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Abstract. We consider classical and quantum motion on multi-
ply connected hyperbolic spaces, which appear as space-like slices
in Robertson-Walker cosmologies. The topological structure of these
manifolds creates on the one hand bounded chaotic trajectories, and
on the other hand quantal bound states whose wave functions can be
reconstructed from the chaotic geodesics. We obtain an exact relation
between a probabilistic quantum mechanical wave field and the cor-
responding classical system, which is likewise probabilistic because of
the instabilities of the trajectories with respect to the initial condi-
tions. The central part in this reconstruction is played by the fractal
limit set of the covering group of the manifold. This limit set deter-
mines the bounded chaotic trajectories on the manifold. Its Hausdorff
measure and dimension determine the wave function of the quantum
mechanical bound state for geodesic motion.

We investigate relativistic scalar wave fields in de Sitter cosmolo-
gies, coupled to the curvature scalar of the manifold. We study the
influence of the topological structure of space-time on their time evo-
lution. Likewise we calculate the time asymptotics of their energies
in the early and late stages of the cosmic expansion.While in the late
stages both bounded and unbounded states approach the same rest
energy, they show significantly different behavior at the beginning of
the expansion. While the stable bound states have simple power law
behavior, extended states show oscillations in their energy, with a fre-
quency and an amplitude both diverging to infinity, indicating the
instability of the quantum field at the beginning of the cosmic expan-
sion.
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1. Introduction

Little else has led to as much controversy in twentieth-century physics as the
question about the probabilistic or deterministic nature of the microscopic
laws of motion. The problem is that, despite the complete failure of clas-
sical mechanics applied to microscopic problems and the universal success
of quantum mechanics as a tool of prediction and calculation, the questions
why quantum mechanics works and which structures we really calculate with
it are not answered by the probabilistic interpretation of v, Schrodinger’s
wave function.

In this work we present a simple example, geodesic motion on multiply
connected Riemannian spaces of constant negative curvature and infinite
volume, and reconstruct wave functions from chaotic classical trajectories in
an exact, non-semiclassical way.

It might seem strange that it is possible to reconstruct a non-deterministic
wave field from classical geodesics. The point here is that we actually relate
two probabilistic models of microscopic motion, that of quantum mechanics
and that of unstable classical dynamics. The classical trajectories in question
have positive Lyapunov exponents, and the exponential divergence of initially
neighboring trajectories makes it impossible to determine their evolution
using Newton’s equations, given the finite accuracy of the initial conditions.
These equations are true at every moment of the motion, but not as an
initial value problem predicting the future. They are just an expression
of the following insight, Newton’s (second) law: “The change in motion is
proportional to the motive force impressed and occurs along the right line in
which that force is impressed.”!

The scenario here is that the particles, if their motion is bounded, in-
habit a finite domain of the manifold, and their trajectories there are dense,
ergodic, and mixing. Thus a classical point particle is, despite the fact that
it moves along a smooth trajectory, after a short Lyapunov time not any
more localizable within this domain (this domain is one and the same for all
bounded trajectories).

In quantum mechanics we have the fundamental principle that the initial
values, say of momentum and coordinates, cannot be realized simultaneously
with arbitrary precision due to uncertainty relations. In classical but unstable
mechanics it is true that we can prepare the initial values of the coordinates
and the momentum with any wished finite precision, but the inevitable error
augments exponentially after the Lyapunov time. In particular, if we choose
a Gaussian initial distribution for the momentum and the coordinates, and
apply the geodesic flow to it, we observe dispersion of the classical probability
density. Moreover in the dynamical system that we consider here, namely
geodesic motion on negatively curved spaces, the classical probability density

! Mutationem motus proportionalem esse vi motrici impressae et fieri secundum lineam
rectam qua vis illa imprimitur. Cited from I. B. Cohen, Introduction to Newton’s Principia
(Cambridge, MA, Harvard University Press, 1971).
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disperses at the same rate as the quantum mechanical one, if we start with
the same initial distribution. Thus in both cases, though the reasons are
quite different, the particle slips through our attempts to predict its future.

In section 2 we give a sketch of classical non-relativistic mechanics on
hyperbolic 3-manifolds. In section 3 we perform the above-mentioned re-
construction. We embed the manifold into its universal covering space; the
ground state wave function is then completely determined by the limit set
of the covering group (namely by the Hausdorff measure and the Hausdorff
dimension of this singular set). On the other hand, this limit set emerges as
the set of initial and end points of the bounded trajectories lifted into the
covering space. In section 4 we discuss the analytic construction of these
singular sets, which provide the basic link between the chaotic trajectories
and the bound state wave functions, and give some numerical examples.

In section 5 we apply this formalism to relativistic wave fields in
Robertson-Walker cosmologies. This needs some introductory comments.
Cosmologies satisfying the principle of homogeneity and isotropy are de-
scribed by a four-dimensional Riemannian space, whose space-like slices—
namely the three-dimensional sections at a fixed time—are 3-manifolds of
constant Gaussian curvature. FEinstein’s equations do not determine the
topological structure of these sections, and usually the topology is assumed
to be trivial, given either by flat Euclidean space or the 3-sphere in the case
of positive curvature (closed model, finite volume), or by a shell of the three-
dimensional Minkowski hyperboloid in the case of negative curvature (open
model, infinite volume). This is so partially for reasons of simplicity, and
partially because of lack of observational evidence, given that even the ques-
tion of whether the universe is closed or open is nowadays far from being
resolved.

