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Abstract . We conside r classical and qu an tum motion on mu lti­
ply connected hyper bolic spaces , which appear as space-like slices
in Rob ert son-Walker cosmologies. The to po logical st ruct ure of these
man ifolds creates on the one hand bo unded chaot ic trajectories , and
on the ot her hand quantal bou nd states whose wave functions can be
reconstru ct ed from the chaot ic geodesics. We obtain an exac t relation
between a pr obabilist ic quantum mechan ical wave field and the cor­
resp on ding classical syst em , which is likewise pr ob ab ilist ic becau se of
the inst ab iliti es of the tr a ject ories wit h resp ect to t he initi al condi­
t ions. The cent ral part in t his reconst ru ction is played by the fract al
limit set of the covering group of the manifold . This limi t set deter­
mines t he bounded chaotic t raject ories on the man ifold. Its Hausdorff
meas ur e and dimension det ermine the wave funct ion of t he quantum
mechanical bound sta te for geodesic motion.

We investiga te rela tivist ic scalar wave fields in de Sit ter cosmolo­
gies , coupled to the cur va t ur e scalar of the man ifold. We st udy the
influ ence of the top ological st ructur e of space-t ime on their time evo­
lu tion. Likewise we calcula te the ti me asympto tics of their energies
in t he ea rly and la te stages of the cosmic expansion .While in t he late
st ages both bo und ed and un bou nded sta tes approach the sa me rest
energy, t hey show significantly different beh avior a t the beginning of
the expansion . While t he st able bo und states have simple power law
behavior , extended states show oscilla t ions in their ene rgy, wit h a fre­
qu ency and an amplitude both diverging to infini ty, indica ting t he
instability of t he qu antum field at the beginning of t he cosmic expan­
sion.
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1. Introduction

Lit t le else has led to as much cont roversy in twent iet h-century physics as the
quest ion about the probabilist ic or determinist ic nature of the microscopic
laws of motion . The problem is that, despi te the complete failur e of clas­
sical mechani cs applied to microscopic problems and the un iversal success
of quantum mechan ics as a tool of pr edict ion and calculat ion , the questions
why qu an tum mechanics works and which st ructures we really calculate with
it are not an swered by the pr obabilist ic interpr etation of 'lj; , Schrodinger 's
wave funct ion.

In t his work we pr esent a simple example, geodesic motion on multiply
connected Riemannian spaces of constant negative cur vature and infini te
volume, and reconstruct wave functions from chaotic classical t ra jectories in
an exact, non-semiclassical way.

It might seem st range that it is possible to reconstruct a non-deterministic
wave field from classical geod esics. The point here is that we actually relate
two pr obab ilistic models of microscopic motion , that of quantum mechan ics
and that of unstable classical dynam ics. T he classical t rajectories in question
have posit ive Lyapunov expo nents , and the expo nential divergence of ini ti ally
neighboring tr ajectories makes it impossible to determine their evolut ion
using Newton 's equations , given the finit e accuracy of the initi al condit ions .
These equations are t rue at every moment of the motion , but not as an
ini ti al value problem pr edictin g the future. T hey are just an expression
of the following insight , Newt on 's (second) law: "T he change in mot ion is
proportional to the mot ive force impressed and occurs along the right line in
which that force is imp ressed ."!

The scenario here is that the par ticles, if their mot ion is bo unded , in­
habi t a finit e domain of the manifold , and their tr ajectories there are dense,
ergodic, and mixing. Thus a classical po int part icle is, despite the fact that
it moves along a smooth t rajectory, afte r a short Lyap unov t ime not any
more localizable within this domain (this domain is one and the same for all
bounded t rajecto ries).

In quantum mechan ics we have the fundament al principle that the initi al
values, say of moment um and coordinates, cannot be realized simultaneously
with arbitrary pr ecision due to uncertainty relations. In classical but unstab le
mechan ics it is true that we can prepare the init ial values of the coordinates
and the momentum wit h any wished finit e pr ecision , but the inevitable erro r
augments expo nent ially after the Lyapunov time. In particular , if we choose
a Gaussian init ial distribution for the momentum and the coordinates, and
apply the geodesic flow to it , we observe dispersion of the classical pro bability
density. Moreover in the dynami cal system that we consider here, namely
geodesic mot ion on negatively curved spaces, the class ical probability density

1 Mutatione m motus proport ionalem esse vi mo trici im pressae et fieri secundum lin eam
rectam qua vis illa imprimitur. Cited from I. B. Cohen , Introduction to Newton's Principia
(Cambridge , MA , Har var d University Press, 1971).
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disp erses at the same rate as the qu an tum mechanical one, if we st art with
the same init ial distribu tion . Thus in both cases , though the reasons are
quite different , the part icle slips through our at tempts to pr edict its futur e.

In section 2 we give a sketc h of classical non-relativist ic mechanics on
hyp erbolic 3-m anifolds. In section 3 we perform the above-mentioned re­
const ruct ion. We embed the manifold into its universal covering space; the
ground sta te wave function is then completely determined by the limit set
of the covering group (namely by the Hau sdorff measure and the Hau sdorff
dimension of this singular set ). On the other hand, this limit set emerges as
the set of ini ti al and end points of the bounded trajectories lifted into the
covering space. In sect ion 4 we discuss the analytic cons truction of these
singular sets , which provide the basic link between the chaotic tr aj ecto ries
and the bound state wave fun ctions, and give some num erical examples.

