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Abstract. Procedures are given for det ermining regul ar language in­
variance under on e-dimensi on al cellular auto maton rul es. A met ric is
defined for t he space of all one-dimensional cellular automato n rules
over a given alphabet :E . It is shown that under this metric, for cer­
t ain regular langu ages , the set of rules under which the language is
invariant contains no interior, and its compleme nt contains no inte­
rior. Ch ar act eristics of surjective rules (rules under which t he regular
langu age :E* is invariant) ar e also explored. Examples ar e given of
a sequence of rul es for which the limit lan gu age of the limit rul e is
not invari ant under any rul e in the sequence. Numerical experime nts
indicate that t hese rules do indeed display discont inuous behavior.

1. Introduction

Let I; z be the set of all mappings from the int egers to some finite alphabet
I; of k charact ers; that is, the set of all doubly infinite sequences with entries
in I; . Then a cellular automat on is a function j : I; z ---7 I; z , such that if
y = j(x) ,

(1)

for some fixed function R of 2r + 1 variables. R , a cellular automaton rule,
can be spec ified by a table of k2r+l ent ries; r is said to be the radius of R ,
and site valu es are restricted to the alphabet I; = {O, ... , k - I}.

Let ro be the minimal radius for which such a cellular automaton rule can
be constructed for j. Then, for each radius r 2:: ro, one cellular auto maton
rule R; can be devised to simulate I , under the principle

(2)

that is, the first and last r-ro varia bles do not affect the valu e of the function.
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The operation of cellular aut omato n rules can be generalized as follows.
If w = a l ... an, n 2': 2r + 1, then

R (w) = R( al "'" a2r+l )R(a2 ," ' , a2r+2 )'" R(an- 2Tl " " an)' (3)

Also, if L is a subset of I;*,

and

R (L ) = {x: x = R(y), y E L, [yl2': r}

R -1(L ) = {x : y = R (x ), y E L} .

(4)

(5)

This pap er charac terizes rules und er which some regular language L is
invariant ; th at is, rules R such th at R(L) = L . (See [3] for definiti ons
and characterist ics of regular languages.) Sect ion 2 discusses algorithms for
proving or disprov ing invariance of L under R .

Observat ions have shown th at the behavior of ru les may change drasti­
cally if only a few entries in th e rule tab le are changed. In order to address
such abrupt changes in qualitat ive behavior, we are led to define a metr ic on
the space of one-dimensional cellular automaton ru les over a given alphabet .
This metric is defined in section 3. We use this metri c to charac terize the set
of cellular aut omaton rules under which a given regular language is invariant .

In sect ion 4 a possible relevance of regular language invar iance to long­
term behavior of cellular automaton rules is explored. A ru le R is presented
such that when R is repeatedly applied to an infinite lattice, every finite
sect ion of tha t lat tice clearly evolves to a memb er of a regular language L .
It is demonst rated that there are members of cellular automa ton ru le space
arbit rarily close to R , on a given path , for which R (L ) ¥- L. By numerical
experiment , it is shown that ru les ext remely close to R on this path have long­
term behavior very different from R. Another sequence of rules is present ed
that converges to th e limit ru le under the metri c presented in section 3, but
that can be shown not to converge in behavior .

2. Invarian ce a lgorithms

Wolfram [5] descr ibes an algorithm for finding a finit e automaton charac teris­
t ic of R(I;*) . A Mealy machine (a finite automa ton that produces output on
state transition; for more information see [3]) is const ructed with k2r states,
one state for each st ring of length 2r in I; *. Any of these states can be the
start state . Arrows lead out of these states on each character in I; as fol­
lows: Let w = a l . . . a2r have length 2r ; let S (w) be the corresponding st ate.
Arr ows lead out of S(w) on each member of I; as follows: If R(w(3) = r,
then there is an arrow leadi ng out of S(w) with label (3 to S( a2' " a2r(3 ).
The state transit ion output is f. This nondeterministic "transducer," or
Mealy machine, can be converted by standard constructions to a minimal
determin istic finite automaton (DFA) (see [3], chapter 2).

