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Abstract. A modification of Kohonen's Learning Vector Quanti za­
tion is proposed to hand le hard cases of supervised learning with a
rugged decision surface or asymmetries in the input dat a structure.
Cell reference points (neurons) are forced to move close to the deci­
sion surface by successively omit ting input data that do not find a
neuron of the opposite class within a circle of shrinking radius . This
simulates habituation to frequent but unimportant stimuli and admits
problem solving with fewer neurons. Simple estimates for the optimal
shrinking schedule and result s of illustrative runs are presented.

1. Introduction

In pr actical applications of neural computation with supervised learn ing it
seems to be a serious pr oblem that dominan t features of the training set ,
alt hough learn ed almost immediately, cont inue occupying computational re­
sources and thereby inhibit the learn ing of finer det ails.

Living organisms are capable of man aging that difficulty by means of a
kind of non-associative learn ing called habit uation [1, 2]: t he ability of the
nervous syste m to learn how to ignore frequ ent and strong, but un important ,
st imuli. We suggest that in many sit uat ions it can prove helpful to look for
analogous st rategies in machine learni ng.

The aim is not new. Principal component analysis , a method of mathe­
matical statist ics eas ily implemented by neural algorit hms [3- 8] , consist s of
a syste mat ic decomposition of the training data set into orthogonal princi­
pal components in succession. Aft er find ing the strongest component , one
projects into a sub space orthogonal to it to find the next strongest , and so
forth.

In the pr esent paper we want to add a shift of viewp oint to that approach,
say ing that under some circumstances the most essent ial feature of pr incipal
component analysis is not th e way to find the strongest features- any poor
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method is goo d enough to do that-e-but the subsequent pro ject ion, allow­
ing one to find less pro nounced details in the orthogonal subs pace. Viewed
from this perspective, the procedure might be called P rincipal Component
Hab ituat ion .

Or thogonal component decomposit ion is not the only possible st rategy.
Analogous in scope is the work of Kinzel and Rujan [9], who suggest re­
st rict ing the tr aining of a simple percept ron to pat tern s orthogo nal to the
actual decision (or weight ) vector. This results in an improvement of the
generalizat ion ability of the perceptron (see also [10]). In light of the above
reasoning , the actual decision vector in their approach served strictly as a
stat istical est imate to the st ronges t pr incipal component .

Geneti c algorithms provide another way to approac h the prob lem (for a
closely related discussion see [11]). What should undergo evolution (Dar­
winian or not) in the pr esent case are selected subsets of the training set , of
a growing fitness in teaching goo d classifica tion . In this sense , un impor tan t
subsets are less fit , and they are doomed to perish by hab ituation .

Let us briefly describe two examples from our own recent work, where ad
hoc methods pr oved useful in han dling analogous difficult ies.

Separation of quark and gluon jets. Jets, det ect ed in high-energy particle
accelerators, are bunches of part icles emerging from the same point wit hin a
narrow angular range. Those originating from a quark and those from a gluon
(bo th invisible) are similar , but a statistical analysis can detect features that
distinguish them. One of the fea tur es is dominant: it is to tal energy of the
jet , furnishin g a rough classification. We had to restrict a neural network
analysis to subclasses of equal energy to improve performan ce [12J.

Detecting signal peptides. Signal pept ides are short term inal segments
tempo rarily at tac hed to pr otein sequences as a post al code to conduct them
from the place of synthesis to the place of utilizati on . In tr ying to tell whether
a given amino acid sequence contains a signal peptide, some dominan t fea­
tures concerning the chemist ry of the joint between signal and signaled chain
had been recognized , furni shing a rough classificat ion . We had to use these
features as pre- and post-filtering sets to improve perform ance of a neural
classifier [13J .

