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Abstract. Procedures are given for determining regular language in-
variance under one-dimensional cellular automaton rules. A metric is
defined for the space of all one-dimensional cellular automaton rules
over a given alphabet ¥. It is shown that under this metric, for cer-
tain regular languages, the set of rules under which the language is
invariant contains no interior, and its complement contains no inte-
rior. Characteristics of surjective rules (rules under which the regular
language ©* is invariant) are also explored. Examples are given of
a sequence of rules for which the limit language of the limit rule is
not invariant under any rule in the sequence. Numerical experiments
indicate that these rules do indeed display discontinuous behavior.

1. Introduction

Let X% be the set of all mappings from the integers to some finite alphabet
% of k characters; that is, the set of all doubly infinite sequences with entries
in ¥. Then a cellular automaton is a function f : % — Y%, such that if

y = f(=),
Y = R(IEi_T, Ljmpely -+« $i+1~) (1)

for some fixed function R of 2r + 1 variables. R, a cellular automaton rule,
can be specified by a table of k*"+1 entries; r is said to be the radius of R,
and site values are restricted to the alphabet ¥ = {0,...,k — 1}.

Let ro be the minimal radius for which such a cellular automaton rule can
be constructed for f. Then, for each radius 7 > 7y, one cellular automaton
rule R, can be devised to simulate f, under the principle

Rr(:];i—ra Liep—1y--- :mz’-f-r) = Ro(mi—To, Li—rg—1y--- 7wi+1‘0); (2)

that is, the first and last 7—rg variables do not affect the value of the function.
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The operation of cellular automaton rules can be generalized as follows.
Ifw=a - -a, n>2r+1, then

R(w) = R(on, - -, a0r41)R(0a, -+, Qary2) - - R(@n—ar, - -, o). ()
Also, if L is a subset of ¥*,

R(L)={z:z=R(y),ye Lyl 27} (4)
and

R(L)={z:y=R(z),y € L}. (5)

This paper characterizes rules under which some regular language L is
invariant; that is, rules R such that R(L) = L. (See [3] for definitions
and characteristics of regular languages.) Section 2 discusses algorithms for
proving or disproving invariance of L under R.

Observations have shown that the behavior of rules may change drasti-
cally if only a few entries in the rule table are changed. In order to address
such abrupt changes in qualitative behavior, we are led to define a metric on
the space of one-dimensional cellular automaton rules over a given alphabet.
This metric is defined in section 3. We use this metric to characterize the set
of cellular automaton rules under which a given regular language is invariant.

In section 4 a possible relevance of regular language invariance to long-
term behavior of cellular automaton rules is explored. A rule R is presented
such that when R is repeatedly applied to an infinite lattice, every finite
section of that lattice clearly evolves to a member of a regular language L.
It is demonstrated that there are members of cellular automaton rule space
arbitrarily close to R, on a given path, for which R(L) # L. By numerical
experiment, it is shown that rules extremely close to R on this path have long-
term behavior very different from R. Another sequence of rules is presented
that converges to the limit rule under the metric presented in section 3, but
that can be shown not to converge in behavior.

2. Invariance algorithms

Wolfram [5] describes an algorithm for finding a finite automaton characteris-
tic of R(X*). A Mealy machine (a finite automaton that produces output on
state transition; for more information see [3]) is constructed with k%" states,
one state for each string of length 2r in ¥*. Any of these states can be the
start state. Arrows lead out of these states on each character in ¥ as fol-
lows: Let w = a; - - - a2, have length 27; let S(w) be the corresponding state.
Arrows lead out of S(w) on each member of ¥ as follows: If R(wf) = 7,
then there is an arrow leading out of S(w) with label 8 to S(ay: - - @a.f).
The state transition output is . This nondeterministic “transducer,” or
Mealy machine, can be converted by standard constructions to a minimal
deterministic finite automaton (DFA) (see [3], chapter 2).

