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Abstract. The self-organizing algorithm of Kohonen is well known
for its ability to map an input space with a neural network. According
to multiple observations, self organization seems to be an essential fea-
ture of the brain. In this paper we focus on the distance measure used
by the neurons to determine which one is closest to an input stimulus.
The distance measures proposed until now are not very satisfactory,
from either a biological or computational point of view. Using math-
ematical considerations and numerical simulations, we show that the
original dot product measure is applicable without input normaliza-
tion when the dimension of the input space is high. When adding a
feature of biological neurons (accommodation) to the algorithm, the
network converges with normalization as well (in our simulations, for
a dimension n > 12).

1. Introduction

In many biological systems, and especially in the cerebral cortex, various
areas are organized according to different sensory modalities. Some of them
perform specialized tasks, such as speech control or analysis of visual or
auditory signals. Between these areas, the associative areas reveal a fine
structure that corresponds to a topographical order that depends on sensory
input. Marshall and Talbot found, for example, that the primary visual
cortex contains a map of the retina in which neighborhood relations are
preserved [12].

Starting from this observation, Kohonen proposed an original algorithm
that realizes a mapping of a high-dimensional input space in an output space
whose dimensionality is lower or the same, where neighborhood relationships
are preserved.
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2. The original self-organizing algorithm

In the initial version of the algorithm [7], Kohonen defined a network of
neurons whose interconnectivity is dissociated into two parts: a simple as-
sociative memory layer between the input and the neurons, and a lateral
layer interconnecting the neurons locally. The purpose of the associative
layer consists of coding the synaptic weights in order to build incrementally
an associative memory, depending on the succesive presentations of the in-
put stimuli. The second layer realizes a kind of contrast enhancement that
creates a cluster centered around the local maximum of the response to an
input stimulus. The combination of the two layers, associated with a suit-
able adaptation rule, leads to a spatial arrangement of the neurons in the
weight coordinate system in which neighboring neurons respond to neighbor-
ing stimuli.

The degree of lateral coupling between neurons in the second layer is de-
fined by a “Mexican hat” function. In a short-range lateral-coupling distance
the function is excitatory, whereas it is inhibitory in a long-range distance.
This function reproduces, for instance, the response of the on-center recep-
tive field of the neuron in the retina [9]. The relaxation phase that follows the
creation of the neuron activity converges to a stable state with the formation
of an activity cluster around the maximum activity neuron. This process is
the phenomenon most responsible for self organization.

3. The simplified algorithm

Despite the biological interest of this model, it is most convenient for the
purpose of conventional computer simulations to express algorithmically the
function of each layer rather than the way to realize it. Then a computational
algorithm would consist of two steps: finding the neuron whose activity is
maximum with respect to an input stimulus, then defining a subset of neurons
in the network around this maximum, corresponding to the cluster. The
weight vectors of the neurons in this subset are modified in the direction of
the input vector. The repetition of these two steps conducts the network
being organized. This simplified version of the algorithm [8] is described
below in detail.

We consider a vector x that is composed of a set of n scalar signals
[£1,29,...,2,)7 and a set of weights W; = [W;1, Wiy, ..., W;,|T that repre-
sent the synaptic efficiency between the input and the neuron ¢ (1 <¢ < N,
where N is the total number of neurons). Let us define a similarity criterion,
for instance, the dot product between x and W;, or any other similarity
measure of the distance §(x, W;). Then the index & of the neuron presenting
the best response is determined by the condition

8(x, Wy) = IISI%ISHNCS(X,WZ') (1)

Next, around this maximally responding neuron k, we choose a topological
neighborhood Vj(t) such that all neurons that lie within a defined radius
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of neuron k are included in Vi (). All neurons located in V(t) have their
weights updated according to the following adaptation rule, expressed in the
discrete-time index t:

Wit + 1) = Wi(t) + a()[x(t) — Wi(?)] (2)

1€V ()

The other neurons have their weights unchanged.

It must be pointed out that the neighborhood radius is generally chosen
as a decreasing function of time, as well as of the gain parameter «. This
last parameter can be chosen using a method inspired by the well-known
gradient-descent method [6]. Then the distribution density function of the
vectors W; converges toward a discretized image of the probability density
function p(z) of the input stimuli = [7]. A formal demonstration has been
proposed by Cottrell and Fort [2] in the case of one-dimensional networks
with one-dimensional input space.

