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Abstract. A new evolutionary method for the global optimization
of functions with continuous variables is proposed. This algorithm
can be viewed as an efficient parallelization of the simulated anneal-
ing technique, although a suitable interval coding shows a close anal-
ogy between real-coded genetic algorithms and the proposed method,
called interval genetic algorithm.

Some well-defined genetic operators allow a considerable improve-
ment in reliability and efficiency with respect to conventional simu-
lated annealing even on a sequential computer. Results of simulations
on Rosenbrock valleys and cost functions with flat areas or fine-grained
local minima are reported.

Furthermore, tests on classical problems in the field of neural net-
works are presented. They show a possible practical application of the
interval genetic algorithm.

1. Introduction

The solutions of many important problems, belonging to different scientific
fields, derive from the minimization of a suitable cost function with con-
tinuous variables. Sometimes the behavior of this function is regular and
unimodal, and nonlinear programming techniques [1] can reach good results
in a short time.

In other cases, owing to function complexity, these methods are almost
useless and global optimization algorithms are required to obtain a satisfac-
tory value for the cost function. Apart from particular situations in which
specific methods can be employed [2, 3], iterative random search procedures
are frequently a compelling choice for solving the problem.
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In analogy with the behavior of natural organisms random search algo-
rithms have often been called evolutionary methods; the generation of a new
trial point corresponds to mutation while a step toward the minimum can
be viewed as selection. If we call basepoint the point used for the current
mutation, the term hard selection is employed when we choose the optimum
up to that moment as the basepoint. On the contrary, when the basepoint is
selected in a probabilistic way inside a population of points or between two
consecutive points reached by the algorithm, we refer to this process as soft
selection [4].

Devroye [5] has shown that under weak conditions hard selection methods
always converge to the global minimum of the cost function. Unfortunately,
in many cases these random searches are not applicable since the convergence
time is practically infinite.

A well-known soft selection technique is the simulated annealing algo-
rithm, widely used in combinatorial problems [6]. It comes from statistical
mechanics, and its convergence properties have a theoretical foundation [7].
The application of simulated annealing to optimization problems with con-
tinuous variables has been the object of many publications. In some cases the
simple implementation used in combinatorial optimization has been changed
radically in order to maintain the theoretical validity of the resulting algo-
rithms [8, 9]; in other cases, simple heuristic methods with better convergence
time have been developed [10].

Other evolutionary techniques with soft selection search for the global
minimum by proceeding with a population of points [4]. In combinatorial
optimization a great interest has been excited by the class of genetic algo-
rithms [11, 12], which localize the optimum by repeatedly applying some
well-suited random operators. These genetic operators include not only se-
lection and mutation, but also other more complex string manipulators.

The algorithm we propose in this paper is essentially an evolutionary
method in which the selection follows the Metropolis criterion [13], widely
used in classical simulated annealing. Furthermore, the introduction of some
particular genetic operators considerably speeds up the convergence to the
global minimum. In section 2 some fundamental concepts of simulated an-
nealing are reviewed and possible accelerations are emphasized. Section 3
analyzes the similarities between the proposed method and classical genetic
algorithms, while section 4 deals with the details of implementation. Simu-
lation results and discussions are reported in section 5.

2. Simulated annealing

Let us define the optimization problem we are dealing with. Let the function
f(x) be defined on a domain D C R"™. We want to find one of its global
minima .y € D for which:

f(@opt) < f(z) Vxz e D (2.1)
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Let (x); denote the ith component of point x; we use the equivalent notation
z; when it is not ambiguous.

The function f(x) must be measurable and bounded on D, but it may be
neither continuous nor differentiable; in such a situation methods that use
information on the gradient are not applicable. For sake of simplicity, we
consider domains D of the following form:

D={xeR":a<z<b, a,beR"} (2.2)

where a < & < b corresponds to a; < z; < b; for 4 = 1,2,...,n, even
though the presented optimization algorithms also works on functions with
more complex domains.

