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Abstract. In this paper we show how the Walsh functions can be used
to compute schema variance and relate schema variance to deception.
We also calculate operator-adjusted fitness for Walsh functions.

1. Introduction

The Walsh functions are an alternative basis for binary strings. They can be
used to compute schema average, approximate functions, and create functions
of varying complexity. In this paper we show how the Walsh functions can
also be used to compute schema variance and explore the impact of variance
on selection and deception. We follow Goldberg [3, 4], who both clarified and
extended Bethke’s dissertation [1], which introduced the Walsh functions to
the study of genetic algorithms.

The extant theory of genetic algorithm performance relies heavily on the
schema theorem, which places a lower bound on schema growth as a function
of relative fitness, defining length and crossover and mutation rates. Recently
the schema theorem has been criticized along a variety of fronts (see [5],
among others). In particular, the schema theorem’s snapshot approach may
not fully capture the subtleties of genetic selection. In subsequent genera-
tions, a genetic algorithm’s population will be biased toward high-variance
schemata. Given Weitzman’s [9] result—that when maximizing the present
discounted value of search from many sources, the weight of a source’s distri-
bution in the good tail is of primary importance—this bias may be beneficial.
For sources drawn from the same family of distributions, tail weight will be
positively correlated with variance. Including schema variance in the theory
of genetic algorithm performance may lead to greater insight. The extent to
which schema variance proves to be an effective tool depends partially on the
ease with which variance can be calculated.
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In the next section of the paper we restate much of what Goldberg [3]
restated from Bethke [1]: the definition of the Walsh functions, their use
as an alternative basis, and the formula for schema average. In section 3
we examine the schema theorem and operator-adjusted Walsh coefficients,
arriving at a different result than Goldberg [3]. In sections 4 and 5 we present
the main results of the paper, an explicit formula for schema variance as a
function of the w; and a relationship between variance and deception. The
conclusion elaborates on the importance of schema variance.

2. Genetic algorithms and Walsh functions

Many applications of genetic algorithms (GAs) encode the domain as bi-
nary strings. This encoding creates exploitable characteristics. One of the
more important is the easy classification of a large number of subsets called
schemata. Strings of length N have 3V schemata. Comparing functional val-
ues over schemata (often referred to as hyperplanes, or when they are large
subsets, building blocks) provides a means for evaluation and explanation of
the performance of GAs and other search algorithms.

The huge number of schemata—the ratio of schemata to strings is
(3/2)N—can render the use of schemata values useless as an analytical tool.
This criticism disappears provided two conditions are met. First, the set of
informative schemata, the schemata with positive values, must be relatively
small. Second, a method must exist for finding the informative schemata.
The Walsh functions (WFs) not only determine schemata values, but also
can be used to create small numbers of informative schemata (see [8]).

Formally, the domain can be encoded as binary strings, the schemata as
ternary strings, and the WF's as binary strings:

a string, s=uz...exy z; €{0,1} (d1)
a Walsh Function, ¢ =1vy;...yn v € {0,1} (d2)
a schema, h=2z...2p 2z €{0,1,%} (d3)

Let S = 2V, the total number of strings and WFs. The strings and the WFs
can be runumbered from 0 to S — 1 with the standard map from base 2 to
base 10. The objective function maps the set of strings into the positive real
numbers:

f:{0,1}¥ - Rt (d4)

Having assigned values to each string, the same must be done for each WF.
Each WF can be viewed as a map from the strings into the set {1,—1} (see
[7] for an alternative treatment),

P(s)= 1 if ¢p-s=2k ke{0,1,2,...} (d5)
=—-1 if ¢-s=2k+1 ke{0,1,2,...}

where ¢ - s is the standard dot product.
The following lemmas will be important in later claims.
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Lemma 0.A. For alli > 0, the set {s: ‘¢(s) = 1} has cardinality S/2.

Proof. Let h; =1 and h; =  for j > 1, and hf = 0 and h{ = * for j > 1.
The following four sets of strings partition the space:

{s:s€h and ¢(s) = 1} =4,

{s:s€h and ¢(s) = -1} = 4,

{s:seh®and ¢(s) = 1} =A4;

{s:se€h®and ¢(s) = -1} = A4
From the definition of ¢(-), |A1| = |A4| and |As| = |As|, which completes the
proof. B
Lemma 0.B. For any two unique WFs ¢ and @', the set {s : ¢(s) = ¢'(s)}
has cardinality S/2.