This procedure can be generalized to create a Mealy machine M that, for
any regular language L, outputs R(L). Let D be the DFA that recognizes L.
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It is possible, by following arrows backward, to determine, for any state 7" of
D, which sequences of 2r characters are the last 2r characters of a string with
final state T'. Call such sequences F(T'). For each combination of state T' of
D and sequence w = ay - - - @y, in F(T), let a state S(T,w) be part of M. If
there is an arrow leading out, in D, from state T to state U, on character g,
and R(wf) = y, then let there be an arrow leading out on character § from
state S(T,w) to state S(U,az - aa.0). Let v be output on this transition.
Let S(T,w) be accepting if T' is accepting. Finally, if T' is the start state of
D, for any w such that S(T,w) exists, let S(T,w) be a start state of M.

It can be shown by induction that M will output any nonempty string
z if and only if z is in R(L). Standard constructions in [3] can be used
to convert M to a minimal DFA. Since a minimal DFA is unique [3], it is
possible to determine whether R(L) = L. Using algorithms to find the union,
intersection, and complements of regular languages ([3], chapter 3), it can
also be determined if R(L) C L or L C R(L). (Another presentation of this
algorithm is found in [1].)

If L is a regular language, it is also possible to determine invariance of
L under R without explicitly finding R(L), by testing all strings of a given
length or less in L. This length is dependent only on the radius of R, the
number of characters in the alphabet of L, and the number of states in the
DFA of L.

Theorem 1. Let L; and Ly be regular languages using an alphabet 3 of k
characters. Let them be accepted, respectively, by DFAs D; and D, with
ny and ny accepting states. Let R be a k-symbol, r-radius one-dimensional
cellular automaton rule. Let ¢ = nynok® + 2r, and let A(Ly,q + 1) be all
strings of length q+1 or less in Ly. Then if R(A(Ly,q+1)) C Lo, R(L;) C Ls.

Proof. Assume we have shown that R(A(L;,m —1)) C Ly form —1 > q.
We wish to show R(A(Ly,m)) C L.

Let w be any string in Ly such that 2r + 1 < |w| < m — 1. Then the
sequence-state triple associated with w consists of (a) the last 2r characters
of w, (b) the state Dy is in when it accepts w, and (c) the state D, is in when
it accepts R(w).

Let |lw| = m — 1. Since (a) m — 1 > ¢, (b) there are only ¢ — 2r possible
sequence-state triples, and (c) every string of length 2r + 1 or greater has a
sequence-state triple associated with it, 3 some z such that x is a prefix of
w, and z has the same state-sequence triple associated with it as w.

Let v1,...,v; be those members of ¥ such that zv;,,1 < i < j, isin L;.
Then these are the only characters that when added to w produce a string
in L, since w ends in the same state as .

Let B; = R(last 2r characters of z, followed by ~;). Then for each g,
since |zv;| < m — 1, R(z)B; is in L. Therefore, from the state Dy is in
when it accepts R(x), there is a path out on each ;. Since w has the same
last 2r characters as z, §; is also R(last 2r characters of w, followed by ;).
And since D, is in the same state when it accepts R(w) as when it accepts
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R(z), R(w)p; is in Lo for each f;, and hence R(w~;) is in Lo for all possible
7; that can follow w. Since this is true for all w such that |w| =m, w in L,

R(A(Ll,m) g Lz. [ |
Corollary. If R(A(Ly, (ny)%k? 4+ 2r + 1)) C Ly, R(L;) C L.

Corollary. Let R be the jth iterate of R. If R (A(Ly, ningk®74+-2rj+1)) C
Ly, R(L;) C L.

Proof. R/ can be regarded as a cellular automaton rule of radius ;. B

Note that |A(L1, g+ 1)| is an upper bound of the number of strings that
need to be tested to show R(L;) C Ly, but it is not a least upper bound.
As a matter of fact, if L; # ¥*, this number can be shown not to be a least
upper bound.

Theorem 2. If L; # ¥* and R(L,) € Lo, it is never necessary to test all
strings in A(Ly,q+ 1) to show R(Ly) € Lo.

Proof. Since L; # X*, there are some states that have fewer than k arrows
going out to accepting states.

