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Abstract. T his pap er defines a form al pr obabilist ic notion for the
information capac ity of the Hopfield neur al network model of associa
t ive memory. A mathematical express ion is derived for the number
of random binary pat terns that can be stored as stable states in a
Hopfield model of memory with n neur ons with a given probab ility.
The derivati on is based on a new approach using two powerfu l math
ematical te chniques : Brown 's Mar tingale Central Limit T heorem and
Gupta 's tran sformat ion of the pr obab ility integral for a spec ial case
of the corr elation matrix. The new approach provides a way for rig
orously ana lyzing the complex dynamics of the Hopfield model. Ou r
approach refines t he cur rent heurist ic methods, which rely on simpli
fying ass umptions abo ut the dynamics of the model.

1. Introduction

T he ability to recall memorized patterns is an imp ort ant feature of human
memory. In 1982, Hopfield [13] introduced a new model of asso ciative mem
ory based on a simple neur al network model. Comput ational properties of
his mod el emerge as collect ive prop ert ies of a system having a large number
of simple neurons. Est ab lishin g empirically that such collect ive prop erties in
clude defau lt assignment , error correc t ion , and spontaneous generalizat ion,
Hopfield demonstrated the at trac tiveness of the neur al network model for
many applications . Hopfield 's work has rekindled the interest in neur al net
works.
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An imp ortan t step in studying the Hopfield network mod el is to mat h
emat ically quan tify its performance as a memor y. In t he Hopfield model,
a memory is defined as a stable state, that is, an act ivation state that re
mains un changed wit h network iterations. The information capac ity of the
standard memory mod el is explicitly dete rmined by the number of memor y
bits. In cont rast, t he information capacity of the Hopfield model is based
on the dynamics of act ivat ion patterns in the neur al network. Hence, the
est imat ion of the information capacity in the Hopfield model is considerably
more complex.

The dependence of the information capacity on the dynamics of the net
work has prompted researchers [4, 5, 13, 19, 22, 23] to consider prob abilistic
est imate s of the informat ion capacity of t he Hopfield network based on sim
plifying assumpt ions . Amari [4, 5] and McEliece [19] have provided heur istic
estimates of the capacity of the Hopfield network mod el based on statistical
techniques. Weisbuch [22] also used stat ist ical techniques with addit ional
assumptions to provide the resul ts of infor mation capacity that were more
consistent with simulat ion than were the other st udies [4, 5, 13, 19].

We formalize the not ion of the probabilistic information capacity in the
Hopfield model. The formalizat ion is useful for clarifying pr evious work
[4, 5, 6, 13, 19, 22, 23] an d , more importan tly, it paves the way for int ro
du cing powerful stat ist ical techn iques to rigorously analyze the informat ion
capacity. We pr ovide a new approach for rigorously analyzing the complex
dynamics of the Hopfield memory model. T his appro ach is based on two pow
erful mat hemat ical techn iques: Brown's Mar t ingale Central Limit Theorem
[9] and Gupta 's transformation [12].

In section 2 Hopfield 's mod el of associat ive memory is reviewed and the
not ion of the pr obab ilisti c information capacity is form alized . Section 3 ex
amines the cur rent heurist ic method s for the est imat ion of the information
capacity. In sect ion 4 our approach for analyzing the cap acity of the Hop
field memory is discussed along with the main theorems. In sect ion 5 the
performan ce results based on our mathemati cal analysis are compared wit h
the results from other theoret ical [4, 5, 19, 23] and experimental [22] studies.
Section 6 provides concluding remarks.

2. The Hopfield associative memory

T his sect ion pr ovides a self-contained description of the Hopfield mod el of
associative memory and introduces a form al not ion of the pr obabi listi c infor
mat ion capacity.

The Hopfield neural network model of asso ciat ive memory consist s of n
pairw ise connected neurons. Any neuron i can be in one of two states: Vi = 0
(off) or Vi = 1 (on) .