In sect ion 5 we apply this form alism to relativistic wave fields in
Rob ertson-Walker cosmo logies. This needs some introdu ctory comments.
Cosmologies sa t isfying the principle of homogeneity and isotr opy are de­
scribed by a four-dimensional Riemannian space, whose spac e-like slices­
namely the three-dimensional sections at a fixed t ime- are 3-man ifolds of
cons tant Gaussian curvature. Einst ein 's equa tions do not det erm ine the
topological struct ure of th ese sect ions , and usually the topology is assumed
to be tr ivial, given either by flat Euclidean space or th e 3-sphere in the case
of positive cur vatur e (closed model, fini te volume) , or by a shell of th e thr ee­
dimensional Minkowski hyperboloid in the case of negative cur vature (open
model, infinite volume). T his is so par tially for reasons of simp licity, and
partially becau se of lack of observational evidence, given that even the ques­
tion of whether the un iverse is closed or open is nowad ays far from being
resolved .

Soon after Einstein had proposed his cylindrical universe, the math emat i­
cian Felix Klein , well aware of Poincare's work on 3-manifolds and fundamen­
tal polyhedra , point ed out that the 3-sphere representing the 3-sect ions in
this model may also be regarded topo logically as projective space, if one
identifies diametrically opp osite point s [5]. Since then th e possib ility of a
non-triv ial topological st ru ct ure has been apparent , and has been mentioned
from t ime to time (see [8, 13]).

Cosmologies locally describ ed by a Rob ertson-Walker line element are re­
garded to day as the most likely candidates to prov ide realist ic models for the
evolution of the uni verse, and in [18] we started to investigate the influence
of the poss ible multi ple conn ect ivity of the space-like slices on th e dynami cs
of particles geodesically moving on them. How does the topo logy influence
the dynam ics, and can one draw from th e dynamics of part icles conclusions
about the topology? This approach is in some sense reminiscent of Mach 's
principle, namely that the global structur e of the universe det ermines the
local laws of motion-inertial forces being gravitat ional- stemming from the
mass content of the whole (closed) uni verse. But our emphasis lies more on
the topological st ru cture of the open un iverse, which is in turn related to the
energy momentum tensor of the mass distr ibu tion.
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In section 5 we also investigate wave solutions of the Klein-G ordon equa­
tion in de Sit ter space. Such solut ions ar e characterized by three paramet ers:
mass; the dimensionless coup ling constant of the field to the curvature sca lar;
and t he spectral var iable of the Laplace-Beltrami ope rato r of the space-like
slices, which are now mu ltiply connected and ope n . The non-m inimal cou­
pling of the field to the curvature is essent ial for the treatment of massless
particles.

We find bound states of wave fields and th e corre sponding chaotic tra­
jectories that are both foreign to the traditional open models in cosmology.
Finally we calcula te th e time evolution of the energy of wave fields in the
early and late stages of expand ing de Sit ter space. While in the la te stages,
when 3-space gets asy mptotically flat and the energy always approaches es­
sentially the classical rest energy, we find cruc ial qualitative differences in
the evolution of bound states an d extended states at the beginning of the
cosmic evolution. Oscillat ions appear in the energies of the extended states
whereas the bound states show simple power law behavior , t he exponent s
being determined by the Hau sdorff dimensions of the limit sets of the cov­
ering groups of the space-like slices ; for further discussion we refer to the
conclusion , section 6.

2. A short preci s on classical mechanics in hyper b olic sp a ces

T hree-dimensional hyperbolic space H 3
, a shell of the Minkowski hyp erboloid

x6 - x 2 = R2 and endowed wit h the metric ds2 = dx 2
- dX6 , can be isomet­

rically represented as an open ball B 3
, [x ] < R , wit h the met ric

(2.1)

which induces constant negative sectional curvature - 1/ R 2 on B 3
. For de­

tails in this section we refer to [2, 11, 17].
Geod esics in this geometry are arcs of circles orthogo nal to 5 00 (jx] =

R, the sphere at infini ty of hyp erb olic space), and the geodes ic plan es are
dom ains on spherica l caps orthogo nal to 5 00 ,

A hyp erbolic man ifold , that is, a manifold of constant negative cur vature,
can be emb edded in B 3 as a non-Eu clidean po lyhedron whose faces (lying on
geodes ic plan es) are identified in pairs with elements of the invari ance group
of the metri c, the Lorentz gro up 5 0+(3, 1) . T he polyh edr on may also have
free faces, domains on 5 00 th at are not ident ified , representing the bo undar ies
of the manifold a t which th e conformal factor of the met ric gets infini te.

Arp 's sculpture in figur e 1 is an example of how such a hyp erbolic manifold
may look if the identification of the polyh edral faces is carr ied out . It is a
sur face of finit e thickness, a topological product I x 5 of a fini t e open interval
and a compact Riemann sur face of genus four. If we remove the interior and
ex terior bo undar ies-that is, if we take the op en interval- we get a comp let e
metric space.

In figur e 2 we have dr awn the ring of base circles on 500 of the spherical
caps on which the faces of the po lyhedron lie. T he exterior domains of the
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F igure 1: Jean Arp 's sculp ture Ptolernee II , 1958, is the typical ex­
ample for the topological structure of a hyperbolic manifold with the
identificati on pattern in figure 2. The exte rior visible bo undary cor­
responds to [i , t he interior sur face of th e bronze layer to h - (P hoto
by E. B. Weill. Rep roduced with permission .)
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(2.2)

rin g, II and 12 , are the two free faces of the polyhedron , which fill the whole
space B 3 wit h the except ion of the interior of the caps.

