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A bstract . T he self-organizing algorithm of Ko ho nen is well kn own
for its ab ility to map an in put space wit h a neural network. According
to mult ip le observat ions , self organization see ms to be an essen t ial fea­
ture of the brain. In this paper we focus on t he dist ance measure used
by t he neuron s to det ermine which on e is closest to an input st imulus .
The distance meas ure s proposed until now are not very satisfactory,
from either a bio logical or comput a t ional po int of view . Using math­
ematical considerations and numer ica l simula t ions, we show tha t the
or iginal dot product measur e is applicable wit ho ut input norm aliza­
tion when the dim ension of the input space is high. W hen adding a
feature of biological neurons (accommodation) to t he algorithm, t he
network converges with normalizat ion as well (in our simu lations, for
a dim ens ion n > 12) .

1. Introduction

In many biologica l systems, and especially in the cerebral cor tex, var ious
areas are organized acco rd ing to different sensory modalit ies. Some of them
perfor m specialized tasks, such as speech control or analysis of visual or
auditory signals. Between these areas , the associative ar eas reveal a fine
struct ure that corresponds to a topographica l order that depends on sensory
inpu t. Mars hall and Talbot found , for examp le, that the primary visual
cortex contains a map of the retina in which neighborhood relations ar e
preserved [12].

Starting from this obse rva tion , Kohonen proposed an original algorit hm
that reali zes a mapping of a high-dimensional input space in an output space
whose dimensionality is lower or th e same, where neighborhood relati onships
ar e preserved.
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2. The original self-organizing algorithm

In the initi al version of th e algorithm [7], Kohonen defined a network of
neurons whose interconnect ivity is dissociated into two par ts: a simp le as­
sociative memory layer between th e input and the neurons, and a lat eral
layer int erconn ecting the neurons locally. T he purpose of the associat ive
layer consists of coding the synaptic weights in order to bui ld incrementally
an assoc iat ive memory, depending on the succes ive presentat ions of the in­
put st imuli. The secon d layer realizes a kind of cont rast enhancement that
crea tes a cluster centered around the local maximum of the resp onse to an
input st imulus . The comb ination of th e two layers, associated with a suit­
able adapt at ion ru le, leads to a spatial arrangement of the neuro ns in the
weight coordinate sys tem in which neighboring neurons respond to neighb or­
ing st imuli.

The degree of lateral coup ling between neurons in the second layer is de­
fined by a "Mexican hat" function . In a short -range lateral-coupling dist an ce
the fun ction is excitatory, whereas it is inhibitory in a long-r ange distan ce.
This function repr oduces, for instan ce, the response of the on-cente r recep­
tive field of the neuron in the retina [9]. The relaxation ph ase that follows the
creation of the neuro n activity converges to a stable state with the formation
of an activity cluster around th e maxim um activ ity neuron . This pro cess is
the phenomenon most resp onsible for self organizat ion .

3. The sim plified algo rithm

Despite the biological int erest of this mod el, it is most convenient for the
purpose of convent ional compute r simulat ions to express algorit hmically the
function of each layer rather than the way to realize it . Then a computational
algorit hm would consist of two ste ps: finding the neuron whose activity is
maximum with respect to an input st imulus , then defining a subset of neurons
in the network aro und thi s maximum, corres ponding to the clust er. The
weight vectors of t he neurons in this subse t are modified in the direction of
the input vector. The repetition of th ese two ste ps cond ucts the network
being organi zed . This simplified version of the algorithm [8] is described
below in det ail.

We consider a vector x that is composed of a set of n scalar signals
[X l ,X2, . .. , xnV and a set of weights W , = [Wil , Wi2, . . . ,WinV that repre­
sent the synaptic efficiency between the input and the neuron i (1 :::; i :::; N ,
where N is the tot al number of neurons) . Let us define a similarity criterion,
for instance, the dot product between x and W i, or any other similarity
measure of the dist an ce 8(x , W i) ' T hen the ind ex k of the neuron presenting
the best response is det ermined by the conditio n

8(x , W k) = min 8(x, W i)
l <::; i <::; N

(1)

Next , around this maximally responding neuron k , we choose a topological
neighb orhood Vk(t) such that all neurons that lie within a defined radius
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of neuron k are included in Vk(t). All neurons loca ted in Vk(t) have their
weights updat ed according to the following adaptat ion rule, expressed in the
discret e-time ind ex t:

W i(t + 1) = W i(t) + a (t )[x (t ) - W i(t)] I.
'E Vk(t)

(2)

The other neurons have their weights unchan ged.
It must be po inted out that the neighborhood radius is genera lly chosen

as a decr easing functio n of time, as well as of the ga in par amet er a. This
last parameter can be chosen using a method inspir ed by the well-kn own
gradi ent-descent method [6]. Then the distribution density fun cti on of the
vectors W , converges toward a discreti zed image of the probability density
fun cti on p(x) of the input stimuli x [7]. A form al demonstration has been
proposed by Cottrell and Fort [2] in the case of one-dimensional networks
with one-dimensional input space.

4 . T he p r oblem of dist a n ce measure

There are several commonly used distance measures in the simplified al­
gorithm that det ermine the "winner" unit , that is, the unit whose weight
vector is nearest to the input vector [8]. The three most oft en used mea­
sures (between an input vector x = [X l , X2," " xn f and th e weight vector
Wi = [Wil , Wi2, . . . , w inf of neuron i) are:

Euclidean dist an ce:

Manhattan distan ca :

Dot product:

n

b(x ,Wi) = Ilx - Will = L (Xj - Wij )2
j =l

n

b(x ,Wi) = L IXj - WijI
j= l

b(x ,Wi) = X· W , = Il xllllWil1COS ( X , Wi)

(3)

(4)

(5)

When both weight and input vectors are normalized , Il xll llWil1 is a const ant ,
and the dot product becomes a valid measure of proximity. In this case , the
maximum result for expression (5) gives the winner unit index.

The domination region of a particular neuron is the part of th e inp ut space
in which this neuron wins th e compe tit ion . The representation of these dom­
ination regions for the whole network shows how th e input space is divided
int o subregions (qu antization property) . Considering this repr esentation , the
expec ted results of th e self-organiza t ion pr ocess are:

1. that the probabi lity of receivin g an input vector is th e same for each
region (first main property of th e self-organizing maps [8]); if the in­
put space is two dimensional , and its density functi on is uniform, the
regions should have the sa me area;

2. that the regions are related (not split ) and have a "reasonable" shape
(without big outg rowths );
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Euclidean distance Manhat tan distance Dot product distance

Figure 1: Regions of domination without weight normalization.

3. that exac t ly one neuron is resp onsible for one region , with its weight
vect or inside t he region .

More generally, the self-organiza t ion pro cess should pr oduce a network III

which:

1. there is a corr ect mapping of the input space (each neuron has the same
pr obab ility of being excited);

2. there is a top ological conserva t ion of the input space (the neighb orhood
relationships are preserved).

The fact that the units have ordered vecto r weights-so the input spac e
is mapped by the network with topological conser vation (the second
pro perty) - is not shown with only the representat ion of the domination re­
gions . In figures 1 and 2 this ordering is emphas ized with the fine lines con­
necting neighb oring neurons (the widely used represent ation of self-organizing
maps in the weight spac e).

When the dist an ce measure is the euclidean distan ce, this partitioning in
domination regions is a Voronoi tessellation. Using anot her dist an ce mea­
sure (but keeping the same network configurat ion) , the shape of these regions
changes, as shown in figure 1. In t his figur e the domination regions obtain ed
using three different dist ance measures are superposed on the network repre­
sentation in the weight space . The input space is two dim ensional , whereas
the network is one dim ensional. The weights are not normalized .

Wi thout normalization , the dot product measure gives inconsist ent re­
gions (there is more th an one neuron in several regions, and no neuron in
some other regions). Using thi s measur e in a two-dimensional input space
wit hout weight normalization , the network is not able to self organize prop­
erly (it does not achieve the expected vector qu anti zati on of the input space ).
On the contrary, when the weight and input vectors are normalized , one di­
mension of the input space is lost , but the network is able to self organize
using the dot pr oduct meas ure .
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Euclidean distance Manhattan distance Dot product distance

Figure 2: Regions of dominat ion with weight normalization.

R em ark s .

1. It is not necessary to normalize both weight and input vectors to obtain
the self organizat ion with the dot product m easure.

• Koho nen (B) argued that the normalization of input vectors alon e
is suffic ient to obtain the convergence of the network because the
weights are moved close to the input vectors, which are normalized,
and becom e almost normalized automatically.