This procedure can be generalized to crea te a Mealy machine M that , for
any regular language L, outputs R(L ). Let D be the DFA that recognizes L.
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It is possible, by following arrows backward , to det ermine, for any state T of
D, whi ch sequences of 2r characters are the last 2r cha racte rs of a string with
final state T. Call such sequences F(T). For each combinatio n of st ate T of
D and sequence w = iY1 .. . iY2r in F(T) , let a state S(T, w) be part of M . If
there is an arr ow leading ou t , in D , from state T to state U , on character (3 ,
and R(w(3) = 'Y, t hen let t here be an arrow leading out on charac te r (3 from
st ate S(T,w ) to state S (U, iY2 . .. iY2r(3 ). Let 'Y be output on this t ransition.
Let S(T, w ) be accept ing if T is accept ing. Finally, if T is the start state of
D , for any w such that S(T, w ) exists, let S (T, w) be a start state of M.

It can be shown by induction that M will output any nonempty st ring
x if and only if x is in R(L). Standard construct ions in [3] can be used
to convert M to a minimal DFA. Since a minimal DFA is unique [3], it is
possibl e to det ermine whet her R (L) = L. Using algorithms to find the uni on ,
int ersection , an d complements of regul ar lan guages ([3]' chapter 3), it can
also be det ermined if R (L) <:;; L or L <:;; R(L). (An other pr esentation of this
algorit hm is found in [lJ.)

If L is a regul ar lan guage, it is also possible to det ermine invari an ce of
Lunder R without expli citly finding R(L) , by testing all strings of a given
length or less in L . This length is dependent only on the radius of R, the
num ber of characte rs in the alphabet of L , and the number of states in t he
DFA of L .

Theorem 1. Let L 1 an d L 2 be regular langu ages using an alphabe t I; of k
charac ters. Let th em be accep ted, respectively, by DFA s D1 and D2 with
n1 an d n 2 accep ting sta tes. Let R be a k- symbol, r- radius one-dimension al
cellular aut omaton rule. Let q = n1n2k2 r + 2r , an d let A(L1, q + 1) be all
s trings oflength q+1 or less in L 1. Then ifR(A(L1, q+1)) <:;; L2, R (L 1) <:;; L 2.

Proof. Assume we have shown that R(A(L1,m - 1)) <:;; L 2 for m - 1 > q.
We wish to show R(A(L 1,m)) <:;; L 2.

Let w be any st ring in L1 such that 2r + 1 :::; Iwl :::; m - 1. Then the
sequence-state triple asso ciated with w consist s of (a) the last 2r characte rs
of w , (b) the st ate D 1 is in when it accepts w , and (c) the st ate D 2 is in when
it accep ts R(w).

Let Iwl = m - 1. Since (a) m - 1 > q, (b) there are only q - 2r possibl e
sequence-st ate triples, and (c) every st ring of length 2r + 1 or greate r has a
sequ ence-st ate triple associated with it , :J some x such that x is a pr efix of
w , and x has the same state-seq uence triple associa ted with it as w.

Let 'Y1, . .. ,'Yj be those members of I; such that X'Yi , 1 :::; i :::; i , is in L 1.
Then these are the only characters that when added to w produce a st ring
in L 1 , since w ends in the same st ate as x .

Let (3i = R(last 2r characters of x , followed by 'Yi ) . Then for each (3i,
sinc e IX'Yil :::; m - 1, R(X)(3i is in L 2. Therefore , from the state D 2 is in
when it accepts R(x), there is a path out on each (3i. Since w has the same
last 2r characters as x, (3i is also R(last 2r charac te rs of w , followed bY 'Yi).
And sinc e D2 is in the same state when it accepts R(w) as when it accepts
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R(x),R(W) fJi is in L2 for each fJi , and hence R(WYi) is in L2 for all possible
Ii that can follow w. Since this is true for all w such that Iwl = m, w in L1 ,

R (A (L 1 , m) ~ L2.•

Corollary. If R( A(L 1 , (nl )2k2r + 21' + 1)) ~ L1 , R( L 1 ) ~ L1 .

Corollary. Let R j be the j th it erate of R. If Rj (A(LI, nln2k2rj+2 1'j +1)) ~
L2, R (L 1 ) ~ L2.

Proof. Rj can be regarded as a cellular automaton rul e of radius 1'j . •

Note that IA(L1 , q + 1)I is an upper bound of the number of st rings that
need to be test ed to show R(L1 ) ~ L2, but it is not a least up per bound.
As a matter of fact , if L 1 =1= L;* , this number can be shown not to be a least
upper bound.