If we ident ify the caps in t he way indi cated in figure 2, we get topologically
a thickened surface of genus four , like the bronze sculpture in figure 1. T he
actual realization of this identification pattern in B 3 has to be chosen so
that the metric inh erited from B 3 fits smoo thly on the identified faces. The
crite rion for this is that the Kleinian group I' generated by the face-identifying
transformat ions tess elates if applied to the polyhedron F , the int erior of the
spherical caps.

Traj ectories in the manifold are realized by projecti ng B 3-geodesics into
F: If the circular arc intersects a t ile ')'(F ), the arc piece lying in this t ile is
mapped via /,- 1 back into F. T he set of all proj ected arc pieces constit utes
the trajectory in F , the initi al and end point s of the arcs being properly
identified by the identification of the polyhedral faces.

The group I' is countably infinite, and therefore the f -images of F ­
which constit ute a tiling of B 3- have accumulation points. T hey lie on Soo
and const itute the limi t set A(f), a closed quas i self-similar Jordan cur ve
in the ring of base circles of the caps . Since f leaves Soo invariant , A(f)
appears likewise as the set of accumulat ion points of images of 11 and fz ,
f(J1 U fz) = f (Jl ) U f (fz ), where f(Jl ) ap proximates A(f) from the interior
of the ring of base circles (see figures 7 and 5 for the manifolds in figures
2 and 3(b)) , and f (fz ) approximates A(f) from the exterior. In figur es 4
an d 6 we show the complet e tesselations f (Jl ) U f (J2) of Soo for mani folds
corresponding to the ident ification patterns in figures 3(b) and (a). Different
realizations of the same pat tern , for example figur es 4 and 5 of the pat tern
in figure 3(b), lead to globally non-isometric manifolds of the same topolog­
ical structure . The different Hausdorff dimensions (see the figure captions)
of curves corresponding to the same pattern reflect this fact, for they are
determined by the ground-state energy of the Schrodinger ope ra tor , which is
in turn complet ely determined by the global metric st ructure of the space.

In the non-relativisti c case (sect ion 3) we call a t rajectory bounded if it
lies in a finite domain , such as a sphere of finite hyp erbolic radius, during
the whole t ime evolut ion given by Newto n 's equations

dv 1 [2 ]dt = R2 x · V - V . (x v) ,

where v := da fdt = 2(1 - Ix I2 /R2 )- l dx / dt . The relativist ic concept of
boundedness in a t ime-dependent metric we give in section 5. The bounded
trajectories are exac t ly the projections of B 3-geodesics with initial and end
points in A(f): applying I' to a B3-geodesic (circular ar c) with initial and end
points in A(f), we get countably many such arcs because of the invari an ce of
A(f) under f . Their intersection wit h F gives the projected t rajecto ry. The
t rajectory is bounded because the arc pieces are uniformly separated from
Soo' These proj ections are just covering project ions from the unive rsal cover
B 3 into the manifold F. f is the group of covering transform at ions , and F is
the quotient B 3\f. The bounded trajectories fill densely a finite domain in



<0
>:::
\l>
i::l
2"s
g
\l>
0
til

0
i::l

~
'"c:i
~

fz
0-
0
'-
~ .

<:)

~
i::l

~
Q
til
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(a)

(b)

Fig ur e 3: These ident ifica tion patterns give rise to manifolds similar
to that in figure 1, but now of genus five (a) and six (b). T he dia­
gram s have to be completed as in figure 2; as depicted th ey are the
ident ifica t ion pattern s of fibers (compact Riemann surfaces) of the
manifolds, which fiber over a finite open interval.

F , uniformly separated from 5 00 , nam ely the quotient C(A)\f , where C(A)
is the hyp erb olic convex hull of A (see [16]).

If the end point of the arc to be project ed does not lie in the limi t set ,
it intersect s for t ----+ 00 only finitely many polyhedra of the tesselation, so
the particle approaches one of the boundary surfaces of the man ifold (in the
project ion of the arc in the last intersect ed polyhedron).

Moreover , from this construct ion it is also obvious that bounded trajec­
tories can be screened by unb ounded ones if we choose their initial and end
points sufficient ly close to the limit set . Thus, though there are only a few
bounded t rajectories, many unbounded t rajectories will stay arbit rarily long
in the manifold before ultimately tending to infini ty.



Quantum Chaos on Hyp erbolic Manifolds 145

Figure 4: If we apply the discret e group I' generated by the side­
pairing mappings in figure 3(b) to the free polyhedral faces h and
h, we get a ti ling of the interior f (h) and the exterior r(h) of th e
Jordan curve A(f) . This curve itself emerges as the set of accumula­
tion points of f -im ages (t iles) of h and h . A(f) is the suppor t of th e
Hausdorff measure in the int egral representation of the wave fun ction,
and constit ut es the set of init ial and end points of lift s of bounded
traj ectories. It s Hausdorff dimension 6 gives the ground state energy.
For the calculation of 6 from the tiling see [17]. 6 = 1.277 ± 0.001.
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Fi gure 5: A tesselation corresponding to a manifold with figure 3(b)
as an identifica tion pat tern; we have dr awn r (II ), the in terior of the
Jord an curve. Different realizati ons (figures 4 and 5) of the same
pattern lead to non-isometric manifolds and different limi t sets . These
fract al set s on the boundary of the universal covering space completely
det ermin e both the bounded tra jecto ries and the gro und state wave
fun ct ion. 5 = 1.289.
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F igure 6: Sam e as figure 4, but for the pattern in figur e 3(a). A
quas iconformal, quasi-isometric deformation w of the un it disk (see
section 3) gives rise to this embryonic shape, whose boundary is quasi­
self-similar [1]: homothetically magnifying an arbit rarily small piece of
the curve, we observe sim ilar shapes (in the sense of a quas i-isomet ry )
as we do on th e scale of the whole figure. 5 = 1.300.
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(3.1)

