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Abstract. A modification of Kohonen’s Learning Vector Quantiza-
tion is proposed to handle hard cases of supervised learning with a
rugged decision surface or asymmetries in the input data structure.
Cell reference points (neurons) are forced to move close to the deci-
sion surface by successively omitting input data that do not find a
neuron of the opposite class within a circle of shrinking radius. This
simulates habituation to frequent but unimportant stimuli and admits
problem solving with fewer neurons. Simple estimates for the optimal
shrinking schedule and results of illustrative runs are presented.

1. Introduction

In practical applications of neural computation with supervised learning it
seems to be a serious problem that dominant features of the training set,
although learned almost immediately, continue occupying computational re-
sources and thereby inhibit the learning of finer details.

Living organisms are capable of managing that difficulty by means of a
kind of non-associative learning called habituation [1, 2]: the ability of the
nervous system to learn how to ignore frequent and strong, but unimportant,
stimuli. We suggest that in many situations it can prove helpful to look for
analogous strategies in machine learning.

The aim is not new. Principal component analysis, a method of mathe-
matical statistics easily implemented by neural algorithms [3-8], consists of
a systematic decomposition of the training data set into orthogonal princi-
pal components in succession. After finding the strongest component, one
projects into a subspace orthogonal to it to find the next strongest, and so
forth.

In the present paper we want to add a shift of viewpoint to that approach,
saying that under some circumstances the most essential feature of principal
component analysis is not the way to find the strongest features—any poor
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method is good enough to do that—but the subsequent projection, allow-
ing one to find less pronounced details in the orthogonal subspace. Viewed
from this perspective, the procedure might be called Principal Component
Habituation.

Orthogonal component decomposition is not the only possible strategy.
Analogous in scope is the work of Kinzel and Rujdn [9], who suggest re-
stricting the training of a simple perceptron to patterns orthogonal to the
actual decision (or weight) vector. This results in an improvement of the
generalization ability of the perceptron (see also [10]). In light of the above
reasoning, the actual decision vector in their approach served strictly as a
statistical estimate to the strongest principal component.

Genetic algorithms provide another way to approach the problem (for a
closely related discussion see [11]). What should undergo evolution (Dar-
winian or not) in the present case are selected subsets of the training set, of
a growing fitness in teaching good classification. In this sense, unimportant
subsets are less fit, and they are doomed to perish by habituation.

Let us briefly describe two examples from our own recent work, where ad
hoc methods proved useful in handling analogous difficulties.

Separation of quark and gluon jets. Jets, detected in high-energy particle
accelerators, are bunches of particles emerging from the same point within a
narrow angular range. Those originating from a quark and those from a gluon
(both invisible) are similar, but a statistical analysis can detect features that
distinguish them. One of the features is dominant: it is total energy of the
jet, furnishing a rough classification. We had to restrict a neural network
analysis to subclasses of equal energy to improve performance [12].

Detecting signal peptides. Signal peptides are short terminal segments
temporarily attached to protein sequences as a postal code to conduct them
from the place of synthesis to the place of utilization. In trying to tell whether
a given amino acid sequence contains a signal peptide, some dominant fea-
tures concerning the chemistry of the joint between signal and signaled chain
had been recognized, furnishing a rough classification. We had to use these
features as pre- and post-filtering sets to improve performance of a neural
classifier [13].

In the following, we use systematic selection from the training input set,
with the clearly stated aim of implementing habituation. We have found it
particularly convenient to start from Kohonen’s Learning Vector Quantiza-
tion (LVQ) method [14, 15], in which our approach has a transparent geomet-
rical meaning. LV(Q is summarized in its original form in section 2, presenting
a physically motivated estimate of the computation time needed to complete
learning. Section 3 introduces our modification of LVQ by adding simulated
habituation; some typical situations related to rugged decision surfaces or
asymmetric data structures and calling for our approach are also discussed
there. In section 4 we give simple estimates about the expected performance
and limitations of our method. It will be shown that the basic effect of our
procedure is to reduce the number of neurons needed to solve a classification
task. In some cases it speeds up learning; in all cases it speeds up doing the
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learned classification. Section 5 describes the first numerical tests on simple
model tasks and summarizes our experience.

