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Abstract. In this paper we show how the Walsh fun ctions can be used
to com pute schema var iance and rela te schema vari an ce to deception .
We also calcula te op erator-adj usted fitness for Walsh funct ions.

1. Introduction

The Walsh fun ctions are an alt ern ative basis for binary st rings . T hey can be
used to compute schema average, approximate functions, and create fun ct ions
of varying complexity. In this paper we show how the Walsh fun ctions can
also be used to compute schema variance and explore the impact of vari an ce
on selection and deception. We follow Goldberg [3, 4], who both clari fied and
exte nded Bethke's dissertation [1], which introduced the Walsh fun ctions to
th e study of genetic algorit hms .

The extant theory of genet ic algorit hm performan ce relies heavily on the
schema theorem , which places a lower bound on schema growth as a fun ction
of relative fitness, defining length and crossover and mutation rates. Recently
th e schema th eorem has been crit icized along a var iety of fronts (see [5],
among others) . In par ti cular , the schema theorem' s snapshot approach may
not fully capture the subt leties of geneti c select ion . In subsequent genera­
ti ons, a genet ic algorithm' s populati on will be biased towar d high-variance
schemata . Given Weitzman 's [9] resul t-that when max imizing the present
discounted valu e of sea rch from many sour ces, the weight of a source 's dist ri­
bution in the good tail is of primary impor tan ce-this bias may be beneficial.
For sourc es drawn from the same family of distributi ons, tail weight will be
positively corr ela ted with variance. Including schema varian ce in the theory
of geneti c algorithm performan ce may lead to gre ate r insight. The extent to
which schema variance proves to be an effect ive tool depends partially on the
ease with which variance can be calculated .
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In t he next section of the paper we restate mu ch of what Goldberg [3J
restated from Bethke [1] : t he definiti on of the Walsh fun ctions, their use
as an alte rnative basis, and the formu la for schema average. In sect ion 3
we examine the schema theorem and op erator-adjusted Walsh coefficients,
arr iving at a different result than Goldberg [3J. In sect ions 4 and 5 we pr esent
the main resul t s of the pap er , an explicit formula for schema var iance as a
funct ion of the W i and a relati onship between variance and deception . The
conclusion elabo rates on the importance of schema var ian ce.

2. Genetic algorit hms and Wals h functions

Man y applicat ions of genet ic algorit hms (GAs) encode the domain as bi­
nar y st rings . This encoding creates exploitable characteristics. On e of the
more importan t is the easy classification of a large number of subsets called
schemata . Strings of length N have 3N schemata. Comparing fun ctional val­
ues over schemata (often referr ed to as hyp erplanes, or when they are large
subsets, building blocks) provid es a mean s for evaluation and explanat ion of
the performance of GAs and other search algorit hms .

T he huge number of schemata- the ratio of schemata to strings is
(3/2 )N-can render th e use of schemata values useless as an analytical to ol.
This crit icism disappears provid ed two condit ions are met . First , the set of
informat ive schemata, the schemata with positive values, must be relatively
small. Second, a met hod must exist for finding the informa tive schemata.
T he Walsh fun ctions (W Fs) not only determine schemata values, bu t also
can be used to create small numbers of inform ative schemata (see [8]).

Formally, the dom ain can be encoded as binary strings, the schemata as
ternary strings, and the WFs as binary st rings:

a string ,

a Walsh Function,

a schema ,

S= Xl ... XN xi E {O, l }

cP=Yl ·· ·YN Yi E{O,I}

h = Zl . . . ZM z; E {a, 1, *}

(dl )

(d2)
(d3)

Let S = 2N , the total number of strings and WFs. The strings and the WFs
can be runumbered from °to S - 1 with the standard map from base 2 to
base 10. The ob ject ive fun ction map s the set of strings int o the posit ive real
numb ers:

(d4)

Having assigned values to each st ring, the same must be don e for each W F .
Each WF can be viewed as a map from the st rings int o the set {I , -I} (see
[7J for an alternative treatment) ,

cP(s) = 1

= - 1

if cP·s= 2k k E {O, I , 2, }

if cP · s =2 k + l kE{O,I ,2, }

(d5)

where cP . s is t he standard dot product.
The following lemmas will be imp or tan t in la ter claims.
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Lemma O.A. For all i > 0, th e set {s: i<jJ (S) = I} has cardinali ty S / 2.

