
Complex Syst ems 6 (1992) 1- 12

Can Spurious States Be Useful?

Eduardo R . Caianie llo
Dipartim ento di Fisice Teoiice e S.M.S. A ., Universita ' di Salerno,

84081 B srotiissi, Salerno, Italy

Michele C eccarelli
Isti t uto di Ri cerca sui Sist emi In form atici Perelleli, IRSIP-CNR

80125 Napoli, It aly

Maria M arinaro
Dipartim ento di Fisica Teorica e S.M.S.A. , Universita' di Salerno ,

84081 Baronissi, Salerno, Italy

Ab stract . Additive automata are analyzed and used as associative
memories. Their storage capacity is computed as well as the attrac tion
basin of each memorized pattern . We show how such systems can be
used when the patterns to be memorized have a subset of relevant
features; "spurious states" become meaningful as carriers of additional
information, and storage capacity is thereby increased.

1. Introduction

A problem in the st udy of associative network models tha t deserves fur ther
investigation is how the storage capacity of the network depends on the st ruc ­
tur e of the patterns being memorized . Previous work (see for example [8])
on this subjec t, mak ing use of a st at ist ical approach, determined the depen­
dence of th e theoretical limi t of the capacity on the corr ela t ion among the
pat te rn s, and proved that the storage capacity increases with the corre la­
tio n. To our knowledge, the influence of other ty pes of relations hips among
pattern s on storage capacity has not yet been fully analyzed , though further
kn owledge wou ld be very useful both from a theoret ical poin t of view and for
ap plica tions, as it might allow the const ruction of spec ific-p ur pose networks
with large capacity.

In this pap er we invest igate this problem for the parti cular class of net­
works known as additive automata [6, 15J. We shall show that , preassigned
p ar bit rary pat terns in {O, 1, . . . , k - I }N, N :::: p, it is possible to construct
an additive auto maton of N pr ocessing elements, "neurons," which sto res kP

pattern s; t hese pattern s are not arbitra ry, but are related among themselves
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by being linear combinations of the p preassigned pattern s. Each of the kP

stable states has a well-defined basin of att raction whose cardinality is kN - p
,

and each basin is simply a translation of a fixed linear subspace of the state
space.

In sect ion 2 we st udy the evolution of an additive automaton and show
that all of its well-known properties can be determined by comp uting the
rank of the syna ptic matrix and of its powers. In sect ion 3, by considering
ad dit ive automata that act as associative memories, we compute their storage
capac ity an d give a learning algorithm to construct the matri x of connections
once p arbitrary pat terns are preassigned . A simple example tha t utilizes
spur ious states for this purpose is given.

In the following we shall use the nam e "net" or "automaton" indifferently.

2. D escript ion a n d p roper t ies of the m odel

Let us indicate the state of the net of N processing elements at time t wit h
the N -component vector e = (~L~~ , . . . , ~h ) , where~; E {- 1, + 1}. The
evolution law, by using a discret ization of t ime, is

or (1)

where T is the time uni t , er [x] = + 1 (x > 0) or - 1 (x < 0) for x =I 0, and
er[;~:] means that a is applied to each component of the vector ±. It is well
known [2] that for any Fi we can write

2N - 1

~f = L t:r/a-
T

a =O
(2)

where the coefficients t: are constants whose values are given in te rms of the
fun ction F , and TJa is a monomial of variables ~tT , j = 1, . . . , N. The sum
over Q covers all the dist inct monomials of the N boolean var iables ~tT .

In this pap er we shall be interested in systems for which the evolution law
is add it ive with respect to the Hadam ard product (the prod uct component­
wise, denoted by *) between two or more states , that is,

er[F ({l *{2)] = er[F ({l) ] * er[F({2)]'

In a previous work [3] it was shown that in order to have such additiv e
evolution it is necessary and sufficie nt that, for all i , the sum in (2) has one
and only one coeffi cient not equal to 0 and equal to 1.