Figure 7: Same as figur e 5, but for a manifold with the topology
of figure 1 and the identifi cation pattern in figur e 2. This cluster is
obv iously quasi-self-similar ; see the caption of figur e 6. 8 = 1.319.

3. The ground state wave function (non-relativist ic case)

The eigenvalue problem of the Schrodinger operator on the manifold is to
solve (see [17])

h
2

[ 1 ]2m t:>.B 3 + R2 U = E u ,

where t:>.B 3 is the Laplace-B eltrami ope rator on B 3
,

1 ( r
2

) 2 [ 1 2 a]
t:>.B3 := 4: 1 - R2 t:>.E 3 + R21 _ (r2/ R2)r or '

and u is subject to periodic boundary condit ions on the po lyhedral faces.
Thus u is automorphic under the Kleinian group r , satisfying in B 3 u(,·) =



Quantum Chaos on Hyperbolic Manifolds 149

u(·) for all , E f . T he bound states are square-integrable in F wit h respec t
to the hyperb olic volume element dVB 3 = 8(1 -lx I2IR2)-3dx3 .

In (3.1) we have replaced the Lap lace operator t:.E 3 in the free Euclidean
Schrodinger equat ion by t:.B 3 and added a constant IIR2

,

'Ij.; = u exp( - iEtlfi ), (3.2)

(3.3)

so that the zero point of the energy scale lies at the bottom of the cont inuous
spectrum . There is a unique bound state , the ground sta te , and an absolutely
cont inuous spectrum in [0,00]. In [14J the connection between the ground­
state energy and the Hausdorff dim ension 8 of A(f) was derived by realizing
that the convergence abscissa of the Poincare series

L (1-bxt )S
I'Ef R

is the first pole of the Green 's fun ct ion of the operator !lB3 + IIR - 3 , and
thus the ground st ate of (3.1). The terms (1 - (l , xJ2IR2)) in (3.3) can be
interpreted for any fixed x as the radii r l' of a Hausdorff cover of the limit
set A(f), which establishes the relation between the Hausdorff dim ension
8 and the first pole of the Green 's function , the ground-state energy E =
(_ fi212mR2 )(8 _ 1)2 The analyt ic function defined by (3.3) has a first -order
pole at s = 8 on the convergence abscissa .

To construct the ground-state wave funct ion of (3.1) we need explicit
formulas for the absolute value and the Jacobi determinant of a tr ansforma­
tion , acting on B 3 (see [2]) . Defining [x. y] = (1 + Ixl 21 yl2 - 2x .y)1/2,
y := , -1(0), and 0 the cente r of B 3

, we have for the absolute value

Ix-yl
I,xl = [xl R,y I R]'

and for the conformal dilatation

(3.4)

(3.5)

where 1,'x1 3 is the J acobi determinant . Equation (3.4) can be written as

l, xl2 (1 - Ixl2IR 2
) (1 - lyl2IR 2

)

1 - R2 = [x IR ,y I RJ2 '

and the invariance of the B 3 line element under , follows from

(3.6)

I,'xl 1
(3.7)

Finally, [x - yl/ [xl R,y IR] is a po int-pair invariant ,

If3x - f3yl
[(3xlR, (3yIR]

Ix - yl
[xlR,yIRJ' (3.8)
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for all x , y E B 3 and 13 E I'; and (3.5) satisfies

l -lf3yl2/R2
1 l- lyl2/R2

[f3xlR, f3yIR]2 113 x] = [xl R, y IR]2 '

Roman Tomaschitz

(3.9)

again for all x, y E B 3 and 13 E f.
With formu las (3.4) and (3.5) one can decouple x from " expressing lixl

and Ii'xl as functions of x and y := ,-1(0) alone.
Applying (3.6) we write the residu e of (3.3) at s = 6 as (see [14])

with

(3.11)

Because s ---> 6, dJ.i("1 ) is supported only on the accumulation points of
the supports , 0 of the 6 functions in (3.11), that is, on the limit set A(f) on
Soo ' Thus we can replace B 3 in the second integral in (3.10) by A(r).

u(x) defined in (3.10) is periodic (automorphic) with respect to I' , u(g·) =
u(·), 9 E f . This follows from (3.9) and the t ransformation property

(3.12)

of du, which is readily derived by applying to (3.11) successively 6(gTJ ­
, O)d(gTJ) = 6("1 - g-l,O)dTJ , formu la (3.7) , and l(g-l)'1= 19'1-1

The geometric meaning of the conformal dilatation (3.5) is this : an in­
finitesimal ball B cent ered at "1 with Euclidean radius e is transformed by 9
into a ball g(B) with radius £: 19' ''11. This extends also to disks on Soo' Since
Ig'TJI is the change of scale and 6 is the Hausdorff dimension , dJ.i measures
the volume of sufficiently small disks of radius 'I' centered at A(r), like '1'8; di:
is the Hausdorff measure of A(f) .

