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Abstract. Period adding with the coexistence of successive attracting
periodic orbits is observed in the model of a chemical system when the
bifurcation parameter is changed. This phenomenon is characterized
by a family of one-dimensional return maps having a cusp shape with
positive Schwarzian derivative that exhibits a saddle-node bifurcation.

1. Introduction

Period adding has been observed in chemical systems [1, 2] and in an electro-
chemical system [3-5]. Period adding means the following phenomenon: a
limit cycle, or an asymptotically periodic behavior, is composed of an oscilla-
tion of large amplitude followed by a number of small amplitude oscillations;
this number increases by one or by a fixed quantity as an appropriate bi-
furcation parameter is changed. The observed period-adding oscillations of
concentrations of intermediate species or electrical currents were stable in
some windows of the parameter. These windows were separated by ranges of
the parameter in which oscillations were chaotic.

We have found a similar period-adding phenomenon in a model of a chem-
ical system [6]. Windows with successive attracting periodic orbits were
separated by intervals of the bifurcation parameter in which orbits were
chaotic. In some windows the period-doubling cascade appeared; moreover,
the dynamical behavior of the system was characterized by a family of one-
dimensional return maps having a cusp shape.

In the present paper we show new results concerning the same model [6]:
we find that the period adding also appears at different ranges of the bifur-
cation parameter. In contrast to the previous case [6], successive windows
of attracting periodic orbits are not separated by chaotic trajectories, but
overlap so the coexistence of an n-periodic orbit with an (n + 1)-periodic
orbit is observed in some intervals of the bifurcation parameter.
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2. Model and results

The model describes an open chemical system with coupled enzymatic reac-
tions whose full scheme is given elsewhere [6, 7]. The block scheme is the
following:
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Substrates V and P are transformed by enzymatic reactions to the same
product U. Each of these reactions is inhibited by an excess of its substrate
and common product. Moreover, P is transformed into V' by a monomolec-
ular reaction. The system is open due to inflows of V' and P and the sim-
ple enzymatic reaction that transforms P into some inert product. Such a
scheme can be useful in the modeling of time evolution of metabolytes that
are produced in two or more metabolic pathways.

It is assumed that total concentrations of all enzymes are much lower than
concentrations of substrates and product. With this assumption the concen-
trations of all enzymes and all their complexes with substrates and product
become fast variables. In a slow time scale (appropriate for the description
of changes of substrates and product) they take their quasi-stationary values
and can be eliminated from kinetic equations using the Tikhonov theorem
[8]. The dynamical behavior of the system is then described by three kinetic
equations. In dimensionless form they are given by
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where v, p, and u are dimensionless concentrations of V, P, and U, respec-
tively. The parameters are defined elsewhere [6, 7].
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The same values of the parameters as in the previous works [6, 7] have
been assumed:

A, = 0.08928606601, A, = 0.01486767767, Az =4, B = 0.04,
B, = 0.000701754, B, = 0.000140351, B; =4, C = 0.122,
D =0.001, K =10, L =0.74, and €5 = 0.2.

€3 plays the role of the bifurcation parameter. We change €3 within the
interval [2.7,2.85].

Orbits obtained by numerical integrations can be roughly characterized
by sequences of small (S) and large (L) loops or short and long ones, re-
spectively. Looking at the coordinate u(t) along the orbit, one can see that
it has local maxima at approximately the same level (1.45 to 1.5) and local
minima at two different levels (the first at about 1.1 to 1.4 and the second
at about 0.7 to 0.8). Small (short) loops correspond to maximum upper
minimum-maximum, whereas large (long) loops correspond to maximum
lower minimum-maximum.

At e3 = 2.7 the system approaches the periodic trajectory with the se-
quences SL for all initial conditions, whereas at €3 = 2.85 the periodic trajec-
tory with the sequences LSL is the sole attractor. The examples of attracting
periodic orbits are shown in figure 1.

To characterize the behavior of the system we made the Poincaré section
at the plane u = 1.4343, looking only at those cases in which trajectories
cross this plane with u(t) decreasing. Examples are shown in figure 2.

The apparent line shape of the Poincaré sections is caused by the very
strong contraction of trajectories in one direction. In the Poincaré section
we distinguish three disjoint sets of points (see figure 2). Counting these sets
from left to right we call them I, I, and I3. The sets I; and I3 consist
of intersections of large loops, whereas the set Iy consists of intersections of
small ones.