Theorem 2. If L 1 =1= L;* and R(Ld ~ L2, it is never necessary to test all
strings in A(L1 , q + 1) to show R(L1 ) ~ L2.

Proof. Since L1 =1= L;* , there are som e states that have fewer than k arrows
going out to accept ing states.

Now, in order for the above algor it hm to fail first on sequences of length
nln2k2r + 21' + 1, some string of length n ln 2k2r + 21' must contain every
possible combinat ion of accepting state and last 21' characters . T hat is, every
accept ing state must have k arrows leading int o it . But this is not possible,
since some of the accept ing states have fewer than k arrows leading to ot her
accepti ng states .•

Theorem 3. Let L1 , L2, D1 , D2, nl , and n2 be as above. Let R be a k­
state, r -iedius one-dimensional cellular automa ton rule. Let q = n22nlk2r,
and let A(L2, q + 1) be all strings of length q + 1 or less in L2. Th en if
A(L2, q + 1) ~ R(Ld , L 2 ~ R(L1 ) .

Proof. Assume we have shown that A(L2,m - 1) ~ R(L1 ) for m - 1 > q.
We wish to show A(L2,m ) ~ R(L1 ) .

Let w be any string in L 2 such that Iw l :s: m - 1. Let the state-sequence
pair s assoc iated wit h w consist of, for each x in R - 1(w), (a) the last 21'
characters of x and (b) the state D 1 is in when it accepts x . Let S( w) be the
state D 2 is in when it accepts w.

Now, let Iwl = m - 1 > q = n22nlk2r. Since there are only n2 poss ibilit ies
for S(w ), and only 2nlk2r possibilities for the state-se quence pairs assoc iated
with w, th ere must be some Y such that y is a pr efix of w, S(y) = S( w), and
y has the same state-sequence pair s assoc iated with it as w.

We know that the final state of y is the same as that of w. Therefore W,
is in L2 if and only if Y, is in L2. Let W, be in L2· Since Y, is in L2 and
ly,1 :s: m - 1, it has a pr eimage in L1 ; spec ifically, it is R(xfJ) for some x in
R- 1(y) n L1 , xfJ in L 1 . This mean s that the final state of x is such as to allow
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appe ndage of a charac ter 13; and it also means that R(last 2T charac te rs of
x, followed by 13) = ,.

Also, becau se y and w have the same state -sequence pairs assoc iated with
them , we kn ow that there is some string s in R- 1 (w) that has the same last
2T charac te rs as x and ends in the same state as x. Since s ends in the same
state as x, sj3 is in L1; since it has the same last 2T charac te rs as x , R(last
2T characters of s , followed by 13) = " and R (sj3) = urv, Hence urt for
any possible , that can follow w in L 2 , has a pr eimage in L 1 . Since w is an
ar bitrary st ring of length m - 1 in L 2 , all st rings of length m + 1 in L have
a preimage in L . •

Corollary. I f A(Ll, n12n,k2r + 1) ~ R (Ld , L1 < R (L1).

Corollary. If A (L2,n22nlk2rj + 1) ~ Rj(L1), L2 ~ Rj(L1).

3. Cellular automaton rule space

Any cellular automato n rule R of radius T can be considered equivalent to a
rule of radius T' , T' > T, under the principle

R( j3cY.f) = R( a) (6)

for all a, 13 , and, in ~* such t hat lal = T and 1131 ,Irl = T' - T. (Not e that
both Rand R' represent the same cellular automat on function.)

Let a metric be defined on the space of k-st ate cellul ar automaton rules
(Sk) as follows: Let R 1 and R2 be k-st ate cellular auto maton rules of radii
T1 and T2, respec tively, with T1 :s: T2. Let R~ be the rule equivalent to R 1 of
radius T2; and let d(R 1, R2) be the proporti on of table ent ries in which R~ and
R2 differ. Note that d is consistent if we consider rul es of radius T3 > T2 that
are equivalent to R1 an d R 2 . The two rul es will differ in k2(r3- r 2) times as
many table entries, and there are k2(rs - r2 ) times as many total tabl e entries .

Theorem 4. d is a m etri c.