D efinition 2.1. A state vector V = [VI, . . . , V n ] is defined to be a bitiery
vector whose i th component corresponds to the state of the i th neuron .
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Definition 2.2. A connection m atrix is the n x n m atrix W = (Wi,j) , where
the (i, j) th entry ofW is the strength of th e synaptic conn ection from neuron
i to neuron j.

Each choice of W defines a spec ific neural network of n neurons . In
other words , the collective behavior of the neural network is ent irely spe ci
fied by W. In fact , the matrix W acts as a decoding machine that can be
recogn ized as a kind of information storage. T he Hopfield model requires
that Wi,j = Wj,i and Wi,i = O.

According to the Hebbian learn ing rule [19], to memorize (store) m pat
terns (state vectors) VI , V 2

, . . . , V '" in the Hopfield neural network, each
entry of the connection matrix W is computed by

m

Wi,j = 2]2vt - 1) . (2vj - 1)
8=1

which can be rewritten as

m

Wi]' = '" x: .X S

1 L ~ J
8= 1

(2.1)

(2.2)

where XI = (2Vi - 1).
A randomly selected neuron receives inputs from connec ted neurons and

changes it s state in the following manner at each discrete t ime step t:

Vi(t) = sgn {~ Wi ,j . Vj(t 1)} = T(V(t - 1))

where

{
I if y ~ 0

sgn(y) = 0 otherwise

(2.3)

and Vi(t) represents the state of the ith neuron at t ime t. T is a nonlinear
state transit ion op erator.

Finally, the recalling process of the memorized (stored) patterns can be
described as follows. St art with an initial state represented by a binary
vector V(O) . T he state is changed iterat ively according to equation (2.3).
The iterative pro cess is repeated until a st ate that remains unchanged wit h
further network it erat ions is reached. The terminal state, call it VI , is said
to be recalled from V(O).

Definit ion 2.3. A st at e vector (a pattern) V is called a stable st ate iff V
is recalled from V , namely, iff from equation (2.3)

ViE{ I, .. . , n } V· · (~ W V) > 01. L 't,l J -

j=1

(2.4)
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Let Sm denote a set of m random binar y patterns V I, . .. , V '" , each of
size n. Consider a Hopfield network where the weight s are as given by the
Hebbian learning for storing all the pat terns in Sm. Let P (Sm) denote the
probability that all the pat terns in Sm are in fact stable pat terns.

D efin it ion 2.4. Given an Q! E [0,1 ], the information capacity L, is defined
to be the m aximum integer m such that P (Sm) 2': Q! .

3 . Information capacity heuristics

In this sect ion we first review the cur rent heuri stic methods for est imating
the information capac ity of the Hopfield mod el. Aft er the review, the main
ideas behind our approach are discussed . This sect ion uses the framework
developed in sect ion 2.

3 .1 Current quantitative heuristics and proposed extension

Several researchers [4, 5, 13, 19, 22, 23] have proposed stat ist ical methods for
exploring the capacity of the Hopfield memory. These methods depend upon
two invari anc e cond itions derived from equat ions (2.2) , (2.3), and (2.4). Let
the nu mb er of neurons be n and the number of stored patterns be m . The
invari ance condit ions (ICs) are:

IC 3.1. Given a stored pattern V S, an off-state neuron i in the pattern
rem ains off (0) if

(3.1)
mn n n

" S " S " xr. X .' . S6 Wi ,j ' vj = - 6 vj + 6 i j vj
j = l ,j 'li j= I ,j'li s' = I ,s' '1s j = l, j 'li

0 >

IC 3.2. Given a stored pat tern V S, an on-state neuron i in the pat tern
rem ains on (1) if

(3.2)
mn n n

" s ". " xr. x/. S6 w.s vj = 6 vj + 6 i j vj
j=l ,j'li j = l ,j'li s' = I,s''1s j =l ,j 'li

0:S

To use the invari an ce condit ions for statistical analysis of the information
capacity, all app roaches (t hose of Am ari , McEliece, Weisbuch, and us) start
from the following assumption .