A direct application of classical simulated annealing to the problem above
could be realized as follows. The domain D is subdivided into r regions that
are indexed in progressive order, and every region must be small enough that
the function f(x) is almost constant in its interior. Thus, we can associate
with the jth region, for j = 1,...,7, the value f(x;) at a particular point x;
belonging to it.

Our general optimization problem is then solved by determining a region
Jopt for which

Fles.) < Flag) k=1,...,7 (2.3)

It must be pointed out that every practical problem can be put in this form
owing to the limited precision offered by a computer.

We are now dealing with a combinatorial optimization problem to which
classical simulated annealing can be applied. For every region j, a set S,
called the neighborhood set, is defined. S; contains the indexes of the regions
that are “close” to the jth in some sense (according to a problem-dependent
criterion). A possible choice in our case is the following:

Sj={k: |lzx — z]| < 8} (2.4)

where the parameter § > 0 can depend on j.

The algorithm starts in a particular region hg, then it continuously tries
to find a better solution by searching the neighborhood set of the current
region. In practice, if A; is the region considered at the ith iteration, a step
of the simulated annealing is formed by the following two actions:

Mutation A region k € Sy, is chosen with uniform probability.

Selection The region h;; for the next iteration is obtained by applying the
Metropolis criterion [6]: if Af = f(zx) — f(xs,), a random number
& € [0,1] is taken and

k if&<e BT
hi+1 = { hl 1f§ - e_Af/T (25)

where T is a control parameter, called temperature.
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The convergence to the region jopt (and consequently to the global mini-
mum of the cost function) is guaranteed [14] if the temperature T is decreased
at fixed intervals (annealing schedule). The sequence of values T3, t = 1,2. ..,
must satisfy the relations

c

Jim 7, =0 and (2.6)

t2 logt
for a large constant ¢ € R. Moreover, enough time must be spent at each
temperature T} to reach thermal equilibrium. In practice, an annealing sched-
ule satisfying (2.6) is too slow; the search for adequate annealing schedules
is still a subject of study.

The accuracy in finding the global minimum depends on the number 7
of regions into which the domain D has been subdivided. Such a number
rapidly increases with the dimension n of D, leading to excessive search time.
The number of iterations needed for the convergence can be reduced consid-
erably by removing the constraint of fixed neighborhood sets. In particular,
if the amplitude in (2.4) changes dynamically, the optimization process can
be adaptive; thus, the search can be rough at first and subsequently more
refined [10]. Unfortunately, this approach does not meet the requirements
for the theoretical convergence to the global minimum; nevertheless, modifi-
cations of this kind and changes to the annealing schedule are important for
a practical application of the method.

A further increase in convergence speed can be obtained by an efficient
implementation on parallel computers. From a detailed analysis of this prob-
lem [7, pages 95-114] arises the sequential nature of simulated annealing; in
fact, a good efficiency can be achieved only with a high interaction among
the processors. In the next section we propose a simple parallelization of
simulated annealing that leads to a fast and reliable optimization method,
even if it does not satisfy the convergence theorems mentioned above.

3. The interval genetic algorithm

The most common way to parallelize an evolutionary method is by perform-
ing the search using a population of points; at every iteration the individuals
are updated by applying a hard or soft selection mechanism. Among the
methods of this kind, the class of genetic algorithms [11, 12] turns out to be
very interesting. They simulate natural selection and recombination in order
to obtain a high degree of robustness in the search.

A genetic algorithm is generally defined by four components:

1. A chromosomal representation of the solution space (domain D).
2. A method of creating the initial population.

3. A method of assigning a cost function value to the chromosomal rep-
resentation.

4. Some genetic operators that cause the evolution of the population.
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Let us analyze in detail the choices that lead to the definition of the interval
genetic algorithm.

3.1 Chromosomal representation

Some theoretical considerations regarding the convergence mechanisms of
genetic algorithms advise us to perform the search for the global minimum not
in the domain D, but in an associated space. A suitable coding combines the
elements of such space, called chromosomes, with the corresponding points
of D. Such a coding is then called chromosomal representation.