So, we have tha t , for ad dit ive systems, the evolution law is a mono mial:

(3)

Because of the isomorphism between the two groups ({- 1,+1}, .) and
({O , 1}, + 2) where + 2 is summat ion modulo 2, equat ion (3) can be written as

(4)

with xf E {O, 1}, i = 1, ... ,N .
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The above considerations are based only on the addit ivity of systems , and
can be generalized to the case in which the neuron can assume at each time
one of k different states. In the following we study the generalized case and
write the evolut ion law as

(5)

with xj ,a i. j E Zk = {O, 1, ... , k - I} and k a prime. Equation (5) written in
vectorial form is

;rt+T =k AJOt :£t E {O , 1, . . . , k _l}N (6)

where A is an N X N matrix with elements in Zk as in (5) , and = k mean s
that the equality is taken modulo k. It is worth noting that the evolutio n law
(6) is addit ive with respect to the sum of the states , that is, z£t =k :£t +yt ==}

r~r+~. -
As a conse qu ence of the simple evolut ion law (6) the additi ve automata

verify the following properties:

1. The state :£0 whose compo nents are all equal to zero is stable:

2. The number of immediate predecesso rs of a given state , nam ely the
states that in one step evolve into it , does not dep end on the state . In
fact , let No be the number of states that evolve in one ste p in :£0, and
call Ho the subspace containing all these st ates. It is evident that the
No states obtain ed as a sum of a state :£ of the automaton and one of
the states in Ho

:Lo E Ho

go all into the same state A:£.

3. The main char act eristics of the evolution or the number of transient
states , the number of fixed states , the number of cycles and their lengths
are all dir ectly connecte d with the properties of the synapt ic matrix A.

The const ra int of addit ivity produces severe restrictions on the computa­
tions that can be performed by such systems; in fact , the pr escription about
the evolut ion of a set of states also fixes the evolut ion of their "linear"
combinat ions .' To show this we observe that the additive system is com­
pletely specified by fixing , a priori, the tran sition of N linearly independent
states. In fact , if M is an N x N matrix whose columns are N linearly in­
depend ent states and M ' contains the corresponding st at es at the next step
we want a matrix A such that

AM =k M'.

1Here and in wh at follows we say th at a vector ;£ E Zr: is a linear combination of
vect ors ;£1"" , ;£/ E Zr: if I constan ts Cl , . .. .ci E Zk, not all vani shing, exist such that
;£ = k C1;[1 + C2;[2 + ... + c /;[/ .
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o< j :::; N - 1, 0:::; h :::; k N - 1

Since M is non-singular

A = k M 'M-1

where M - 1 is th e inverse of M computed in algebra modulo k.
The knowledge of the matrix A allows us to det ermine the complet e be­

havior of the addit ive auto ma ton; first we prove the following.

Theorem 1. If r = rank(A) and m is th e minimum in teger such that
rank(Am) = rank(A m+1 ), th en

(a) th e trans ien t states disappear in at m ost m steps; an d

(b) the number of states that survive is kmr-(m- 1)N

Proof. First we observe that , since the columns in A l are linear combinations
of the columns in AI- I , rankf A' ) :::; rank(AI - 1) . We indi cate with r 2: r1 2:
7"2 2: . .. the ran ks of the matrices A , A 2 , A 3, ... , resp ect ively, and with cP the
mat rix containing all the kN vectors in Zt' such that

cPj h = l~Jmod k

where LxJ is the greatest integer equal to or less than x. Afterwards we
construct the matrices

... ,

which contain a decreasing number of distinct states

Since r: 2: 0, a number m such that 7"m-1 = rm exists . At this point the
application of A causes only a permutation of the dist inct states of cPm-1 ; we
deduce that all these states are on cycles. This proves point (a), while to
prove (b) we observe that as a consequence of property (2) each state in cP1
has kN

-
r immediate pr edecessors, and this is t rue also for the states in cP2'

Thus

kr
krt = _ _ = k2r- N

kN - r

By applyin g the same considerations to cP3 , . . . , cPm we obtain

rm = 7"m-1 = mr - (m - l )N

T hus the states that survive are

•
The number m indicates the maximum depth of the at t ract ion basins,

that is, the maximum number of steps afte r which the system reaches an
att rac to r; since mr - (m -l )N 2: 0, it is bounded by N/(N - r) for r =I N ,
while it is zero for r = N .
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As a consequence of the prev ious theor em we have the following coro llary.