Proof. Let h, = 1 and h , = * for j > 1, an d hf = 0 and hj = * for j > l.
The following four sets of strings partition the space:

{s:s Eh and <jJ (s ) = 1}= A 1

{s : s E h and <jJ (s ) = - I } = Az
{s : s E h'' and <jJ (s) = I} = A 3

{s : s E h C and <jJ (s) = -I} = A4

From th e definition of <jJC), IAII = IA4 1and IAzl = IA3 1, which complet es the
pr oof. •

Lemma O.B . For any two unique WFs <jJ and <jJ' , the set {s : <jJ(s) = <jJ'(s)}
has cardinali ty 5/2 .

Proof. Uniqueness impli es th at there exists a bit where the WFs differ.
Wolog assume that <jJ I = 1 and <jJ~ = O. Define the sets Ai similar to above ,
that is, let

{s : s E h and <jJ (s) = <jJ'(s)} = A l

and so on . Aga in the cardinalit ies of Al and A4 are equal, which completes
the proof. •

T he coefficient of i<jJ given the function f will be referr ed to as the Walsh
coefficient and denoted by ui, (f):

Wi (f) = [~f(S) . i<jJ(S)] / S (d6)

(d7)

T he WFs form a basis over RS [7]. Let the vector f E RS rep resent the
funct ion valu es on the 5 st rings and w denote the vecto r of uu'e for a given
f , the vector of Walsh coefficients. The Walsh matrix M can be crea ted from
(d6) where w = f· M. Equation (d7) gives the string values as a function of
th e w;'s, and can be used to create M - L

N -I

f(s) = L Wi' i<jJ(S)
i=O

To compute schema average using the WFs, each schema must be mapped
to a st ring using the vector-valued fun ction T. The WFs are then applied to
the string T(h):

T : {O, 1, *}N ---> {O , I} N according to the following ru le: (d8)

Ti(l) = 1

Ti(O) = Ti(*) = 0

<jJi(-) : {O, 1, *}N ---> {-I , I} according to the following rul e: (d9)

i<jJ (h ) = 1 iff i <jJ . T(h) = 2k k E {O, 1, 2, }

i<jJ (h ) = -1 iff i<jJ . T(h) = 2k + 1 k E {O , 1,2 , }
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The followin g defini tion is needed to formulate Claim 1, whi ch computes
sche ma average as a fun ct ion of the Walsh coefficients:

(d l0)

Claim 1. Th e average value of a schema h , namely h " , is given by

h I-' = L Wi' i4> (h )
iEd(h)

Proof. Suppose i E d(h) . If j hj = * then i4>j = O. This implies that , for
any s E h, i4> (S) = i4> (h ), so the term i4>(h ) appears in the schema average.

Suppose that i is not a member of d(h). In Lemma O.B let 4>' = 04> and
4> = j 4>. Half of the strings in h sa t isfy j 4>(s) = 1 and half sa t isfy j 4>(s) = - 1.
In computing the average value, W j will be added and subt racted an equal
number of t imes. •

As a corollary to Claim 1, the average value of the trivial schema {*}N,
namely wo, equals the average string value in the population. Claim 1 hints
at an advantage of the Walsh basis as opposed to the st ring values. If most
of th e Walsh coefficients are zero, then the Walsh basis allows for easier
ca lcula t ion of schemata values. If all of t he ui, have nonzero values, then
t he Walsh basis offers no comparat ive advantage for comput ing averages .
Goldberg [3, 4] and Tan ese [8] show that many interest ing fun ctions can be
crea te d by assigning positive values to a relatively small number of Walsh
coefficients .

3 . Operator-adjusted Walsh coefficients

The schema theorem gives a lower bound for the number of str ings in gen­
eration t + 1 that lie in schema h, nt+1(h) , as a fun ction of the number in
generation t , nt(h) ; the cross over rate, Pc; the maximum space between two
defined bits , 8(h) ; the average fitn ess of strings in the current population
that lie in the hyp erplane , f(h) ; the probability of mutation, Pm; t he num­
ber of defined bit s (the order) , o(h) ; and the average value of all strings in
the population , f ave .