Assumption 3 .1. For s = 1, .. . ,m and i = 1, ... , n , all vi are identically,
independently distributed (i.i.d .) rand om variables that take values either 1
or 0 with probability 0.5. Note th at this is a necessary assumption to handle
rand om patterns .

For a given sand i , define the signal term (Sf) as 2:, j= l ,#i vJ and the
noise term (Nt) as 2:,;:=I ,s' '1 S 2:, j=l ,#i X :' . Xl' .vJ. We want to evaluate the
pr obability that the invariance condit ion for a neuron is sat isfied . Becau se
of symmetry, the probability is the same for both invari an ce condit ions. The
following discussion is based on Ie 3.1.

The exist ing studies due to Am ari , McEliece , and Weisbuch require an
addit ional assumpt ion .
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Assumption 3.2 . Each element in th e noise term X:' .Xl' .vj where 8 ' i- 8 ,

8' = 1, . . . ,m, j i- i , and j = 1, ... ,n is an i.i .d. random variable.

Based on these assumpt ions (3.1 and 3.2) and the Central Limit Theorem ,
the current cap acity heuristics lead to the result

_ S S N S~ N ( _ (n - 1) (m - 1)(n - 1))
, + z 2 ' 2 (3.3)

where N means a normal distribution .
Assumption 3.2 is introduced to simplify the analysis, but it is not ac

curat e because the elements of the noise terms are in fact not indep endent
of each other. In Theorem 4.1 we prove, without using Assumption 3.2, the
result

_ S S N S~ N ( _ (n - 1) (2m - 1)(n - 1))
,+ , 2' 4 (3.4)

(3.5)

for all 8 = 1, . . . , m, and i = 1, ... , n .
The existing studies derive the following result from equat ion (3.3) . The

probability that a neuron sa tisfies the invariance condit ion is given by

P(S: > Nt) = <I>(z) = l~ ¢(t )dt

where ¢(t ) = (1/y'2';) e- t 2
/

2 for - 00 < t < 00 , and z = v(n - 1)/V2(m - 1) .

Remark. In our case , by equat ion (3.4) , P(S: > Nt) = <I>(z') where z' =
v(n - 1)/V2m - 1.

From equat ion (3.5) , McEliece [19] approximated the expe cted number
of failed neurons (not sat isfying the invarian ce conditi on) in a stored pattern
to n (1 - <I>(z)) . Making the conjecture that the number of failed neurons
approximately follows a Po isson distribution, he derived the probab ility that
a stored pattern is indeed a stable state (fixed point) as follows. For a fixed
probabi lity f3 (for example, f3 = 0.9999) ,

f3 = exp {- n(1 - <I>(z))}

(3.6)

Remark. If X ~ Poisson(A) for a fixed A, then P(X = x ) = (e- A • AX)/X!.
In particular P(X = 0) = P(no failur e) = e- A .

From equation (3.6) , McEliece derived the approximat ion that m ~

n/2 1ogn with the assumption that n(l- <I>( z)) is a constant for all n, which
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is not necessar ily the case. Not e that Am ari [4] also der ived simila r resul t
such that min < 1/ (2 log n -log log n ).

On the other han d , Am ari [4, 5J and Weisb uch [22, 23] used the following
addit ional ass umption.

Assumption 3 .3 . "Is = 1, ... , m, Vi = 1, . .. , n, each term - Sf + Nt that
is a random variab le defining the invariance condition for a neuron is inde
pendent of each other.

Using equation (3.5) and Assumpt ion 3.3, they concluded that the probab ility
that all stored pattern s are stable is

(3.7)

Amar i [4] and Kamp [16J acknowledged t hat t he dep endency among the
rando m var iab les - Sf +N] for 1 ~ i ~ n and 1 ~ s ~ m cannot be neglect ed
through some simula t ions. In our proposed heuristi c, Assumption 3.3 will
not be used ; inst ead we will account for the dependency among the random
var iables used in the assumpt ion (Theorem 4.2 and Theorem 4.3).