4. The problem of distance measure

There are several commonly used distance measures in the simplified al-
gorithm that determine the “winner” unit, that is, the unit whose weight
vector is nearest to the input vector [8]. The three most often used mea-
sures (between an input vector X = [x1,%s,...,2,]T and the weight vector
W, = [Wi1, Wi, ..., Wi, ]¥ of neuron 1) are:

n

Euclidean distance:  8(x, W;) = [|x — W;|| = |} (z; — W;;)? (3)
j=1
Manhattan distanca:  6(x, W;) = > |z; — W] (4)
j=1
Dot product:  §(x, W;) = x - W, = ||x]| || W]| cos(x, W) (5)

When both weight and input vectors are normalized, ||x|| ||[W;]| is a constant,
and the dot product becomes a valid measure of proximity. In this case, the
maximum result for expression (5) gives the winner unit index.

The domination region of a particular neuron is the part of the input space
in which this neuron wins the competition. The representation of these dom-
ination regions for the whole network shows how the input space is divided
into subregions (quantization property). Considering this representation, the
expected results of the self-organization process are:

1. that the probability of receiving an input vector is the same for each
region (first main property of the self-organizing maps [8]); if the in-
put space is two dimensional, and its density function is uniform, the
regions should have the same area;

2. that the regions are related (not split) and have a “reasonable” shape
(without big outgrowths);
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Figure 1: Regions of domination without weight normalization.

3. that exactly one neuron is responsible for one region, with its weight
vector inside the region.

More generally, the self-organization process should produce a network in
which:

1. there is a correct mapping of the input space (each neuron has the same
probability of being excited);

2. there is a topological conservation of the input space (the neighborhood
relationships are preserved).

The fact that the units have ordered vector weights—so the input space
is mapped by the network with topological conservation (the second
property)—is not shown with only the representation of the domination re-
gions. In figures 1 and 2 this ordering is emphasized with the fine lines con-
necting neighboring neurons (the widely used representation of self-organizing
maps in the weight space).

When the distance measure is the euclidean distance, this partitioning in
domination regions is a Voronoi tessellation. Using another distance mea-
sure (but keeping the same network configuration), the shape of these regions
changes, as shown in figure 1. In this figure the domination regions obtained
using three different distance measures are superposed on the network repre-
sentation in the weight space. The input space is two dimensional, whereas
the network is one dimensional. The weights are not normalized.

Without normalization, the dot product measure gives inconsistent re-
gions (there is more than one neuron in several regions, and no neuron in
some other regions). Using this measure in a two-dimensional input space
without weight normalization, the network is not able to self organize prop-
erly (it does not achieve the expected vector quantization of the input space).
On the contrary, when the weight and input vectors are normalized, one di-
mension of the input space is lost, but the network is able to self organize
using the dot product measure.
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Figure 2: Regions of domination with weight normalization.

Remarks.

1. It is not necessary to normalize both weight and input vectors to obtain
the self organization with the dot product measure.

o Kohonen [8] arqued that the normalization of input vectors alone
1s sufficient to obtain the convergence of the network because the
weights are moved close to the input vectors, which are normalized,
and become almost normalized automatically.

e On the other hand, it is easy to see that the normalization of input
vectors is not necessary when the weight vectors are normalized:
if ||We| s a constant Vi, then ||x||||[W;]| is also a constant for a
given input vector X, so the comparison of all distances 6(x, W;)
gives the unit for which cos(x, W) is mazimum.

2. There is another way to normalize input-vectors without losing one
dimension [8]: project the input vectors onto a hypersphere of n + 1
dimensions, where n is the dimension of the initial input space. Nev-
ertheless, one should know the range of input variables to ensure that
the hypersphere will be large enough (otherwise the projection will be
impossible for certain input vectors).

When the weight vectors are normalized, the euclidean distance and the
dot product measure are equivalent because ||x — W||> = ||x||> + [W]|> —
2x - W, so min(||x — W||*) = max(x - W;) if ||[W,]| is constant. This can
be verified visually by observing the similarity of the domination regions for
these two distance measures, as shown in figure 2.

All of these computational considerations are unsatisfactory for many rea-
sons, however. From the VLSI point of view, the cost in operators is against
the euclidean distance measure implementation, as shown by Vittoz [14].
Furthermore, from an organizational quality point of view, a network that
uses the Manhattan distance shows a predilection to be axis oriented, and
does not cover the input distribution as well as other distance measures, as is
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Figure 3: Purkinje cell of the cerebellum cortex. Such a cell has up to
100,000 input connections. [From S. R. Cajal, Histologie du Systeme
Nerveuzr de I’'Homme et des Vertebres, trans. by L. Azoulay (Paris,
Maloine, 1909)].

observed with simulations for a two-dimensional input space. Moreover, for-
mal neurons generally compute neither a euclidean nor Manhattan distance
between their inputs and their synaptic weights. On the contrary, the most
widely used neuron model performs a dot product between its input vector
and its weight vector [10], and seems to be more plausible from the biological
point of view. For this reason, the dot product is the generic operation used
in VLSI realizations in which several neural networks are implemented [1].