Now, in order for the above algorithm to fail first on sequences of length
n1nyk® 4+ 2r + 1, some string of length n,myk* 4 2r must contain every
possible combination of accepting state and last 2r characters. That is, every
accepting state must have k arrows leading into it. But this is not possible,
since some of the accepting states have fewer than k arrows leading to other
accepting states. l

Theorem 3. Let Ly, Ly, D1, D3, ny, and ny be as above. Let R be a k-
state, r-radius one-dimensional cellular automaton rule. Let ¢ = ny2™*%”"
and let A(Ly,q + 1) be all strings of length q + 1 or less in Ly. Then if
A(La,q+ 1) C R(Ly), Ly C R(Ly).

Proof. Assume we have shown that A(Ly,m — 1) C R(Ly) for m — 1 > q.
We wish to show A(Ly,m) C R(Ly).

Let w be any string in Ly such that |w| < m — 1. Let the state-sequence
pairs associated with w consist of, for each z in R™*(w), (a) the last 2r
characters of z and (b) the state D, is in when it accepts z. Let S(w) be the
state D, is in when it accepts w.

Now, let |w| = m —1 > g = ny2™*". Since there are only n, possibilities
for S(w), and only 2mk”" possibilities for the state-sequence pairs associated
with w, there must be some y such that y is a prefix of w, S(y) = S(w), and
y has the same state-sequence pairs associated with it as w.

We know that the final state of y is the same as that of w. Therefore w7y
is in Ly if and only if yv is in L,. Let wy be in Ls. Since yv is in Ly and
lyv| < m — 1, it has a preimage in Ly; specifically, it is R(zf) for some z in
RY(y)NLy,zp in L;. This means that the final state of z is such as to allow
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appendage of a character #; and it also means that R(last 2r characters of
x, followed by ) = .

Also, because y and w have the same state-sequence pairs associated with
them, we know that there is some string s in R~!(w) that has the same last
2r characters as z and ends in the same state as z. Since s ends in the same
state as z, s@ is in Ly; since it has the same last 2r characters as z, R(last
2r characters of s, followed by ) = v, and R(s3) = wvy. Hence w, for
any possible v that can follow w in L, has a preimage in L;. Since w is an
arbitrary string of length m — 1 in L,, all strings of length m + 1 in L have
a preimage in L. il

Corollary. If A(Ly,n,2™*" +1) C R(Ly), L, C R(Ly).

Corollary. If A(Ly,ny2™*¥"” +1) C R/(L,), Ly C RI(Ly).

3. Cellular automaton rule space

Any cellular automaton rule R of radius r can be considered equivalent to a
rule of radius ', ¥’ > r, under the principle

R(Bay) = R(e) (6)

for all @, B, and v in X* such that || = r and |B8],|y| = 7' — r. (Note that
both R and R’ represent the same cellular automaton function.)

Let a metric be defined on the space of k-state cellular automaton rules
(Sk) as follows: Let R; and R, be k-state cellular automaton rules of radii
r1 and 73, respectively, with r; < 7. Let R} be the rule equivalent to R; of
radius r2; and let d(Ry, R2) be the proportion of table entries in which R} and
R, differ. Note that d is consistent if we consider rules of radius r; > r, that
are equivalent to Ry and Ry. The two rules will differ in k2(rs=72) {imes as
many table entries, and there are k*™~72) times as many total table entries.

Theorem 4. d is a metric.

Proof. Let R;, R,, and R3; be k-state cellular automaton rules. By the
previous paragraph, d can be calculated by regarding all three rules as having
radius r, the maximum of their three radii. Let S(R;, R;,7) be the amount
of table entries differing between R; and R;, if they are both regarded as
having radius r. Note that

d(R;, R;) = S(R;, Rj,7) /K. (7

Any entry in which R; and Rj differ, thus incrementing S(Ry, Rs,7), must
also increment either S(R;y, Rs,r), S(Rz, R3, ), or both. Thus

S(R17R37T) S S(RI)R21T‘)+S(R21R3$T); (8)
and hence

d(Rl, R3) = d(Rl, Rz) + d(RQ, Rg) l (9)
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Let L be a regular language; and let I be the set of those k-symbol
(k > 2) cellular automaton rules under which L is invariant; that is, for
which R(L) = L. It is possible to prove results about I, for certain regular
languages.