2. Learning Vector Quantization

Vector quantization is a generalization of analog-to-digital conversion to vec-
tor inputs x, “quantized” into the closest one of a set of predefined discrete
values w;—closeness being defined according to euclidean, Manhattan, or any
reasonable distance. That divides the input space into Voronoi cells, the ith
of which contains all points x to be quantized into the same cell center w;.
Cell centers themselves can be visualized as synaptic connection strengths
multiplexing input x toward neurons labeled by 7« = 1,..., N. The neurobi-
ological background of this assignment implies a layer of neurons competing
by lateral inhibition; on the arrival of an input, after some transient time
only the “winner” will give an output signal. We will often refer to w; as the
position of neuron 7 in the input space, and think of neurons as quasi-atoms
moving in an adaptation process (see below).

Neurons can be bunched together to represent larger classes (or cate-
gories) of inputs. Kohonen’s LVQ turns this tool into an adaptable classifier
by adding a learning rule. That modifies the connection strengths—visually
it displaces neurons in the input space—so predefined classes of neurons pro-
vide an optimal representation for sets of different kinds of inputs. These
sets are often noisy, therefore they can overlap.

Kohonen’s LVQ rule [14, 15] consists of three steps:

1. choose (randomly or not) an element x of class ¢ of the training set;

2. find the closest neuron 7 (the “winner”)—the one for which the dis-
tance [x — w;| is the smallest—and determine class e to which neuron
7 belongs;

3. modify the connection strength w; of the winner according to
w; — w;+ S(e, A (x —wy), (1)

where A is the amplitude of learning, and S(e, q) is +1 if neuron class e
represents input class ¢ and —1 otherwise. In practical applications A
is usually diminished gently in time as adaptation proceeds (see below
in section 5).

Equation (1) can be interpreted by saying that neurons are attracted to
training patterns of the same class and repulsed by those of other classes.

If there are just two classes, one can label them ¢ = %1 for training set
classes and e = %1 for the corresponding neuron classes; then S(e,q) = eq.
If, as mentioned above, neurons are regarded as quasi-atoms, e and ¢ are
analogous to electric charges of neurons and patterns, respectively (however,
charges of equal sign attract each other).
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Since one of the main points of the present paper is to show a way to speed
up LVQ in some hard cases, we need a rough estimate of the computing time
needed for the original LVQ. To this end we use the quasi-atom visualization
(see also [16], where more details about LVQ dynamics are discussed).

The computing time is determined by the last and slowest stage of the
learning process: a diffusion-like homogenization of N neurons of a given
class over a range of volume V of the d-dimensional input space, dominated
by inputs of the respective class. If the input range is neither too oblong
nor too oblate (our suggestions presented below in section 3 are less useful
in those cases), it can be approximated by a hypersphere and its largest di-
ameter L can be estimated from V = Ay(L/2)¢. Here we do not need an
explicit expression for the coefficient A;. Then, for the last stage when inho-
mogeneities are already smooth, one can use a diffusion equation to evaluate
the homogenization time (L/2m)%/D, where D is the diffusion coefficient of
neuron quasi-atoms. With the above estimate of L this gives

tvg = 772D (V/A9)™*. 2)

We still need an estimate of D. Let us start by approximating the
Voronoi cell around a given neuron by a hypersphere of radius R to be
determined from its volume A4 R%, = 1/p, where g is the local density of
neurons. Diffusion is driven by its gradient. Then it is easy to see that the
Voronoi hypersphere would swell toward the low-density side and contract
from the high-density side; this is equivalent to shifting the whole cell by
8 = ReenV Reet = Reen(dRcen/do)Vo.

Calling an input and finding the winner among N neurons takes some
time Nto. The probability that the given neuron will be selected is N1;
if that happens, equation (1) tells us that the neuron will be displaced on
average by Ad down the density gradient. Therefore the mean velocity of
a neuron is A§/(N?ty). This, multiplied by g, gives the diffusion current
—DV . The result is

A

_ —2/dN—2
__ > ey 3)
tod A2/

Approximating g by its final mean value N/V and combining equations
(2) and (3), we obtain the desired estimate

d
tivg = to— N2TE/9), 4
vQ = to- 5y (4)

The learning time grows with the number of neurons needed for a reliable
classification. That number depends on the nature of the problem. Asshown
below, in some typical cases the idea of habituation may offer a better chance
at good performance than simply increasing the number of neurons.
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Figure 1: Hard cases for Learning Vector Quantization: (a) rugged de-
cision surface, (b) asymmetric data set. Two non-overlapping classes
of the training set (small triangles and circles) are represented by the
respective classes of neurons (big triangles and circles). The bound-
ary of neuronal classification (thick line) fails to resolve details of the
true decision boundary (thin line). The classification performance is
91.2% in case (a), 94.7% in case (b).