In the following, we use systemat ic select ion from the training input set,
wit h the clearly stated aim of imp lementing hab it uation . We have found it
par ticularly convenient to start from Kohonen 's Learning Vector Quan tiza­
t ion (LVQ) method [14, 15], in which our approach has a t ransparent geomet­
rical meani ng. LVQ is summarized in its original form in sect ion 2, presenting
a physically motivated est imate of the comput at ion time needed to complet e
learning. Secti on 3 introduces our modificat ion of LVQ by adding simulated
habituation ; some typ ical situat ions related to rugged decision sur faces or
asymmet ric data st ruc tures and calling for our approach are also discussed
there. In sect ion 4 we give simple est imates abo ut the expec ted performance
and limitations of our method . It will be shown that the basic effect of our
procedure is to reduce the number of neurons needed to solve a classification
task. In some cases it speeds up learn ing ; in all cases it speeds up doing the
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learn ed classification . Section 5 describ es the first numerical test s on simple
model tasks an d summarizes our experience .

2. Learning Vector Q ua nt iza tion

Vector quantization is a generalizat ion of analog-to-digit al conversion to vec­
tor inputs x , "quantized" into the closest one of a set of predefined discrete
values Wi- closeness being defined accord ing to euclidean, Manhattan, or any
reasonable distance. That divides the input space into Voronoi cells, t he ith
of which contains all poin ts x to be quant ized into the same cell cente r Wi.
Cell centers themselves can be visualized as synaptic connec t ion st rengths
multiplexing input x toward neur ons labeled by i = 1, . . . ,N . The neurobi­
ological background of thi s assignment implies a layer of neurons compe ting
by la teral inhibition; on the arr ival of an input , after some tr an sient time
only the "winner" will give an output signal. We will oft en refer to Wi as the
posit ion of neuro n i in the input space, and think of neurons as quasi-atoms
moving in an adapt at ion pro cess (see below).

Neurons can be bun ched together to represent larger classes (or cate­
gories) of inputs. Kohonen 's LVQ turns this tool int o an adaptable classifier
by adding a learn ing rul e. That modi fies the connection st rengths-visually
it displaces neurons in the input spac e-so pr edefined classes of neurons pro­
vide an opti mal representation for sets of different kinds of inputs. These
set s are often noisy, therefore they can overlap.

Kohonen 's LVQ rule [14, 15] consists of three steps :

1. choos e (randomly or not ) an element x of class q of the training set ;

2. find the closest neuron i (the "winner" )-the one for which the dis­
tan ce [x - w. ] is the sm allest - and determine class e to which neuron
i belongs;

3. modify the connection st rength Wi of the winner according to

Wi -> vr, + S (e,q)>.(x - w.}, (1)

where >. is the amplit ude oflearn ing , and S( e,q) is +1 if neuron class e
represents inp ut class q and -1 ot herwise. In pr act ical applica t ions >.
is usually diminished gently in time as adaptation pr oceeds (see below
in section 5).

Equation (1) can be int erpreted by saying that neurons are at trac ted to
tr aining patterns of the same class and repulsed by those of ot her classes.

If there are just two classes, one can label them q = ±1 for tr aining set
classes and e = ± 1 for the corres ponding neuron classes; then S (e,q) = eq.
If, as mentioned above, neurons are regarded as qu asi-at oms, e and q are
analogous to elect ric charges of neurons and pat terns, respectively (however ,
charges of equal sign attract each ot her).
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Since one of the main points of the pr esent pap er is to show a way to speed
up LVQ in some hard cases, we need a rou gh estimate of the computing t ime
needed for the original LVQ. To t his end we use the quasi-atom visualization
(see also [16], where more details abo ut LVQ dynami cs are discussed).