Proof. Let R1, R2, and R3 be k-state cellular automa ton rules. By the
previous paragraph, d can be calculate d by regarding all three rules as having
radius T, the maximum of their three radii. Let S (R i , Rj ,T) be the amount
of table ent ries differing between R; and Rj , if t hey are both regarded as
having radius T. Note that

(7)

Any ent ry in which R 1 and R3 differ, thus incrementing S( R1, R3,T), must
also increment either S(R1,R2,T), S(R2,R3,T), or both. Thus

(8)

and hence

(9)
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(10)

Let L be a regular language; and let h be the set of those k-symbo l
(k 2: 2) cellular automaton ru les under which L is invari an t ; that is, for
which R(L ) = L . It is possible to prove results about l t. for certain regular
languages.

The regular languages we are most concerne d with are those that might
characterize all finit e subsequences of a doub ly infinit e sequence ; and these
languages have the characterist ic that if some st ring w is in such a language L,
every proper subst ring of w is also in L . They also have the characteristic that
if w is in L , t here is a a1wa2 in L for some a 1and a2 in L;; and therefore, there
is a (3w, in L , 1(31 = n1, an d 1, 1= n2 for any n 1, n2 2: O. Let such languages
be called data-stream-like languages. Note that if cellular automaton rules
R with rad ius r , and R' with rad ius r' > r , represent the same cellular
auto maton funct ion , and L is a data-stream- like lan guage, R(L ) = R'(L) .
If Iwl 2: 2r' + 1, the operations of R and R' on ware equivalent; and if
2r + 1 ~ Iwl < 2r' + 1, there is a (3w'Y in L such that 1(3 1, 1, 1= r' - r ; and
since R and R' are equivalent , R'((3w,) = R (w ).

Lemma 1. Let L be a regular data-stream-like language that does not equal
L;* . Th en

lim I{w E L : Iwl = n}1 = 0
n-oo I{w : Iwl = n]] .

Proof. Let w be a word in L. Since L is data-stream-like, any memb er of
{xwz: x ,z E L;*} is in L. Therefore,

I{y : Y E L, lyl = n }1

~ I{y : Y =1= xwz , lyl = n }1

~ I{Y : Y=I=xwz,lxl S=' Omodlw l, IYI= n} 1
= (kiwi _ l ) ln/ lwlJ

T herefore,

1
· I{W E L : lw l = n }1
im ':""':""--;------:-----:-----'------0--,--'--'-

n-e-co I{w : Iw l = n}1
(k iwi _ l ) ln/1wiJ

< lim -'-------'------ -
- n -oo kn

(k iwi _ 1)n/lwl
< lim = 0. •
- n-+oo kn

Theorem 5. If L is data-stream-like, h has no interior.

(11)
(12)
(13)
(14)

(15)

(16)

(17)

Proof. Let R be any rule in h , and let R have radius r. Let E be any
number > O. By the pr eceding lemma, there is an r' 2: r such that

I{w E L : Iwl = 2r' + 1}1
I{w : Iwl = 2r' + 1}1 < E.

(18)
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Let R' be the rule equivalent to R of radiu s r' .
Since k 2: 2, :3 some symbol a such that L i= o" . Let R 2 be a ru le of

radius r' such that for ly l = 2r' + 1, R2 (y) = a if y E L ; and R2(y ) = R' (y)
if y if- L. Then d(R , R2 ) < E; and since L is data-stream- like, and there are
thus strings in L of any lengt h , R2 (L) = o", and not L. •

Theor em 6. If L is data-stream-like, h has no in terior.

Proof. Let R be a rul e in h of minimal radius r. Let E be any nu mber > o.
By the pr eceding lemma, :3 an r' 2: r such that

I{w E L : Iwl = 2r' + 1}1
l{w: /wl=2r'+1}1 <E.

(19)

Let R' be the rule equivalent to R of radius r' , Let L . be the ident ity rule of
radius r'; that is,

(20)

Let R 2 be a ru le of radius r' such that for Iyl = 2r' + 1, R2(y ) = Ir(y) if
y E L ; and R2(y ) = R' (y) if y if- L. Then d(R , R2 ) < E; and R2 (L ) = L. •

Corollary. If L is data-stream-like, Is. (h) contains no isolated points.

Proof. If t here were an isolated point in lt. (h) , an annulus surro unding it
would be in h (h ). •

Theor em 7. ls: has no interior.

