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Abstract. Period adding with the coexistence of successive at tract ing
periodic orbit s is observed in the model of a chemical system when the
bifurcation parameter is changed. This phenomenon is characterized
by a family of one-dimensional return maps having a cusp shape with
positive Schwarzian derivative that exhibits a saddle-node bifurcation.

1. Introduction

Period adding has been observed in chemica l systems [1, 2] and in an elect ro­
chemical sys te m [3- 5] . Period adding mean s th e following phenomenon: a
limi t cycle, or an asy mptotica lly pe riodic behavior , is composed of an oscilla­
tion of lar ge amplit ude followed by a number of small amp lit ude oscilla t ions ;
this num ber increases by one or by a fixed quantity as an appropriate bi­
fur cation parameter is changed. The observed period-ad ding oscillati ons of
concent rat ions of intermediate spec ies or electrical cur rents were st able in
some windows of the par ameter. These windows were separated by ranges of
the par am et er in which oscilla t ions were chaotic.

We have found a similar period- adding ph enomenon in a model of a chem­
ical sys te m [6] . Windows with successive attrac t ing pe riodic orbits were
separa ted by intervals of the bifurcation param et er in which orbits were
chao t ic. In some windows the period-doubling cascade appeared ; moreover,
the dynamical behavior of the syste m was cha rac terized by a family of one­
dim ensional return maps having a cusp shape .

In the pr esent paper we show new results concern ing the same model [6]:
we find that the period adding also appears at different ran ges of the bifur­
ca tion par am et er. In cont ras t to the pr evious case [6], successive windows
of at t rac t ing periodic orbits are not separa ted by chaot ic traj ectories, but
overlap so the coex iste nce of an n-periodi c orbit with an (n + I)-periodi c
orbit is observed in some int ervals of the bifurcation paramet er.
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2. Model a n d results

T he model describes an open chemical sys tem with coupled enzymat ic reac­
tions whose full scheme is given elsewhere [6, 7]. The block scheme is the
following:
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Subst rates V and P are t ran sformed by enzy mat ic reacti ons to the same
product U . Each of these reactio ns is inhibited by an excess of it s substrate
and comm on product . Moreover , P is tran sformed into V by a monomolec­
ular reaction . T he sys tem is open du e to inflows of V and P and the sim­
ple enzy matic reaction that tran sforms P into some inert product. Such a
scheme can be useful in the modeling of time evolut ion of met ab olytes that
are pr oduced in two or more met abolic pathways.

lt is assumed tha t total concentrations of all enzy mes are mu ch lower than
concent ra tions of subs trates and product. With this assumption th e concen­
trations of all enzy mes and all their complexes with substrates and pr oduct
becom e fast variables. In a slow time sca le (appropriate for the description
of changes of subs trates and product ) th ey take their quasi-st ationary values
and can be eliminated from kin etic equat ions using the Tikhonov theorem
[8] . The dynamical behavior of the system is then describ ed by three kin eti c
equa tio ns . In dim ensionless form they are given by

dv v
dt = A l - A 2v - (1 + v + A

3
v 2 )(1 + u) '

Cu )+ Dp---
L+ u '

where v , p , and u are dimensionl ess concent ra t ions of V , P , and U, resp ec­
tively. The par amet ers are defined elsewhere [6, 7].
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T he same values of th e parameters as in the previous works [6, 7] have
been assumed :

A l = 0.08928606601, A2 = 0.01486767767, A3 = 4, B = 0.04,
B1 = 0.000701754, B2 = 0.000140351, B3 = 4, C = 0.122,
D = 0.001, K = 10, L = 0.74, and E2 = 0.2.

E3 plays th e role of th e bifur cation paramete r. We change E3 within the
interval [2.7, 2.85].

Orbi ts obtained by numerica l integrat ions can be roughly characterized
by sequences of small (S) and large (L ) loops or short and long ones , re­
sp ect ively. Looking at the coordina te u(t ) along the orbit, one can see that
it has local max ima at approximately the same level (1.45 to 1.5) and local
minima at two different levels (t he first at about 1.1 to 1.4 and the second
at abo ut 0.7 to 0.8). Small (short) loops corr espond to maximum- upper
min imum - maximum, whereas large (long) loops corr esp ond to maximum­
lower minimum- maximum .

At E3 = 2.7 the system approaches the period ic tra jectory with the se­
quences SL for all in it ial condit ions , whereas at E3 = 2.85 the period ic tr ajec­
tory with the sequences LSL is t he sole at trac to r . T he examples of at tracting
per iodic orbit s are shown in figur e 1.

To characterize the behavior of the sys te m we made the Poincar e sect ion
at the plan e u = 1.4343, looking only at t hose cases in which tr ajector ies
cross th is plan e with u(t ) decreasing. Examples are shown in figure 2.

The apparent line shape of th e Poincare sections is caused by the very
strong cont raction of traject or ies in one direction . In the Poincar e sect ion
we distingu ish three disjoint sets of points (see figure 2). Count ing these sets
from left to right we call them I I , 12 , and 13 . The sets I I and 13 consist
of intersect ions of large loops, whereas the set 12 consists of intersections of
small ones.

The first ret urn diffeomorphism FE, gives the following pict ure. For all E3

only the sequences L(S L)n are seen and

For most values of E3 the set II consists of one po int. Then the point of set 13

furt hest to the righ t is transformed to the set I I , whereas all remaining point s
are transformed to h . T here are, however , subinte rva ls of E3 in which two
success ive at tracting period ic t ra jecto ries coexist. In this case the Po incare
sect ion contains two points in the set I I and 2n + 1 point s in each of the sets
12 and 13 . T he two far right point s of 13 are transform ed to I I. An example
of the coexiste nce of at tracting period ic trajectories is shown in figure 1.