Finally, because the last integral in (3.10) is supported only on Soo, we can
replace [xl R , "IIR] by [x - "II IR. The Poisson kernel (1 - Ixl2IR2)/lx - "112
satisfies in B 3

(3.13)
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(3.14)

if 1171 = Rand E( 6) = (_fi2 / 2mR2 )(6 - 1)2. Thus we have the following
Helgason representation [6] of the ground-state wave function:

'l/J (x, t) = exp ( ifi(6 -R~)2t ) r (1 i 1x l2~~2) 8 dfL(17)
2m J!I.( f ) x - 17

The fun cti on is square-integ rable for 1 < 6 < 2. (Our manifolds have infinite
volume, therefore the case 6 = 2 cannot occur . If 6 ---7 1 then E (6) moves
toward the lower edge of the conti nuous spec t rum . If 6 = 1 there is no bound
state, and the convex hull of the limit set (see sect ion 2) degenerates to a
spherical cap.)

This functi on is completely det ermined by the limit set A(r) and by its
Hau sdorff dimension an d measure. On the other hand, A can be obtained by
lifti ng the bounded traj ectories int o the covering space of t he manifold ; the
initial and end points of these lift s constit ute A(f). This is the reconstruction
of the bound-stat e wave function in terms of the bo unded chaot ic traj ectories
discussed in the introduction.

4. Isothermal coordinates at infinity of hyperbolic space and the
emergence of the limit set

The limit set A(f) determines the bounded trajectories as well as the support
of the Hau sdorff measure in the int egral representation of the ground-st ate
wave function, and in this sect ion we will look at it more closely.

We start with a man ifold that has a pr incipal-circle group I' as a group of
covering transformations; the limit set A(r) is t hen a circle. We pro ject 500

ste reographically onto the extended complex plane . A Riemannian metric
on 11 (see figur e 2) is then of the form

ds2 = E dx2+ 2F dx dy + G dy2= ,\2(Z,z) Idz + fL(Z,z)dZI2; (4.1)

in the following we will suppress the conjugate d vari abl e in ,\ and fl .
Since E G - F 2 > 0, E > 0, and 11 is a compact surface, we have 1p.(z)1:::;

K < 1,'\ > °on!I-
I' acts on C as a discret e group of Mobius transformations

Z ---7 (az + b) / (cz + d), ( ~ ~) E 5L(2 ,C).

Conjugating f with an appropria te Mobius t ransformat ion, we may assume
that the projected limit set is just the uni t circle, so that f(Jl) tesselates the
int erior and f(h) the exte rior of the unit disk U.

In order that ds2 fit smoothly on t he identified boundaries of 11 it must
be invari ant under f. We have

,\2(g(Z)) Idg(z) + p.(g(z))dg(zW

= ,\2(g(Z)) Igz(zW IdZ+ fL(9(Z));: dZr (4.2)
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where gz denotes the derivative. Thus, if we extend ..\ and /-1 to U by requiring

and

/-1(g( z)) = /-1( z) gz ,
gz

(4.3)

(4.4)

(4.5)

for example, /-1 = 0, ..\ = (1 - IzI2)- 1, t hen the invari ance of ds2 follows.
The space of functi ons /-1 that sat isfy in U 1/-11 ::; K < 1 and (4.4) can

be parametrized by 6(g - 1) independ ent complex parameters , 9 being the
genus of fl . T his follows from the Riemann-Roch theorem , for /-1 can be
repr esented as /-1 = (1 - Izj2)2 rp(Z) , where rp( z) is a bounded qu adratic dif­
ferential, rp(g(z))g; = rp('z ) for 9 E T' , and Irp(z)1 < const. (1 - IzI2)- 2 in
U .

There is a st andard way to generate such differentials and thus uniformly
bo unded /-1 with the property (4.4) , nam ely by the Poincare series

/-1( z) = (1 - lz I2)2~ h(g(z))g; ,
gEr

where h is an analyt ic function in U such that Ju Ihl(1 - lzI 2)-2dz < 00 .

A deformation of the manifold via cont rac t ions and dilatations along its
necks corresponds now to the introduction of global isothermal coordinates
on II (or h) for a given metric determined by a /-1 and a ..\ that fulfill (4.3)
and (4.4) .

We ask for a diffeomorphism z --> w(z) that makes ds in (4.1) propor­
tional to the Eucl idean line element :

ds = ..\(z) Idz + /-1( z)dzl = C(w) Idwl , (4.6)

where C(w) is an arbit rary proportionality factor. We have from (4.6)

ds = C(w(z)) IWz1l dz+ ::dz l , (4.7)

where Wz is the derivative with respect to the conjugated var iable; thus w is
a solut ion of the Beltrami equat ion (see [1])

Wz = /-1Wz· (4.8)

(4.9)

We extend /-1 to all of <C by requiring /-1 == °(i.e., w analytic) outside the
unit disk U. Then there exists a homeomorphism <C --> c. . --> w(z) that
is differentiab le in U , analytic for Izi > 1, and sat isfies equat ion (4.8) in <C,
with the except ion of the un it circle S wher e /-1 is discontinuous .