The schema theory proposed by Holland [11] and in particular the prin-
ciple of minimal alphabet give valid motivations for the use of binary strings
as chromosomes. In this way the number of schemata available for genetic
processing is maximized. On the other hand, other considerations, such as
the advantage of a more natural problem coding or the necessity of a better
accuracy in the location of minimum, lead to real chromosomes. An interest-
ing analysis of this controversy can be found in [15], where Goldberg lays the
foundations for a theoretical understanding of the efficiency of real genetic
algorithms.

In the interval genetic algorithm the following coding choice has been
made: every point & € D is associated with an interval of the type

[Zls={yeD:|yi—z;| <6, i=1,...,n} (3.1)

where z;, y;, and §; are the ith components of x, y, and 6, respectively. The
parameter & is called amplitude, and changes in an adaptive way during the
search.

The choice of the coding (3.1) is based on the following considerations:

1. Any optimization method finds at every iteration a point =*, which is
an approximation of the global minimum @.p. If 8 refers to the error
made in this approximation, then we have

Lopt & [m]é (32)

As the algorithm continues, it finds new optimal points with lower
cost function values, and the error § changes with time. Thus, at any
iteration we can associate with every trial point an uncertainty interval
[]s containing the global minimum ;.

2. The concept of schema in the classical theory of genetic algorithms [12]
has a natural correspondence in the interval coding (3.1). Suppose we
use binary strings with five bits for coding numbers in the range [0, 32].
We have implicitly chosen a minimum approximation of the location of
every point. Consequently, we can know the global minimum z. only
within an error 6 = 0.5.

Now, consider the schema 0%11% (where * is the don’t care symbol).
The schema corresponds to the strings 00100, 00111, 01110, and 01111,
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or, with the normal binary coding, to the points 6.5, 7.5, 14.5, and 15.5.
But, as previously noted, the minimum approximation is 6 = 0.5, so
this schema identifies the following union of intervals:

0%11% — [6,7] U [7,8] U [14,15] U [15,16] = [6,8] U [14,16] (3.3)

Thus, the global minimum of the cost function is located by the schema
011 at most within an error 8§ = 4.

Since the use of disjointed intervals for a single schema is not a the-
oretical constraint, we can alternatively deal with contiguous-interval
schemata having the same uncertainty (e.g., [6,10]). Therefore, from
definition (3.1) we find that a point is associated with all the schemata
(intervals) centered in it.

From this particular kind of coding derives the name interval genetic algo-
rithm, used for the proposed optimization method.

This chromosomal representation is analogous to the concept of virtual
characters introduced by Goldberg [15]. Both definitions refer to subsets of
the domain D that contain the attraction basins of the cost function minima.
The use of monodimensional slice for the definition of virtual characters
is motivated by the exponential reduction in the selection probability for
high-dimensional intervals. Such a problem can be overcome by adaptively
changing the amplitude § in the optimization process. Codings of the type
in (3.1) are called compound virtual characters in [15], and the possible
advantages deriving from their use are mentioned in a footnote.

Finally, the interval coding overcomes (at least partially) the blocking
problem widely examined in [15]. In fact, the minimization is simultane-
ously performed on all of the function variables; this prevents a search in a
given direction from hiding the true position of the global minimum. The
overcoming of blocking is shown by the simulation results (section 5).

3.2 [Initial population and cost function value

Let [x;]5; denote the jth interval, with j = 1,...,m, of a generic popula-
tion in the interval genetic algorithm (m is the population size). At the first
iteration the centers x; are randomly chosen in D, whereas the amplitudes
6; must be wide enough to include the whole domain D. The initial uncer-
tainty in the knowledge of the global minimum is actually the highest; thus
a possible choice for §; at the first iteration is

6j=b—a i=1,...,m (3.4)

where @ and b are the bounds of D in (2.2).