• On the other' hand, it is easy to see that the norm alizati on of input
vectors is not n ecessary when the weight vectors are normalized:
if IIWi l1 is a constant Vi , then Il x lll lWi l1 is also a constant for' a
given input vector x , so the comparis on of all distances b(x ,W i)
gives the unit for which cos(x , W i) is maximum.

2. Th ere is another way to normalize input ,vectors without losing one
dim ension (B): proj ect the input ueciors onto a hsrpersphere of n + 1
dim ension s, where n is the dim ension of the initi al input space. N ev­
eriheless , one should kno w the range of input uariables to ensure that
the hsrpersphe re will be large enough [otherunse the proj ection will be
im possible for certain input vectors) .

When the weight vectors ar e norm alized , the euclidean distance and the
dot product measure are equivalent because Ilx - W i l1

2 = II x l1
2 + II W i l1

2
­

2x· W , . so min( llx - W i11
2

) = max(x · W i) if IIWill is constant . T his can
be verified visually by observing th e similarity of th e domination regions for
th ese two dist ance measures, as shown in figur e 2.

All of th ese computat ional considera t ions are un satisfactory for many rea­
sons, however. Fro m the VLSI po int of view, th e cost in op erators is against
the eucl idean dist an ce measure implementation , as shown by Vittoz [14].
Furthermore, from an organ izational quality po int of view, a network that
uses the Ma nha t tan dist an ce shows a pr edilect ion to be axis or iented , and
does not cover the inpu t distribution as well as other dist an ce measures, as is
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Figure 3: Purkinje cell of the cerebellum cortex . Such a cell has up to
100,000 input connections. [From S. R. Cajal, His tologie du Systeme
N erveux de l 'Hom me et des Vert ebres, tr ans. by L. Azoulay (Paris,
Maloine, 1909)].

observed with simulat ions for a two-dimensional input space . Moreover , for­
mal neurons generally compute neither a euclidean nor Manhat tan dist anc e
between their inp uts and their synaptic weights. On the contrary, the most
widely used neuro n model performs a dot product between its input vector
and its weight vector [10], and seems to be more plausible from thebiological
point of view. For this reason , the dot product is the generic ope ra t ion used
in VLSI realizations in which several neural networks are implemented [1].

Unfortunately, as we said before, when the dot product is used a normal­
ization ope ra t ion has seemed until now to be necessary. In VLSI implement a­
ti ons, this normalization operat ion is time- and area-consuming , and reduces
the possible int egrati on of a large numb er of op erat ors. However , despite
some general considerations pr eviously proposed [13], it is not proved that
an explicit normalizati on device exists in biological systems; so how can it
work? The following sect ions show that, under certain condit ions, the Ko­
honen network is able to converge without any nor malization operat ion even
using the dot product as the distan ce measure.

5. Biological systems work on high-dimensional spaces

Considering biological systems , we should be surprised by the large number
of connections that converge to only one neuron (see figure 3). Most of
the neurons receive between 1000 and 10,000 connec t ions with other cells,
an d some times (as in figur e 3 in a Purkinje cell) up to 100,000 connections.
Actually, it repr esents as many dimensions as in the input space.

We have seen th at normalization is needed with spaces of two or t hree
dim ension s. What happens when the input space has a dimension of 1000?
The comput ing t ime or the VLSI sur face required for the normalization oper-
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ation becomes prohibit ive, bu t perhaps it is no longer necessar y to normalize
inpu ts or weights.

6. Experimental distribution of the norm of a random vector

The main questi on is, what is t he eucl idean norm of a vector of random
components when the number of comp onents is large enough? More for­
mally, cons idering a vector x com posed of n independent random values
(x = [X l ,X2 ,' " , xnf ), what are the expectat ion value P-Ilxll = E(llx ll) and
the var iance (TITxll = Var (llxll ) as func tions of n (with Il x ll the euclidean norm
of x) ?