Proof. Uniqueness implies that there exists a bit where the WFs differ.
Wolog assume that ¢, = 1 and ¢} = 0. Define the sets A; similar to above,
that is, let

{s:s€hand ¢(s) = @'(s)} = 4;
and so on. Again the cardinalities of A; and A4 are equal, which completes
the proof. B

The coefficient of ‘¢ given the function f will be referred to as the Walsh
coefficient and denoted by w;(f):

) = [z o) 905 /s (d6)

The WFs form a basis over R® [7]. Let the vector f € R represent the
function values on the S strings and w denote the vector of w;’s for a given
f, the vector of Walsh coefficients. The Walsh matrix M can be created from
(d6) where w = f- M. Equation (d7) gives the string values as a function of
the w;’s, and can be used to create M~!:

N-1 )
=2 wi'(s) (d7)

To compute schema average using the WFs, each schema must be mapped
to a string using the vector-valued function 7. The WFs are then applied to
the string 7(h):

7:{0,1,%} — {0,1}" according to the following rule: (d8)
7:(0) =Ti(x) =0
o,(-) : {0,1, %} — {~1,1} according to the following rule: (d9)

‘p(h)= 1 iff ‘¢ 7(h) =2k ke{0,1,2,...}
‘p(h)=—1 iff ‘¢p-7(h)=2k+1 ke{0,1,2,...}
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The following definition is needed to formulate Claim 1, which computes
schema average as a function of the Walsh coefficients:

dh) ={i:'¢, =0if h; = «} (d10)
Claim 1. The average value of a schema h, namely h*, is given by

h*= Y w;- ‘¢(h)

i€d(h)

Proof. Suppose i € d(h). If 7h; = « then ‘¢p; = 0. This implies that, for
any s € h, ‘¢(s) ="¢(h), so the term ‘¢p(h) appears in the schema average.

Suppose that i is not a member of d(h). In Lemma 0.B let ¢’ = °¢ and
¢ = 7 ¢. Half of the strings in h satisfy /¢ (s) = 1 and half satisfy ‘¢ (s) = —1.
In computing the average value, w; will be added and subtracted an equal
number of times. B

As a corollary to Claim 1, the average value of the trivial schema {x}¥,
namely wy, equals the average string value in the population. Claim 1 hints
at an advantage of the Walsh basis as opposed to the string values. If most
of the Walsh coefficients are zero, then the Walsh basis allows for easier
calculation of schemata values. If all of the w; have nonzero values, then
the Walsh basis offers no comparative advantage for computing averages.
Goldberg [3, 4] and Tanese [8] show that many interesting functions can be
created by assigning positive values to a relatively small number of Walsh
coefficients.

3. Operator-adjusted Walsh coefficients

The schema theorem gives a lower bound for the number of strings in gen-
eration ¢ + 1 that lie in schema h, n.y1(h), as a function of the number in
generation t, n;(h); the crossover rate, p.; the maximum space between two
defined bits, §(h); the average fitness of strings in the current population
that lie in the hyperplane, f(h); the probability of mutation, p,,; the num-
ber of defined bits (the order), o(h); and the average value of all strings in
the population, fae-

The Schema Theorem.
meas) 2 - (10 o) |1~ (P72 ) = o)

Proof. See Holland [6]. B

The schema theorem provides insight into and motivation for the per-
formance of GAs. It formalizes the idea that good hyperplanes reproduce
themselves as a consequence of good strings reproducing themselves. This
“survival of the fittest” feature represents both a strength and a weakness.
Advocates of genetic algorithms point to selection occurring on many more
schemata than there are strings in the population, a phenomenon referred
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to as implicit parallelism. Critics point to the ease with which GAs can be
deceived.

In an intriguing line of inquiry Goldberg has applied the idea of the
schema theorem to the Walsh coefficients to arrive at operator-adjusted
Walsh coefficients. Broadly speaking, Goldberg’s idea is that if the w,’s
are adjusted to take into account the effects of crossover and mutation, then
the string values can be recomputed using the new w;’s. The adjusted string
values approximate the value a GA assigns to a string given that it might
destroy the schemata that create the string’s value. Letting 6(¢b) equal the
maximum distance between 1s in ‘¢, and o(*¢) equal the number of 'i(j)j that
equal 1, Goldberg defines the operator-adjusted Walsh coeflicients as

adig; = w; - {1 - (ché_(l(f)) — 2P - 0(%1))} (d11)