The choice of a cost function value for the generic interval [z]s is also
of great importance. An estimate of the minimum for f(z) in [z]s could
allow efficient selection of the most promising intervals in the search for the
global optimum. Such an estimate could be obtained through some steps
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of a local optimization algorithm. Nevertheless, as a first approximation we
have omitted this possibility and have used the value f(x) in the center of
the interval [z]s. In this way we can verify the effectiveness of the proposed
method without possible (and useful) accelerations coming from fast local
optimization techniques.

At this point we want to emphasize that the interval genetic algorithm
does not require a suitable function scaling, as most genetic algorithms do.
Although the presented results refer to positive functions, negative values are
equally allowed.

3.3 Genetic operators

The evolution of the population is caused by the repeated application of five
genetic operators: reproduction, crossover, merging, mutation, and selection.
The reproduction operator chooses inside the current population two intervals
[z]s and [y]e, which will be used for the generation of a new offspring. In
the interval genetic algorithm this choice is made by suitably applying the
Boltzmann distribution

p (i) o oxp (-1 ©5)

where f(x) is the cost function value corresponding to the interval [x]s.
Besides its importance from a physical point of view, the Boltzmann
distribution yields two interesting properties:

e It does not need a cost function scaling; negative values of f(x) can be
used directly in (3.5).

e The temperature value regulates the choice made by the reproduction
operator, as in the Metropolis criterion. In fact, if T' < f(x), all the
population intervals will have the same probability of being chosen; in
contrast, if T > f(z), only the intervals with lower cost function values
will be selected.

Thus, by using an annealing process for the temperature T', the search for the
global minimum is initially uniform on the whole domain D and subsequently
dwells upon the most promising population intervals.

The crossover operator generates a new interval [z], starting from the
points [z]s and [y]. chosen by reproduction. It is based on the following
relations:

o { z; with prob. 0.5 - { 6; with prob. 0.5

y; with prob. 0.5 g; with prob. 0.5 (8.6)

These two relations are tightly bound to each other: the probabilistic choice
is the same for the two assignments. So, if z; = z; then v; = §;; likewise, if
z; = y; then v; = ;. Such an operator can be viewed as a direct extension
of a discrete multiple-point crossover.
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From (3.6) we find that crossover is useless for n = 1 since the offspring is
equivalent to a parent interval. For n > 2 this operator considerably increases
the convergence speed; in fact, the component swapping helps overcome local
minima and avoid the blocking problem [15].

The merging operator is applied as an alternative to crossover, and gen-
erates a new offspring [z], starting from two parents [z]s and [y]. chosen by
reproduction. Its purpose is to join the information contained in the intervals
[z]s and [y].. The merging operator is performed in the following way:

2]y = [=]s N [yl (3.7)

taking into account that if the intersection is empty, the operator is not
applied.

With the simple definition (3.7), merging points out the most promising
regions of the domain D that the algorithm has encountered in its execution.
Therefore, such an operator makes a synthesis rather than a real search, and
its application probability must be kept small.

The mutation operator searches an interval [z]s for a better point y. The
interval [xz]s has been obtained directly by reproduction or derives from the
application of crossover or merging. The amplitude § is not modified by
mutation since the uncertainty in the location of the global minimum is not
affected by this operator.

The choice of the point y can be done in two ways:

e At random: y is chosen inside the interval [x]s according to a given
probability distribution.

e By minimization: y is obtained through some steps of a local optimiza-
tion method.

In analogy with mutation in the classical simulated annealing, the interval
genetic algorithm uses a uniform probability distribution for the choice of
the point y. Since the search process is essentially based on the mutation
operator, this is applied at every iteration.