The Schema T heorem.

nt+l (h) '2 nt' U(h )/fave)' [1- (p~ ~(~) ) -Pm' O(h)]
Proof. See Holland [6] . •

The schema theorem provides insight into and motivation for the per­
forman ce of GA s. It form alizes the idea that good hyperplan es reproduce
themselves as a consequence of goo d strings reproducing themselves. T his
"sur vival of the fittest" feature represents both a st rengt h and a weakness.
Ad vocates of genetic algor it hms point to select ion occurring on many more
schemata than there ar e st rings in the population , a phenomenon referred
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to as implicit parallelism. Crit ics point to the ease wit h which GAs can be
deceived .

In an intri guing line of inquir y Goldberg has applied the idea of the
schema theorem to the Walsh coefficients to arr ive at operator-adjusted
Walsh coefficients . Broad ly speaking , Goldb erg's idea is that if the Wi'S
are adjusted to take into acco unt the effects of crossover and mutat ion , th en
the string values can be recomputed using th e new w;'s. T he adjusted st ring
values approximate the value a GA assigns to a st ring given that it might
destroy the schemata that crea te the string's value. Lett ing 6(c/» equa l the
maximum dist an ce between l 's in ic/> , and o(ic/» equal the number of ic/>j t hat
equal 1, Goldb erg defines the ope ra tor-adjusted Walsh coefficients as

(dll)

We will make a slight correct ion in Goldb erg's est ima te . First , borro wing
from Tanese [S], we will say that a string s and a WF are in par-ity if ic/>(s) = 1
and out of par-ity if ic/> (S) = - 1. Recall from (dS) that, when com put ing string
values using the WFs, a Walsh coefficient is added if the WF and the string
are in parity and subt racte d if not . For ic/> , let Per be the probab ility that an
arbit ra ry string switches parity after the crossover , and Pmu be th e prob ability
that an arbit ra ry string switches par ity afte r mutation . The probab ility that
the st ring ret ains the same parity afte r bo th opera tor s is given by

p par = 1 - Per · (1 - Pmu) - (1 - Per) . Pmu

= 1 - Per - Pmu + 2 . Per · Pmu

(dl-2)

Following the crossover and mutat ion operators, th e expected contribut ion
from ic/> to a st ring init ially in parity with it equals

E W i = ui, . [p par - (1 - ppar)J = ui, . [2 . Pr" - 1] (d13)

Comput ing th e expected cont ribut ion from ic/> reduces to calculat ing Per and
Pmu. The following lemma will prove useful for calculat ing the form er.

Lemma 2.A. ic/> (S) = ic/> (S' ) ifJic/> · (s - S') = 2· k for k E {O, ± 1, . . .}

Proof. Suppose ic/> (S) = ic/> (S' ). Wolog assume ic/> (S) = 1. From the defini­
tion , ic/> (S) = 2 · k1 and ic/> (S') = 2 . k2 . Subtracting yields the result. The
other direction is proved similarly. •

Let P be the proporti on of i th bits that equal 1 in the GA populat ion . If
two strings cross on the ith bit, the prob ab ility that their i th bit s disagree
approximat ely equals p2 + (1 - p)2, which is bounded above by 1/ 2. By
Lemma 2.A par ity changes if and only if the st ring switches bit values on an
odd number of defined bits of the schema. T herefore, the following holds:

[
6(ic/» ]

Per ~ (1/2) . Pc ' (N _ 1) (d14)
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T he probability th at a string rem ains in parity with i cf> aft er mutation can
be approximated and bounded by (d15) provided that th e mutation rate is
small:

Pmu :::; t-«: oCcf» (d15)

If both Pcr and Pmn are less than 1/2 , th en tak ing deri vatives of (d12) shows
th at overestimating Pcr and Pmll underestimates P?", Finally, (d13) shows
tha t EW i will be underestimated. We can now prove th e following cla im .