The regular languages we are most concerned with are those that might
characterize all finite subsequences of a doubly infinite sequence; and these
languages have the characteristic that if some string w is in such a language L,
every proper substring of w is also in L. They also have the characteristic that
if wisin L, there is a aywas in L for some a; and a5 in 33; and therefore, there
is a fwry in L, |B] = ny, and |y| = ng for any ni, ny > 0. Let such languages
be called data-stream-like languages. Note that if cellular automaton rules
R with radius r, and R’ with radius 7" > r, represent the same cellular
automaton function, and L is a data-stream-like language, R(L) = R'(L).
If |lw| > 21" + 1, the operations of R and R’ on w are equivalent; and if
2r + 1 < |w| < 2’ + 1, there is a fw~y in L such that |8, |7| = ' — r; and
since R and R’ are equivalent, R'(fwy) = R(w).

Lemma 1. Let L be a regular data-stream-like language that does not equal
3*. Then

{w e L:|w|=n} — (10)

]
% lw - ful = )]

Proof. Let w be a word in L. Since L is data-stream-like, any member of
{zwz : z,z € ©*} is in L. Therefore,

Hy:y € L,|y| = n}| (
< |y 1y # 2wz, |y = n}| (12
< |y :y # 2wz, |z] = 0mod |w], [y| = n}| (

(

— (klwl _ I)Ln/lle‘ 14
Therefore,
lim {w € L: |w| =n}| (15)
nooe [{w s jw| =n}
ol — 1)ln/fl]
Sl — 19
kvl — 1)/ vl
< Jij&(—% —o0.m (17)

Theorem 5. If L is data-stream-like, I}, has no interior.

Proof. Let R be any rule in I, and let R have radius r. Let € be any
number > 0. By the preceding lemma, there is an 7’ > r such that

{w € L: |w|=2r" +1}]

{w : |w| = 2r' + 1} &)
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Let R’ be the rule equivalent to R of radius r'.

Since k > 2, 3 some symbol « such that L # a*. Let R, be a rule of
radius 7’ such that for |y| = 2r' + 1, Rao(y) = a if y € L; and Ry(y) = R'(y)
if y ¢ L. Then d(R, Ry) < €; and since L is data-stream-like, and there are
thus strings in L of any length, Ry(L) = o, and not L.

Theorem 6. If L is data-stream-like, I}, has no interior.

Proof. Let R be a rule in I, of minimal radius r. Let € be any number > 0.
By the preceding lemma, 3 an 7’ > r such that

H{w e L:|w|=2r"+1}

Hw : |w| = 2r + 1} (19)

Let R’ be the rule equivalent to R of radius r’. Let I» be the identity rule of
radius r’; that is,

Ir’(a—'r’ st ar,) = ap. (20)

Let Ry be a rule of radius v’ such that for |y| = 2r' + 1, Ra(y) = L(y) if
y € L; and Ry(y) = R'(y) if y &€ L. Then d(R, Ry) < ¢; and Ry(L) = L. B

Corollary. If L is data-stream-like, Iy, (I,) contains no isolated points.

Proof. If there were an isolated point in Iy, (I1), an annulus surrounding it
would be in Iy, (I).

Theorem 7. Is+ has no interior.

Proof. Let R be a k-state cellular automaton rule of radius r in Iy«; that is,
every string w in ¥* has a preimage under R. Let R’ be the equivalent rule
of radius ' > r. R’ is also surjective; that is, in Iz+. According to [2], this
occurs only if all strings in ¥* have the same number of preimages under R'.
Specifically, all characters o in ¥ must have k" preimages; that is, for each
a in ¥, there must be k%" entries in the rule table that go to . It is only
necessary to change one of these entries to take the rule out of Iy.; thus,
there is a rule Ry in Iz such that d(R, Ry) = 1/r'. Since 7’ can be made
arbitrarily large, R is not in the interior of Ig«. B

Lemma 2. Let R be a k-state cellular automaton rule of radius r. Changing
any table entry for R will change at most f(k,n) = nk™ ! images of strings
of length n + 2r; that is, f(k,n) preimages of strings of length n.