For a vector of dimension n vary ing from 1 to 1000, and for several Xk

distributions, we obtained by simula tion the numerica l results shown in fig­
ur e 4. The most int eresting fact in figure 4 is that , for any dist ribut ion, the
standard deviation (Tllx ll of the norm converges asympto tically to a constant ,
whil e the mean P-lI xll grows as a power of 1/ 2 of n. Becau se of the Chebychev
inequ ality

2

p ( 111xll - P-lIxlll 2: c) :S (T~~ II (6)

the probability that the norm Il x ll falls outside a fixed-width interval cen­
tered on P- lIxll becomes approximately a cons tant (as (Tllxll also becomes ap­
proximately a constant). The consequence of this fact is that the relative
erro r commit ted when taking P-lIxll instead of Ilxll becomes negligible.

Remembering th e Kohonen argument about normalization of input vec­
tors (remark 1, section 4) , if all t he input vectors x have a norm very close to
P-lIxll- as these observa t ions suggest for high-dimensional spaces-the explicit
normalization ope ra tio n should no longer be necessar y.

In sect ion 7 we formalize and generalize this observation , and in sect ion
8 we describe some simula tions of a Kohonen network that map s a high­
dim ensional input space.

7. Mathematical results on the norm of a random vector

Let f( Xk) be an arbitrary distribution law for the compo nents Xk, with
meJn g = E( Xk) and variance (T2 = V ar(xk ); what are the expressions of
E( L~=l xD and Var (JL~=l x%) (t he mean and the variance of the vecto r
norm Il xll )? If the Xk are indep end ent , the cent ra l limit theorem states that
the variable II x l1

2 = 52 = L~=l x% converges to a normal variable when n is
statist ically "large eno ugh" (i.e., in practice when n > 30). We get :

Mean :

Vari an ce:

P-S2 = E(52
) = n ((T2 + p-2)

(T';'2 = Var (52) = n (4p-2(T2 - (T4 + 4P-P-3 + P-4)

(7)

(8)

with P-k the moment of order k, relative to the or igin .
Now the problem is to find P-lIxll = E (VS2) and (TITxll = Var (VS2) . Equa­

tions (7) and (8) show that the exact and general results (if they exist ) depend
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F igure 4: Mean and standard deviation of th e norm of random vector
x . Several distributions are considered for th e components X k ·
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Figure 4: (Continued)
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at least on th e moments of ord ers 1, 2, 3, and 4 of Xk. J . C. For t has proved
that , if the n Xk are ind epend ent (an d have a finit e moment of order 8),

(9)

(10)

With equat ions (7) , (8), (9) , and (10) , we obtain the generic formulation

J.lllxlI = E( llxll) = E(VS2) So! van- b

(Jllx!1= Var(llxll ) = Var(VS2) So! b

wit h a and b constants depending only on the Xk distribution law,

J.ls 2 2 2
a =- =(J +J.l

n

b = (J12 = 4J.l2 (J2 - (J4 + 4J.l J.l3 + J.l4

4J.lS2 4((J2 + J.l2)

(11)

(12)

(13)

(14)

For some usual dist ribut ion laws, we obtain the paramet ers a and b shown
in tabl e 1. Using the convent ional fun ctions

{
0, x < 0

l(x ) = 1, x 2: 0 ' 5(x) = { 0,
00 ,

X# O
x = 0 '

+ 00J6(x)dx = 1,
- 00

these results confirm the observat ions given in secti on 6.

8. Simulations of a Kohonen map in multidimensional space

T hese simulat ions , mad e with the software develop ed in our lab oratory [4],
compare the self-organiza tion results (using the dot product dist an ce mea­
sure) with input and weight vect or normalization , and without any normal­
izati on .

The simula ted network is a rectangular 30-by-30 grid of neur ons. The
learning algori thm is the simplified algori thm (winner take all, decreasing
alpha and neighb orhood ) with the dot product dist an ce measure. The input
space dim ension n varies from 3 to 200, and the maximum number of it era­
ti ons is 20,000. T he random distribution is uniform between -1 and +1 for
each input component.