The first return diffeomorphism F, gives the following picture. For all e3
only the sequences L(SL), are seen and

F(h)C L, F(I)C Iy, F(I;) C I U,

For most values of €3 the set I; consists of one point. Then the point of set I3
furthest to the right is transformed to the set I, whereas all remaining points
are transformed to I,. There are, however, subintervals of €5 in which two
successive attracting periodic trajectories coexist. In this case the Poincaré
section contains two points in the set [y and 2n + 1 points in each of the sets
I and I3. The two far right points of I3 are transformed to I;. An example
of the coexistence of attracting periodic trajectories is shown in figure 1.
Note that at a given €3 the trajectory intersects the plane u = 1.4343 at
different values of coordinate p. So the changes in this coordinate (at the
Poincaré section) with €; can be used to characterize the appearing bifur-
cations. In order to avoid transient behavior some initial intersections are
omitted. The results of the numerical calculations are shown in figure 3.
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Figure 1: Projections of attracting periodic trajectories on the planes
(u,v) and (u, p) for 3 = 2.765. The coexistence of the periodic LSL-
orbit (dotted line) and the L(SL),-periodic orbit is seen. Both orbits
are attracting, and the system evolves toward one of them depending
on initial conditions.
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Figure 2: The Poincaré sections at the plane u = 1.4343 for given
values of e3: €3 = 2.737 (black points), e3 = 2.753 (stars), €3 = 2.76
(pentagons), €3 = 2.77 (squares), €3 = 2.8 (triangles), and e = 2.84
(dashes). The three sets of points I3, I, and I3 are circled. In the
inset are shown the enlargement of I; and I5.

The values of p at the intersections are grouped into three bunches corre-
sponding to sets I, I, and I3. If we decrease €3 we see that one additional
intersection appears in each of the two bunches of p values corresponding to
sets I, and I3. This corresponds to the appearance of the new subsequence
SL, which is added to the previous sequence L(SL),. If we change €3 in
the opposite direction the hysteresis is seen. In some subintervals of €3 the
n-periodic orbit coexists with (n + 1)-periodic orbit.

We can parameterize a bunch I by coordinate p and induce a one-
dimensional return map on this bunch. In this way a map of the interval
of p into itself is constructed. Figure 4 shows examples of maps for different
€3. Bach map is of the cusp shape type; they appear continuous, but the
derivative at the maximum changes discontinuously from very large positive
to very large negative (probably infinite). With €3 decreasing, the left branch
of the maps of the family changes its position and tends toward tangency with
the diagonal. This change of €3 is accompanied by the period adding. A new
attracting orbit appears with one more fixed point for appropriate iteration
of the map when we go from one window to the next. The changes of the
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Figure 3: (a) The changes in “asymptotic” values of p at the Poincaré
section for €3 belonging to [2.7,2.85]. The initial 150 loops were omit-
ted. Three bunches of p values corresponding to the three sets I; are
seen.

shape of a map with €3 can be described by the following formula:

b — 3 0335
f(w)zd—a( A ) ifz <k

0.335
f(z):d—<‘”"k> if 2> k,

d—k

where k is the abscissa of the maximum.

The coexistence of two attracting periodic orbits in some intervals of €3
can be explained by the fact that the Schwarzian derivative of the family of
one-dimensional return maps is positive.

With decreasing €3 in the interval [2.7,2.85], the sequence SL appears
more and more frequently. At the tangency of the left branch with the
diagonal (e3; = 2.7366...) the loop L disappears; only the sequence SL
remains, which composes the attracting periodic trajectory.
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Figure 3: (Continued.) (b) The enlargement of the I; and I sets when
€3 is increasing. (c) The enlargement of the I; and I sets when €3
is decreasing. The hysteresis and the coexistence of successive orbits
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Figure 4: One-dimensional return maps of the p values along the set
Iy: e3 = 2.737 (black points), e3 = 2.753 (stars), €3 = 2.76 (pen-
tagons), e3 = 2.77 (squares), e3 = 2.8 (triangles), and €3 = 2.84 (x).

3. Discussion

The family F,, is hard to analyze in a quantitative way. However, the com-
plex behavior of our model can be described by a family of one-dimensional
return maps that exhibit a saddle-node bifurcation. Sufficiently close to the
tangency of the branch of the map with the diagonal, the appearance of an
L(SL),-periodic attracting orbit can be scaled according to the scaling law
[9, 10]

€341 — €3 = constant (n~2 — (n +1)72)

where €3,+1 and €3, denote values of €3 at which L(SL),+:- and L(SL),-
periodic orbits appear.

The adding subsequence in the interval investigated here is different from
that found for e; belonging to the interval [1.28,1.36] in the same model
[6]. Instead of the sequence SSLSL [6], now the sequence SL is added.
The more important difference is that the windows of successive attracting
periodic orbits are now no longer separated by chaotic orbits, but overlap.
This is the consequence of the fact that the one-dimensional return maps
probably have infinite derivatives at the critical point. In fact, this condition
implies positive Schwarzian derivative [10]: the positive Schwarzian derivative
is necessary to have different attracting orbits [11].
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Since the one-dimensional return maps in both intervals of €3 have a cusp-
shape form, we observe the period adding that is a typical phenomenon for
this type of map [12, 13].

Our model is an example of a continuous system in which various period-
adding phenomena are found. As one-dimensional return maps with a cusp
shape have been found in such different systems as the Lorenz model [14]
and experimental chemical system [15], and the period adding has also been
found in experiments [1-5], it seems that many dynamical systems can be
characterized by maps with a shape of this kind.
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