Proof. Changing one table entry means changing R(z), |z| =2r+1. z isin
position 7 in k™ strings of length n + 2r, 1 < i < n. Therefore z can be in
at most nk™ ! strings of length n + 2r. W

Corollary. To change m preimages of strings of length n, it is necessary to
change at least [m/ f(k,n)] table entries.
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Theorem 8. Ix- is closed.

Proof. It suffices to show that if a k-state rule R is in Iz, 3 an € > 0 such
that if d(R, Rz) <6 R2 € Iét

Let R in Iy« have radius 7. By [2], there is some string w in ©* such that
w has z excess preimages under R; that is,

flwl+2r
s R =l =S =, >0, (21)

To change R to a surjective rule (rule in I'n+) R, of radius , it is necessary
to change at least z/f(k, |w|) table entries; so

d(R,Ry) > : (22)

=. f(k, le)k2r+1 '

Now, let us consider the rule R/, of radius 7’ > r, equivalent to R. The rule
table of R’ contains zk2"'~") excess preimages of w; so to change R’ to a sur-
jective rule R, of radius 77, it is necessary to change at least 2k~ / f (k, |w])
table entries. Therefore,

2k2) .

2 7 )~ e @

d(R',Ry) = d(R, Ry)

It is also possible to show that large numbers of points in Iz« are not
isolated. In order to do so, it is necessary to define the effective diameter of
arule. A one-dimensional cellular automaton rule R of radius r has effective
diameter d if R(ajwb;) = R(aywb,) for all a;, ay, w, by, and by such that
la1| = |azl, |b1] = |b2l, |w| = d, and |a1| + |w| + |b1| = 2r + 1. Such a rule
can, therefore, be considered equivalent to a function R’ from d variables in
Y to ¥. Both R and R' implement the same cellular automaton function f;
that is, if y € ©% = f(z),

Yi = B(@icrjar] - Tigr—pir])- (24)

Let R be a rule of effective diameter d operating on an alphabet ¥ of k&
letters, equivalent to a rule R’ that is a function from d variables in ¥ to X.
Then R is left permutive if R'(pa,), ..., R (pax) permute the elements of X,
for all p such that |p| = d — 1. Right permutive rules are defined similarly

(see [4]).

Theorem 9. If R is a left or right permutive rule, it is not an isolated point
in Is«; that is, there are surjective rules arbitrarily close to it.

Proof. Let n be any nonnegative integer, and let py be a string of length
n. Let R be a left permutive rule of effective diameter d over an alphabet ¥
of k letters; and let gy be a string of length d. Let R’ be the equivalent rule
accepting d characters. Let R, be a rule of effective diameter d+n defined as
follows: Ry(pga) = R'(gc) for all p, ¢, and « such that |p| = n, |q| = d, and
|a| =1, unless p = py and g = qo. In this case, let Ry(pogo1), - - - , Ra(pPogocik)
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form a permutation of ¥ different from that of R'(gocv1), ..., R'(gocx). Then
Ry is also a left permutive rule, and hence surjective; and

k
d(}%7 Rz) = d(RI,Rz) == W’ (25)

which can be made arbitrarily small by increasing n. B

This theorem leads to the following conjecture.

Conjecture 1. Iy« contains no isolated points.

4. Rules with discontinuous behavior
4.1 The GC sequence

In the preceding sections, we showed that for any regular language L, and
for any rule R under which L is invariant, there are rules arbitrarily close
to R under which L is not invariant. This suggests that if L is the limit
language of a rule, or a very large part of such a limit language, changing
an arbitrarily small proportion of table entries may completely change the
behavior of the automaton. A case is presented in which rule behavior is,
indeed, discontinuous.