Unfortunately, as we said before, when the dot product is used a normal-
ization operation has seemed until now to be necessary. In VLSI implementa-
tions, this normalization operation is time- and area-consuming, and reduces
the possible integration of a large number of operators. However, despite
some general considerations previously proposed [13], it is not proved that
an explicit normalization device exists in biological systems; so how can it
work? The following sections show that, under certain conditions, the Ko-
honen network is able to converge without any normalization operation even
using the dot product as the distance measure.

5. Biological systems work on high-dimensional spaces

Considering biological systems, we should be surprised by the large number
of connections that converge to only one neuron (see figure 3). Most of
the neurons receive between 1000 and 10,000 connections with other cells,
and sometimes (as in figure 3 in a Purkinje cell) up to 100,000 connections.
Actually, it represents as many dimensions as in the input space.

We have seen that normalization is needed with spaces of two or three
dimensions. What happens when the input space has a dimension of 10007
The computing time or the VLSI surface required for the normalization oper-
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ation becomes prohibitive, but perhaps it is no longer necessary to normalize
inputs or weights.

6. Experimental distribution of the norm of a random vector

The main question is, what is the euclidean norm of a vector of random
components when the number of components is large enough? More for-
mally, considering a vector x composed of n independent random values

(x = [#1,%2,...,3,])7), what are the expectation value pjx = E(||x]|) and
the variance of,, = Var(|[x||) as functions of n (with [|x|| the euclidean norm
of x)?

For a vector of dimension n varying from 1 to 1000, and for several xy
distributions, we obtained by simulation the numerical results shown in fig-
ure 4. The most interesting fact in figure 4 is that, for any distribution, the
standard deviation oy of the norm converges asymptotically to a constant,
while the mean x| grows as a power of 1/2 of n. Because of the Chebychev
inequality

2
P (Jixl = | 2 €) < 21 (6)

the probability that the norm ||x|| falls outside a fixed-width interval cen-
tered on pyx becomes approximately a constant (as o)y also becomes ap-
proximately a constant). The consequence of this fact is that the relative
error committed when taking fuy instead of ||x|| becomes negligible.

Remembering the Kohonen argument about normalization of input vec-
tors (remark 1, section 4), if all the input vectors x have a norm very close to
Hx||—as these observations suggest for high-dimensional spaces—the explicit
normalization operation should no longer be necessary.

In section 7 we formalize and generalize this observation, and in section
8 we describe some simulations of a Kohonen network that maps a high-
dimensional input space.

7. Mathematical results on the norm of a random vector

Let f(zx) be an arbitrary distribution law for the components zj, with
mean p = E(z;) and variance o = Var(zy); what are the expressions of
E(y/>r_; 72) and Var(,/S7_, z7) (the mean and the variance of the vector
norm [|x||)? If the z; are independent, the central limit theorem states that
the variable ||x||* = §? = ¥7_, 22 converges to a normal variable when n is
statistically “large enough” (i.e., in practice when n > 30). We get:

Mean: ps2 = E(S?) = n(o® + u?) (7)
Variance: 0% = Var(8?) = n(4p®0® — o* + dpps + py) (8)

with p; the moment of order k, relative to the origin.
Now the problem is to find px = E(vVS?) and Uﬁxu = Var(v/§?). Equa-
tions (7) and (8) show that the exact and general results (if they exist) depend



112

Pierre Demartines and Frangois Blayo

Binomial Exponential
F(@)exp f(w)exP
55 1
0.8 0.8
0.6 0.6
0. 0.4
0.2 0.2
acd -2 1 1 2 3 -3 -2 e 8 1 2 3
% &
(1) exp #(n)exp
50 50:
40 40
30 30
20 20
10 10
200 400 600 800 200 400 600 800
n n
o(n)exp 7 (n)exp
1.6 1.6
1.4 1.4
1.2 12
1 1
0.8 0.8
0.6 0.6
0.4 L 0.4
0.2 0.2
200 400 600 800 200 400 600 800
n n
(o/1)(N)exp (o/1)(n)exp
0.5 0.5
0.4 0.4
0.3 0.3
0.2 0.2
0.1 0.1
200 400 600 800 200 400 600 800
n n