Proof. Let R be a k-st ate cellular automaton rul e of radius r in IE' ; that is,
every string w in ~* has a preimage under R . Let R' be the equivalent rule
of radius r' > r. R' is also surjective; that is, in IE' . According to [2], this
occurs only if all strings in ~* have the same number of preim ages under R'.
Specifically, all characters a in ~ must have k2r ' pr eimages; that is, for each
a in ~ , t here must be k2r ' ent ries in the rule t able that go to a . It is only
necessar y to change one of these ent ries to t ake the rule out of !r; . ; thus,
there is a rul e R2 in fE" such that d(R , R2 ) = 11r'. Since r' can be mad e
arbitraril y large, R is not in the interior of !r; • . •

Lemm a 2. Let R be a k-state cellular autom aton rule of radius r. Changing
any table entry for R will change at most f(k, n) = nkn - 1 im ages of strings
of length n + 2r; that is, f (k ,n) preimages of strings of length n.

Proof. Chan ging one table ent ry means changing R(z ), Izi = 2r + 1. z IS in
position i in kn

-
1 st rings of length n + 2r , 1 :::; i :::; n. Therefore z can be in

at most nkn - 1 st rings of length n + 2r .•

Corollary. To change m preimages of strings of length n, it is necessary to
change at least fm l f (k ,n )l table entries.
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Theorem 8 . IE- is closed.

Lenore Levin e

(21)

Proof. It suffices to show that if a k-st ate ru le R is in I~ - , :3 an E > 0 such
that if d(R , R2 ) < E, R2 E I~- .

Let R in I~- have radius r . By [2], there is some st ring w in ~* such th at
w has z excess preimages und er R; that is,

k lwl+2r

I{y : R(y) = w}l -~ = z, z> o.

To change R to a surjective rule (ru le in IE - ) R 2 of radius r , it is necessary
to change at least z] f (k , Iwl) table entries; so

(22)

Now, let us consider th e rule R' , of radius r' > r , equivalent to R. The ru le
tab le of R' contains zk2(r' - r ) excess preimages of w; so to change R' to a sur­
jective rule R2 ofradius r', it is necessary to cha nge at least zk2(r' - r ) / f(k , Iwl)
t ab le entries. Therefore ,

z

f (k , Iwl)k2r+l . •
(23)

It is also possible to show that large numbers of points in IE- are not
isolated . In orde r to do so, it is necessa ry to define the effective diameter of
a rule. A one-dimensional cellular automaton rule R of radius r has effective
diameter d if R (aIwbd = R (a2wb2 ) for all aI, a2 , w, bI, and b2 such that
lad = la21, IbI I = Ib2 1, Iw l = d, and lad + Iwl + IbI I = 2r + 1. Such a rule
can, therefore, be considered equivalent to a function R' from d variables in
~ to ~ . Both Rand R' implement the same cellular automa ton funct ion f ;
that is, if y E ~z = f (x) ,

(24)

Let R be a rule of effective diameter d operating on an alphabet ~ of k
let ters, equivalent to a rule R' that is a function from d variables in ~ to ~ .

Then R is left permutive if R'(pa I), . . . , R'(pak) permute the elements of ~ ,

for all p such that Ipl = d - 1. Right permutive ru les are defined similarly
(see [4]).

Theorem 9. If R is a left or right p erm utive rule, it is not an isolated p oint
in IE - ; that is, th ere are surjec tive rules arbitrarily close to it .

Proof. Let n be any nonnegative integer , and let Po be a string of length
n. Let R be a left permutive rule of effective diamete r d over an alphabet ~
of k letters; and let qo be a string of length d. Let R' be th e equivalent ru le
accept ing d charac ters. Let R 2 be a ru le of effective diameter d+n defined as
follows: R2(Pqa ) = R' (qa ) for all p, q, and a such that Ipl = n , Iql = d, and
lal = 1, unless p = Po and q = qo. In this case, let R2 (Poqoa I), . . . , R2(poqoak)
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form a permutation of ~ different from that of R'(qO Cl'l) ,"" R' (qO Cl'k). Then
R2 is also a left permu tive rule, and hence surjective; and

(25)

which can be mad e arbitrarily small by increasing n . •

T his theorem lead s to the following conjecture.

Conjecture 1. lz:" con tains no isolat ed points.

4. Rules with discontinuous b ehavior

4.1 The GO sequence

In the preceding sections, we showed that for any regular lan guage L , and
for any rul e R under which L is invari ant , there are rul es arbit rarily close
to R under which L is not invari ant. This sugges ts that if L is the limi t
lan guage of a rul e, or a very large part of such a limit language, changing
an ar bit ra rily small pro po rtion of table entries may complete ly change the
behavior of the automaton . A case is pr esented in which rul e behavior is,
indeed , discontinuous.