One-dimensional, two-state, radius 1 cellular automata are specified by
an eight-digit binary number in which the leftmost digit is R(111), followed
by R(110), ..., R(000) (see [6]).

We can see, therefore, that Rjs5(111) = 0; and Rys(w) = 0 for |w| = 3
and w # 111. Thus, unless an infinite lattice initially contains all ones,
any finite part of the lattice will, after enough generations, contain only
members of the regular language L = 0%, which is invariant under this rule.
This process is likely to happen quite quickly; for example, unless a finite
part of the lattice contains at least 101 ones in a row, it will regress to all
zeros in less than fifty generations.

The Grand Canyon (GC) sequence of rules (so named because of the
rules’ appearance) is constructed as follows: GC,, r > 2, is exactly like rule
128 except GC,.(0*" 1) = 1. Thus, this series converges to rule 128; but L is
not invariant under any member of this series.

Experimental work (see figures 1, 2, and 3) was done on a 640- or 1280-cell
wide cross-section of a doubly infinite lattice. (To show the effects of a r-
radius rule after g generations, it is necessary to start out with 640+2rg cells.)
This work shows that members of the GC series exhibit entirely different
behavior from rule 128. Under random initial conditions (created by the rule
31 random number generator described in Appendix A) a significant number
of ones continue to appear on the lattice after hundreds of generations. This
is true even for GCjgg, which has a distance from rule 128 of only 27201,

Figure 4 shows the proportion of ones, in generations 11 through 400,
when rules in the GC sequence are run with initial conditions as given above.
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Figure 3: Rule GCigp. This rule differs from rule 128 only if a cell
and its 100 neighbors on either side are zero-valued. Its distance from
rule 128 is 27201,

Proportion of Ones

1

0.8

Radius

0 100 200 300 400

Figure 4: The proportion of ones in generations 11 through 400, when
rules in the GC series are run on a 1280-cell wide section of a dou-
bly infinite lattice. Rules with radii congruent to 5 mod 20 are tested,
from GCjs to GCyps. The center line represents the average proportion
of ones over ten runs, with outside dots representing the standard de-
viation. This proportion remains significant even under GClyps, which
has a distance from Rule 128 of only 27811,
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It is possible, for any rule in this series GCy,, to select initial conditions I},
such that as k approaches infinity, the behavior of GCy on I}, comes arbitrarily
close to the behavior of rule 128. Simply select every 2k+2th cell to be a one.
In the next generation also, every 2k + 2th cell (those having k zero-valued
neighbors on each side in the first generation) will be a one, and the rest of
the cells will be zero-valued.

However, it may be that these initial conditions are atypical. The above
experimental evidence leads to the conjecture that for most initial conditions,
a significant number of ones continue to appear in the lattice under all rules
in this series. This is expressed more formally in the following.

Conjecture 2. Let Z(I, R,t) be the proportion of zeros on a doubly infinite
lattice with initial conditions I, in generation t, under the application of
cellular automaton rule R. Then, there is an o > 0 and a 8 < 1 such that,
for almost all initial conditions I, and for each rule in the GC sequence GC,,,

lim inf Z(I,GCpt) > « (26)
and
limsup Z(I, GC,p,t) < B. (27)
t—oo

Experimental evidence also suggests that, as the distance between rules
in the GC sequence and rule 128 goes to zero, use of the anomalous table
entries does go to zero, even though in each generation, under each rule in
the sequence, there continues to be a large proportion of cells showing the
effect of anomalous table entry use in preceding generations. That is, they
have previously been zero-valued, and now have a value of one. Figure 5
shows the proportion of times anomalous table entries were used, under the
same initial conditions as in the previous experiment. These experiments
lead to Conjecture 3.

Conjecture 3. Let A(I, Ry, R2,t) be the proportion of times table entries
differing from R; are used, when rule Ry is applied to a doubly infinite
lattice, under initial conditions I, in generation t. Then, for almost all initial
conditions I,

lim A(I,Rule128, GC,,,t) = 0. (28)

t—o00,m—00

However, for conjecture 2 to be true,
Jlim A(I,Rule 128, GC,,, 1) (29)
—00

must be nonzero for each m.