Figure 4: Mean and standard deviation of the norm of random vector
X. Several distributions are considered for the components xj.
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Figure 4: (Continued)
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at least on the moments of orders 1, 2, 3, and 4 of . J. C. Fort has proved
that, if the n z;, are independent (and have a finite moment of order 8),

B(VEE) = | sz — i +0 (%) 9)

Var(vV/8?) = E(S?) — E(VS82)? = 4‘225; +0 (%) (10)

With equations (7), (8), (9), and (10), we obtain the generic formulation

wix = E(Ix]) = B(VS?) = Van b (11)
o = Var(|x[|) = Var(vV8?) 2 b (12)

with a and b constants depending only on the ;. distribution law,

az%zaz—l—uz (13)

po 8 _ 4o’ — o+ dups + g

= = 14
dps 4(0% + p?) (14

For some usual distribution laws, we obtain the parameters a and b shown
in table 1. Using the conventional functions

1(z) = { b »xl §(z) = { 0; =#0 706(z)d1' _1,

1, z>0" oo, =0 "
these results confirm the observations given in section 6.

8. Simulations of a Kohonen map in multidimensional space

These simulations, made with the software developed in our laboratory [4],
compare the self-organization results (using the dot product distance mea-
sure) with input and weight vector normalization, and without any normal-
ization.

The simulated network is a rectangular 30-by-30 grid of neurons. The
learning algorithm is the simplified algorithm (winner take all, decreasing
alpha and neighborhood) with the dot product distance measure. The input
space dimension n varies from 3 to 200, and the maximum number of itera-
tions is 20,000. The random distribution is uniform between —1 and +1 for
each input component.

When the input space has two dimensions, it is easy to see whether the
network becomes well organized because it is possible to represent the net-
work units in the weight space (as in figures 1 or 2). However, when the input
dimension is 200, qualifying the organization becomes impossible using the
same means.
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Distribution f(z) a b
. 1(z—a)—1(z - B) a?+af+ B2 | 40t — B - 6a%6% — af® + 4p*
Uniform U(e, B) i 3 60(a2 + of + B2)
U-p4P) | se+p)-1-p) | F3 #/15
U(~1,+1) %[1(x+1)—1(1:~1)] 1/3 1/15
1 —(z — p)? ot + 20212
Normal N(u,o) T Y %07 Vu?+o? FpE 1 o07)
N(0,1 ! —? 1 1/2
(0,1) E &P 5 /
Exponential E(a) aexp(—az)1(z) % Tiz
E(1) exp(—z) 1(z) 2 5/2
" Bernoulli B(a, 3) %[6(z —a)+6(z— )] in ; p %
B(-5,46) | 3@+ p)+6@-p) | B 0
B(0,1) %{5(9;) +6(@—1)] 1/2 1/8

Table 1: Matching parameters a and b of equations (11), (12), (13),
and (14) computed for the distribution laws of figure 4.

9. How to measure the organization

When working in two dimensions and with a uniform input distribution, we
say that a network is well organized if the grid is regular, that is, if the
distance between the units is almost constant. We try to extend this concept
to n dimensions with a more precise criterion to qualify the organization.

Let us define a “disorder” level based on the statistical distribution of the
euclidean distance measure between the weights of consecutive network units
(in our simulations, the grid is rectangular, but the criterion is extensible to
other neuron dispositions, such as a hexagonal grid):

[N
@ =22 15
Ha (15)
with
_ Zz}'L=1 Zgu';_ll Ahy; + Z?=_11 ;‘Uzl Avy; (16)
Ha 2wh —w —h
o = ?:1 Z;‘tll(Ahij — pa)? + ZL=_11 ;p:l(AVij — pa)? (17)
2wh —w—h
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Ahy; = |[W; — W, | (18)
Avy; = Wy — Wiyl (19)

In these equations, w is the width and A the height of the network grid (in
our simulations, w = h = 30). Ah;; is the euclidean distance between the
weights of the units 45 and 4,7 + 1 in the grid (horizontal intervals), and
Av;; is the euclidean distance between the weights of the units 75 and i+ 1, j
(vertical intervals). 2wh — w — h is the number of intervals in the network
grid. pa represents the mean distance between the weights of two adjacent
units in the network, and o the standard deviation of this distance.