Soon after Einstein had proposed his cylindrical universe, the mathemati-
cian Felix Klein, well aware of Poincaré’s work on 3-manifolds and fundamen-
tal polyhedra, pointed out that the 3-sphere representing the 3-sections in
this model may also be regarded topologically as projective space, if one
identifies diametrically opposite points [5]. Since then the possibility of a
non-trivial topological structure has been apparent, and has been mentioned
from time to time (see [8, 13]).

Cosmologies locally described by a Robertson-Walker line element are re-
garded today as the most likely candidates to provide realistic models for the
evolution of the universe, and in [18] we started to investigate the influence
of the possible multiple connectivity of the space-like slices on the dynamics
of particles geodesically moving on them. How does the topology influence
the dynamics, and can one draw from the dynamics of particles conclusions
about the topology? This approach is in some sense reminiscent of Mach’s
principle, namely that the global structure of the universe determines the
local laws of motion—inertial forces being gravitational-—stemming from the
mass content of the whole (closed) universe. But our emphasis lies more on
the topological structure of the open universe, which is in turn related to the
energy momentum tensor of the mass distribution.
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In section 5 we also investigate wave solutions of the Klein-Gordon equa-
tion in de Sitter space. Such solutions are characterized by three parameters:
mass; the dimensionless coupling constant of the field to the curvature scalar;
and the spectral variable of the Laplace-Beltrami operator of the space-like
slices, which are now multiply connected and open. The non-minimal cou-
pling of the field to the curvature is essential for the treatment of massless
particles.

We find bound states of wave fields and the corresponding chaotic tra-
jectories that are both foreign to the traditional open models in cosmology.
Finally we calculate the time evolution of the energy of wave fields in the
early and late stages of expanding de Sitter space. While in the late stages,
when 3-space gets asymptotically flat and the energy always approaches es-
sentially the classical rest energy, we find crucial qualitative differences in
the evolution of bound states and extended states at the beginning of the
cosmic evolution. Oscillations appear in the energies of the extended states
whereas the bound states show simple power law behavior, the exponents
being determined by the Hausdorff dimensions of the limit sets of the cov-
ering groups of the space-like slices; for further discussion we refer to the
conclusion, section 6.

2. A short précis on classical mechanics in hyperbolic spaces

Three-dimensional hyperbolic space H?2, a shell of the Minkowski hyperboloid
z3 — x* = R? and endowed with the metric ds* = dx* — da3, can be isomet-
rically represented as an open ball B, |x| < R, with the metric

do® = 4(1 — |x[*/R?)~%dx?, (2.1)

which induces constant negative sectional curvature —1/R? on B*. For de-
tails in this section we refer to [2, 11, 17].

Geodesics in this geometry are arcs of circles orthogonal to S (Jx]| =
R, the sphere at infinity of hyperbolic space), and the geodesic planes are
domains on spherical caps orthogonal to S..

A hyperbolic manifold, that is, a manifold of constant negative curvature,
can be embedded in B® as a non-Euclidean polyhedron whose faces (lying on
geodesic planes) are identified in pairs with elements of the invariance group
of the metric, the Lorentz group SO*(3,1). The polyhedron may also have
free faces, domains on S, that are not identified, representing the boundaries
of the manifold at which the conformal factor of the metric gets infinite.

Arp’s sculpture in figure 1 is an example of how such a hyperbolic manifold
may look if the identification of the polyhedral faces is carried out. It is a
surface of finite thickness, a topological product I x S of a finite open interval
and a compact Riemann surface of genus four. If we remove the interior and
exterior boundaries—that is, if we take the open interval-—we get a complete
metric space.

In figure 2 we have drawn the ring of base circles on S,, of the spherical
caps on which the faces of the polyhedron lie. The exterior domains of the
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Figure 1: Jean Arp’s sculpture Ptolémée II, 1958, is the typical ex-
ample for the topological structure of a hyperbolic manifold with the
identification pattern in figure 2. The exterior visible boundary cor-
responds to fi, the interior surface of the bronze layer to fs. (Photo
by E. B. Weill. Reproduced with permission.)



142 Roman Tomaschitz

ring, f1 and f,, are the two free faces of the polyhedron, which fill the whole
space B3 with the exception of the interior of the caps.

If we identify the caps in the way indicated in figure 2, we get topologically
a thickened surface of genus four, like the bronze sculpture in figure 1. The
actual realization of this identification pattern in B® has to be chosen so
that the metric inherited from B? fits smoothly on the identified faces. The
criterion for this is that the Kleinian group I' generated by the face-identifying
transformations tesselates if applied to the polyhedron F', the interior of the
spherical caps.

Trajectories in the manifold are realized by projecting B3-geodesics into
F: If the circular arc intersects a tile y(F’), the arc piece lying in this tile is
mapped via y~! back into F. The set of all projected arc pieces constitutes
the trajectory in F', the initial and end points of the arcs being properly
identified by the identification of the polyhedral faces.