Note that given two reasonable assumptions about the behavior of rules in
this sequence, conjecture 3 must be true. The first assumption is conjecture
2. The second assumption comes from observation of figures 1, 2, and 3.
Each figure consists of black triangles against a white background; and the
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" Altered Table Entry Use
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Figure 5: The proportion of times the table entry differing from rule
128 is used in generations 11 through 400, on a 1280-cell wide cross-
section of a doubly infinite lattice. Rules with radii congruent to 5
mod 20 are tested, from GCjs to GCyos. The center line represents
the average proportion over ten runs, with outside dots representing
the standard deviation.

average area of the triangles appears to be proportional to the radius of the
rule. The second assumption is that this is indeed the case.

Black areas in the above figures indicate cells that are one-valued in a
particular generation. There are two reasons a cell operated on by GC, can
be one-valued in generation k: either because it was, in generation 0, one-
valued and surrounded by at least k one-valued cells on each side; or because,
in some previous generation, it was zero-valued and surrounded by more than
n zero-valued cells on each side. As k goes to infinity, the number of cells
that are one-valued for the first reason, in generation k, goes to zero. Let us
say in the second case that the black area is part of a nontransient triangle.
Under any of the GC rules, under almost all initial conditions, after a few
generations all but a very small proportion of the one-valued cells will be
part of nontransient triangles.

Now consider n very large; by our second assumption, the area of the
nontransient triangles will usually be quite large. Since the number of gener-
ations a triangle lasts equals the width w of the top of the triangle, the area
of each triangle should equal w?/2. Therefore, if the areas of the triangles are
usually quite large, the proportion of the width of their tops to their areas
should usually be quite small. Now, each black cell at the top of a nontran-
sient triangle indicates the use of an anomalous table entry; and anomalous
table entries are used only in such cases. Therefore the proportion of times
anomalous table entries are used (the proportion of times cells are black and
at the top of a nontransient triangle) should be very small compared to the
proportion of times cells are part of a nontransient triangle. And this is very
close to the proportion of one-valued cells.

This experiment evokes some general questions about the actions of one-
dimensional cellular automaton rules. That is, if a sequence of rules

Ri,Ry,...,Rn,... (30)
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is observed to behave discontinuously from the limit rule Ry, must it be
because

lim A(1, Ro, R, t) (31)

is nonzero for each m? That is, must anomalous table entries be part of the
nontransient behavior of each rule? The next example shows that this is not,
in fact, the case.

4.2 The RB sequence

The RB sequence is a sequence of one-dimensional cellular automaton rules
that converges, under the metric given earlier in the paper, to a limit rule;
but for which each member behaves very differently from the limit rule.

The limit rule, RBy, is a rule over an alphabet of four letters: (dark,red),
(dark, blue), (light, red) and (light, blue). It is regarded as the product of two
different two-letter rules: RB[1] is the right shift over dark or light, and
RB,,[2] is the identity rule over red or blue. Therefore, under RB.,, any cell
that starts out red or blue remains that color; and, under almost all initial
conditions, any cell’s neighborhood of radius r contains, after some finite
number of generations, any dark-light pattern of length 2r + 1.

The rules in the RB sequence are formed as follows. Rule RB, is a rule
of radius n that behaves like the limit rule except when a cell’s neighborhood
of radius n is all light. At that time, the cell, if it is red, changes to blue.
Now,

22n+1

= lim o =0, (32)

lim d(RB,, RB..)

so the sequence converges to the limit rule. However, for almost all initial
conditions, each cell on a doubly infinite lattice will eventually become blue.
Thus, the behavior of each rule in the sequence differs significantly from the
limit rule.

This example of discontinuity differs from the first in two respects: ano-
malous table entries are not used significantly often; and the limit language
of each rule in the sequence ( ((dark, blue) + (light, blue))* ) is invariant
under the limit rule. It can be shown that if a sequence of rules meets the
first of these conditions, it must meet the second.