In summary, with the help of powerful mathem at ical t echniques, we will
eliminate the use of incorr ect assumptions (3.2 and 3.3), which so far have
been used to simplify the analysis . In T heorem 4.4, we derive a mathematical
express ion for the informati on capacity by using the resul t s from Theorem
4.2, T heorem 4.3, and Gupta 's t ransformation technique [12J.

4. Capacity based on multivariate normal approximation

In this section we pr ovide proofs for our claims in sectio n 3.2. Our proofs are
based on the invarian ce condit ion given by equat ion (3.1) and Assumption
3.1. Let

n .m n

A (i ,s)=-Sl+ Nt=- L vj+ L L xt · Xj'.vj (4.1)
j= l,j#i 5' = 1,5' ;1'5 j = l ,j;l'i

Proposition 4.1. Under Ass umption 3.1, approximately,

S 5~ N(n- 1 n- 1)
, 2 ' 4

Proof. By Assumption 3.1, Sf ~ B(n - 1,1/2) wh ere B(n ,p) is a binomial
distribution with par am eters nand p . T hen , by the Central Limit Theorem ,
we can approximate B(n - 1,1 / 2) by N ((n - 1)/2 , (n - 1)/4) for lar ge n. •

Proposition 4 .2. Under Assumption 3.1, the variables Xl,' . X;,' . vi, and
x t; . X ;; 'Vi2for 1 ~ iI,i2 , i 1 , i 2 ~ n , 1 ~ S, S l ,S2 ~ m , s :l- S l , 8 :1- 82 are
mu tually uncorrelated if iI, i 2 are distinct from i. ,i2 or Sl :I- 8 2 ·
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Proof. By Assumption 3.1 and equation (2.2) ,

E(Xt) = 0, Vs , i , 1 :::; s :::; m , 1 :::; i :::; n.

By defin it ion ,

C (XS, XS I S X'2 X S2 S)ov il ' i i ' v j , ' i 2 ' jz ' Vjz

= E(XSI . X S, . V S . X S
2 • X S2 . V S ).

~ l J 1 ) 1 '1.2 J2 J 2

(4.2)

The proposition follows by considering different cases and applying the
ru le t hat E(t1 . t z) E(t1 ) . E(tz) if t1 and t z are independent random
var iables. •

Remark. While these random variables (X{ . X;' . vi) are identically dis
t ributed and are mutually uncorrelated , they ar e not independent of each
ot her. For example, the var iables (Xl·X}-vJ) , (Xl·X}-vJ) , and (XrXJ-vJ)
are clearly not independent .

Prop osition 4.3. Under Assumption 3.1, E(Nt) = °and Var(Nt)
(m - l)(n - 1)/2 for 1 :::; i :::; n and 1 :::; s :::; m .

Proof. Fix i and s, and select two different elements X;;.X;:' .vi , and

X s; • X s; . V S

t J2 J2'

m n

E(Nt) = L L E(X{. X ;' . vi) = 0.
5'= 1,8'#5 j= l ,ji= i

And, by Proposition 4.2,

Var(Nt)
m n

L L Var(X{ · X;' .vi)
8'=1 ,8'#8 j=l j # i

m m n n

+ '" '" '" '" c (X S; . X S;. S Xs~. X S;. S)L-- L-- L-- L-- OV , i: v), " ) 2 V ) 2

s~ = 1, s;= I, ) 1=1 , ) 2=1 ,
S'1 =/:-s S; #8 i :=Ii j 2=j:. i

m n

L L Var(X{ . X;' .vi) ,
8' = 1,8 ' :;68j= l, j=l:i

because the set ofrandom var iab les{X{ .X;' ,vi , 1:::; i ,j :::; n , 1,:::; s, s' :::; m}
are ident ically distributed ,

= (m - l)(n - l)Var(Xl · xi· vD

= (m - l)(n - l){E((Xl ' Xi)z . (vD z) - E(Xl) . E(Xi . v~)}

= (m - l )(n - l)E(vD z = (m - l)(n - 1)/ 2. •

Proposition 4.4. Under Assumption 3.1, we have approxim ately Nt
N(O, (m - l )(n - 1)/ 2)
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P r o of. By Proposition 4.2, Proposition 4.3 , and Brown's Martingale Central
Limiting T heor em (refer to append ix A for a detailed proof) . •

Proposition 4 .5 . Sf and N] are uncorrelat ed.