The group I' is countably infinite, and therefore the I-images of F'—
which constitute a tiling of B®>—have accumulation points. They lie on So,
and constitute the limit set A(T"), a closed quasi self-similar Jordan curve
in the ring of base circles of the caps. Since I' leaves S,, invariant, A(T")
appears likewise as the set of accumulation points of images of f; and fs,
[(fiU f2) = T(f1) UT(f2), where I'(f1) approximates A(T") from the interior
of the ring of base circles (see figures 7 and 5 for the manifolds in figures
2 and 3(b)), and I'(f;) approximates A(I") from the exterior. In figures 4
and 6 we show the complete tesselations I'(f;) U I'(f2) of Sy, for manifolds
corresponding to the identification patterns in figures 3(b) and (a). Different
realizations of the same pattern, for example figures 4 and 5 of the pattern
in figure 3(b), lead to globally non-isometric manifolds of the same topolog-
ical structure. The different Hausdorff dimensions (see the figure captions)
of curves corresponding to the same pattern reflect this fact, for they are
determined by the ground-state energy of the Schrodinger operator, which is
in turn completely determined by the global metric structure of the space.

In the non-relativistic case (section 3) we call a trajectory bounded if it
lies in a finite domain, such as a sphere of finite hyperbolic radius, during
the whole time evolution given by Newton’s equations

dv_l
dt ~ R?

where v := do/dt = 2(1 — [x|?/R?)"'dx/dt. The relativistic concept of
boundedness in a time-dependent metric we give in section 5. The bounded
trajectories are exactly the projections of B3-geodesics with initial and end
points in A(T'): applying I to a B3-geodesic (circular arc) with initial and end
points in A(T"), we get countably many such arcs because of the invariance of
A(T) under T'. Their intersection with F' gives the projected trajectory. The
trajectory is bounded because the arc pieces are uniformly separated from
Soo- These projections are just covering projections from the universal cover
B3 into the manifold F'. T is the group of covering transformations, and F is
the quotient B3\I'. The bounded trajectories fill densely a finite domain in

[x-vz—v-(x‘v)], (2.2)



Figure 2: Identification pattern for figure 1. The manifold is embedded in hyperbolic space, the ball B3,
as a non-Euclidean polyhedron. The ring of base circles has to be visualized on S, the boundary of B3.
Spherical caps orthogonal to Sy, are placed on these circles and identified in the indicated way. f; and fa,
the complements of the ring on Sy, represent compact surfaces of genus four, the two boundary components

of the manifold. The identification mappings T are partitioned into cycles (see [11]), satisfying cycle relations
like 702 . T3 .7} .7} TR =id, TV . T28.T23 =4d...

sprojruer o1joqIodAf] uo soey) wnjueng)

54}



144 Roman Tomaschitz

Figure 3: These identification patterns give rise to manifolds similar
to that in figure 1, but now of genus five (a) and six (b). The dia-
grams have to be completed as in figure 2; as depicted they are the
identification patterns of fibers (compact Riemann surfaces) of the
manifolds, which fiber over a finite open interval.

F, uniformly separated from S.,, namely the quotient C'(A)\I', where C(A)
is the hyperbolic convex hull of A (see [16]).

If the end point of the arc to be projected does not lie in the limit set,
it intersects for ¢ — oo only finitely many polyhedra of the tesselation, so
the particle approaches one of the boundary surfaces of the manifold (in the
projection of the arc in the last intersected polyhedron).

Moreover, from this construction it is also obvious that bounded trajec-
tories can be screened by unbounded ones if we choose their initial and end
points sufficiently close to the limit set. Thus, though there are only a few
bounded trajectories, many unbounded trajectories will stay arbitrarily long
in the manifold before ultimately tending to infinity.
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Figure 4: If we apply the discrete group I' generated by the side-
pairing mappings in figure 3(b) to the free polyhedral faces f; and
f2, we get a tiling of the interior I'(f1) and the exterior I'(f2) of the
Jordan curve A(T"). This curve itself emerges as the set of accumula-
tion points of I'-images (tiles) of f; and fz. A(T) is the support of the
Hausdorff measure in the integral representation of the wave function,
and constitutes the set of initial and end points of lifts of bounded
trajectories. Its Hausdorff dimension § gives the ground state energy.
For the calculation of § from the tiling see [17]. § = 1.277 £ 0.001.



146 Roman Tomaschitz

Figure 5: A tesselation corresponding to a manifold with figure 3(b)
as an identification pattern; we have drawn I'(f;), the interior of the
Jordan curve. Different realizations (figures 4 and 5) of the same
pattern lead to non-isometric manifolds and different limit sets. These
fractal sets on the boundary of the universal covering space completely
determine both the bounded trajectories and the ground state wave
function. 6 = 1.289.
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Figure 6: Same as figure 4, but for the pattern in figure 3(a). A
quasiconformal, quasi-isometric deformation w of the unit disk (see
section 3) gives rise to this embryonic shape, whose boundary is quasi-
self-similar [1]: homothetically magnifying an arbitrarily small piece of
the curve, we observe similar shapes (in the sense of a quasi-isometry)
as we do on the scale of the whole figure. § = 1.300.
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Figure 7: Same as figure 5, but for a manifold with the topology
of figure 1 and the identification pattern in figure 2. This cluster is
obviously quasi-self-similar; see the caption of figure 6. 6 = 1.319.