To establish this, some definitions must be made. Let the transient lan-
guage of a rule T'(R) be those members of ¥* that must eventually disappear,
under repeated applications of R, from any finite portion of a doubly infinite
lattice, under almost all initial conditions. Let the nontransient language of
arule N(R) = ¥* — T(R). Note that N(R) is not the same as the limit lan-
guage of R. For example, consider rule 128, described above. The string 111
is part of the limit language of this rule, since it has a preimage arbitrarily
many generations back. However, unless the initial conditions are all ones,
111 will eventually disappear from any finite portion of the lattice.
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Theorem 10. Let R; and Ry be cellular automaton rules over the same
alphabet ¥*. Let R} and R, be equivalent to Ry and R, but having equal
radii. Suppose that, under almost all initial conditions, on any finite area
of the doubly infinite lattice, R}, uses table entries different from R) only a
finite number of times. Then N(Ry) is invariant under R;.

Proof. Since, on a doubly infinite lattice, rules operate the same as their
equivalents, it is enough to consider rules of equal radii.

Suppose 3 w not in N(Ry) such that w = Ry(z),  in N(R,). Under
almost all initial conditions, Ry will continue to produce z indefinitely on at
least some finite sections of the lattice. Since table entries differing from R;
are only used transiently, eventually, on each finite section of the lattice pro-
ducing z indefinitely, w will also be produced indefinitely. This contradicts
the assumption that w is not in N(Ry).

On the other hand, suppose 3 z in N(R;) that does not have a preimage
under R;. Eventually, in each finite section of the lattice, only table entries
the same as R; will be used. Therefore z cannot be produced indefinitely
in any finite section of the lattice, contradicting the assumption that z is in

N(Ry). B

Corollary. Let a sequence of cellular automaton rules Ry,...,R,,... con-
verge to limit rule Ry. Suppose that, under almost all initial conditions and
for all k, Ry, uses table entries differing from Ry only transiently (as described
in the above theorem). Then, for all k, N(Ry) is invariant under Ry.

5. Conclusion

This paper has presented algorithms for determining whether or not a regu-
lar language is invariant under the application of a cellular automaton rule.
A metric has been devised for the set of all cellular automaton rules over
a given alphabet; and the topological properties of various classes of rules,
under this metric, have been investigated. Lastly, an investigation has be-
gun into discontinuities of behavior in cellular automaton rule space. From
numerical experiments it appears that there are at least two types of such
discontinuities.

Appendix A: Rule 31 random number generator

static unsigned int x=1;
unsigned int random() {
static unsigned int first=1;
static float f;
static int i;
if (first) {/* transient */
first = 0;
for(i=0;1i<100;i++)
x = (x| (<< (x>>31))) = ((x>>1)](x<<31));



178 Lenore Levine

x = (x| ((x<<1)[(x>>31))) = ((x>>1) [ (x<<31));
return(x) ;

}

Acknowledgments

I am grateful to Norman Packard and David Muller for extensive suggestions
and discussion. I would also like to thank Larry Dornhoff, Chris Hartman,
and Jay Obermark for helping me with the computer experiments.

This paper is dedicated to the memory of D. B. Levine and S. B. C.
Levine.

References

(1] J. E. Hanson and J. P. Crutchfield, “The Attractor-Basin Portrait of a Cel-
lular Automaton,” Santa Fe Institute preprint 91-02-012 (1991).

[2] G. A. Hedlund, “Endomorphisms and Automorphisms of the Shift Dynam-
ical System,” Mathematical Systems Theory, 3 (1969) 320.

[3] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Formal
Languages and Computation (Reading, MA, Addison-Wesley, 1979).

[4] J. Milnor, “Notes on Surjective Cellular Automaton-Maps,” Institute for
Advanced Study notes (June 1984).

[5] S. Wolfram, “Computation Theory of Cellular Automata,” Communications
in Mathematical Physics, 96 (1984) 15-57.

[6] S. Wolfram, “Statistical Mechanics of Cellular Automata,” Reviews of Mod-
ern Physics, 55 (1983) 601-644.