C laim 2. An upper hound on the expected contribution hom i cf> to a string
initially in parity witil i t is given by

E [1 (pc'5ecf» ) ] [1 2 (i,l,,) ]Wi. :::; u i; . - N 1 . - . Pm . 0 . 'f'

Proof. Follows from above. •

Goldberg err s in calcula ting the effect of the operators jointly. He adds
th e effec ts of th e operators when th ey should be mu ltiplied. If par ity is
switched by both crossover and mutat ion , th en parity has reverted back to
th e original parity. Therefore, our reformulation shows that the WFs ar e less
susce pt ible to th e ope ra tors th an Goldb erg had characte rized. The following
example shows how Goldb erg's op erator-adjusted Walsh coefficient differs
from our upper bound on expected contribution.

Example . N = 30, 5(cf» = 29, o(cf» = 29, Pc = 0.6, and Pm = 0.01. Then

ad
j
wi = W i ' [1 - 0.6 - 0.58] = ui, . [-0.18]

E W i :::; W i ' [1 - (0.6)] . (0.58) = io, . [0.168]

4. Var iance and Wals h fu n ctions

In this section we compute schema variance with the Walsh coefficient s. Ap­
plying schema var ian ce will be the topic of the next sect ion . Claim 3 calcu ­
lates population variance using the Walsh coefficient s. Population var iance
can also be interpreted as th e variance of the trivial schema. The notation
{f} denotes that we are viewing the vector f as a set with S memb ers.

Claim 3 . Th e variance of th e string values is given by

5-1

Var( {f}) = l:JW i ) 2

i=l

P r o of. From (d7) ,

N - l

f(s) = L Wi' i cf> ( S )

i=o
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(dIg)

(dI7)

(dI8)

Recall that Wo is the population mean ; the cont ribution to the total variance
from st ring s is given by

v(s) = [~ Wi. i4>(s J / S

Each term in [ J's can be wri t ten as the sum of the squares of two w;'s plus
an interactive term of the form ±2 . 'Wi · Wj . From Lem ma O.B , for any i4>
and j 4> the set {s : i4> (S) = j 4>(s )} has ca rdinality S / 2. If i4> (s ) = j 4>(s ) the
interactive term equa ls + 2 ·ui, . W j , ot herw ise it equals - 2 · ui , . Wj . The result
follows immedi ately.•

This resul t requires modifi cation for extension to varian ce of arbit rary
schemata. Some WFs have t he same parity rela tionshi p for all st rings in the
schema.

Example. Walsh fun ctions 5¢ (000101) and 1¢ (000001) have the sa me
par ity for all st rings lyin g in the schema 0**0**. W Fs 7¢ (000111) and 54>,
on the ot her hand , have opposite parity on exact ly half of the strings and the
same pari ty on half of the st rings in 0**0**. It follows t hat the interactive
term + 2Wl . W5 appears in the vari ance of 0**0 **, whereas W 7 . W 5 does not.

Renumbering the i4> 's relative to t he schema h simplifies the analysis .
T wo WFs are assigned the same number if they are identical on the non-«
bits of t he schema h:

C(h ) = {j : Zj = *}

' h (i ) = L i4>j . 2 (j-l )

j EC( h)

Note that ' h (i ) = 0 is prec isely the set d(h):

Define h such that h: S x S -; {O, I} acco rding to

h(i ,j) = 1 if ' h (i ) = ' h U ) > 0

h(i ,j) = 0 else

Example. If h = * * 11 * * then ' h (63) = 'h(51) = 51 and h(51, 63) = 1,
where 634> = 111111 and 51 4> = 110011 .

Lemma 4.A. Th e in teractive term ± 2 . ui, . W j occurs in Var({h}) if and
only if h(i , j ) = 1.

Proof. Case 1: ' h (i ) = O. It follows from (d I 8) that ui, appears in t he
average value of h , so ui, can not appear in the varianc e.