Through the repeated application of reproduction, crossover, merging,
and mutation, m new intervals [@,,]s,, 4+ With j = 1,...,m, are gener-
ated starting from the current population [z,]s,,. .., [@m]s.. The selection
operator chooses among these 2m intervals the m individuals that will form
the next population. It applies the Metropolis criterion in the same way as
classical simulated annealing does. If [y;].; is the jth interval of the next
population, we have

e = { [omslimss 28 <2 (35

where ¢; is a random number in the range [0,1], and p; is given by

oy () o)



Optimization with the Interval Genetic Algorithm 201

The Metropolis criterion (3.8) has theoretical foundations that ensure
the convergence of the simulated annealing algorithm to the global minimum
under suitable conditions [7]. In any case it is an interesting method for con-
trolling the behavior of the optimization process. In general, the Metropolis
criterion prefers configurations with lower cost function values, but allows
local minima to be overcome by accepting uphill moves. Therefore, its appli-
cation has great importance even from the point of view of implementation.

4. Implementation

The interval genetic algorithm proceeds by successively applying reproduc-
tion, crossover, merging, mutation, and selection until it satisfies the stop-
ping criterion. While reproduction, mutation, and selection are performed
at every iteration, crossover and merging have a corresponding application
probability denoted by pc and pys, respectively. From the peculiarities of
these operators we directly obtain the relation pys < 1, whereas the inequal-
ity pc < 0.5 prevents the destruction of promising intervals that the mutation
operator has still not examined.

A simple trick in the reproduction operator increases the convergence
speed of the method. Let [z;]5. be the interval in the current population
with the minimum cost function value. The following quantities are evalu-
ated:

7; = €eXp (—M)—Ej j=1,...,m (41)

where &; is a random number in the range [0,1]. The two intervals with
minimum values of 7; are then returned by the reproduction operator.

4.1 Temperature

As previously noted, the parameter temperature controls the application of
reproduction and selection. A variety of considerations and the analogy with
simulated annealing advise us to lower this parameter starting from a suitable
initial value. However, determining the proper annealing schedule for a given
problem is frequently a matter of trial and error, even if it is a decision of
great importance.

For example, an initial temperature that is too high leads to a pure ran-
dom search with a possible waste of iterations; if the initial temperature is
too low, the algorithm can get stuck in a local minimum. A simple method
for an adaptive choice of the annealing schedule is comparing, at regular in-
tervals, the current temperature with the differences between the values of
f(z) in the population.

In the interval genetic algorithm the value of T' is updated every Np
iterations according to the following relation:
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where T'(k) is the temperature at the kth iteration and ar > 1 is a fixed
constant. Every time (4.2) is applied, the term T'(k + Nr) is compared with
Tmin* G, where Ti, < 1 is a small parameter and G is the geometric mean of
the differences between the cost function values in the population intervals
and the minimum value f(2*) up to the moment,

1/m
(1_1 (f(=) >>) (4.3

If T(k + Nt) < Tpin - G, the algorithm sets
T(k+ Nr) = max (G, | f(z")]) (4.4)

and continues its search. By means of this control a small value for Ny can
be used without having too low a temperature 7' during the optimization
process. The relation (4.4) is also used for initializing the value of T

4.2 Amplitudes

The amplitudes §; in the population intervals are updated in a similar way:
every Nj iterations the components of 8; are multiplied (divided) by a fixed
constant as > 1 if the optimum value is improved (is not improved). When

(6;)i < bumin - TF f=Tyesesm a0d § = Lo v syl (4.5)

where x* is the current optimum point, all the amplitudes are reset to the
initial value (3.4). Omin is a positive constant that contains the desired max-
imum approximation in the location of the global minimum.

N, consecutive amplitude resets are allowed without variations of the
current optimum; afterwards, the search is stopped.

Unfortunately, this updating mechanism leads to a common value for each
amplitude component and for each population interval. This problem can be
avoided by using a small correction. Every time a population interval [a;]s,
has a lower cost function value than the current optimum x*, its amplitude
6; is changed according to the following assignment:

|7 — ()i > (4.6)

m - max; |z} — (x;):

(6;)i = (8;): - (1 T

In this way the amplitudes are increased mostly in the direction of current
optimum.