Since.cz is non -differentiab le on the unit circle, it maps S onto a fra ctal
cur ve (homeomorphically) . Moreover, it is determ ined up to a Mobi us trans­
form at ion, and w I' w- l is again a group of Mobius transformations . This
follows from (4.4) , the chain ru le (see [1])

(f( ))
- /-1g( z) - /-1 f (z ) f z(z)

/-1gof- l Z -
1 - /-1f (z)/-1g (z) fz(z)
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where Jll := hif" and the fact that the only meromorphic invertible func­
tions in the extended comp lex plane are Mobius transformations.

w can be constructed explicit ly via an int egral equat ion equivalent to
(4.8) . Since w(z) is determined only up to a Mobius t ransformation , we fix
it by requiring w(z) ----> z for Izl ----> 00. App lying the generalized Cauchy
formula for non-an alytic funct ions (see [1]) to w(z) - z gives

w(z) = z _ 1 rwz(() de.
1r Ju ( - z

Differentiat ing (4.10) and using (4.8) we have

[
1 r wz(() ]

wz(z) = Jl(z) 1 -;: Ju (( _ z)2 d( .

(4.10)

(4.11)

The st andard iteration procedure for (4.11) gives finally (Jl(z) ::; K < 1)

(4.12)

Applying the homeomorphism w(z) of the complex plan e const ructed via
(4.5), (4.12) , and (4.10) to the uni t circle, we get limi t sets as depicted in
figur es 4 through 7.

5. Open Robertson-Walker cosmologies of multiple connectivity

We consider cosmological line elements of the form

(5.1)

where do? is the metric of hyperbolic 3-space, which we may represent in the
coordinates (2.1) of the Poincare ball B 3 .The expansion factor of3-space a(t)
det ermines the Gau ssian curvat ure K = -1 / (aR)2 of the space-like sect ions
t = constant. The space-like projections of the geodesics int o B 3 calculated
via (5.1) are , as in the non-relativistic case , arcs of semicircles orthogonal to
Soo' On ly the time dependence of the geodesics changes (see [18]).

The topological str ucture of 4-space is now IR+ x I x S , IR+ being the
time axis 0 < t < 00, and t he 3-space I x S (I a finite op en int erval, S
a compact Riemann sur face) is again repr esented in B 3 as a polyhedron
F with face-identifi cation by r . We mention that F and r can also vary
in time, const it ut ing a one-par ameter famil y (F(t) , r (t)) of non-isometric
3-manifolds . Even the topo logical st ructure of 3-space may change; for ex­
ample, it could disintegrat e by develop ing par ab olic cusp singularit ies at the
boundary of the deformation space (see [3, 7]).

We call a tr aj ectory bounded if it stays in a finite region t hat is not
expanding faster than 3-space itse lf . The bounded chao t ic trajectories ar e
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again inti mately connected with the limi t set A(r) . For example, if the
expansion factor a(t) is of the order t" , a ~ 1 for t ---> 0, a trajectory is then
bounded for t --->°only if its lifts in th e covering space emanate from A(r) ;
in this case it has the Bernoulli pr operty. Likewise, if a(t) is of ord er tf3 ,

f3 :::; 1/ 2 for t ---> 00 , it is then bounded for t ---> 00 only if its lift s end in the
limit set A(f). In de Sitter space (a(t) = sinh(At)) t he bo und ed trajectories
are exact ly those that emanate from A(r) (see [18]).

The wave equat ion on the covering space ~+ x B 3 reads

(5.2)

where 0 is the Laplace-Beltram i operato r of the line element ds 2 in ~+ x B 3

(o'¢ := gaf3'¢;a(3 ), and ~ is the (dimensionless) coupling to the curvature scalar
k Imposing as in sect ion 3 I'<periodi c boundary condit ions on ,¢, we get the
wave equation on the man ifold ~+ x I x S .

Separ ation of var iables '¢(t ,x) = ~ (x)cp ( t ) in (5.2) gives

(5.3)

where 6 B 3 is th e Lap lace-Beltrami operator of B 3 as in (3.1) , and the sepa­
ration constant R-28(2 - 8) appears as a spectral parameter . Here we keep
(F, f) independent of t ime, otherwise equation (5.2) is not separable. For ip

we have

rj;+3:~~~ ep + [(m c2/nl + A28(2 - 8)a-2(t ) + c2~.k (t ) ] ip = 0, (5.4)

with A = cf R .
Con cerning the t ime dependence of ,¢, we impose the following end-value

condit ion on cp(t ) (posit ive frequ ency solut ions) : cp (t ) rv f(t) e- ig(t) for t ---> 00 ,

wit h real f , g; f(t) monotonically decreasing ; and g(t) strict ly monotonically
increasing, thus ap proximating as well as possible the Minkowski space solu­
tions in the asymptotic regime, when 3-space gets flat .

Equat ion (5.3) we discussed in section 3: there is a un ique bound state
for a 8 in the ope n interval (1,2) , and absolutely continuous spect rum for
8(2 - 8) ~ 1.