Case 2: ' h (i ) > 0 and h(i ,j) = o. Choose k E C(h) such that j 4>k =
(1 - i4>k ). Wolog ass ume that i4>k = 1. Let lh be t he schema with lhk = 1
and 1hi = * for all ot her i . Let °h be the schema with °hk = 0 and "h, = *
for all other i. Define four set s

{s : s E h n l h and i4> (S) = j 4> (s )} = B+l

{s : s E h nIh and i4> (S) = - j4>(s)} = B_ 1

{s : s E hnoh and i4>(S) = j4>(s)} = B+o
{s : s E h n "h and i¢ (S) = -j4>(s)} = B:«
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For every st ring s E B+1 , switching the value of the kth bit gives a string in
B- o, and vice versa. Simil arl y, for every st ring in B_ 1 , switching the value
of the kth bit gives a st ring in B+o, and vice versa. Therefore, exact ly half
of the st rings in h have the same parity wit h j e/> and ie/> .

Cas e 3: h (i , j ) = 1. For k E C( h) j e/>k = ie/>k and for some k' E C(h) ,
j e/>k' = 1. From (d5) , if there exists an s E h such that ie/>(S) = j e/> (s ), then
ie/> (S' ) = j e/>(s' ) for all s' E h . Therefore, th e int eractive term +2Wi . Wj
app ears in Var(h) . Alt ernatively, if there exists an s E h such that ie/>(S) =
-j e/>(s) , then ie/> (S' ) = -j e/>(s') for all s' E h , and -2Wi . Wj appears in
Val'({h} ).•

Schema varian ce can be now be written in terms of the Wi'S.

Claim 4. The variance over a schema h is given by

5-1S- 1

Var({h} ) = L L[ie/> (h ) .j e/>(h) . h (i , j ) ' Wi ' Wj]
i = l i = l

P r oof. Follows immediately from Claim 1, which showed that the mean of
st rings in h is given by summing over ui; where i E d(h) , and from Lemma
4.A, which showed that the interactive term will appear iff h (i , j) = 1.

5 . Schema var iance a nd deception

From the schema theorem we know that if two schemata h an d h ' sat isfy
C (h ) = C (h'), then in the next genera t ion the population will dr ift toward
the schema wit h the higher average value. However , as the following example
shows, looking two generations ahead thi s resul t need not hold.

E xample. For s E 0*****, let f (s) = 10. For s E h****, let f (s) = 18 if s
has an even number of bits equal to 1 and f(s) = 0 if s ha s an odd number
of bits equal to 1. In expected value for th e initial population , 0***** should
have higher average value. The strings reproduced from h **** will all have
value 18, so in generation two the dri ft should be toward the schema h****
provided the crossover and mutation rates are sufficient ly small.

Accordi ngly, theoretical results per taining to genet ic algorithm perform ance
should take into account not only the schemata means but also their distr i­
bu tions.

Claim 5 below shows that for a minimal, completely deceptive pr oblem
the average var iance of the schemata with one and two defined bits contain­
ing the optimal st ring is great er th an th e average variance of the schemata
that do not. In a minimally deceptive problem th e schemata with higher
average values do not contain the optimal string. Such prob lems can , but
need not , be difficul t for GAs. The inequi valence of GA decepti ve and GA
hard supports the argument that GAs imp licitly take schemata dist ributio ns
as well as mean s into account . Claim 5 can be interpret ed as a partial expla­
nation of this inequivalence. We follow Goldberg [3, 4] in defining a minimal,
completely deceptive pro blem of length three. T he bas ic idea is that , for
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schema t a of order one and two defined on th e same bit s, O's are better than
l 's, but the string 111 has the highest valu e. For exa mple, th e schema 0**
has high er average value than 1**; *00 has higher average value than *01;
and *10 in turn has high er average value than d l. T he requir ement for
schemata of ord er one is charac terized by C1 below. C2 and C3 are nec­
essary conditions for the schemata of order two . Finally, C4 and C5 are
optimality conditio ns; th ey guar antee that 111 has the highest value.