One-dimension al , two-state , radius 1 cellular automat a are spec ified by
an eight-digit binary number in which the leftmost digit is R(111) , followed
by R(110) , ... , R(OOO) (see [6]).

We can see, therefore, that R128(111) = 0; an d R128(W ) = 0 for Iwl = 3
and w # 111. Thus , unl ess an infinite lattice initially contains all ones ,
any finit e part of the lat ti ce will, after enough generations, contain only
memb ers of the regular language L = 0*, which is invari ant under this rul e.
This process is likely to happen quite quickly; for example, unl ess a finit e
part of the lat ti ce contains at least 101 ones in a row, it will regress to all
zeros in less than fifty generations .

The Gr an d Ca nyon (GC ) sequence of rules (so nam ed becau se of the
rules ' appeara nce) is const ruc ted as follows: GCT) r ~ 2, is exact ly like rule
128 except Gc r (02r+1) = 1. Thus, this series converges to rul e 128; but L is
not invari ant under any memb er of this series.

Expe rimental work (see figur es 1, 2, and 3) was don e on a 640- or 1280-cell
wide cross-sect ion of a doubly infini te lattice. (To show the effects of a r­

radius rule after 9 generat ions , it is necessar y to start out with 640+2rg cells .)
This work shows t hat memb ers of the GC series exhibit ent irely different
behavior from rul e 128. Under random initial conditions (created by the rul e
31 random number generator describ ed in Appendix A) a significant number
of ones cont inue to appear on the lattice afte r hundreds of generat ions . This
is true even for GClOO, which has a dist an ce from rul e 128 of only 2-20 1

.

Figure 4 shows the prop ortion of ones, in generations 11 through 400,
when rules in the GC sequence are run with initial condit ions as given above.
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Fi gure 1: R ule GC7 . T his rul e differs fro m ru le 128 only in that if a
cell is zero-va lued , as ar e it s seven neighbors on eit her side, it becom es
one-valued in t he next generat ion . Its distan ce from rule 128 is 2- 15.

Fi gure 2: Rule GC17 . T his rule differs from ru le 128 only if a cell and
it s seventeen neighbors on either side are zero -valued . It s distan ce
from ru le 128 is 2-35.
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..... "Y' '(jV .
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".~ ....

T T +... ...... ....
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Figure 3: R ule GClD O. This ru le differs from rule 128 only if a cell
and it s 100 neighb ors on eit he r side are zero-va lued . Its dist ance from
ru le 128 is 2- 201 .

Proportion of Ones

0.8

0.6

0.2

o 100 200 300

Figure 4: The prop ortion of ones in generat ions 11 thro ugh 400, when
ru les in the GC series are run on a 1280-cell wide section of a dou­
bly infinite lattice. Rules wit h rad ii congruent to 5 mod 20 are tested ,
from GC5 to GC405 . T he center lin e represents t he average propo r t ion
of ones over t en runs, with ou ts ide dot s represent ing t he standard de­
viation. This proportion rem ains significa nt even under GC405 , wh ich
has a distance fro m R ule 128 of only 2- 811
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It is possib le, for any rule in thi s series GCk , to select initial conditi ons h
such that as k approaches infinity, the behavior of GCk on h comes arbit rarily
close to the behavior of ru le 128. Simply select every 2k +2th cell to be a one.
In the next generation also, every 2k + 2th cell (t hose havin g k zero-va lued
neighbors on each side in the first generat ion) will be a one, and the rest of
the cells will be zero-va lued .

However , it may be that th ese ini ti al condit ions ar e atypica l. The above
expe rimental evidence leads to the conject ure that for most init ial condit ions ,
a significant number of ones cont inue to appear in the lat t ice under all ru les
in this series. This is expressed mor e formally in the following.