We will make a slight correction in Goldberg’s estimate. First, borrowing
from Tanese [8], we will say that a string s and a WF are in parity if ‘p(s) = 1
and out of parityif ‘(s) = —1. Recall from (d8) that, when computing string
values using the WFs, a Walsh coefficient is added if the WF and the string
are in parity and subtracted if not. For ‘g, let p, be the probability that an
arbitrary string switches parity after the crossover, and py,, be the probability
that an arbitrary string switches parity after mutation. The probability that
the string retains the same parity after both operators is given by

prer =1 — Per * (]- _pmu) - (1 _pcr) * Pmu (d12)
= 1_pcr_pmu+2'pcr'pmu

Following the crossover and mutation operators, the expected contribution
from ¢ to a string initially in parity with it equals

Ewizwi‘[Ppar“(l_Ppar)} =w;-[2- PP —1] (d13)

Computing the expected contribution from *¢ reduces to calculating p., and
Pmu- The following lemma will prove useful for calculating the former.

Lemma 2.A. i¢(s) ='¢p(s') iff ‘p-(s—s') =2k for k € {0,£1,...}
Proof. Suppose ‘¢(s) = ‘¢(s’). Wolog assume ‘¢ (s) = 1. From the defini-
tion, ‘¢(s) = 2 -k, and ‘¢(s') = 2 - ky. Subtracting yields the result. The
other direction is proved similarly. B

Let p be the proportion of ith bits that equal 1 in the GA population. If
two strings cross on the ith bit, the probability that their ith bits disagree
approximately equals p* + (1 — p)?, which is bounded above by 1/2. By
Lemma 2.A parity changes if and only if the string switches bit values on an
odd number of defined bits of the schema. Therefore, the following holds:

per < (1/2) - pe- [@%} (d14)
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The probability that a string remains in parity with ‘¢ after mutation can
be approximated and bounded by (d15) provided that the mutation rate is
small:

Prmu S Pm - 0([¢) (d15)

If both p., and py, are less than 1/2, then taking derivatives of (d12) shows
that overestimating pe. and pn,, underestimates PP*. Finally, (d13) shows
that Zw; will be underestimated. We can now prove the following claim.

Claim 2. An upper bound on the expected contribution from '@ to a string
initially in parity with it is given by

A [1 B (plvéi(qlb)ﬂ (1 =2 py-o(p)]

Proof. Follows from above. B

Goldberg errs in calculating the effect of the operators jointly. He adds
the effects of the operators when they should be multiplied. If parity is
switched by both crossover and mutation, then parity has reverted back to
the original parity. Therefore, our reformulation shows that the WFs are less
susceptible to the operators than Goldberg had characterized. The following
example shows how Goldberg’s operator-adjusted Walsh coefficient differs
from our upper bound on expected contribution.

Example. N = 30, 6(¢) = 29, o(¢) = 29, p. = 0.6, and p,,, = 0.01. Then

adigy, = w; - [1 — 0.6 —0.58] = w; -[-0.18]
% w; - [1 — (0.6)] - (0.58) = w; - [0.168]

w;

A

4. Variance and Walsh functions

In this section we compute schema variance with the Walsh coefficients. Ap-
plying schema variance will be the topic of the next section. Claim 3 calcu-
lates population variance using the Walsh coefficients. Population variance
can also be interpreted as the variance of the trivial schema. The notation
{f} denotes that we are viewing the vector f as a set with .S members.

Claim 3. The variance of the string values is given by
5-1
Var({f}) = Z(wi)z
i=1

Proof. From (d7),

N-1

f(s) = Z w; - " P(s)

=0
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Recall that wy is the population mean; the contribution to the total variance
from string s is given by

v(s) = {i w; - ’d)(s)} /S

Each term in [ |'s can be written as the sum of the squares of two w;’s plus
an interactive term of the form +2 - w; - w;. From Lemma 0.B, for any ‘¢
and 7 the set {s : '¢(s) = ¢(s)} has cardinality S/2. If ‘p(s) = I ¢(s) the
interactive term equals 4+2-w; - w;, otherwise it equals —2-w; -w;. The result
follows immediately. B

This result requires modification for extension to variance of arbitrary

schemata. Some WFs have the same parity relationship for all strings in the
schema.
Example. Walsh functions ¢ (000101) and *¢ (000001) have the same
parity for all strings lying in the schema O0x+0%x. WFs "¢ (000111) and ¢,
on the other hand, have opposite parity on exactly half of the strings and the
same parity on half of the strings in O*x0xx. It follows that the interactive
term 42w, - wy appears in the variance of 0x+0x*, whereas wy - ws does not.