A minimal, compl etely deceptive problem [3, 4] sat isfies:

(C1) W I > 0, Wz > 0, W4 > °
(C2) At least two of W3 , W5 , and W6 are great er than °
(C3) W 3 + W6 > WI + W4 , W3 + W5 > Wz + W4 , W 5 + W6 > WI + Wz

(C4) -W7 > WI + Wz + W 4

(C5) WI + W3 > 0, Wz + W3 > 0, WI + W5 > 0, W4 + W 5 > 0, Wz + W6 > 0,
W 4 + W6 > °

Claim 5 . For a m inimal, complet ely deceptive problem th e following hold:

(1) Var(1**) + Var(*h) + Var(**l) > Var(O**) + Var(*O*) + Var(**O)

(2) Var l l I«] + Var(* l1) + Varf l s l ) > Var(OO*) + Var(*OO) + Var(O*O)

Proof. For (1) , the following can be derived from Claim 4:

Var( l**) = (W6 - wd + (W5 - WI)Z + (W 7 - W 3)Z

Var(*h) = (W6 - W4 ) Z + (W7 - W 5 ) Z + (W3 - wr)z

Var( **1) = (W7 - W6)Z + (W 5 - W 4)Z + (W3 - wz)Z

Var(O**) = (W6 + wz)Z + (W 5 + wd + (W7 + W 3) Z

Var(* O*) = (W6 + W 4)Z + (W7 + W 5) Z + (W3 + WI)Z

Var(**0) = (W7 + W6)Z + (W5 + W4)Z + (W3 + wz)Z

T he inequality reduces to

W7(W3 + W5 + W 6) + W4(W5 + W6) + WZ(W3 + W6)

+ W I ( W 3 + W 5 ) < °
Using (C4) this would follow from

W4 (W5 + W 6) + Wz (W3 + W6) + WI (W 3 + W5)

< (WI + Wz + W4) . (W3 + W5 + W6)

which reduces to °< W3W4 + W5WZ + W6WI'

From (Cl) and (C2) , if all three of W 3 , W5 , and W6 are greater than 0,
then the claim is t ru e. Wolog suppose that W3 < 0. By (C3) and W3 < 0,
it follows that W6 > W 4 ' By (C5), WI > -W3' These last two inequalit ies
toget her imply that - W 3W 4 < W6WI , which proves (1).
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From Claim 4, (2) reduces to

2 · W 7 (W3 + W s + W6) + W 4(WS + W 6) + WZ(W 3 + W6)

+ WI (W3 + ws) < 0

which follows from W 7 < 0, (W 3 + Ws + W 6 ) > (W I + uiz + W 4 ) , and (*)
above. •

6. Conclusions

Theoreti cal justification for genet ic algorithm perform an ce relies on the
schema theorem . Recent research on deception has attempted to explore
the weaknesses of GA sear ch. A functi on is charact erized as deceptive if
the small-order schemata lead the search away from the optimal po int . Our
resear ch represents an alte rnative vant age po int from whi ch to gauge GAs
and ot her search techniques. We believe that ot her statist ical measures on
schemata, such as vari an ce, deserve considerat ion and might ult imately lead
to grea ter underst anding at th e level of string value. The schema theorem
says that above-average schemat a will predominat e. High-valu ed strings are
generally memb ers of schemat a with above-average valu e. An altern ative be­
lief is that those charac te rist ics shared by the best sampled st rings will pr e­
dominate, a subt le but imp ortan t distinct ion . A complete theory of the role
of vari an ce must recognize that high-valued st rings are reprodu ced and that
schemata are a mere by-product . Such an underst anding yields the resul t
that high variance and average mean for a schema in generation t will gener­
ally be correla ted with high mean for the schema in successive generations.
A mor e formal presentation of this argument might include a two-generation
schema theorem that gives the number of st rings in schema h in generat ion
t + 2 as a function of the number in generat ion t . Such a theory should
also include Davidor 's [2] two typ es of variance: sample var iance (paras it ic
epistasis) and nonlinear ity (base epistasis) .

As noted earlier , Weitzman 's [9J resu lt that sources' mean s are less imp or­
tant than th eir tail distributions when searching for an optimal point should
be included in the theory of GA perform an ce. The logical first st ep toward
inclu sion is to conside r both schema mean and schema variance. Whether
genet ic algorithms properly weigh the relative benefits of varian ce and mean
in their search for opt ima l points is an open and excit ing problem .
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