Wit h the covariant an d indefinite scalar pro duct for wave fields as in [18],
the normaliza tion condit ion for cp reads

(5.5)

where ip ; (j5 is a pair of fund amental solutions of (5.4).
T he energy-moment um tensor T,.w of the field in (5.2) we get by variation

of th e action functional
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with respect to the metric g!"v -+ s" + Dg!"v:
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(5.7)

For the calculation of T!"v we need the variation of the det erminant , Dg =
- gg!"vDg!"v, an d the variation of the Ricci tensor , g!"vDR !"v = w.\ ,.\ , with W.\ =
e" Dr~v - g!".\ Dr~v (we use locally geodesic coord inates , r3'Y = 0, g!"v,.\ = 0,
and the sign conventio ns of reference [13]). Expressing r~v and g!"v r~v in
terms of g , g!"v, and their derivatives (see [4, 12]), we arrive finally at w.\ =

-Dg.\!" ,!" + gl<'\g!"vDg!"v,I< ' By applying Gr een 's theorem in locally geodesic
coordinates , and then pass ing over to covar iant derivatives, we obtain the
energy-momentum tensor of a sca lar field coupled to the Ricci scalar:

with

T = t (min ) + Ct (ext .)
/.LV J1. V "::. /-LV , (5.8)

and

t~e:t ) = ( R ,oW - ~ Rg!"v ) 1/;1f - (1/;,!"1/;,v + 1f1/;;!"v + c.c.)

+g!"vga/3 (1/;,a1/;,/3 + 1f1/;;a/3 + c.c.) .

For the calculat ion of Too we note th at 1/;;00 = 1/;,00 (becau se the relevant 3­
indi ces vani sh ), and we eliminate 1/;;a/3 in (5.8) by means of the wave equat ion
(5.2). Finally, R oo = - 3a,ja, and

The energy of the wave field is calculated as

E = nc2hTo!"d'Lf ,

(5.9)

(5.10)

with B an arbit ra ry space -like hypersurface for which we may choose the
3-spac e. Then BO is the only non-vani shing compo nent of dB !" , and is given
by dBo = a3(t) dVB 3 , where dVB 3 is the volume element of (2.1).

Ap plying Green 's formula again in (5.10) , we arr ive finally at

E (t, D) = ~ na3{ (cp , t +6~cp~) (cp , t + 6~cp~)

[(
mc

2
) 2 i12 ] }+ cpcp T +A2 [D ( 2 - D)-6~] a-2+ 6~(1-6~)a2 '

(5.11)
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which genera lizes the energy formula in [18J to the non-minimally coupled
case , which is as we will soon see essential for the t reatment of massless
particles. Note tha t (5.11) no longer contains the space part of the wave field .
This expression is obviously posit ive definite for 0 ::; 6~ ::; minj l , 5(2 - 5)J;
bu t posit ivity is too rest rictive a condit ion, for example in the t rea tment
of massless particles. What we will require is uniform boundedn ess of the
energy functional from below.

We discuss (5.11) valid for every Robertson-Walker line element in the
contex t of de Sitter space. We then have a(t ) = sinh(At ), where 3A2/ C2 is
the cosmological constant , R = 12A2 / c2 , and R = c]A. We define

1 ( m c
2)2

K-
2 = - - - 2(1 - 6~ ) + -

4 M
and v 2 = 1 - 5(2 - 5), (5.12)

and assume ",2 > 0 to ensure th e right t ime behavior at infinity. The positive
frequency solut ion for t ---> 00 is then

(5.13)

and for t ---> 0, t/ > 0 (ground state) ,

(5.14)

For t ---> 0, Im(v) > 0 (cont inuous spect rum),

(5.15)

The negative frequency solutions are conjugat ed to them.
Wi th th ese solut ions we obtain the time evolut ion of energy in the asymp­

to tically flat region,

and

E( )
2nA(1 - 6~)[36~ - 55(2 - 5)J - 2M

t ---> 00 , m = 0 ~ e .
V12~ - 9/ 4 ( 12~ - 5/4)

(5.16)

(5.17)

The leading order of the asymptot ic expansion is independent of the spect ral
var iable u .
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At the beginning of the evolut ion , for t ----> 0, we have

E ( )
tiA22v- 1f2(V)(1+ v)( l - 6~) ( )-2v-1

V > 0, t ----> ° '" At .
sinh(-rr[II:I)I r(1/2 + l/ + i ll:)!2

Finally, for Im(v) > 0, writing v = iii, ii = ) 8(2 - 8) - 1 > 0,
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(5.18)

E(Im(v) = c > 0, t ----> 0) '" ~ {A (ii, 11: , 0 + Re [B (ii, 11: , ~ ) (At?iv]} ,

(5.19)

with

an d

B(ii II: ~) = (1 - 6~)( 1 - iii) f 2(_ iii)2- 2iV .
, , sinh(7fIIl:[) f (1/ 2 - iii + ix;)r(1 /2 - iii - ill:)

In the initi al state of the cosmic expansion (for t ----> 0), there is an infinite
oscillation of E (equation (5.19)) between the two cur ves tir 1(A± IB I) wit h
an amplitude tit- 1lB Iand a frequency (e7f

/
v_1) - lt - 1, both diverging to infin­

ity (A - IBI > 0; see below). On the other han d , the energy associated with
the discret e eigenvalue (equation (5.18), and 1 - 6~ > 0) does not fluctuate
at all, and overpowers that of the cont inuous spectrum (see equa tion (5.19))
for any fixed ii. However, we see from the following asymptotic expansion ,

(5.20)

valid for any fixed t , that it lies well inside the range of energies obtaina ble
from the cont inuous spectrum. We compare these formulas with the classical

energy, E = m c2 )1 + const. a- 2 (t ). The constant depends on the initi al
velocity, and E does not depend at all on the trajectory, bounded and chaot ic
or regular and unb ounded . T he only thing tha t is common to the classical
and quant um energies is the inverse t ime behavior (a- 1 (t )) for t ----> 0.