3. Habituation in LVQ

In LVQ the simplest feature calling for habituation is this (figure 1(a)): neu-
rons are more or less uniformly distributed in the respective ranges of the
input space, therefore they fail to give a close resolution of a rugged decision
surface with many details. To avoid poor classification a very large number
of neurons is needed, which makes the learning process slow.

Bringing neurons closer to the decision surface is advantageous in other
situations as well. If data sets to be classified are asymmetric in shape of
the occupied region (figure 1(b)) or in volume then LVQ gives a systematic
classification error. You can get rid of that by using a very large number of
neurons, or as we suggest by habituation.

Evidently neurons a long way from the decision surface are useless; how-
ever, in LVQ they remain there as a consequence of the many training pat-
terns a long way from that surface. Those patterns, once recognized, carry
no more useful information for the decision process. Our aim is to get habit-
uated to these boring inputs and get rid of them in further learning.

All we need is a good criterion to determine which are the unimportant
input patterns. Our suggestion is this:

1. If input pattern (x, ¢) finds no neuron of a different class (S(e, q) = —1)
within distance R(¢) then it is unimportant and it should be canceled
from further learning, with some probability p.
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2. R(t) should be chosen initially about the diameter of the input range,
then shrunk in time as learning proceeds.

The sensitive point of the procedure is to find a good shrinking schedule
R(t). That will be done in the next section.

The expected final state is one from which all input patterns except those
close to the decision surface have disappeared, neurons being dragged by the
remaining ones into the relevant region. This gives an enhanced resolution of
fine details in the decision surface, that is, better classification performance
with the same number of neurons or equal performance with less neurons.
Section 5 presents illustrative results of simulations confirming that expec-
tation.

One might think that it is much easier to test input patterns by their
distances from patterns, not neurons, of the opposite classes. That is true for
compact, noiseless, non-overlapping training-set classes. Our choice makes
the procedure work for the overlapping case too: it starts as LVQ proper and
separates neuron classes, which can subsequently guide habituation.

4. Basic estimates

LVQ can achieve arbitrarily good classification by increasing the number of
neurons, which costs computing time both in learning and in carrying out
the learned classification task. The main advantage of habituation is that it
can achieve the same performance using fewer neurons. The price for it is
a more lengthy learning procedure; however, as shown below in detail, the
reduction in the number of neurons can nevertheless result in faster learning
if the classification task is complex enough. The speed-up in carrying out the
learned classification is obtained in all cases, since no trace has to be kept of
neurons irrelevant to the classification task.

The basic factor limiting the speed of habituation is the possibility of
losing neurons if the shrinking of R(¢) is too fast: a neuron lagging too
much behind the moving boundary of the active input range will no longer
be chosen a winner. The optimal shrinking schedule is the fastest that still
avoids that error.

Below we restrict ourselves to p = 1; that is, each “unimportant” pattern
is erased.

For a quantitative estimate let us assume that we have a data set of
two non-overlapping classes, filling out uniformly the two halves of a d-
dimensional cylindrical region of d-dimensional volume 2V and d — 1-dimen-
sional cross-sectional area C.