P r o of.

Cov (S: , Nn = COy ( t vj ,
j =l ,j#i

m n )" "Xs
' • X s

' . V
S

L.- L.- , J J
8'=1 ,8'#8 j=l,i:f=. i

n n m

I: I: I: Cov(vj" X { .X;~ . vjJ
h = l,h 'Ii h =l ,h # i 8'=1,8'#8

= O.

Because, by equat ion (4.2), vi. , ]2, and S',

C ( s X s' X s' S) E( S X S' Xs' S)ov v· .. . . v· = v·, .' . ' v .
J 1 ' 'L J 2 J 2 J 1 t J2)2

= E (vS )E(XS')E(XS' . V S )
J1 t ]2 J2

= 0 •
P roposition 4.6. If s. ~ N 1 and S2 ~ N2 where N 1 and N2 are uncor
related normal random variables, and d denotes convergence in distribution,

then s, + S2 ~ N 1 + N2.

P roof. A well-known statistical theorem (refer to [7, 8]).•

Theorem 4. 1. Under Assumption 3.1, we have approximately - S f + Nt rv

N (- (n - 1)/2, (n - 1)(2m - 1)/4) .

Proof. By Proposition 4.1 (-Sf rv N (- (n - 1)/2, (n - 1)/ 4)), Propo
sit ion 4.4 (Nt rv N (O, (n - l)(m - 1)/2)) , Proposition 4.5 , and Proposi
tion 4.6 . •

R emark. With the assumption that n is fixed and m is large, McE liece
claimed that - S f + Nt rv N (-(n - 1)/2, (n - l )(m - 1)/2) . In other words ,
the effect of the var ianc e of S f (i.e., (n-1)/4« (n- 1)(m-1)/2) is neglect ed .

Corollary 4 .1. T he probability that a neuron satisfies the invariance con
dition is

P (- S f + Nt < 0) = <I> ~(n - 1)//2m - 1)

j
v (n - 1)/ yh m - 1

= -00 (1/V2ir) . e-
t 2

/
2 dt

for - 00 < t < 00.
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Now we need to answer the questi ons what is the prob abi lity that n neu
rons in a stored pattern sat isfy the invariance condition and , mor e generally,
what is the probability that nm neur ons of m stored patterns sat isfy the in
varian ce condit ion. To answer these quest ions, first we check the dependency
among the terms - Sf +Nt for n neurons in a stored pat tern . Then we check
the dependency among the terms -Sf + Nt for the ith (1 ::; i ::; n) neur ons
in m stored patterns.

P roposition 4 .7 . Cov (A (l , s),A (2, s) ) = (n+m -3) /4 , VS where 1 ::; S ::;

m.

Proof. Note that

Cov(s t ,Sn= COy ( t vi , t vi )
];'~l,J =2 J = l,];'~2

n n

L L Cov (vi, ' vi,)
j,#,j, =2 j,=1,j,#2

= (n - 2)/4,

and by the same argument s used in Proposit ion 4.5 ,

Cov (St , N;) = Cov (S~ , Nt) = O.

Also,

m m n n, l "

L L L L Cov (X; ' . Xl.' . vi" X;2 . Xl: . Vi2 )'
5'1= 1, s~ =l, j i # 1, h=l ,
s\#s s~#s il=2 j2#2

By Proposit ion 4.2, the terms of COy will be 0 except in the case S~ = s;
and i, = 2, j 2 = 1.

m

~ C (X S' X s' s X s' X S' S)L...J ov i : 2 ' v2 , 2 ' l ' V 1

sJ= l,s'#s

( )E(X SI X S' S X s' X S' S)= m - 1 l' 2' V 2 ' 2 ' l' Vl

= (m - l )E(vt · V~)
= (m -l )E(vt) . E(v~ ) = (m - 1)/ 4.