Corollary.

1. Th e number- of transient st ates is given by

2. Th e car-dinality of th e attracti on basin of a stable sta te is

3. Th e car-dinality of th e attract ion basin of a leng th i cycle is given by

i km(N-r)

Theorem 2. The n um ber of cycles of leng th l , denoted by ru, is given by

where VI = rank(AI - 1) and th e sum is over ell] that divid e l.

Proof. If 1 is a pr ime an d ± belongs to a cycle of length l , we have AI± ==
± ===} (AI - 1)± == O. Then it is clear that the number of dist inct states
belonging to cycles of length 1 is kN

- VI because the Ker (A - 1) contains
N - VI linearl y independent states, and , as a conseqence of th e addit ivity,
all t hese states and their linear combinations belong to cycles of length l .
Generalization to the case in which 1 is divisible is immediat e. •

Finally we prove that the length s of the cycles are not arbitrary, bu t have
to satisfy the following cond it ion .

Theorem 3. Th e length s of the cycl es divide q = max{i : ti, i= 0, i ::::: I}.

Proof. If ± belongs to cycle of length q (Aq± == ±) , and y belongs to a cycle
of length v (AVy == y), we suppose ab absurdo that a v< q, v i= 1 exists
such that n.; i= 0 and MCD(v , q) = 1. Then the state ± + y will belong to
a cycle of length uq, AVq(±+ y) == Avq±+ AVqy == ± + y, and qv = lcm(q , v)
is the least length of the cycle of ± + y . The fact that vq > q proves the
theorem . • -

These results will be useful for analyzing in a st ra ight forward manner the
behavior of such syste ms for assoc iation t asks, as shown in the next sect ion.
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3 . Associative memory

In this section we consider addit ive automata that act as associat ive memories
and, for the sake of simplicity, we study Instan taneous Associative Memories
(lAMs) [6, 7], in which the system, start ing from any init ial state, reaches a
stable state in one step of the evolution . It is very simp le to cha racterize an
lAM: indeed as a consequence of Theorems 1 and 2 we have that an additive
automaton is an lAM if and only if r = N - v , where r = rank (A) and
v = rank(A - 1). On the other hand, we can construct an lAM by using
the results found in the previous sect ion . In fact , if we want to memorize p
arbitrary linearly ind epend ent states ~1' ~2 , .. . , ~p , we can bui ld an N x N
matri x ip whose columns are form ed by the vectors ~1 ' ~2 , . .. , ~p and by other
N - p arbitrary vectors 1..1, . .. ,1..N- p such that all N vecto rs form a basis of
Zr: . A convenient notation for ip is the following:

r.p = (~1 ' ~2 , .. . ,~p , 1..1, . .. , 1..N- p).

We want the next step evolution of the states to be given by the matrix r.p/ ,

r.p' = (~1 ' ~2 ' · · · , ~p , ~O ,~O , · · · , ~o ) ,

whose first p columns coincide wit h those of matrix r.p while the other N - P
have all the elements equal to zero . T he synapt ic matrix A of this automaton
is given by [10, 11, 12, 14]

A=k r.p/ r.p - 1. (7)

T he automaton so const ruc ted is obviously an lAM and has kP stable states :
the states ~1 , ~2, . .. , ~p and all their linear combinat ions. T he basin of at­
trac t ion of each st able state has cardinality kN - p ; in fact , if we call Hj the
subspace of Zr: spanned by 1..1 ' ... ,1..N- p, it is evident that the at t ract ion
basin of any other st ate ~n contains the kN

- p vecto rs

~i = ~n +'JLi 'JLi E Hj , n = l , ... , p,

and the st ructure of the attract ion basin s is completely characterized by the
choice of the vecto rs 1..1, ... ,1..N- p.

Unt il now we have shown that an addit ive net of N neurons can memorize
a very large number of states , kP (p ~ N ), which of course are not arbitrary,
being combina t ions of p linearl y ind ependent sta tes. Each of the stored states
has a well-defined basin of attract ion of cardinality k N - p . T he structure of
the basin is determin ed by the kN - p vectors that belong to the attract ion
basin of the state ~o .