In order to avoid neuron losses, our best chance is to keep the lagging
ones just pinned onto the moving boundary of the still-active input range.
Indeed, there they feel the whole pulling force of a hemisphere-like Voronoi
cell. If immersed more into the active range, some of the input would pull
them backwards; if lagging behind, less than a hemisphere chooses them a
winner.
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The requirement is that the drift of a neuron on the moving boundary
should not be slower than the displacement of the boundary itself. The drift
velocity can be calculated along the lines of section 2. It is a simple exercise
to show that the center of mass of the Voronoi hemisphere of radius R is
ahead of the center (the neuron) by

Agq

s
(d+ 1)Aq

Rcell . (5)

Then the equality of drift velocity AS/(2N%ty) and boundary velocity gives
an equation connecting the habituation radius R to the Voronoi cell radius
Rcell:

aRcell = _R + Rcell: (6)

where the dot denotes the time derivative and o = AA4_1/(2(d + 1) N%t,Ay)
(the 2 appears in the denominator because a hemisphere gives a half chance
of being chosen a winner), and the last term on the right-hand side accounts
for the fact that the first neuron of opposite category is found at a distance
R beyond the decision boundary.

A second equation connecting R and R is obtained by expressing Reen
through the neuron density ¢ = (AqR%;)~!, which is in turn determined
by diffusion behind the moving boundary. For an exploratory study we can
start from the simplifying assumption that diffusion is fast enough to sustain
a uniform neuron distribution in the shrinking active range. Then the average
density of neurons is p = N/((R(t)— Reen)C). Comparing the two expressions
for o, we obtain

R = ﬂRgell + Reens (7)

where 8 = NA,/C.
R can be eliminated from equations (6) and (7) to obtain a single differ-
ential equation for the Voronoi radius R (t), with the solution

Rcell == [’Y(t* - t)]l/(dﬁl)a (8)

with v = a(d — 1)/(8d). The integration constant ¢* is determined by the
initial value Ryy. Finally the desired shrinking schedule R(t) is obtained by
substituting equation (8) into equation (7). For a numerical evaluation we
need Ay = 7¥2[(d/2)T(d/2)]7 .

t* is an upper bound for the time needed for habituation (actually habit-
uation has to be stopped somewhat earlier, see below in section 5). Using
NAyRE, =V, from equation (8) with the definition of y we obtain

1+(1/d _
2d(d+1) ALFA/D y1-0/d) ey,

ai:t 9
habit 0/\(d—1) A c 9)

where the factor V1~(1/4) /C' measures the oblongness of the input region.
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Equation (9) should be compared to the corresponding result for LVQ
without habituation, equation (4), taking into account that habituation al-
lows the use of fewer neurons for the same task. Let us consider the case
when the two input classes are separated by a rugged decision surface on
which we want to resolve details of a characteristic wavelength [ (figure 1(a))
using 2N neurons, with N neurons representing each class.

For the desired resolution the average distance between neurons should
not be longer than [. Since, in LVQ, N neurons fill a d-dimensional volume
V whereas in the final state of habituation they fill a d — 1-dimensional area
C, the number of neurons needed to represent each class is

Nivq =V I74/Aq (10)
in the first case and only
Npavie = C 17 /444 (11)
in the second. Substituting into equations (4) and (9), respectively, one
obtains
1/d 24+2
v =to3y ﬁ (%) (12)

and

(13)

T IE— 2d(d+ 1) A;*“(l/d) Vi-(/d) [ c1/d-1) (@2 —d—1)/d
habit = fo Ald—1) AZJ_rgl/d) C :

The main feature of the above formulas is the very steep rise of computing
time needed if you want to resolve finer details using LVQ, and the much less
steep rise in the case of habituation. For two dimensions you have tryq oc [™°
whereas tuapi o< 1752, That proves our claim that habituation, although
slower than the original LVQ if applied to simple tasks, may be faster in
learning harder ones.

5. Simulations

Although, as stated at the end of section 3, habituation can deal with noisy,
overlapping training set classes too, our illustrative examples contain no over-
lapping classes. Let us begin with some remarks on the character of know-
how for potential users, formalizing our experience with the method.

The first of them is this: the random process may sweep several neurons
into one pocket of the rugged decision surface, leaving other parts poorly
represented (physicists may call this a non-ergodicity effect). To assure good
wetting of the decision surface by the available neurons, you have to keep A
large during the whole process of habituation, and start diminishing (“cool-
ing”) it only afterwards.