The computing time is det erm ined by the last and slowest stage of the
learning process: a diffusion-like homogenizat ion of N neurons of a given
class over a range of volume V of the d-dimensional input space , dominat ed
by inputs of the resp ective class. If t he inp ut range is neither too oblong
nor too oblate (our suggest ions presented below in sect ion 3 are less useful
in those cases) , it can be approximated by a hypersphere and its largest di­
ame te r L can be est imated from V = A d (L /2 )d Here we do not need an
explicit expression for the coefficient Ad. Then , for the las t stage when inho­
mogeneiti es are already smoo th , one can use a diffusion equation to evaluate
the homogenizat ion t ime (L/ 21r)2/ D , where D is th e diffusion coefficient of
neuron quasi-atoms . With the above estimate of L this gives

(2)

We sti ll need an estimate of D. Let us start by approximat ing the
Voronoi cell around a given neuron by a hypersphere of radius Rcell to be
det ermined from its volume AdR~ell = 1/ (2 , where (2 is the local density of
neurons. Diffusion is dr iven by its gradient. Then it is easy to see that the
Voronoi hyp ersphere would swell toward the low-density side and contract
from the high-density side ; this is equivalent to shift ing the whole cell by
s= Rcell\7Roell = Roell (dRoell / d(2)\7 (2 .

Calling an input and findin g the winner among N neurons takes some
t ime Nt-: The probabili ty that the given neur on will be selected is N - 1 ;

if t hat happens, equation (1) te lls us that the neuron will be displaced on
average by )..{j down the density gradient . Therefore the mean velocity of
a neuron is )..{j/ ( N 2tO) ' This, mul tiplied by (2, gives the diffusion cur rent
- D\7 (2. The resul t is

(3)

Approximating (2 by its final mean value N / V and combining equa tions
(2) and (3), we obtain the desired est imate

t - t d N 2+ (2/ d)
LVQ - 0 1r2 ).. . (4)

The learn ing time grows with the number of neurons needed for a reliab le
classificat ion . That number depend s on the nature of the pr oblem . As shown
below, in some typ ical cases the idea of habituation may offer a bet ter chance
at good performan ce than simply increasing the number of neurons.
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(a) (b)

Figure 1: Hard cases for Learning Vector Quantizat ion: (a) rugged de­
cision surface, (b) asymmetric dat a set . Two non-overlapping classes
of the training set (small triangles and circles) are represented by the
respective classes of neurons (big tr iangles and circles). The bound­
ary of neuronal classification (thick line) fails to resolve details of the
true decision boundary (thin line). The classification performance is
91.2% in case (a), 94.7% in case (b) .

3. Habituation in LVQ

In LVQ the simplest fea ture calling for habituation is this (figure l (a)): neu­
rons are more or less uniformly distributed in the resp ect ive ran ges of the
input space, t herefore they fail to give a close resolu tion of a ru gged decision
sur face wit h many details. To avoid poor classification a very lar ge number
of neurons is needed , which makes the learn ing process slow.

Bringing neur ons closer to the decision sur face is ad van tageous in ot her
sit uations as well. If data sets to be classified are asymmetric in shape of
the occupied region (figure l (b)) or in volume then LVQ gives a sys temat ic
classificati on err or. You can get rid of that by using a very lar ge number of
neurons, or as we suggest by habituation .

Ev idently neurons a long way from the decision sur face are useless; how­
ever , in LVQ they remain there as a consequence of the many t ra ining pat­
terns a long way from that sur face. Those patterns , once recognized , carr y
no more useful informati on for the decision proce ss. Our aim is to get habi t­
uated to these boring inputs and get rid of them in fur ther learning.

All we need is a good criterion to det ermine which are the unimpor tant
inp ut pat tern s. Our suggestion is this:

1. If input pattern (x, q) finds no neur on of a different class (S(e,q) = - 1)
within distance R (t ) t hen it is unimpor tan t and it should be canceled
from fur ther learning, wit h some probability p.
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2. R (t ) should be chosen initi ally about the diameter of the input range,
then shrunk in time as learning pro ceeds.

The sensit ive point of the procedure is to find a good shrinking schedule
R (t ). That will be done in the next sect ion .