Relation (7) is cha racterist ic of associat ive network models that make
use of spect ral algorithms [11, 12, 13, 15]. For such algorithms the mat rix
r.p is not square, and r.p -1 is replaced by the so-called generalized inverse.
However , there are other met hods to const ruc t the matrix of connect ions
that make use of outer-product algorithms [8, 14]. In the following we give
two outer-product algorithms: the first memorizes one pat tern at each ap­
plicat ion and maint ains the properties of (7) (lAM); the second performs
hetero-associations among states. Both algorithms start with an N x N
matrix with all elements equa l to zero, A (O) = ON .
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A lgorithm 1. At t he ith step, when i - I st a tes have been stored and we
want to store another state { (i ) , we put

(8)

where the second te rm of t he right side is an outer product of two vectors
and

(a) A(i-I ) is the synaptic matrix t hat stores the i- I pr evious states;

(b) '!l(i ) E {o, 1, ... , k _l}N is a vector such that

'I1(i) == z-:-I [e. _ r .(A(i -I)) ] .
:.L k J -J -J '

(c) 2 ==k A(i- I) {(i) _ { (i ) ;

(d) j is chosen such that Zj #- °;
(e) ~j has all t he components equal to zero except t he jth, which is equal

to 1; and

(f) r.J(A(i -I)) is t he jth row of A (i -I ).

If { (i) is already stable then 2 (i) == Q.

Theorem 4 . Th e rul e (8) allows the m emorization of the new pat tern ~(i)

and preserves the previous ones. -

P roof. If we mult iply A (i ) by { (i ) , according to (8), we ob tain

A (i ){(i ) == A (i -I ){(i ) + ( A(i- I) {(i) _ { (i ) )'!l.(i )T{(i ).

Since

(9)

equat ion (9) becomes

A (i ){ (i ) == {(i).

Furthermore, t he patt ern s {( I), . .. , { (i-I ) remain memorized because, for
{ (i - I ) ,

(i) T c (i - I ) _ - I (c(i - I ) _ '" (i -I)c(i - I)) _ - 1( C(i -l) _ c(i - I ) ) - °
'!l. ~ - Zj <"'j L...J aj,k <"'k - Zj '»i <"'j -

k

and obvious ly

A (i){(i -I ) A (i -I ){ (i -I ) + (A(i-I ){(i- I ) _ {(i-I))'!l.(i )T{(i -l )

A(i- I)~(i-I ) == ~(i -I ) . •
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The matr ices generated by Algorithm 1 are very sparse , and each ap­
plicat ion of (8) adds only one column different from zero to the matrix of
connect ions, so the space required to store a matrix that memorizes p lin­
early independent states of lengt h N is O(pN) , and , as a consequence, there
is no wast e of spac e using thi s kind of system for associat ive memories. The
effi ciency of a network model can be defined as the ratio between the tot al
number of bits stored in the net and the number of bit s needed to store the
synapt ic matrix of the connec tions. For most network models studied thus
far (see [1] for a review), the efficiency is generally very low and decreases
with N . In our case the efficiency is maximal, 0 (1), and there is st ill a
distributed repr esentation and a noise-corr ecti on capability as shown below.

Let j1 , . .. .i; be the sequence of the choices of the index j at each ap­
plicat ion of the algorithm . This sequence gives a specific assoc iat ive task to
the syst em , that is, it determ ines the st ructure of the attrac t ion basins. It
corres ponds to the choice of the vectors 1.1 ,1.2 , . .. ,1.N _ p of the matrix <p in
(7), with the only constraint being that such vect ors have only one compo­
nent different from zero and equal to one. If arbitrary vectors 1.1 , .. . ,1.N - p

are used , then the following algorithm can be applied .

A lgor ithm 2. The hetero-association among the states in Zr: ,~(i ) -+ '!1( i )

can be performed as follower' -

(10)

where [l i lT is a vector wit h elements belonging to Z t' , such that the following
holds:

~(j)T f!..(i ) = k 0 j = 1, ... , i - 1

~(i)T f!..(i ) =k - 1
(11)

Also in this case there is a choice that characte rizes the struct ure of the
evolut ion becau se many vectors p (i ) sat isfying the condit ion in (11) can exist .
In this way we could classify thea lgorithms as "unsupervised" learning if the
choice is random, and as "supervised" learn ing if the choice is guided from
the outside.