C onjecture 2. Let Z (I , R , t) be th e proportion of zeros on a doubly infinite
lattice with initi al conditions I , in generation t , und er th e application of
cellular automaton rule R . Th en, there is an c¥ > 0 and a 13 < 1 such that ,
for almost all initial conditions I , and for each rule in the GC sequence GCm ,

and

liminf Z(I , GCm,t) > c¥
t -v co

lim sup Z(I , GCm,t) < 13·
t~oo

(26)

(27)

Experimental evidence also suggests that , as the dist an ce between rules
in the GC sequence and ru le 128 goes to zero, use of the anomalous tab le
entries does go to zero, even though in each genera t ion, under each rul e in
the sequence , there cont inues to be a large prop ortion of cells showing the
effect of anomalous table entry use in pr eceding genera t ions . That is, t hey
have previously been zero-valued, and now have a value of one. Figure 5
shows th e proportion of times anomalous tabl e ent ries were used , under the
same initial conditions as in the pr evious exp eriment . These experiments
lead to Con jecture 3.

C onjectu re 3. Let A(I , R 1 , R 2 , t) be the proportion of times table en tries
differing from R 1 are used, when rule R 2 is applied to a doubly infinite
lat tice, under initial conditions I , in generation t . Th en, for alm ost all ini tial
conditions I ,

lim A(I, Rule 128, GCm , t) = O.
t -+ 00 ,m-+00

However , for conjecture 2 to be true,

lim A(I, Rule 128, GCm,t)
t -r-co

(28)

(29)

must be nonzero for each m .
Note that given two reasonab le assumptions abo ut the behavior of ru les in

this sequence , conjec ture 3 must be true. The first assumption is conjecture
2. The second assumpt ion comes from observation of figures 1, 2, and 3.
Each figur e consists of black triangles against a whit e backgro und; and the
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Fi gure 5: The pr op ortion of times the table ent ry differing from rul e
128 is used in gene rations 11 thro ugh 400, on a 1280-cell wide cross ­
sect ion of a do ubly infini te la ttice. Rules with radii congruent to 5
mo d 20 are tested, from GCs to GC40S . The cent er line represent s
t he average proportion over ten runs , wit h outside do ts representing
the standard dev iat ion.

average area of the triangles ap pears to be proport ional to the radius of the
rule. T he second ass umption is tha t this is ind eed the case.

Black areas in the above figures indicate cells that are one-valued in a
particular genera t ion . T here are two reasons a cell operated on by CCn can
be one-valued in generation k: either because it was , in generation 0, one­
valued and surrounded by at least k one-va lued cells on each side; or because ,
in some prev ious generat ion , it was zero-va lued and surr ounded by more than
n zero-va lued cells on each side. As k goes to infini ty, the number of cells
that ar e one-va lued for th e firs t reason, in generatio n k , goes to zero . Let us
say in the second case that th e black area is part of a nontran sient triangle.
Under any of the C C rules, und er almos t all initial condit ions , aft er a few
generations all but a very small proportion of the one-va lued cells will be
part of nont ransient trian gles.

Now consider n very lar ge; by our second assumption , the area of the
nontran sient t riangles will usually be qui te large. Since the number of gener­
at ions a t riangle lasts equals the width w of the to p of the tri angle, the area
of each t riangle should equal w 2/2. Therefore, if the areas of th e t riang les are
usu ally quite lar ge, the proportion of the width of th eir to ps to their areas
should usually be quite small. Now, each black cell at the to p of a nont ran­
sient triangle indicates the use of an anomalous table entry ; and anomalous
tabl e entries are used only in such cases. Therefore the proport ion of times
anomalous table ent ries are used (the proportion of times cells are black an d
at the top of a nontransient triang le) should be very small com pared to the
proportion of t imes cells are part of a nontran sient triangle. And this is very
close to the proportion of one-valued cells.

This expe riment evokes some general questi ons about the act ions of one­
dimensional cellular automato n rules. That is, if a sequence of rul es

(30)
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is observed to behave discontinuously from the limit rul e Ra, must it be
becau se

lim A(I,Ra,n.; t )
1--->00

(31)

is nonzero for each m ? T hat is, must anomalous table entries be part of the
nontran sient behavior of each rul e? The next examp le shows that this is not ,
in fact , the case .

4.2 The RB sequence

The RB sequence is a sequence of one-dimensional cellular automato n rul es
that converges, under the metric given earlier in the pap er , to a limit rule;
but for which each memb er behaves very differently from the limit rule.