T he expec ted final state is one from which all input patterns except those
close to t he decision surface have disapp ear ed , neuro ns being dragged by the
remaining ones into the relevant region . T his gives an enhanced resolut ion of
fine details in the decision sur face, that is, bet ter classificat ion performan ce
with the same numb er of neurons or equal performance with less neurons.
Sect ion 5 presents illustrative result s of simulations confirming that expec­
tation .

One might think that it is much eas ier to tes t input patterns by their
distances from patterns, not neurons, of t he opposit e classes. That is t ru e for
compact , noiseless, non-overlappin g training-set classes. Our choice makes
the procedure work for the overlapping case too: it starts as LVQ pro per and
separates neuron classes, which can subsequent ly guide hab ituation.

4. Basic est imates

LVQ can achieve arbitrarily good classification by increasing the number of
neurons, which costs computing time bo th in learning and in carrying out
the learn ed classificat ion task. T he main advantage of habituat ion is that it
can achieve the same performance using fewer neurons. The pr ice for it is
a more lengthy learning procedure; however , as shown below in detai l, the
redu ct ion in the number of neurons can never th eless result in faster learni ng
if t he classificatio n task is complex enough . The spee d-up in carrying out the
learned classificat ion is obtain ed in all cases, since no tr ace has to be kept of
neur ons irrelevant to the classificat ion task.

T he basic facto r limiting the speed of habituation is the possibility of
losing neurons if the shrinking of R (t ) is too fast : a neuron lagging too
much behind the moving boun dary of the active input ran ge will no longer
be chosen a winner. The optimal shrinking schedule is the fastest that still
avoids that error .

Below we restrict ourselves to p = 1; that is, each "unimportant" pattern
is erased .

For a quantitative estimate let us assume that we have a data set of
two non-overlapping classes, filling out uniformly the two halves of a d­
dimensional cylindrical region of d-dimensional volume 2V and d - l -dimen­
sional cross-sect ional area C.

In order to avoid neuron losses, our best chance is to keep the lagging
ones just pinned ont o the moving boundary of the still-active input ran ge.
Indeed , there they feel the whole pulling force of a hemisphere-like Voronoi
cell. If immersed more into the act ive range, some of the input would pull
them backwards; if lagging behind , less than a hemisphere chooses them a
winner.
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(5)

T he requirement is that the drift of a neuron on the moving boundary
should not be slower than the displacement of the boundary itself. The drift
velocity can be calculat ed along the lines of section 2. It is a simple exercise
to show that the center of mas s of the Vorono i hemisphere of radius Reell is
ahead of the center (the neuron) by

8 A d - 1 R
= (d + I)A

d
cell·

Then the equality of dr ift velocity >-.8/(2N2t
O) and boundary velocity gives

an equation connecting the habituation radius R to t he Voronoi cell radius
Reell :

(6)

where the dot denotes the time derivative and a = >-.Ad- I!(2(d + I)N2toAd)
(the 2 appears in the denominator becau se a hemisphere gives a half chance
of being chosen a winner) , and the last term on the right-hand side accounts
for the fact that the first neuron of opposit e category is found at a dist anc e
Reell beyond the decision boundary.

A second equation connect ing R and Reell is obtained by expressing Reell
through the neuron density {} = (AdR~ell) -l , which is in t urn determined
by diffusion behind the moving boundary. For an explora tory st udy we can
start from the simplifying assumpt ion that diffusion is fast enough to sustain
a uniform neuron distribution in the shrinking act ive ran ge. Then the average
density of neurons is {} = N/((R(t)-Reell)C). Comparing the two expressions
for {}, we obtain

R = (3R~ell + Reell , (7)

where (3 = N Ad/C.
R can be eliminate d from equ at ions (6) and (7) to obtain a single differ­

ential equ ation for the Voronoi radius Reell(t), with the solut ion

Reell = h(t* - t)p/(d-l) , (8)

with, = a(d - 1)/((3d). The integration constant t* is det ermined by the
init ial value Rv o. Finally the desired shrinking schedule R(t) is obtained by
substituting equat ion (8) into equation (7). For a numerical evaluat ion we
need Ad = 1r

d/2 [(d/ 2)r(d/ 2)J- l .
t* is an upper bound for the t ime needed for habituation (actually habit­

uation has to be stopped somewhat earlier, see below 'in section 5) . Using
N AdR~o = V, from equation (8) with the defin it ion of , we obtain