In a perfectly regular grid (where all intervals are equal), oa tends to
zero, as does the “disorder” level ©. On the contrary, the more irregular the
grid is, the greater is ©.

To simplify the notation and the explanations of the result curves shown
later, we consider © as a function of two parameters: the dimension n and
the number of learning iterations k (O(n, k)).

Several curves for ©(n, k) are given in sections 11 and 13. That these
curves are all decreasing suggests that © could be a Lyapunov function, in
which case we would be able to demonstrate the convergence for any dimen-
sion. We are now working on this problem in collaboration with M. Cottrell
and J. C. Fort, who have demonstrated the convergence in one dimension
with the organization criterion defined by Kohonen [8].

10. An alternative representation of the network valid for any
dimension

We define also another method for visualizing the network organization, the
results of which look like those produced with the usual weight-positioning
representation method. In contrast to the © function method, this method
cannot be used to represent the evolution of the organization, but is useful
for characterizing the state of the network. In this representation, which can
be interpreted as the unfolding of the network grid onto a plane, the units are
positioned step by step (starting from the center of the grid) as a function of
the preceeding units and the distance between the respective weight vectors.
In the upper right quarter of the grid, for example, the position of the unit
ij is defined as

P = P 4 [ Wy~ Wi i
PJ =Py +||[Wy; — Wiy 2
with
P:(Eh/m =0, 22)

PR = 0 (23)
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Figure 5: Evolution of ©(n, k) with n = 200 and k& = 1 to 20,000.
Solid line: with input and weight normalization. Dashed line: no
normalization.

The expressions for the three other quarters may be inferred by symmetry.
The algorithm implemented to build this representation is recursive and be-
gins with one of the two limit expressions (22) and (23).

Some examples of this representation are given in section 11 (right part
of figures Ta and 7b) to illustrate the network organization more intuitively.
We call this representation a curvilinear representation.

11. First results and discussion

Figure 5 shows the evolution of the disorder level O(n,k) (as defined in
section 9) with n = 200 and k varying from 0 to 20,000. This is the temporal
evolution of a fixed input dimension network. The solid line corresponds
to a network with input and weight vector normalization, while the dashed
line corresponds to a network without any normalization. Both networks use
the dot product distance measure. In the both cases, the © function is a
decreasing function of k (the number of iterations). It means that, from our
criterion point of view, both corresponding networks self organize.

We performed the same experiment with the input dimension n = 3 (not
2, because it makes no sense to map with a two-dimensional network the
circle produced by a normalized distribution). This experiment confirms a
well-known result: without normalization and in a low-dimensional input
space, the network does not self organize at all, as shown in figure 6 with the
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Figure 6: Evolution of ©(n,k) with n = 3 and £ = 1 to 20,000.
Solid line: with input and weight normalization. Dashed line: no
normalization.

non-decreasing behavior of the dashed line, representing ©(n, k) with n = 3
and without normalization. This figure (figure 6) shows the same curves as
in figure 5, but with the input dimension n = 3 instead of 200.

These experiments show that the quality of organization, without nor-
malization, is much better in high-dimensional input space than in low-
dimensional input space. However, even in 200 dimensions, the result without
normalization is not as good as with input and weight vector normalization,
as shown in figure 5.

In figure 7 the comparison of the visualization in curvilinear representa-
tion (defined in section 10) of the resulting network state with or without
normalization is shown more intuitively.

In the following sections, we will show how a particular property of bio-
logical neurons, rarely implemented, may improve these results.

12. Biological neurons are not tireless

Consider a network trying to self organize in a two-dimensional input space,
with the dot product distance measure but without any normalization; one
should observe that only the units with largest weight vector norms are moved
(in the weight space). The reason for this is that, in the competition between
all the units, the most frequent winners are those with a large weight vector
norm (see the dot product expression, equation (5)).
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Figure 7: Curvilinear representation of networks after & = 20,000
iterations, (@) with normalization and (b) without normalization. Left
side: projection on 2 axes. Right side: curvilinear representation.

In biological neurons, it seems plausible that the neurons are not tireless,
that is, a particular neuron is not able to deliver a high level of activity
very often. This fact is due to several phenomena, such as accommodation
and post-inhibitory rebound. Because of these phenomena, the threshold re-
quired for firing tends to increase as the neuron is accumulatively stimulated
at the subthreshold level ([11], pages 20-21, 263, 268). Such a property,
called conscience by DeSieno [5], gives shorter convergence time and better
organization in a network using the euclidean distance measure.