When the input space ha s two dim ensions , it is easy to see whether the
network becomes well organi zed becau se it is possible to represent the net­
work units in the weight space (as in figures 1 or 2). However , when the input
dim ension is 200, qua lifying the organizat ion becomes impossible using the
same means.
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Dist ribution ! (x ) a b

Uniform U(o:,f3)
l (x - 0:) - l (x - (3) 0:2 + 0:f3 + f32 40:4 - 0:3f3 - 60:2 f32 - 0:f33 + 4f34

f3 -0: 3 60( 0:2 + 0:f3 + (32)

U(- f3 ,+(3 )
1

f32/3 f32/15"2 [l (x + (3) - l (x - (3 )]

1
U(- I,+1) "2 [l(x + 1) - l(x - 1)] 1/3 1/ 15

Normal N (JL, (I)
1 - (x - 1')2 J1'2 + (I2

(I4 + 2(I21'2
- -exp

2(1'2 + (I2 )(Ij21i 2(I2

N (O ,I)
1 _x2

1/2-- exp- 1
j21i 2

Exponential E (o:) o:exp(-o:x) l(x )
2 5

- -
0:2 20:2

E (I ) exp(- x ) l (x ) 2 5/2

1 0:2 + f32 (0:2 _ (32 )2
. Bernoulli B( o: , f3) "2 [8(x - 0:) + 8(x - (3 )]

2 8(0:2 + (32)

B (- f3, +(3)
1

(3)] f32"2 [8(x + (3 ) + 8(x 0

B (O ,I)
1

1/ 2"2 [8(x) + 8(x - 1)] 1/ 8

Table 1: Matching parameters a and b of equat ions (11), (12), (13),
and (14) compute d for the d ist rib ut ion laws of figure 4.

9. How to m easure the organizat ion

When working in two dimensions and with a un iform input distribution , we
say that a network is well organized if the grid is regular , that is, if the
dist an ce between the units is almost constant. We tr y to extend this concept
to n dimensions with a more pr ecise crite rion to qualify the organ ization .

Let us define a "disorder" level based on the st atist ical distribution of the
euclidean dist an ce measure between the weights of consecut ive network units
(in our simulat ions, the grid is rectan gular , but the crite rion is extensible to
other neuron disposit ions, such as a hexagonal grid):

wit h

2::7=1 2:: j;} .6.hij + 2::7:! 2::j=l .6.vij
/-It; = 2w h - w - h

(15)

(16)

(J /'" = 2::7=12::j:l (.6.hij - /-l /'" F + 2::7:112::j=l (.6.Vij - /-l/'"F

2wh - w - h
(17)
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.6.hij = II W ij - W i,j+l ll

.6.Vij = IIW ij - W i+1,i11
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(18)

(19)

In these equations , w is th e width and h the height of the network grid (in
our simulat ions, w = h = 30) . .6.h i j is the euclidean dist an ce between th e
weight s of th e units ij and i , j + 1 in the grid (hor izontal intervals) , and
.6.Vij is the euclidean dist an ce between th e weights of the uni ts i j and i + 1, j
(vertical intervals). 2wh - w - h is the nu mber of int ervals in the network
grid . J.Lf!. represents the mean dist ance between the weight s of two adjacent
units in the network , and (J f!. the standard deviation of this dist ance.

In a perfect ly regular grid (where all intervals are equal) , (J f!. tends to
zero, as does the "disorder" level 8. On the cont rary, the mor e irregular the
grid is, the grea ter is 8.

To simplify the notation and the explanations of the resul t curves shown
later , we consider 8 as a function of two parameters: the dimension n and
t he number of learni ng iterations k (8 (n, k)).

Several curv es for 8 (n,k) are given in sect ions 11 and 13. T hat these
curves are all decreasing suggests that 8 cou ld be a Lyapunov funct ion , in
which case we would be able to demo nst rate the convergence for any dimen­
sion. We are now working on this problem in collaborat ion wit h M. Cottrell
and J. C. For t , who have demonstrated the convergence in one dimension
wit h the organi zation criterion defined by Kohonen [8J.

10. A n alternative representation of the net work valid for a ny
d imension

We define also another met hod for visualizing the network organiza tion , the
results of which look like th ose produced with the usual weight-positioning
representation met hod. In cont ra st to the 8 function method , this method
cannot be used to represent the evolut ion of the organization , but is useful
for characte rizing the state of the network . In this representa tion , which can
be interpr eted as the unfolding of the network grid onto a plane, the uni ts are
posit ioned step by st ep (st ar ting from the center of the grid) as a functi on of
the pr eceeding un it s and the dist an ce between the respective weight vectors .
In the upper right quart er of the grid , for example, the position of the uni t
i j is defined as

wit h

P i j _ p i,j- l + II W W IIx - x ij - i,j - l

P i j _ p i-l ,j + II W W IIy - y i j - i- I ,i

p~h/2)j = 0,

p i(w / 2) = 0
y

(20)

(21)

(22)

(23)
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Figure 5: Evolut ion of 8(n, k) with ri = 200 and k = 1 to 20,000.
Solid line: with input and weight normalization. Dashed line: no
normalization.