3. The ground state wave function (non-relativistic case)

The eigenvalue problem of the Schrédinger operator on the manifold is to
solve (see [17])

—h2{A +1} =E (3.1)
om B3 R2 u = u, A
where Aps is the Laplace-Beltrami operator on B3,
1 r2\? 5 2 8
Agsi==1—- = | [Ap+ — =T
B 4< R2> [ 2t mI_ (/R or

and u is subject to periodic boundary conditions on the polyhedral faces.
Thus u is automorphic under the Kleinian group I', satisfying in B® u(y-) =
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u(-) for all v € . The bound states are square-integrable in F' with respect
to the hyperbolic volume element dVps = 8(1 — |x|?/R?)~3dz>.

In (3.1) we have replaced the Laplace operator Ags in the free Euclidean
Schrodinger equation by Aps and added a constant 1/R?,

o h
iz =D+ 1/Bh), o = uexp(~iBt/h), (3.2)

so that the zero point of the energy scale lies at the bottom of the continuous
spectrum. There is a unique bound state, the ground state, and an absolutely
continuous spectrum in [0,00]. In [14] the connection between the ground-
state energy and the Hausdorff dimension é§ of A(I") was derived by realizing
that the convergence abscissa of the Poincaré series

> (1 - 12‘2'2)3 (3.3)

is the first pole of the Green’s function of the operator Ags + 1/R™3, and
thus the ground state of (3.1). The terms (1 — (|yx|?/R?)) in (3.3) can be
interpreted for any fixed x as the radii r, of a Hausdorff cover of the limit
set A(T"), which establishes the relation between the Hausdorff dimension
6 and the first pole of the Green’s function, the ground-state energy F =
(—h?/2mR?)(6 —1)%. The analytic function defined by (3.3) has a first-order
pole at s = § on the convergence abscissa.

To construct the ground-state wave function of (3.1) we need explicit
formulas for the absolute value and the Jacobi determinant of a transforma-

tion 7 acting on B® (see [2]). Defining [x,y] = (1 + |[x|?|y|*> — 2x - y)'/2,
y :=v71(0), and O the center of B3, we have for the absolute value
Ix—yl
VX = ————, 34
™= /R y/A] -
and for the conformal dilatation
/ 1= IY|2/R2
x| =T 3.5
"X1= &R y/Ep e
where |y'x|® is the Jacobi determinant. Equation (3.4) can be written as
L (= /R~ Iy /) 5
R? [x/R,y/RJ? ’ '
and the invariance of the B? line element under 7 follows from
[v'x| 1
= y 3.7
T R 1 /R 2
Finally, |x — y|/[x/R,y/R] is a point-pair invariant,

[6x/R,By/R]  [x/R,y/R]’
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for all x,y € B® and 8 € T; and (3.5) satisfies

1 - |ByP/R? 1-|yP?/R?
[8x/R, By /R]? [x/R,y/R]*’
again for all x,y € B® and g €T
With formulas (3.4) and (3.5) one can decouple x from -y, expressing |yx|

and |y'x| as functions of x and y := y~!(0) alone.
Applying (3.6) we write the residue of (3.3) at s = § as (see [14])

lim(s — 6) 3 (1 - %'2)3

L ~yer
e gy (L= OR/R2)(1 — [xf?/R2)
a 1—»5( 5); [x/R,~0/R]?
T (1- |Xf2/R2)S 2/ p2\s
=lim [ TR e ¢ 320 1OF /)8t = 70)dn
_ [ Q= xp/Ry
5 [x/R,n/R]*

(3.9)

16'%] =

du(n) =:u(x), (x,t) =u(x)exp(—iEt/h)
(3.10)
with
du(n) = lim(s — 6) 3 (1 = [y0*/R?)*§(n — ~0)dn (3.11)

~yer

Because s — 8, du(n) is supported only on the accumulation points of
the supports 0 of the é functions in (3.11), that is, on the limit set A(T") on
Soo. Thus we can replace B® in the second integral in (3.10) by A(T).

u(x) defined in (3.10) is periodic (automorphic) with respect to I, u(g-) =
u(+), g € T'. This follows from (3.9) and the transformation property

du(gm) = lg'n|’du(n) (3.12)

of du, which is readily derived by applying to (3.11) successively 6(gn —
70)d(gn) = 6(n — g~1v0)dn, formula (3.7), and |(g7)| = |¢'| 7 .

The geometric meaning of the conformal dilatation (3.5) is this: an in-
finitesimal ball B centered at  with Euclidean radius ¢ is transformed by ¢
into a ball ¢(B) with radius |¢g'n|. This extends also to disks on S,. Since
|g'n| is the change of scale and § is the Hausdorff dimension, du measures
the volume of sufficiently small disks of radius r centered at A(T), like r°; du
is the Hausdorff measure of A(T").

