabet, the 128
that are memorized in our example correspond to combinational strings of the
letters. In any language, only a small number of such strings form meaningful
syllables. As such we can take the 7 + 18 of our example. This point may
deserve further investigation.

Classification by features

As pointed out in the introduction, the systems described in the previous
sections present a particular associative behavior. In our case, by fixing p
states in memory, each attraction basin contains k=P vectors; these vectors
have the characteristic that, in the p positions used to store the patterns
(the choice of j in the Algorithm 1), they assume the same value. Thus, the
attraction basin can be represented, in the binary case, as a set of vectors in
this way:

(covykye, Lo %,000,0,.00)

where * can take any of the values 0,1 and only p positions are fixed. In this
way an attraction basin can capture an assigned characteristic of the pattern,
namely a given subset of components of the pattern that is relevant. Thus,
these models are a powerful associative mechanism when we want to learn
patterns on the basis of their features, rather than classing them according
to some distance, such as the Hamming distance.
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