Therefore,

Cov (A (l , S),A (2, S)) = .(n - 2)/4 + 0 + (m - 1)/4

= (n +m -3)/4. •
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Theorem 4.2. Th e correlat ion coefficient P A (1 ,s ),A (2,s ) of A (l , s) and A (2, s)
is (n + m - 3)/((n - 1)(2m - 1)) for 1 ::::: s ::::: m .

Proof. By T heorem 4.1, O'~ ( l , s ) = 0'~(2 , s ) = (n - 1)(2m - 1)/ 4, and by
Proposition 4.7, Cov(A (l , s) , A (2, s )) = (n + m - 3)/4. Hence, P A (1 ,s ),A (2 ,s) =
Cov(A (l , s) , A (2, S ) ) / ( O'A(l ,s ) . O'A (2,s ) ) = (n + m - 3)/ ((n - 1)(2m - 1)). •

Remark. limn,TTH oo PA(1 ,s ),A (2 ,s ) = O. Hence, for large n and m , we may be
able to assume that there is no dep endency among the te rms - Sf + N] for
n neur ons wit hin a stored pattern.

Proposition 4.8. Und er A ssumption 3.1, we have Cov(A (i , 1), A (i , 2)) =
(n - l )(m - 2)/4 for 1 ::::: i ::::: n.

Proof. Not e that , by Assumption 3.1,

Cov(sl ,sf) = COY (=~;o'i v}, j=~;o'i vI )
n n

L L Cov(V}"VI2) = 0,
h=l ,j ,;o'ih=l,h;o' i

and , by t he same arguments used in Proposit ion 4.5,

Cov(Sl , Nn = Cov(S; , Nl) = O.

Also,

Cov(Nl , Nn

(

m n m n 1= COY '" '" x s
' . x s

' . v 1
'" '" xt' .x s

' . v 2
L.J LJ t J J ' L..J D t J J

s'# I , j e l , s' = I, j=l ,
s' = 2 j ;o'i s';o'2 j ;o'i

m m n " J I

= L L L L Cov(X: ' . X l ,' . v}" X i
S

2 .Xl~ . VI2 )'
s~ :;iI, s~= l , it =1 , i2=l ,
s; = 2 s~ ;o'2 j ,;o'i h;o'i

and because the terms of COY will be 0 except in the case (S~

i. = j2 = j ), by Proposit ion 4.2,

m n

'" '" E(X~' . X S
' • v 1

. X S
' • X s

' . v 2
)D D 'J J' J J

s';o'l, 2,s'=3 j =l ,j ;o'i
m n

= L L E(v}· vI) = (n - l)(m - 2)/4.
s'=3 j=l ,j;o'i

Therefore,

Cov (A (i , 1), A (i , 2)) = (n - l )(m - 2)/4.

s~ = s,

•
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Theorem 4 .3 . The correla tion coefficient PA(i,1 ),A(i,2) of A(i , 1) and A( i , 2)
is (m - 2)/(2m - 1), for 1 ~ i ~ n.

Proof. By the same arguments as in the proof of Theorem 4.2. •

Remark. limm~oo PA(i,1 ),A(i,2) = 1/2. Hence, the dependency among the
terms -Si +Nt for the ith neurons in m sto red patterns cannot be neglect ed
(recall Assumption 3.3 and Am ari 's not e).

Now, those dependencies bo th among the random variables (i.e., -Si +
Nt) for the invari an ce condition of n neurons in a stored pattern and among
the random vari ables for the invarian ce condit ion of the i th neurons in m
stored pat tern s should be cons idered to derive a statis t ica l express ion for the
information capacity.

Because the former dependency is negligib le by the remark followin g The
orem 4.2, we derive a stat ist ica l expression considering on ly the latter depen
dency. From T heorem 4.1 , Proposition 4.8, and T heorem 4.3, we can derive
the followin g:

where

P
P I))

(J~ (i ,l) = (J~ ( i , 2 ) = (n - 1)(2m - 1)/4

u, = (A(i ,j) + (n - 1)/2) ;."jr-(n-_-1-)(-2m---1-)/-4

P = Cov(A( i , 1), A (i, 2))/ ((JA(i,1) . (JA(i,2») = (m - 2)/ (2m - 1).