Fina lly we discuss the boundedness of E. Every solut ion of (5.2) depends
on t hree par ameters: m , ~, and the spect ral variab le 8(2 - 8). T here are
rest rictions on m and~: 1I:2(m,~) in equation (5.12) must be posit ive in
ord er to fulfill the boundary condit ions . T he requirement on E of uniform
boundedness from below, simultaneously for t and 8(2 - 8) for fixed m and
~ , imposes further restr ictions on the spectral variab le 8(2 - 8). At first we
note that, in equation (5.18) , we have to requi re 1 - 6~ > O. If this is not
satisfied we exclude the solution corres ponding to the discrete eigenvalue , as
is the case for m = O. The smallest value that the second term in (5.19)
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periodically admits is -lEI. The necessar y and sufficient condit ion that
ensures boundedn ess of E from below for t ---> 0 is thus A - lEI> 0, or

6. Conclusions and outlo ok

We have given an example for the reconciliation of the concept of a wave
function with that of classical traj ectories in an unstab le sys tem, geodesic
mot ion in infini te, constant ly curved spaces of mult iple connect ivity. This in­
terdependence of traject ories and wave funct ions is mediated in the universal
covering space E3of the mani fold by the limit set A(r) of the Kleini an group
r of covering transformations . This fractal po int set at infinity of hyp erb olic
space comprises all the inform at ion that is contained in the wave functi on ,
which appears as the solution of a boundar y value prob lem in E 3

, with the
boundary data provided by the Hausdorff measur e on A(r) .

Three-man ifolds of the above-ment ioned type appear as space-like sec­
ti ons in Rob ertson-Walker cosmologies. Their mult iple connectivity pr oduces
chaot ic tr ajectories an d bound states (square-int egrable chaotic wave fields),
which are det ermined by the limit sets of the covering groups of the space-like
slices. In section 5 we discussed in some detail in the context of de Sit ter
space the asy mptot ic time behavior of the energy of such wave fields, and its
dep end ence on the Hau sdorff dimension of the limit sets .

We considered scalar wave fields coupled to the Ricci scalar . This coupling
by the dimensionless param eter ~ has no analogy in classical mechanics. T he
curvature scalar (5.9) of Rober tson-Walker cosmologies depend s only on the
time variab le, and may change it s sign during the t ime evolution . Even in de
Sitter space, where the Ricci scalar is a cons tant , it is not possible to absorb
it in the mass term of equation (5.2), for this would lead to a different energy
(see (5.11)). The reason for this is that , in (5.11), the vari a tion of the Ricci
scalar also ente rs . Thus, even in de Sitter space the energy depends in a
non-trivial way on three par am eters: ~ , m , and the spectral variable 1/ . It
is again the energy functi onal that , for given m and ~ , determines the range
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of the admissib le values of the spect ral variable by the condit ion of uniform
bo undedn ess (see (5.21)).

Finally a comment on the energy formulas (5.18) and (5.19). T he bound
state has a simp le power law behav ior that is more strongly singular t han
that of the extended states because of a localizati on phenomenon exp lained
in [18J. Moreover , the extended states show oscillations with a frequ ency
and an amplitude both diverging to infini ty, so that the energy becomes
ultimat ely unresolvable, lying in the band nr 1 (A ± lEI) , which indicates the
inst ability of the extended st ates at the beginning of the expansion .

It was noted long ago [15J that a t ime-dependent expansion factor can
cause backscatter ing of freely propagating class ical fields, an d may lead to
pro duction-annihi lation processes in quantum fields. The po int is that an
initi ally more or less monochromatic wave packet can receive during its evo­
lution admixt ures of waves t rave ling in the opposite direction . In the classical
case the situat ion is then similar to the wave propagation in a medium wit h a
ti me-depend ent index of refraction [1OJ . However , wit h a conformally coupled
field like the electromagnetic one such effects cannot occur in a top ologically
tr ivial space, the evolut ion being equivalent to that in a static uni verse,
modulo som e rescaling with the expansion factor. A wave packet composed
initi ally of pos it ive frequencies will never develop negative ones. However ,
that is not true if 3-space is mult iply connected . This comes as follows.

In the simp ly conn ected Robertson-Walker models the space-like sect ions
at different instan ts of t ime are always isom et ric aft er rescaling wit h a con­
stant factor. In the mul t iply connected models, though perfect ly isot ropi c,
the sit uation is quite different . Her e the fund amental polyhed ron embed­
ded in hyperbolic space may itself vary in time ; for examp le, the dih edral
angles and the 3-m an ifolds that are obtained by imposing the Minkowski
metric onto them are generically non-isomet ric (see sect ion 5). In fact , a
Robertson-Walker cosmo logy is determ ined by a t ime-dependent expansion
factor and a time-dependent path in the deformat ion space of the polyhedron
repr esenting 3-space [3, 7J . A mixing of pos it ive-negative frequ encies can oc­
cur because of this second t ime dependence, even if the expansion factor does
not vary or the field is conformally coup led .

Apart from the mixin g of modes because of this time dependence , we
have backscatter ing independent of t ime for class ical fields just becau se of
the high connectivity of 3-space, as we have it for class ical traj ectories. This
topological scattering must be very irr egular and chaotic, and the scattered
wave trains will fina lly be uniformly distribut ed over the space manifold ,
which might provide a new explanation of the background rad iation.
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