Finally, because the last integral in (3.10) is supported only on S, we can
replace [x/R,n/R] by |x — n|/R. The Poisson kernel (1 — |x[>/R?)/|x — n|?
satisfies in B3
~h’ ) 1 x?/R?)’

e (Aps +1/R%) E(6)} [ = } =0 (3.13)
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if |n| = R and E(6) = (—h*/2mR?)(6§ — 1)?. Thus we have the following
Helgason representation [6] of the ground-state wave function:

_ (6 — 1)t (1— |x]*/R?)°
P(x,t) = exp (W) /A(F) o x—n®

The function is square-integrable for 1 < § < 2. (Our manifolds have infinite
volume, therefore the case § = 2 cannot occur. If § — 1 then E(§) moves
toward the lower edge of the continuous spectrum. If § = 1 there is no bound
state, and the convex hull of the limit set (see section 2) degenerates to a
spherical cap.)

This function is completely determined by the limit set A(T') and by its
Hausdorff dimension and measure. On the other hand, A can be obtained by
lifting the bounded trajectories into the covering space of the manifold; the
initial and end points of these lifts constitute A(I"). This is the reconstruction
of the bound-state wave function in terms of the bounded chaotic trajectories
discussed in the introduction.

dp(m) (3.14)

4. Isothermal coordinates at infinity of hyperbolic space and the
emergence of the limit set

The limit set A(I") determines the bounded trajectories as well as the support
of the Hausdorff measure in the integral representation of the ground-state
wave function, and in this section we will look at it more closely.

We start with a manifold that has a principal-circle group I" as a group of
covering transformations; the limit set A(T') is then a circle. We project Sy
stereographically onto the extended complex plane. A Riemannian metric
on fi (see figure 2) is then of the form

ds? = Edz? 4 2F dz dy + G dy® = \*(2,%) |dz + u(z,2)dz|*; (4.1)

in the following we will suppress the conjugated variable in A and .

Since EG—F? > 0, E > 0, and f; is a compact surface, we have |u(z)| <
K<1,A>0o0n fi.

I" acts on C as a discrete group of Mobius transformations

2= (az +b)/(cz + d), (‘; Z) € SL(2,C).

Conjugating I with an appropriate Mobius transformation, we may assume
that the projected limit set is just the unit circle, so that T'(f;) tesselates the
interior and I'(f;) the exterior of the unit disk U.

In order that ds? fit smoothly on the identified boundaries of f; it must
be invariant under I'. We have

N(g(2)) 1dg(2) + ulg(2))dg(2)|?

= N(g(2)) g:(2)|* |dz + M(g(z))%dz

z

2
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where g, denotes the derivative. Thus, if we extend A and u to U by requiring

X(g(2)) = AZ(z)gja;

(4.3)

and

9z
1(g(2)) = u(z)Z__’ (4.4)
for example, = 0, A = (1 — |2|?)7%, then the invariance of ds?® follows.

The space of functions p that satisfy in U |p| < K < 1 and (4.4) can
be parametrized by 6(¢g — 1) independent complex parameters, g being the
genus of f;. This follows from the Riemann-Roch theorem, for u can be
represented as p = (1 — |2|?)?p(z), where ¢(z) is a bounded quadratic dif-
ferential, ¢(g(2))g? = ¢(z) for g € T, and |p(z)| < const.(1 — |z[*)72 in
U.

There is a standard way to generate such differentials and thus uniformly
bounded p with the property (4.4), namely by the Poincaré series

w(2) = (1= 21" 2 hlg(2))Z, (4.5)

gel

where h is an analytic function in U such that [ |h|(1 — |2|*)~2dz < co.

A deformation of the manifold via contractions and dilatations along its
necks corresponds now to the introduction of global isothermal coordinates
on f; (or f) for a given metric determined by a y and a A that fulfill (4.3)
and (4.4).

We ask for a diffeomorphism z — w(z) that makes ds in (4.1) propor-
tional to the Euclidean line element:

ds = A\(2) |dz + p(z)dz| = C(w) |dw], (4.6)
where C(w) is an arbitrary proportionality factor. We have from (4.6)

ds = C(w(z)) |w,]| (4.7)

where ws is the derivative with respect to the conjugated variable; thus w is
a solution of the Beltrami equation (see [1])

Wy = Uw,. (4.8)

We extend p to all of C by requiring g = 0 (i.e., w analytic) outside the
unit disk U. Then there exists a homeomorphism C — C, z — w(z) that
is differentiable in U, analytic for |z| > 1, and satisfies equation (4.8) in C,
with the exception of the unit circle S where p is discontinuous.

Since w is non-differentiable on the unit circle, it maps S onto a fractal
curve (homeomorphically). Moreover, it is determined up to a Mobius trans-
formation, and wI'w™! is again a group of Mobius transformations. This
follows from (4.4), the chain rule (see [1])

o lE) = s(2) £
'u‘gf’f’l(f( )) 1— Nf(z)ug(z) m (4'9)
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where ps := fz/f., and the fact that the only meromorphic invertible func-
tions in the extended complex plane are Mobius transformations.

w can be constructed explicitly via an integral equation equivalent to
(4.8). Since w(z) is determined only up to a Mobius transformation, we fix
it by requiring w(z) — z for |z| — oco. Applying the generalized Cauchy
formula for non-analytic functions (see [1]) to w(z) — z gives

w(z)=2z— l/ we(©) dc. (4.10)

TJu(—2

Differentiating (4.10) and using (4.8) we have

a&@:MQWL—%Lé%%%M] (4.11)

The standard iteration procedure for (4.11) gives finally (u(z) < K < 1)

i) = gl [1 27 %da

1 #(C) 1 (G)
+5 [ = e 412

7 Jo Jo G - GP(G - % 42)
Applying the homeomorphism w(z) of the complex plane constructed via
(4.5), (4.12), and (4.10) to the unit circle, we get limit sets as depicted in
figures 4 through 7.