Remark. For a fixed m and 'v' (Al , ... , Am) E R '", (Ab . . . , Am ) x Q- l/2 x
[Ul , . . . ,Um ] approx imately follows N(O, [Ai + .. .+ A;;"]) as n ---7 00 wh ere ()
and [] mean a row vector and a column vector, resp ectively, and Q is the
variance-covariance matrix of Ul , . .. , Um' Hence, by Cramer -Wold dev ice
([7] page 397), U/ s are approximately jointly norm al.

Theorem 4.4. The probability (i.e., {P(Ul < h, . . . ,Um < h)}n) that all of
the m stored patterns are sta ble is

[100
epm (h - vp .zo) ._1 . e-z5/2 dZoJn

- 00 vr=P V2-rr (4.3)

where h = ((n -1) / 2)/V(JA (i,1 ), and where P and U/s are defined as before.
ep denotes th e standard norm al CDF .
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Proof. Let (ZO , Zl" " , Zm) be i.i.d. N (O,I) variab les. In the following
transformat ion [12],

Y1 = jPZo + /0Z1'

Y2 = jPZo+ /0Z2'

E(Y;) = 0, Var(Y; ) = p + (1 - p) = 1, and COV(Yi 'y2) = p. Since the
mean and the covariance of (Y1 , . . . , Ym ) are the same as the mean and th e
covariance of (U1 , . . . , Um ) , and both have multivariate normal distribution,
the distribu t ion of (U1 , . . . , Um) and (Y1 , .. . , Ym) ar e identical. Therefore,

P (U1 < h, .. . .tt.; < h)

= P (Y1 < h, . .. ,Ym < h)

= P ( jPZo+ /0Z1 < h, ... , jPZo + FZm < h)

= P(ZI < (h -jPZo) //0,. .. , z; < (h -jPZo)/ /0)

= i:<f?m((h -jP. zo)/F) . 1/.;2; . e-z~ /2dzo . •

5 . Results

In this sect ion we present the numerical results based on our theoretical
work and compare them with the results of other theoretical studies (Amar i,
Hopfield , McEliece, and Weisbu ch). The simulation results of Weisbu ch [22J
are used as criteria for th e comparison.

Weisbuch's simulat ion results are based on test ing mn inequalities (in
variance condit ions, equat ion (3.1) or (3.2)) per network, and adjust ing m so
that the probability is 0.5 for all inequalities to be verified . We and Weisbuch
study the information capac ity under the condit ion that th e probability th at
all of the m stored patterns are stable is 0.5 (i.e., 10 .5 in Definition 2.4) . On
the other hand, Amari, Hopfield , and McEliece use the condit ion that most
of m sto red patterns are stable, but th e definit ion of most is left amb iguous
in their st udies. The comp arison among Weisbu ch's simulation st udy and
the various theoret ical studies is summarized in t ab le 5.l.

The theoret ical resul ts of Hopfield [13], Amari [4], and McEliece [19J over
est imate the information capacity in comparison to th e simulat ion study of
Weisbu ch [22J. Our resul ts and Weisbu ch 's theoretical results (using As
sumptions 3.2 and 3.3) ar e close to the results of the simula tion. The overes
t imation occurs because the studies [4, 5, 13, 19J are based on the condit ion
that a stored pattern is st able, instead of on the stability of m patterns.
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m = number of patterns

Method s 8 10 14 20 1,000 50,000

Hopfield 53 67 93 133 6,667 333,333

Am ari 20 28 43 69 7,120 534,939

McEliece 21 30 47 76 7,783 576,046

Weisbuch
(with assumpt ions) 149 210 343 562 62,528 4,737,757

LKS (our s) 146 206 337 552 61,842 4,698,517

Weisbuch 's
simulat ion 103 180 290 500 N/A N/A

Table 1: The required number of neurons n for storing m patterns.