Renumbering the ‘@’s relative to the schema h simplifies the analysis.

Two WFs are assigned the same number if they are identical on the non-*
bits of the schema h:

C(h) = {j: z; = +} (d17)
‘h(i) = Y e, o207 (d18)
j€C(h)
Note that “h(i) = 0 is precisely the set d(h):
Define h such that h: S x S — {0,1} according to (d19)

h(i,j) =1 if "h(i) ="h(j) >0

h(i,j) =0 else
Example. If h = % % 11 % % then "h(63) = "h(51) = 51 and h(51,63) = 1,
where %3¢ = 111111 and °'¢p = 110011.
Lemma 4.A. The interactive term £2 - w; - w; occurs in Var({h}) if and
only if h(z,7) = 1.
Proof. Case 1: "h(:) = 0. It follows from (d18) that w; appears in the
average value of h, so w; cannot appear in the variance.

Case 2: "h(i). > 0 and h(i,j) = 0. Choose k € C(h) such that /¢, =

(1 —¢,,). Wolog assume that ‘¢, = 1. Let *h be the schema with 'hy = 1
and 'h; = * for all other 7. Let °h be the schema with °h;, = 0 and °h; =
for all other 7. Define four sets

{s:sehn'h and ‘¢(s)= ‘¢(s)} = By
{s:sehn'h and ‘¢(s) = —¢(s)} = B_,
{s:sehn®h and ‘¢(s)= ‘¢(s)} = Byo
{s:sehn’h and ‘¢(s) = —¢(s)} = B_o
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For every string s € B.,, switching the value of the kth bit gives a string in
B_y, and vice versa. Similarly, for every string in B_;, switching the value
of the kth bit gives a string in B, and vice versa. Therefore, exactly half
of the strings in h have the same parity with /¢ and ‘¢.

Case 3: h(i,j) = 1. For k € C(h)i¢, = ‘¢, and for some k' € C(h),
I, = 1. From (d5), if there exists an s € h such that ‘¢(s) = 7¢(s), then
ip(s') = Ip(s’) for all s' € h. Therefore, the interactive term +2w; - w;
appears in Var(h). Alternatively, if there exists an s € h such that ‘¢(s) =
—I¢p(s), then ‘¢(s') = —I¢(s') for all 8’ € h, and —2w; - w; appears in
Var({h}). B

Schema variance can be now be written in terms of the w;’s.
Claim 4. The variance over a schema h is given by

S-185-1

Var({h}) = 3 > ['¢(h) -’ ¢(h) - h(i,j) - wi - wj]

i=1 a=1

Proof. Follows immediately from Claim 1, which showed that the mean of
strings in h is given by summing over w; where ¢ € d(h), and from Lemma
4.A, which showed that the interactive term will appear iff h(7, j) = 1.

5. Schema variance and deception

From the schema theorem we know that if two schemata h and h' satisfy
C(h) = C(h'), then in the next generation the population will drift toward
the schema with the higher average value. However, as the following example
shows, looking two generations ahead this result need not hold.

Example. For s € Ok, let f(s) = 10. For s € L%, let f(s) =18 if s
has an even number of bits equal to 1 and f(s) = 0 if s has an odd number
of bits equal to 1. In expected value for the initial population, Qs should
have higher average value. The strings reproduced from Lk will all have
value 18, so in generation two the drift should be toward the schema Lssskssx
provided the crossover and mutation rates are sufficiently small.

Accordingly, theoretical results pertaining to genetic algorithm performance
should take into account not only the schemata means but also their distri-
butions.