5. Open Robertson-Walker cosmologies of multiple connectivity

We consider cosmological line elements of the form
ds® = —c*dt* + a®(t)do?, (5.1)

where do? is the metric of hyperbolic 3-space, which we may represent in the
coordinates (2.1) of the Poincaré ball B® .The expansion factor of 3-space a(t)
determines the Gaussian curvature K = —1/(aR)? of the space-like sections
t = constant. The space-like projections of the geodesics into B® calculated
via (5.1) are, as in the non-relativistic case, arcs of semicircles orthogonal to
Seo- Only the time dependence of the geodesics changes (see [18]).

The topological structure of 4-space is now RY x I x S, R being the
time axis 0 < t < oo, and the 3-space I x S (I a finite open interval, S
a compact Riemann surface) is again represented in B® as a polyhedron
F with face-identification by I"'. " We mention that F' and I' can also vary
in time, constituting a one-parameter family (F(¢),['(t)) of non-isometric
3-manifolds. Even the topological structure of 3-space may change; for ex-
ample, it could disintegrate by developing parabolic cusp singularities at the
boundary of the deformation space (see [3, 7]).

We call a trajectory bounded if it stays in a finite region that is not
expanding faster than 3-space itself . The bounded chaotic trajectories are
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again intimately connected with the limit set A(T'). For example, if the
expansion factor a(t) is of the order t*, @ > 1 for t — 0, a trajectory is then
bounded for ¢ — 0 only if its lifts in the covering space emanate from A(T);
in this case it has the Bernoulli property. Likewise, if a(t) is of order ¢,
B <1/2 for t — oo, it is then bounded for ¢ — oo only if its lifts end in the
limit set A(T"). In de Sitter space (a(t) = sinh(At)) the bounded trajectories
are exactly those that emanate from A(T") (see [18]).
The wave equation on the covering space R* x B? reads

[0 — &R — (me/h)?| ¥ =0, (5.2)

where O is the Laplace-Beltrami operator of the line element ds? in R™ x B®
(09 := g*P1)..5), and € is the (dimensionless) coupling to the curvature scalar
R. Imposing as in section 3 [-periodic boundary conditions on v, we get the
wave equation on the manifold RT x I x S.

Separation of variables 9(t,x) = 9 (x)p(t) in (5.2) gives

[Aps + R25(2 - 6)] § =0, (5.3)

where Aps is the Laplace-Beltrami operator of B*® as in (3.1), and the sepa-
ration constant R™25(2 — §) appears as a spectral parameter. Here we keep
(F,T) independent of time, otherwise equation (5.2) is not separable. For ¢
we have

¢+3 8«: + [(me/h)? + A%6(2 — 8)a™>(t) + PER(W)] 0 =0, (5.4)

with A = ¢/R.

Concerning the time dependence of 1), we impose the following end-value
condition on (t) (positive frequency solutions): o(t) ~ f(t)e™® for t — oo,
with real f, g; f(t) monotonically decreasing; and g(t) strictly monotonically
increasing, thus approximating as well as possible the Minkowski space solu-
tions in the asymptotic regime, when 3-space gets flat.

Equation (5.3) we discussed in section 3: there is a unique bound state
for a ¢ in the open interval (1,2), and absolutely continuous spectrum for
6(2—06)>1.

With the covariant and indefinite scalar product for wave fields as in [18],
the normalization condition for ¢ reads

1. - -
5 (B¢ — ¢7) = +ia (), (5.5)
where ¢, P is a pair of fundamental solutions of (5.4).

The energy-momentum tensor 7}, of the field in (5.2) we get by variation
of the action functional

s = [da'v=g {50 [uu + Tutea] + [(me/hf +€R) wT)  (56)
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with respect to the metric g*” — g*” + 6g**:

55 = / dz*/ =g 69" T, (5.7)

For the calculation of T},, we need the variation of the determinant, 6g =
—99,,0g"", and the variation of the Ricci tensor, g‘“’éﬁfw = w*y, with w? =
g‘“’&l“ﬁ,, — g“’\éFZU (we use locally geodesic coordinates, I'g, = 0, gu,x =
and the sign conventions of reference [13]). Expressing I';, and g*T’}, in
terms of g, g*¥, and their derivatives (see [4, 12]), we arrive finally at w* =
——6g’\",u + g"*gw&g"”’n. By applying Green’s theorem in locally geodesic
coordinates, and then passing over to covariant derivatives, we obtain the
energy-momentum tensor of a scalar field coupled to the Ricci scalar:

Ty = t0™) + &85, (5.8)
with

t(min.) _ 1 o 1 af e 1 & 9

) = = (Wt + cc.) = 209" (badhs + cc.) — S(me/R) Wby,
and

tl(teli(t.) = (R/w - %Rg;w) 1/)¥ - (1/),“1/)_,1/ £ J’l/);lw o C.C.)
+9,9°? (w,alp_ﬁ + Pipoop + c.c.) .