The second remark specifies what “afterwards” means. Shrinking R(t)
should be stopped somewhat before ¢*: as soon as the neurons get as close to
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Figure 2: The overfitting error caused by neurons getting too close to
the decision surface. The hatched regions are misclassified.

the decision surface as they are to each other, that is, when NA4_,R%! = C
is reached. With equations (7) and (8) this can be rephrased by requiring
that shrinking stop as

A Ny \ /@D
R(tmae) = Ronin = | ( Add1 _ 1) (%) (14)

is passed. Otherwise a kind of overfitting error develops, since the orien-
tations of local decision surface segments become highly sensitive to small
lateral displacements of neurons (figure 2).

It is slightly paradoxical that the density n of the training set drops out
from our formulas for the learning time. It is a straightforward consequence of
Kohonen’s rule equation (1) that the mean displacement of a neuron per one
call of a training pattern depends only on the mean distance between neurons,
not on that of patterns. However, if you have a chance to generate more
examples of the rule, that improves the classification obrained in smoothness
and the accuracy of generalization.

In a computer program it may be advantageous to use an epoch, that is,
a cycle in which each element of the active training set is called just once, as
the unit of time. An epoch lasts tg = nC(R — Reen)Nto units of real time,
thus it gets shorter and shorter as habituation proceeds. It is easy to see
that, on this shrinking scale of time, equation (8) is replaced by

Ry

cell = =, 15
Y1t e
where £ = t/tg is the time measured in epochs, and
_ 2d(d + 1)Ag/Aq_, V-9 N/ 16)
AnV C
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(a) (6)

Figure 3: Learning Vector Quantization improved by habituation.
The same neurons as in figure 1, if brought closer to the decision
boundary by gradually omitting unimportant training set elements,
give a more accurate representation of the boundary. The classifica-
tion performance grew to 93.9% in case (a) and to 98.5% in case (b).

The characteristic time ¢* has been transformed into #* = co.

Again, the suggested shrinking schedule is contained in equation (7), this
time combined with equation (15). Nothing changes with equation (14) spec-
ifying the value of R(f) where habituation should be stopped.

The final states of some illustrative runs are presented in figures 3(a)
and 3(b), corresponding to their respective LVQ counterparts, figures 1(a)
and 1(b). Figure 4 illustrates our claim that habituation may help one reach
good classification with very few neurons in hard cases, whereas LVQ would
need a huge number of them.

6. Outlook

Tests on real-life problems like those mentioned in the introduction remain
to be done. The performance would depend very much on the nature of the
problem. In our first simulations on simple model tasks habituation did not
seem to offer considerable savings in learning time for the rugged decision
surface case (figures 1(a) and 3(a)), whereas it proved very helpful in learning
the asymmetric learning set case (figures 1(b) and 3(b)).

In any case, habituation can considerably reduce the time needed to carry
out the learned classification because of the smaller number of neurons needed
for equal performance. Although that time is very short compared to that of
learning, in various applications to fast on-line data processing its reduction
can be an important advantage. Recognizing pre-defined classes of events
at high-energy particle accelerators, mentioned in the introduction, is one of
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Figure 4: Classification performance versus number of neurons for the
case of asymmetrical data sets: LVQ without habituation (figure 1(b))
and habituation (figure 3(b)).

the real applications envisaged.

Finer details of Kohonen’s LVQ model can be given a simple physical
interpretation in terms of transport of neurons under the driving forces of
two concentration gradients: their own (diffusional transport) and that of the
training set (analogous to electric conduction). The two transport coefficients
are related through an Einstein-type relation, determining the character of
the final state of learning and offering an explanation for the sharpness of
classification obtained by LVQ in noisy cases. These aspects of the problem
are described in [16]. Habituation makes the “electric” driving force time-
dependent, controlled by the externally imposed shrinking schedule and the
feedback from neuron motion.

Our approach can also be regarded as a kind of genetic algorithm in which
the active training set evolves so as to bring out the features most significant
to the classification task, in the spirit of reference [11]. Parallel to that,
however, the learning process is also progressing; therefore our algorithm
is actually based on the co-evolution of patterns and neurons, as pointed
out by Wong [17]. Habituation introduces a feedback making the training
set distribution and therefore the quasi-electric driving field time dependent.
LVQ and habituation as evolutionary models will be treated in a subsequent
publication.

Although the idea of habituation is presented here for LVQ, we do not
think that the idea is restricted to that particular learning algorithm; thus
we are still considering other possible implementations.
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