Note that at a given E3 the trajectory intersects the plane 'U = 1.4343 at
different values of coordinate p. So the changes in this coordinate (at the
Poin care secti on) wit h E3 can be used to characte rize the appearing bifur ­
cations . In order to avoid t ransient behavior some initial intersect ions are
omit ted . The results of the numerical calculat ions are shown in figur e 3.
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F igure 1: Projections of a tt ra ct ing periodic traj ectories on the plan es
(u,v) and (u,p) for E3 = 2.765 . The coexis tence of the periodi c LSL­
orbit (dotted line) and the L(SLh-periodic orbit is seen . Both orbits
are at t ra ct ing, and the syste m evolves toward one of them depending
on initial condit ions.
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Figure 2: The Poin care sections at the plane u = 1.4343 for given
values of E3: E3 = 2.737 (black po ints) , E3 = 2.753 (stars) , E3 = 2.76
(pe ntagons), E3 = 2.77 (squares ), E3 = 2.8 (triangles) , and E3 = 2.84
(dashes) . The three sets of points h , 12 , and h are circled . In the
inset are shown the enlarge ment of hand h .

The values of p at the intersections are grouped into three bunches corre ­
sponding to sets I I , h , and 13 . If we decrease E3 we see that one ad ditional
intersection appears in each of the two bunches of p values correspo nding to
sets 12 and 13 . This corresponds to the appearance of the new su bsequence
S L, which is added to the pr evious sequence L (SL )n. If we change E3 in
the opposite dir ection the hysteresis is seen . In some subintervals of E3 t he
n-p eriodic orbit coexist s with (n + 1)-periodic orbit .

We can parameterize a bunch 12 by coordinate p and induce a one­
dimensional return map on thi s bunch. In this way a map of the int erval
of p int o itself is construct ed . Figure 4 shows examples of maps for different
E3. Each map is of the cusp shape type; they appear cont inuous , but the
derivative at the maximum changes discontinuously from very large positive
to very large negative (probably infini te). With E3 decreasin g, the left br anch
of the map s of the famil y changes its position and tends toward tangency with
the diagonal. This change of E3 is accompanied by the period adding . A new
attracting orbit appears wit h one more fixed point for app ropriate iteration
of the map when we go from one window to the next . The changes of the
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Figure 3: (a) The changes in "asymptotic" values of p at the Poincare
sect ion for £3 belonging to [2.7, 2.85]. The initial 150 loops were omit­
ted. Three bunches of p values corresponding to the three sets Ii are
seen.

shape of a map with C3 can be described by the following formula :

(

k ) 0 .335
f (x )= d - a " ~ x

(
k)0.335

f (x ) = d _ x - "
d -k

if x :S; k

if x> k ,

where k is the abscissa of the maximum.

The coexist ence of two at tract ing periodic orbits in some int ervals of C3

can be explained by the fact that the Schwar zian derivative of t he famil y of
one-dimensional return maps is positive.

Wi th decreasing C3 in the interval [2.7, 2.85], the sequence S L appear s
more and mor e frequent ly. At the tangency of the left br anch wit h the
diagonal (c3 ,t = 2.7366 . .. ) the loop L disappears; only the sequence S L
remains, which compos es the at tracting periodic trajectory.
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Figur e 3: (Continued.) (b) The enlar gement of the hand h sets when
t 3 is increasing. (c) The enlargement of the h and h sets when t3

is decreasing. The hyst eresis and the coexiste nce of success ive orbits
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Figure 4: On e-dimensional ret urn maps of the p values along t he set
Iz: <3 = 2.737 (black points) , <3 = 2.753 (st ars), <3 = 2.76 (pen­
t agons), <3 = 2.77 (squar es), <3 = 2.8 (t riangles) , and <3 = 2.84 (x) .

3 . D iscussion

The fami ly F€3 is hard to ana lyze in a quantitat ive way. However , the com­
plex behavior of our model can be describ ed by a family of one-dimensiona l
return maps that exhibit a saddle-node bifurcat ion . Sufficiently close to the
tangency of the bran ch of the map wit h the diagonal, the appearance of an
L(SL)n-period ic attrac t ing orb it can be scaled according to the scaling law
[9, 10]

<3,n+! - <3,n = constant (n- 2
- (n + 1)- 2)

where <3,n+! and <3,n denote values of <3 at which L (SL)n+!- and L(SL)n­
periodic orbits appear.

T he adding subse quence in the interval invest igated here is different from
that found for <3 belongin g to the interval [1.28, 1.36] in the same model
[6]. Inst ead of the sequence SSLS L [6], now the sequence S L is added .
The more important difference is that the wind ows of successive at t ract ing
period ic orbits are now no longer separa ted by chao t ic orbits, but overlap .
This is the consequence of the fact that the one-dimensiona l ret urn maps
probab ly have infinite derivat ives at the crit ical point . In fact , this condit ion
imp lies positive Schwarzian derivat ive [10J: the posit ive Schwarzian derivat ive
is necessary to have different attract ing orbits [11].
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Since the one-dimensional return maps in both intervals of E3 have a cusp­
shape form, we observe the period adding that is a typical phenomenon for
this type of map [12, 13].

Our model is an example of a conti nuous system in which various period­
adding phenomena are found. As one-dimensional return maps with a cusp
shape have been found in such different syste ms as the Lorenz mod el [14]
and experiment al chemical syst em [15], and the period addi ng has also been
found in experiments [1- 5], it seems that many dynami cal systems can be
characterized by map s with a shape of this kind.
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