Theorem 5. The rule (10) m em orizes the association ~(i ) -+ !lei ) and pre­
serves th e previous ones.

Proof. The proof is the same as that of Theorem 4:

The proof that the previous associat ions are preserved is t rivial. •

2Note t hat { (i ) could be equal to !l( i ).
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Figure 1: Th e memorized patterns are th e seven bars const itut ing th e
figure.
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Figure 2: Some attractors of th e network .

As an example we mem orize seven binary patterns of dimensions 16 x
16 pixels each representing a bar of figure 1. The memorization is carried
out with Algorithm 1 and a random choice of the index j at each step.
The sys te m so constructed has 128 at t racto rs , which are the combination s
of the seven pat t erns given. Here a novel sit uation ar ises, whi ch justifies
the t it le of t his paper: it seems t hat "sp urious states" may turn out to
be an asse t instead of a liability. Indeed , a number of combinat ions of the
seven basic patterns memori zed (whi ch are customarily cons idered "spur ious"
and t he refore unwanted) turn out to be meaningful and thereby useful. For
instance, we find in figure 2 eighte en meaningful patt erns that come out in
addit ion to t hose origin all y sto red. Furthermore, the sa me result is obtained
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Fi gur e 3: Noisy patterns well classified by the network. All t he pat­
tern s in each row are attracted , after just one ste p of the evolut ion,
by the pattern in the first column.
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Figure 4: Exact recall vs. noise percent rate.

if we st art from any seven ind epend ent combinat ions of the original patterns,
for example "0," "1," "2," "3," "4," "5," and "7."

To appreciate this fact we may consider what happens in this case with the
standard Hopfield model [13] . If we start with the original set of (orthogonal)
pattern s we retrieve the same situat ion as with our algorithm ; if we start
inst ead with (not orthogonal) combinations of them , we lose convergence
even to the primitive set .

Finally, our pro cedure shows a remarkabl e noise correc t ion ab ility: fig­
ur e 3 shows how some qui te noisy pattern s are exact ly recognized in one st ep.
To evidence the noise corr ect ion ability we plot in figure 4 the exact recall
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probability as a fun ction of the noise pe rcentage bo th for t he Hopfield mod el
and for the ad dit ive network constructed wit h Algorithm 1 for the same set
of pa t t erns. We used as a training set t he seven bar s cons tituti ng figure 1. A
test set was generated by cons t ruct ing 200 noisy vectors for each pat tern of
figure 2 and for each noi se percentage . T he recalling ability of the addit ive
auto maton compares favorably wit h that of the Hopfield mod el with the
advantage of maximal efficiency and inst antaneous recalling.

4. Conclusions

Spurious states as syllables

If we think of the basic seven pat terns as "let t ers" of an alphabet, the 128
that are mem ori zed in our example corr esp ond to combinat ional st rings of the
letters . In any langu age, only a small number of such st rings form meaningful
sylla bles . As such we can take the 7 + 18 of our example. This point may
deserve further investigati on .

Classification by features

As pointed out in the introducti on , t he systems described in the previous
sect ions present a partic ula r associa t ive behavior. In our case , by fixing p
states in mem ory, each attraction basin contains kN - p vectors; t hese vectors
have the characterist ic tha t, in t he p posit ions used to store the patterns
(the choice of j in the Algorithm 1) , they ass ume t he same value . Thus, the
at t raction basin can be represent ed , in the binary case , as a set of vectors in
this way:

(...,*,..., 1, . . . , *,... , 0, . .. )

wh ere * can take any of t he values 0, 1 and only p po sition s are fixed . In t his
wayan attraction basin ca n capt ure an ass igned characterist ic of t he pattern,
namely a given subset of components of the pattern that is relevant. Thus,
these models ar e a powerful associa t ive mechanism when we want to learn
patterns on t he basis of t heir features , rather than classing t hem acco rding
to some distance , such as the Hamming dist an ce.
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