For the calculation of Toy we note that 1.0 = ¥ 0o (because the relevant 3-
indices vanish), and we eliminate t.,4 in (5.8) by means of the wave equation

(5.2). Finally, Rgo = —3d/a, and
R=6 { -1, a0 | a0 } . (5.9)

a?(t)R?  ca(t)  c2a?(t)

The energy of the wave field is calculated as
E =hé / Toud=*, (5.10)
by
with ¥ an arbitrary space-like hypersurface for which we may choose the
3-space. Then X° is the only non-vanishing component of d-*, and is given

by d%° = a®(t)dVps, where dVps is the volume element of (2.1).
Applying Green’s formula again in (5.10), we arrive finally at

E(t,8) = %haf‘ {(w + 6&%) m

(Tﬁi) +A%[6(2—6) —6€]a?+6£(1 — 65)2—2} } ,

(5.11)
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which generalizes the energy formula in [18] to the non-minimally coupled
case, which is as we will soon see essential for the treatment of massless
particles. Note that (5.11) no longer contains the space part of the wave field.
This expression is obviously positive definite for 0 < 66 < min[1,8(2 — §)];
but positivity is too restrictive a condition, for example in the treatment
of massless particles. What we will require is uniform boundedness of the
energy functional from below.

We discuss (5.11) valid for every Robertson-Walker line element in the
context of de Sitter space. We then have a(t) = sinh(At), where 3A%/c? is
the cosmological constant, R =12A2 /c%, and R = ¢/A. We define

9\ 2
w5t = —i —2(1—6¢)+ (%) and v?=1-6(2-6), (5.12)

and assume % > 0 to ensure the right time behavior at infinity. The positive
frequency solution for ¢ — oo is then

<p(t) — (A|R|)—1/22(3/2+in)e—At(3/2+in)

75 2, 3. 4At
x{l+1+m [Z*” +§m] +0[e )}, (5.13)

and for ¢ — 0, v > 0 (ground state),

N 2t D(1+44k)D(v)2"
\/27r|/<;|A I'(1/2+ic+v)

Pgst.(t) (At)™ L. (5.14)

For t — 0, Im(v) > 0 (continuous spectrum),
25T (1 + ik
p(t) ~ Al
/27 |k|A

L(—v)27
% [r(1/2 Fik—v)

(5.15)

(At)u—1+ 5 F(V)2U (At)—u-l .

(1/2+ ik +v)
The negative frequency solutions are conjugated to them.
With these solutions we obtain the time evolution of energy in the asymp-
totically flat region,

2.4

AR = mc® + O(h?), (5.16)

E(t — oo,m > 0) ~

and
2RA(L — 6€)[36 — 56(2 — 6)] _pn,
V126 —9/4 (12¢ — 5/4) '

The leading order of the asymptotic expansion is independent of the spectral
variable v.

E(t — co,m =0) ~ (5.17)
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At the beginning of the evolution, for ¢ — 0, we have

AA2Z7IT2 (V) (1 + v)(1 — 6€)
sinh(7|&|)|T'(1/2 + v + ik)|?

Finally, for Im(v) > 0, writing v = iv, v = /§(2 —§) — 1 > 0,

E(lm(v) =7 >0,t = 0) ~ ? {A@, 5, + Re [B(7, x,§)(At)"] },
(5.19)

E(v>0,t —>0)~ (At)~21, (5.18)

with
A(D, k, €) = 7 coth(r|k|)coth(nD) (7% + 1 — 6€)

and

7 _(1-865)(1 —) I2(—iiy)2-2%%
B(0,k,¢) = sinh(n|s]) [(1/2—ip +ik)[(1/2 — iv — iK)’

In the initial state of the cosmic expansion (for ¢ — 0), there is an infinite
oscillation of E (equation (5.19)) between the two curves it~*(A 4 |B|) with
an amplitude #¢~!|B| and a frequency (e™”—1)"'¢"!, both diverging to infin-
ity (A — |B| > 0; see below). On the other hand, the energy associated with
the discrete eigenvalue (equation (5.18), and 1 — 6 > 0) does not fluctuate
at all, and overpowers that of the continuous spectrum (see equation (5.19))
for any fixed 7. However, we see from the following asymptotic expansion,

E( — o0,t) = %f/ [1+00/7), (5.20)

valid for any fixed ¢, that it lies well inside the range of energies obtainable
from the continuous spectrum. We compare these formulas with the classical

energy, £ = mc*/1+ const.a2(t). The constant depends on the initial
velocity, and F does not depend at all on the trajectory, bounded and chaotic
or regular and unbounded. The only thing that is common to the classical
and quantum energies is the inverse time behavior (a™!(t)) for ¢t — 0.
Finally we discuss the boundedness of E. Every solution of (5.2) depends
on three parameters: m, &, and the spectral variable §(2 — §). There are
restrictions on m and & k%(m,§) in equation (5.12) must be positive in
order to fulfill the boundary conditions. The requirement on E of uniform
boundedness from below, simultaneously for ¢ and §(2 — §) for fixed m and
&, imposes further restrictions on the spectral variable §(2 — §). At first we
note that, in equation (5.18), we have to require 1 — 6 > 0. If this is not
satisfied we exclude the solution corresponding to the discrete eigenvalue, as
is the case for m = 0. The smallest value that the second term in (5.19)
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periodically admits is —|B|. The necessary and sufficient condition that
ensures boundedness of E from below for ¢ — 0 is thus A — |B| > 0, or