The limit rul e, RBoo , is a rul e over an alphabet offour let ters: (dark, red),
(dark, blu e) , (light , red) and (light, blue). It is regarded as the pro duct of two
different two-let ter rules: RBoo[l] is the right shift over dark or light , and
RBoo[2] is the identity rule over red or blue. T herefore, under RBoo ' any cell
t hat starts out red or blu e rem ain s that color; and , under almost all ini ti al
condit ions, any cell 's neighborhoo d of radiu s r contains, afte r some finite
number of generat ions, any dark -light pat te rn of length 2r + l.

The rules in the RB sequence are formed as follows. Rule RBn is a rul e
of radius n that behaves like the limit rule except when a cell's neighborhood
of radius n is all light . At that ti me, the cell, if it is red , changes to blue.
Now,

22n +l
lim d(RBn , RBoo ) = lim -2+1 = 0,

n-+cx:> n --+oo 4 n
(32)

so the sequence converges to the limit rul e. However , for almost all initial
condit ions, each cell on a doubly infinite lattice will eventually become blue .
Thus, the behavior of each rul e in the sequence differs significant ly from the
limi t rule.

This example of discontinuity differs from the first in two respect s: ano­
malous table ent ries are not used significantly often; and the limit lan guage
of each rul e in the sequence ( ((d ark, blu e) + (light , blu e))* ) is invari ant
under the limit ru le. It can be shown that if a sequence of rul es meet s the
first of these condit ions, it must meet the second .

To establish this, some definitions must be made. Let the transient lan­
guage of a rul e T (R) be those memb ers of E* that must event ually disappear ,
under repeated applica t ions of R, from any finite portion of a doubly infinite
latti ce, under almost all initial condit ions. Let the non transient language of
a rule N(R) = E* - T(R). Note that N (R) is not the same as the limit lan­
guage of R . For example, consider rule 128, described above. The string 111
is part of the limit lan guage of this rul e, since it has a preimage arbitrarily
many generat ions back. However , unl ess the initial condit ions are all ones,
111 will eventually disappear from any finit e portion of the lattice.
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T heorem 10. Let R I and Rz be cellular auto maton rules over the same
alphabet ~*. Let R~ and R~ be equivalen t to RI and Rz, bu t having equal
radii . Supp ose that, under almost all initial condit ions, on any finite area
of th e dou bly in finite lattice, R~ uses table entries different from R~ only a
finit e number of tim es. Then N (Rz) is invariant under R I .

Proof. Since, on a doubly infini te latti ce, rules op erate the same as their
equivalent s, it is enough to consider rules of equal radii .

Suppose :3 w not in N(Rz) such that w = RI (x) , x in N( Rz). Under
almost all init ial condit ions , Rz will continue to produce x indefinitely on at
least some finite sect ions of the lat tice. Since table ent ries differing from R I

are only used transiently, eventually, on each finite sect ion of the lat tice pro­
ducing x indefinitely, w will also be pr odu ced indefinit ely. T his cont radicts
t he assumption that w is not in N( Rz).

On the ot her hand , suppose :3 x in N(Rz) that does not have a pr eimage
under RI . Event ually, in each finit e sect ion of the lat tice, only table ent ries
the same as RI will be used. Therefore x cannot be produced indefinitely
in any finit e sect ion of the lat ti ce, cont radict ing the assumpt ion that x is in
N (Rz).•

Corollary. Let a sequence of cellular automaton rules R I , · . · , R.n. , .. . con­
verge to limit rule R o. Suppose th at , under almost all initial conditions and
for all k , R k uses table ent ries differing from R o only transiently (as described
in th e above theorem) . Then, for all k , N(Rk ) is invariant under Ro.

5. Conclusion

This pap er has present ed algorithms for det ermining whet her or not a regu­
lar lan guage is invari an t under the applicat ion of a cellular auto maton rul e.
A metric has been devised for th e set of all cellular automaton rules over
a given alphabet; and the top ological pro pert ies of various classes of rul es,
under this metric, have been investigat ed. Lastly, an investigation has be­
gun into discontinuities of behavior in cellular automaton rule space. From
numerical experiment s it app ears that there are at least two typ es of such
discontinuiti es.

Appendix A : Rule 31 random number generator

static unsigned int x=l;
unsigned int random() {

static unsigned int first=l ;
static float f;
static int i;
if (first) {/* transient *1

first = 0;
for(i=0;i<100;i++)

x = (x I «x«1) I (x»31») - «x»l) I (x«31» ;
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}
x = (x I ((x«1) I (x »31»)) - ((x»1) I (x«31») ;
return(x);

}

Lenore Levine
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