2d(d + 1) Ad1+(l/d) V1-(1/d)
t t N 2+ (1/ d)

habit = 0 >-.(d - 1) Ad-1
C

where the factor V1 -(1/d) /C measures the oblongness of the input region.

(9)



186 Tamas Geszti and Istvan Csabai

Equat ion (9) should be compared to the corr espo nding result for LVQ
wit hout habi tuation , equat ion (4) , taking into account that habi tuation al­
lows t he use of fewer neurons for the same task. Let us consider the case
when the two input classes are separated by a ru gged decision surface on
which we want to resolve details of a charac te rist ic wavelength 1 (figure l (a))
using 2N neurons, wit h N neurons repr esenti ng each class.

For the desired resolution the average dist ance between neurons should
not be longer than I. Since, in LVQ, N neurons fill a d-dim ensional volume
V whereas in the final state of habituation they fill a d - L-dimensional area
C , the numb er of neurons needed to represent each class is

in the first case and only

N C I- (d- l )/ A
habit = d- l

(10)

(11)

in the second . Substituti ng int o equat ions (4) and (9) , respect ively, one
obtain s

and

d 1 (( V)1
1

/
d)

2d+2
t LV Q = to7["2>" A2+(2/d) (12)

(13)
. _ 2d(d + 1) A~+ (l /d) V 1-(l / d) ( C1/ (d- l )) (2d

2-d
- l)/d

tha blt - to >..(d _ 1) 3+{1/d) C 1
Ad - 1

The main feature of the above formulas is the very steep rise of comput ing
t ime needed if you want to resolve finer det ails using LVQ, and the much less
steep rise in the case of habituation. For two dimensions you have t LVQ ex 1- 6

whereas thabit ex 1-5/ 2 . That proves our claim that habituation , although
slower than the original LVQ if applied to simple tasks, may be fast er in
learning harder ones.

5. Simulations

Although , as stated at the end of sect ion 3, habituation can deal with noisy,
overlapping training set classes to o, our illustrative examples contain no over­
lapping classes. Let us begin with some remark s on the character of know­
how for po tential users, formalizing our experience with the method .

The first of them is this: the random process may sweep severa l neurons
int o one pocket of the ru gged decision sur face , leaving other par ts poorly
represented (physicist s may call this a non-ergodi city effect ). To assure good
wet ting of the decision sur face by the available neurons , you have to keep >..
large during the whole pro cess of habituation , and start dimini shing ("cool­
ing") it only afterwards .

The second remark spec ifies what "afterwards" mean s. Shrinking R(t)
should be stopped somewh at before t o: as soon as the neurons get as close to
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Figure 2: The overfitting erro r caused by neurons getting too close to
the decision sur face. The hatched regions are misclassified .
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(14)

the decision sur face as they are to each other, that is, when N Ad-1R~cll = C
is reached. With equatio ns (7) and (8) this can be rephrase d by requiring
that shrinking stop as

( A )(N .rR(tmax ) = R m in = I Ad~l - 1 ~blt

is passed. Otherwise a kind of overfitting error develops, since the orien­
tati ons of local decision sur face segments become highly sensit ive to small
lat eral displ acements of neurons (figure 2).

It is slight ly parad oxical that the density n of the training set dr ops out
from our formulas for the learning ti me. It is a straight forward consequence of
Kohonen 's rul e equat ion (1) that the mean displ acement of a neuron per one
call of a tr aining pat te rn depend s only on the mean dist an ce between neurons,
not on that of pat terns. However , if you have a chance to genera te mor e
examples of the rul e, that improves the classification obtained in smoothness
and the accuracy of generalization .