1 sinh?(7k)

cosh(mk) cosh? (D)

F)="+1-66—Viz+1|1—6¢

> 0,
(5.21)

with 0 < 7 < oo and 7 = /6(2—6) — 1. Note that F(¥) = 1 — 6 —
[1 — 6£] + O(9?). There is for given m and ¢ at most a finite interval to
be excluded from the spectrum of Aps to ensure E(v,t) > const.(m,§) for
t — 0. From the asymptotic formulas (5.16), (5.17), and (5.20), and from the
asymptotic behavior of the exact solution [18] for 7 a2 const. exp(At) — oo
(le(7,t)| = const.exp(—3/2 At), which gives a lower bound for the second
term in (5.11)), we conclude that the energy functional is bounded from
below, uniformly for all ¢t and v with the exception of the excluded interval.
It can be made positive definite by adding a finite constant, independent of
v and t.

6. Conclusions and outlook

We have given an example for the reconciliation of the concept of a wave
function with that of classical trajectories in an unstable system, geodesic
motion in infinite, constantly curved spaces of multiple connectivity. This in-
terdependence of trajectories and wave functions is mediated in the universal
covering space B? of the manifold by the limit set A(T") of the Kleinian group
T of covering transformations. This fractal point set at infinity of hyperbolic
space comprises all the information that is contained in the wave function,
which appears as the solution of a boundary value problem in B?, with the
boundary data provided by the Hausdorff measure on A(T).

Three-manifolds of the above-mentioned type appear as space-like sec-
tions in Robertson-Walker cosmologies. Their multiple connectivity produces
chaotic trajectories and bound states (square-integrable chaotic wave fields),
which are determined by the limit sets of the covering groups of the space-like
slices. In section 5 we discussed in some detail in the context of de Sitter
space the asymptotic time behavior of the energy of such wave fields, and its
dependence on the Hausdorff dimension of the limit sets.

We considered scalar wave fields coupled to the Ricci scalar. This coupling
by the dimensionless parameter £ has no analogy in classical mechanics. The
curvature scalar (5.9) of Robertson-Walker cosmologies depends only on the
time variable, and may change its sign during the time evolution. Even in de
Sitter space, where the Ricci scalar is a constant, it is not possible to absorb
it in the mass term of equation (5.2), for this would lead to a different energy
(see (5.11)). The reason for this is that, in (5.11), the variation of the Ricci
scalar also enters. Thus, even in de Sitter space the energy depends in a
non-trivial way on three parameters: £, m, and the spectral variable v. It
is again the energy functional that, for given m and &, determines the range
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of the admissible values of the spectral variable by the condition of uniform
boundedness (see (5.21)).

Finally a comment on the energy formulas (5.18) and (5.19). The bound
state has a simple power law behavior that is more strongly singular than
that of the extended states because of a localization phenomenon explained
in [18]. Moreover, the extended states show oscillations with a frequency
and an amplitude both diverging to infinity, so that the energy becomes
ultimately unresolvable, lying in the band ht~'(A =+ |B|), which indicates the
instability of the extended states at the beginning of the expansion.

It was noted long ago [15] that a time-dependent expansion factor can
cause backscattering of freely propagating classical fields, and may lead to
production-annihilation processes in quantum fields. The point is that an
initially more or less monochromatic wave packet can receive during its evo-
lution admixtures of waves traveling in the opposite direction. In the classical
case the situation is then similar to the wave propagation in a medium with a
time-dependent index of refraction [10]. However, with a conformally coupled
field like the electromagnetic one such effects cannot occur in a topologically
trivial space, the evolution being equivalent to that in a static universe,
modulo some rescaling with the expansion factor. A wave packet composed
initially of positive frequencies will never develop negative ones. However,
that is not true if 3-space is multiply connected. This comes as follows.

In the simply connected Robertson-Walker models the space-like sections
at different instants of time are always isometric after rescaling with a con-
stant factor. In the multiply connected models, though perfectly isotropic,
the situation is quite different. Here the fundamental polyhedron embed-
ded in hyperbolic space may itself vary in time; for example, the dihedral
angles and the 3-manifolds that are obtained by imposing the Minkowski
metric onto them are generically non-isometric (see section 5). In fact, a
Robertson-Walker cosmology is determined by a time-dependent expansion
factor and a time-dependent path in the deformation space of the polyhedron
representing 3-space [3, 7]. A mixing of positive-negative frequencies can oc-
cur because of this second time dependence, even if the expansion factor does
not, vary or the field is conformally coupled.

Apart from the mixing of modes because of this time dependence, we
have backscattering independent of time for classical fields just because of
the high connectivity of 3-space, as we have it for classical trajectories. This
topological scattering must be very irregular and chaotic, and the scattered
wave trains will finally be uniformly distributed over the space manifold,
which might provide a new explanation of the background radiation.
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