6. Conclusion

We have established a connect ion between the dynamics of the Hopfield
Neural Network (HNN) and the theor y of multivari at e normal distribution,
and use the connect ion to derive results abo ut inform ation capac ity of the
HNN . The cur rent information capac ity heuri stics due to Am ari , Hopfield ,
McEliece, and Weisbuch are carefully reviewed . These heuristics are inex
act because t hey depend on simplifying assumpt ions that are not completely
correct. We have been success ful in eliminating the use of these assumptions
through an exact analysis using powerful mathemati cal techniques [9, 12J.

Based on our analysis and using the statist ical software package IMSL
[20], we derive numerical result s for the information capacity of the Hopfield
network. Our results are in close agreement with the results of Weisbuch's
simu latio n [22J . We would have liked to do a more exhaustive simulation
study including neural networks with a large number of neurons. However ,
such a study is cur rently infeasib le becau se of pr ohibitively high computa
ti onal requirement.

Appendix A. Brown's Martingale Central Limit Theorem and
Proposition 4.4

Definition. Let us define s; as L k=l z; Then {Sn}:;:"=l is a Martingale
with respect to {Vn}:;:"=l if EISnl < 00 for all n and E(Sn+1 Ii; , ... ,Vn) = Sn,
where {Zn} is a sequence of random variables and {Vn}:;:"=l is a sequence of
random vecto rs such that Vn = [X~ , .. . ,X:J for a fixed m .

Brown's Martingale Central Limit Theorem. Assume that {Sn}:;:"=l
is a Martingale with respect to {Vn}:;:"=l' Let 6; = E(Z;IVl" '" Vn- 1 ) ,

U~ = L~16; , and &; = E(U~). If (1) U~/&; ---+ 1 in probability, and

(2) limn-+ oo(~k=l EIZkI 4 ) /&~ = 0, then Sn/ &n~ N(O,1) .
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Theorem. Under Assump tion 3.1, approximately

N;'(n ,m) rv N(0,(m - l ~(n - 1))
T his is the detailed proof of Proposition 4.4.

Proof. Fix m and let (1) Zn = ~~=2 xl' .X~' . v; , (2) Sn = ~~=2 Zk, (3)
Vn = [X~ , . . . ,X: ], (4) 8~ = E(Z~iV2 " " ,Vn-I)' (5) U~ = ~i=18l , and (6)
&~ = E(U~ ) for n = 2,3, . . . . Because E(Sn) < 00 , and

E (Sn+l iVl , .. . ,Vn)
n m

= L L X{ . X;' .vJ
j=25'=2

+X{E (f X~~l .v;H! [Xf ,· ·· ,Xj ], j = 1,.. . ,n)
s'=2

n m

'" '" 5' 5' I fL.. L.. Xl . X j . V j = Sn or n = 2,3, . . . ,
j=25'=2

{Sn}~=2 is a Martingale with respect to {Vn}~=2 ' And,

8; = E(Z;I [XJ, . . . ,Xj], j = 2, .. . ,n - 1)
m m

= L L E(Xt' . Xt2.X~' .X~2 . (V~)2 I
5 1 = 2 5 2= 2

[Xf , . .. ,Xj ], j =2, .. . ,n - 1)

= f (Xn 2 . ~ = (m - 1)
5=2 2 2

Also,

U~ = t 8~ = (n - 1)(m - 1) .
k=2 2

Therefore,

&2 = E (U2 ) = (n - l )(m - 1)
n n 2 '

and

N/(n,m) => N (O, 1).
J(n - l )(m - 1)/ 2

U2

&~ = l.
n

In addition to that ,

lim nEI Z21
4

= 0.
n-> oo (n - 1)2(m - 1)2/ 4

Hence, by the Martingale Cent ral Limit T heorem,

s; ~j=2 ~::2 Xl ·XJ.v}
&n = J(n - l )(m - 1)/ 2 •
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