Claim 5 below shows that for a minimal, completely deceptive problem
the average variance of the schemata with one and two defined bits contain-
ing the optimal string is greater than the average variance of the schemata
that do not. In a minimally deceptive problem the schemata with higher
average values do not contain the optimal string. Such problems can, but
need not, be difficult for GAs. The inequivalence of GA deceptive and GA
hard supports the argument that GAs implicitly take schemata distributions
as well as means into account. Claim 5 can be interpreted as a partial expla-
nation of this inequivalence. We follow Goldberg [3, 4] in defining a minimal,
completely deceptive problem of length three. The basic idea is that, for
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schemata of order one and two defined on the same bits, 0’s are better than
1’s, but the string 111 has the highest value. For example, the schema 0xx
has higher average value than ls%; %00 has higher average value than *01;
and %10 in turn has higher average value than x11. The requirement for
schemata of order one is characterized by C1 below. C2 and C3 are nec-
essary conditions for the schemata of order two. Finally, C4 and C5 are
optimality conditions; they guarantee that 111 has the highest value.
A minimal, completely deceptive problem [3, 4] satisfies:

’U)1>0,IU2>O,IU4>O
At least two of ws, ws, and wg are greater than 0

(C1)
(C2)
(C3) ws +we > wy + Wy, W3 + W5 > Wa + Wy, Ws + W > W1 + Wo
(C4) —wy > wy + wy + wy

(C5)

wy + w3z > 0, wy + w3z >0, wy +ws > 0, wy +ws > 0, wy +wg > 0,
Wy + wg > 0

Claim 5. For a minimal, completely deceptive problem the following hold:
(1) Var(Llsx) 4+ Var(x1x) + Var(xkl) > Var(Osx) + Var(x0x) + Var(*x0)
(2) Var(11x) + Var(x11) 4+ Var(1%1) > Var(00%) 4+ Var(x00) + Var(0x0)

Proof. For (1), the following can be derived from Claim 4:

Var(1xx) = (ws — wa)* + (ws — wy)* + (w7 — ws)

Var(x1#) = (wg — wy)? + (wr — ws)? + (wg — wy)?
Var(¥x1) = (wy — we)? + (ws — wy)? + (ws — wy)?
Var(0%#) = (we + w2)? + (ws + w;)? + (wr + w3)?
Var(0%) = (we + wy)* + (wr + ws)? + (w3 + wy)?
Var(xx0) = (wr + w6)2 + (ws + w4)2 + (w3 + w2)2

The inequality reduces to

wr(ws 4 w5 + we) 4 wa(ws + we) + wa(ws + w) (%)
+ wq (w3 + ws) < 0

Using (C4) this would follow from

wy(ws + wg) + we(wz + we) + wy (ws + ws)
< (w1 + wq + wy) - (w3 + ws + we)

which reduces to 0 < wawy + wsws + wew .

From (C1) and (C2), if all three of ws, ws, and wg are greater than 0,
then the claim is true. Wolog suppose that w3 < 0. By (C3) and w3 < 0,
it follows that wg > wy. By (C5), w; > —ws. These last two inequalities
together imply that —wsws < wewy, which proves (1).
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From Claim 4, (2) reduces to
2 - wr (w3 + ws + we) + wa(ws + we) + wa(ws + we)
+ wq (w3 + ws) < 0

which follows from w; < 0, (wsz + ws + wg) > (w; + wa + wy), and (%)
above. il

6. Conclusions

Theoretical justification for genetic algorithm performance relies on the
schema theorem. Recent research on deception has attempted to explore
the weaknesses of GA search. A function is characterized as deceptive if
the small-order schemata lead the search away from the optimal point. Our
research represents an alternative vantage point from which to gauge GAs
and other search techniques. We believe that other statistical measures on
schemata, such as variance, deserve consideration and might ultimately lead
to greater understanding at the level of string value. The schema theorem
says that above-average schemata will predominate. High-valued strings are
generally members of schemata with above-average value. An alternative be-
lief is that those characteristics shared by the best sampled strings will pre-
dominate, a subtle but important distinction. A complete theory of the role
of variance must recognize that high-valued strings are reproduced and that
schemata are a mere by-product. Such an understanding yields the result
that high variance and average mean for a schema in generation ¢ will gener-
ally be correlated with high mean for the schema in successive generations.
A more formal presentation of this argument might include a two-generation
schema theorem that gives the number of strings in schema h in generation
t + 2 as a function of the number in generation t. Such a theory should
also include Davidor’s [2] two types of variance: sample variance (parasitic
epistasis) and nonlinearity (base epistasis).

As noted earlier, Weitzman'’s [9] result that sources’ means are less impor-
tant than their tail distributions when searching for an optimal point should
be included in the theory of GA performance. The logical first step toward
inclusion is to consider both schema mean and schema variance. Whether
genetic algorithms properly weigh the relative benefits of variance and mean
in their search for optimal points is an open and exciting problem.
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