In a computer pro gram it may be advantageous to use an epoch, that is,
a cycle in which each element of the act ive t ra ining set is called just once, as
the unit of ti me. An epo ch last s i e = nC (R - Rcell) Nto units of real time ,
thus it gets short er and shorter as habituation pro ceeds. It is easy to see
that , on this shrinking scale of time, equat ion (8) is replaced by

R -~
ce ll - 1 + tiT '

where t = tltE is the time measured in epoc hs, and

2d(d + I)AdIAd- 1 V 1-(1 /d)
T = NH(l /d).

AnV C

(15)

(16)
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(b)

Figure 3: Learning Vect or Quantizati on improved by habituation ..
The same neurons as in figure 1, if brought closer to t he decision
boundar y by gradually omitting unimportan t training set eleme nts,
give a more accurate representa tion of the bo undary. T he classifica­
t ion performance grew to 93.9% in case (a) and to 98.5 % in case (b).

The characteristic time t * has been tran sformed into i: = 00 .

Again, the suggest ed shrinking schedule is contained in equation (7) , this
time combined with equat ion (15) . Nothing changes with equat ion (14) spec­
ifyin g the value of R(i) where habi tuation should be stopped.

The final st ates of some illustrative runs are pr esented in figur es 3(a)
and 3(b) , corresponding to their resp ective LVQ counte rparts, figur es l(a)
and l(b). Figure 4 illustrates our claim that habituation may help one reach
good classification with very few neurons in hard cases, whereas LVQ would
need a huge number of them.

6. Outlook

Test s on real-life problems like those mentioned in the introduction remain
to be done. The performan ce would depend very mu ch on the nature of the
problem. In our first simulations on simple model tasks habituation did not
seem to offer considerable savings in learning time for the ru gged decision
surface case (figures l(a) an d 3(a)), whereas it proved very helpful in learning
the asymmet ric learning set case (figures 1(b) and 3(b) ).

In any case, habituation can considerably reduce the time needed to carry
out the learned classification because of the smaller number of neurons needed
for equa l performan ce. Although that time is very shor t compared to that of
learning, in various applications to fast on-line data processing its reduction
can be an importan t advantage. Recognizing pr e-defined classes of events
at high- energy particle accelerators, mentioned in the introduction, is one of
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F igure 4: Classification performan ce versus number of neurons for t he
case of asymmetrical data sets: LVQ wit ho ut habit ua tion (figure l(b))
and habituation (figure 3(b)).

the real applicat ions envisaged.
Finer det ails of Kohonen 's LVQ model can be given a simple physical

interpretation in terms of t ransport of neurons under the driving forces of
two concentrat ion gradients : their own (diffusional t ransport) and that of the
training set (analogous to electric conduction) . The two transport coefficients
are related thro ugh an Einstein-type relation , determi ning the cha racter of
the final state of learning and offering an explanation for the sha rpness of
classificat ion obtained by LVQ in noisy cases. These aspects of the probl em
are described in [16]. Habituation makes the "electric" driving force time­
dependent , cont rolled by the extern ally imp osed shrinking schedule and the
feedback from neur on motion .

Our app roach can also be regarded as a kind of genetic algorit hm in which
the active training set evolves so as to bring out the fea tures most significant
to the classification task, in the spirit of reference [l1J. Par allel to that ,
however , the learning pro cess is also progressing; therefore our algorithm
is actua lly based on the co-evolution of pattern s and neurons, as pointed
out by Wong [17J. Habituation introduces a feedback making the training
set distribution and therefore the quasi-electric dr iving field time dependent .
LVQ and habituation as evolut ionary models will be treat ed in a subsequent
publicat ion .

Although t he idea of hab ituation is prese nt ed here for LVQ, we do not
think that the idea is restricted to that particular learn ing algorithm; thus
we are st ill considering other possible imp lement ations.
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