We have implemented this property in our simulations as part of the
relaxation algorithm (we call relazation that part of the auto-organization
algorithm in which a winner is found in response to a given input vector).
A variable (the potential p) representing the available amount of neurotrans-
mitter is defined for each neuron. To be eligible, a unit must have a corre-
sponding potential p > puin, Where pyi, represents a threshold of excitability.
Then, the potential p of the winner unit is decremented by pui,. For each
iteration, the potential p of each neuron is incremented by 1/N, where N
is the total number of neurons. The potential p is truncated to 1. The
minimum potential (or threshold) pui, is a parameter that varies between 0
and 1. If ppin = 0, there is no change compared to the Kohonen algorithm
because all units are eligible without restriction. If pni, = 1, all the neu-
rons are each elected in turn, without any consideration of the input vectors,
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because when a unit is elected, it takes N iterations to recover the potential
p =1 and again be eligible. Simulations show that the optimal value for this
parameter is about py;, = 0.75.

With this accommodation property, the algorithm becomes (with the
same notation as in equations (1) and (2)):
Find the winner unit index k:

8(x, Wy) = i 5(x, W;) (24)
Pi2Pmin
The weight adaptation remains:

Wit +1) = Wit) + a(t)[x(t) - Wi(#)] |, (25)
i€Vi(t)
The potential of every unit is modified according to:

pi(t) +1/N, i#k
(T4 1) = . 26
AlE+1) { pi(t) — Pmin, =k e
When using accommodation, the comparison made in section 11 now gives
quite better results.

13. Second results

Figure 8 shows the evolution of the disorder level ©(n,k) (as defined in
section 9) with n = 200 and k varying from 0 to 20,000. The solid line
corresponds to a network with input and weight vector normalization, while
the bold line corresponds to a network without any normalization, but using
the accommodation algorithm as defined in section 12. All these networks
use the dot product distance measure.

With accommodation, the organization quality of a network without any
normalization is now comparable to the quality obtained with normalization,
as shown in figure 8. To find the dimension of the input space that is large
enough to get this result, we have made intensive simulations using varying
dimensions. Figure 9 shows the disorder level ©(n, k) (as defined in section 9)
after k& = 20,000 iterations and for n varying from 3 to 200 (for each curve,
the simulations take about 10 hours of computing time on a network of 30
Sun™ SPARCstations). The dashed line corresponds to a network without
any normalization, and the solid line corresponds to a network with input and
weight vector normalization. The bold line corresponds to a network without
any normalization, but using the accommodation algorithm as defined in
section 12. All these networks use the dot product distance measure.

Also, considering the curvilinear representation defined in section 10, it
seems that the organization obtained without any normalization is now quite
good (figure 10; compare with figures 7a and 7b).

These experiments show that with an input dimension greater than or
equal to 12 (with the experimental conditions previously mentioned), the
quality of organization measured with our criterion becomes comparable with
and without normalization. For large dimensions, the organization becomes
even better without normalization, thanks to the accommodation algorithm.
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Figure 8: Evolution of O(n,k) with n = 200 and k£ = 1 to 20,000.
Solid line: with input and weight normalization. Bold line: without
any normalization, but using the accommodation property.

14. Conclusions and future work

In this paper we have discussed the necessity of the synaptic weight vector
normalization. From a statistical point of view, the simulations show that
this normalization is not necessary when the input space has a dimension
greater than 12 and a uniform distribution of stimuli. The mathematical re-
sults obtained in sections 6 and 7 show that with a non-uniform distribution
we should make the same observation. The critical point is that the number
of independent input variables has to be large enough to ensure that the vec-
tor norms are comparable. This point has to be studied carefully if one wants
to apply our results to real application data. For instance, if the degrees of
freedom of even a high-dimensional input space are only 2 or 3, one cannot
say that the input vector components are independent. Our future work will
focus on simulations and on comparisons to known applications with real in-
put data. On the other hand, we are now working on the definition of better
criteria to analyze the quality of the organization in high-dimensional spaces.
We are also studying the function © to determine if it is a Lyapunov func-
tion, in order to propose a demonstration of the convergence of the Kohonen
algorithm in any dimension.
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Figure 9: Evolution of ©(n,k) with k¥ = 20,000 and n = 3 to 200.
Dashed line: without any normalization. Solid line: with input and

weight normalization. Bold line: without any normalization but using
the accommodation property.
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Figure 10: Curvilinear representation of networks after £ = 20,000
iterations, with an input space of n = 200 dimensions and without

normalization. Left side: projection on 2 axes. Right side: curvilinear
representation.
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