T he express ions for th e thr ee ot her quar ters may be inferred by symmetry.
The algor it hm implement ed to build this repr esent ation is recur sive and be­
gins wit h one of th e two limit expr essions (22) and (23).

Some examples of this repr esentation are given in sect ion 11 (right part
of figures 7a and 7b) to illustrate th e network organizati on more in tuitively.
We call this repr esent ation a curvi linear representation.

11. First results and discussion

Figure 5 shows the evolu tion of th e disorder level e(n , k) (as defined in
sect ion 9) with n = 200 and k varying from 0 to 20,000. This is the temporal
evolution of a fixed input dim ension networ k. T he solid line corres ponds
to a network with input an d weight vecto r normali zation , while the dashed
line corres po nds to a network without any normalization . Both networks use
the dot product dist an ce measur e. In the both cases , the 8 fun ction is a
decreasing fun cti on of k (th e number of iterations). It means that, from our
criterion point of view, both corres ponding networks self organize.

We perform ed the same experiment with the input dimension n = 3 (not
2, because it makes no sense to map with a two-dimension al network the
circle produced by a normalized distribut ion) . This expe riment confirms a
well-known result: without normali zation and in a low-dimensional input
space , the network does not self organize at all, as shown in figure 6 with the
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Figure 6: Evolution of 8(n, k) with n = 3 and k = 1 to 20,000.
Solid line: with input and weight normalization. Dashed line: no
normalization .

non -decreasing behavior of the dashed line, representing 8(n ,k) with n = 3
and without normalization. This figure (figure 6) shows the same curves as
in figur e 5, but with the input dimension n = 3 inst ead of 200.

These expe riments show that the quality of organization, without nor ­
malization , is much better in high-dimensional input space than in low­
dimensional input space. However, even in 200 dimensions , the result without
normalization is not as good as with input and weight vector normalization,
as shown in figure 5.

In figure 7 the comparison of the visualization in cur vilinear representa­
tion (defined in sect ion 10) of the resulting network state with or without
normalization is shown more intuitively.

In the followin g sect ions, we will show how a particular property of bio­
logical neurons , rarely implemented, may improve these results.

12. Biological neurons are not tireless

Consider a network trying to self org aniz e in a two-dimensional input space,
with the dot product distance measure but without any normalization; one
should observe that only the units with largest weight vector norms are moved
(in the weight space). The reason for this is that , in the compe t it ion between
all the units , the most frequ ent winners ar e those with a large weight vector
norm (see the dot product expression, equation (5)).
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(a)

(b)

Figure 7: Curvi linear represent ation of networks after k = 20,000
iterations, (a) with norm alization and (b) witho ut normalization. Left
side: proj ection on 2 axes. Right side: curvilinear representation.

In biologic al neurons, it seems plausible that the neurons are not tireless ,
that is, a particu lar neuron is not able to deliver a high level of activity
very oft en . This fact is due to several phenomena , such as accommodation
and post-inhibitory rebound. Because of these phenomena , the t hr eshold re­
quired for firing tends to increase as the neuron is accumula t ively st imulated
at the subthreshold level ([11], pages 20-21, 263, 268). Such a property,
called conscienc e by DeSieno [5], gives shorte r convergence time and better
org anization in a network us ing the euclidean distance measure.

We have implemented this property in our simula t ions as part of the
relaxation algorit hm (we call relaxation t hat part of the auto-organization
algorit hm in wh ich a winner is found in response to a given input vector) .
A var iable (the potential p) representing the available amount of neurotrans­
mitter is defined for each neuron. To be eligible, a unit must have a corre­
sponding potential p ;::: Pmin, wh ere Pmin rep resents a threshold of excitability.
Then, the potentia l P of the winner unit is decrem ented by Pmin . For each
iteration , the potential P of each neuron is incremented by 1/ N , where N
is t he total number of neurons. The potential P is truncated to 1. The
minimum potential (or thresho ld) Pmin is a parameter that varies between 0
and 1. If Pmin = 0, there is no change compared to the Kohonen algorithm
because all units are eligible without restriction. If Pmin = 1, all the neu­
rons are each elected in t urn , without any consideration of the input vectors,
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because when a uni t is elected , it t akes N iterations to recover the potential
P = 1 and again be eligible. Simulations show that the optimal value for this
parameter is about P min = 0.75.

With this accommodation pr operty, the algorithm becomes (with the
same notation as in equations (1) and (2)) :
Find th e winner unit index k:

b(x ,Wd = min b(x,W ,')
i -a-:«
Pi?~l in

T he weight adaptat ion remains:

W i(t + 1) = W i(t) + a(t) [x( t) - w.on]
'EVdt)

The pot enti al of every uni t is mod ified according to :

Pi(t + 1) = { Pi(t) + u», i =k
Pi(t) - P min , 2 - k

(24)

(25)

(26)

When using accommo dat ion, th e comparison mad e in section 11 now gives
quite better resu lts.

13. Second r esults

Figure 8 shows the evolut ion of the disorder level 8 (n,k) (as defined in
section 9) with n = 200 and k varying from 0 to 20,000. The solid line
corres ponds to a network with input and weight vecto r normalization , while
the bold line corres po nds to a network without any normalization, bu t using
the accommodation algorithm as defined in sect ion 12. All these networks
use the do t pr oduct dist an ce measure.

With accommodation , th e organiza tion quality of a network without any
norm aliza tion is now compar ab le to the quality obtained wit h normalizat ion ,
as shown in figur e 8. To find the dimension of the input space that is large
enough to get this result , we have made intensive simulat ions using vary ing
dimensions. Figur e 9 shows the disorder level 8 (ti , k) (as defined in sect ion 9)
after k = 20,000 iterations and for n vary ing from 3 to 200 (for each curv e,
the simulat ions take about 10 hours of computing time on a network of 30
Sun" SPARCstations). The dashed line corres ponds to a network without
any normalization , and the solid line corres po nds to a network wit h inp ut and
weight vector norm alization. The bo ld line corres ponds to a network withou t
any normaliza tion , bu t using the accommodation algorit hm as defined in
section 12. All th ese networks use the dot product distan ce measure.

Also, considering the curvilinear repr esentati on defined in sect ion 10, it
seems that the organization obtained wit hout any nor malization is now quit e
good (figure 10; compare with figures 7a and 7b).

These experiments show that with an input dimension greater than or
equal to 12 (wit h the experimental conditions pr eviously mentioned) , the
quality of organization measured with our criterion becomes comparable with
and without normalization. For large dim ensions, the organi zation becomes
even better with ou t normalizati on , thanks to the accommodation algorithm.
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Figure 8: Evolution of 8 (n , k) with n = 200 and k = 1 to 20,000.
Solid line: with input and weight normalizat ion. Bold line: without
any normalizat ion, but using the accommodation property.

14. Conclusions and fu t ure work

In this pap er we have discussed the necessity of the synaptic weight vector
normalization . From a st at ist ical poi nt of view, the simulations show that
this normalization is not necessary when the input space has a d imension
greater than 12 an d a uniform dist ribu tion of st imuli. The mathematical re­
sults obtained in sect ions 6 and 7 show that wit h a non-uniform distribut ion
we should make t he same observation. The critic al poin t is that the number
of independent input variables has to be large enough to ensure that the vec­
tor norms are compar abl e. This po int has to be studied carefully if one wants
to apply our result s to real application data . For instan ce, if th e degrees of
freedom of even a high-dim ensional input space are only 2 or 3, one cannot
say that the input vector components are independent. Our future work will
focus on simulat ions and on comparisons to known applications wit h real in­
pu t data . On the ot her hand , we are now working on the definiti on of bet ter
criteria to analyze the qu ality of the organ ization in high-dimensional spaces.
We are also st udying the function e to det erm ine if it is a Lyapun ov func­
tion , in order to prop ose a demonstra tion of the convergence of the Kohonen
algorithm in any dimension .
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Figure 9: Evolu tion of e(n, k) with k = 20,000 and n = 3 to 200.
Dash ed line: wit hout any normalizati on . Solid line: with input and
weight normalizati on . Bold line: wit hout any nor malization but using
the accommodation property.

Figure 10: Curvilin ear representation of networks after k = 20,000
it erati ons, with an input space of n = 200 dimensions and wit hout
normalizat ion . Left side : projec t ion on 2 axes. Right side: curvilinear
representati on .
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