4.3 Parallelization and simulated annealing

The implementation of the interval genetic algorithm on a parallel computer
with a shared memory is almost immediate. In fact, the only global opera-
tions are the updating of the amplitudes (every Nj iterations) and tempera-
ture (every N7 iterations). Thus, it is possible to assign the generation of a
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new interval to a different processor, which consecutively performs reproduc-
tion, crossover, merging, and mutation. This can be done in an asynchronous
way, by loading and storing information in the common memory.

Only the selection operator must be performed by the processors at the
same time, after the generation of m new intervals. The temperature and
amplitude updating can be assigned to one of the processors considered as a
master.

With this simple implementation we can reach a speed-up that is close
to m, the population size (if the number of processors is greater than m).
Such a result does not take into account possible parallelizations in the cost
function evaluation.

If we leave out the important contributions of reproduction, crossover,
and merging, the interval genetic algorithm becomes a simple execution of m
simulated annealings [10]. We have already pointed out that the neighbor-
hood sets change during the optimization process, leading to inhomogeneous
Markov chains even if the temperature is kept constant. The classical theory
is then no more applicable, and the convergence to the global minimum is
not theoretically ensured. On the other hand, the results presented in [10]
shows that such simulated annealing algorithm has a good reliability.

The addition of reproduction, crossover, and merging simply introduces
other variations in the neighborhood set structure. Thus, the interval genetic
algorithm can be viewed as a possible parallelization of simulated annealing.
Goldberg [16] has shown that the application of a more complex selection
operator leads to a Boltzmann distribution across the population in a discrete
genetic algorithm. A similar operator can probably be defined for the interval
coding.

5. Tests and results

To analyze the features of the interval genetic algorithm (IGA), we have made
some tests on different cost functions. We have already noted the intrinsic
parallelism of the method, but it is important to know its performance on a
sequential computer in comparison with other algorithms.

We have chosen for this purpose two well-known optimization techniques:
simulated annealing (SA) [10], which is slow but reliable; and the Powell
method (PM) [17], a fast local optimization algorithm. We have not used dis-
crete genetic algorithms since the desired precision requires too long strings;
moreover, different coding and function scaling can lead to high variations
in the results.

Three groups of tests were made on conventional functions, and two other
groups concerned the application of optimization in the field of neural net-
works. In the latter case we considered the back-propagation (BP) algorithm
[18], widely used in practical problems, instead of the Powell method.

For every test function we took four values for the dimension n of the
domain D, and for each dimension we made 50 runs of each algorithm. This
led to a reasonable set of statistics for the convergence speed, measured
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by the mean time (in terms of evaluations of the cost function) needed for
satisfaction of the stopping criterion.

If any of the fifty runs exceeded ten million evaluations, that search was
aborted and the remaining runs skipped. Ten million evaluations was there-
fore the limit for any single search (indicated in the tables of results with the
notation > 10M). Moreover, when a method converged at a local minimum,
it was stopped and restarted at a new point; all the initial points were chosen
randomly with a uniform probability inside the cost function domain D.

Some preliminary runs (which are not taken into account in the tables
of results) were made to obtain good values for the parameters of each algo-
rithm. Such values were then kept constant throughout the tests, except for
the initial temperature Ty of SA. In fact, for some test functions a constant
Tb did not allow the convergence of SA for all the chosen dimensions n.

The parameters of IGA were assigned the following values:

m = 20 NT = 200 N5 =100
pc =0.2 ar=1.5 o5 =12
pyp = 0.005 Tin = 0.001 N, =50

Omin Was set to different values for tests on conventional functions and those
in the field of neural networks, since the desired accuracy in the location of
the global minimum is different for the two cases. Thus, we chose:

® Smin = 1078 for tests on conventional cost functions.

® 6nin = 0.1 for tests on neural networks.

5.1 Rosenbrock function
The first group of tests refers to the Rosenbrock function, which represents a
classical test for optimization algorithms. It is defined in the following way:
n—1
2
flx) =100 (241 — 23)° — (1 — z;)? (5.1)
i=1
for n > 2. This function has a single local-global minimum at the point xqp;
having components

Topt)i =1 =1, 5.2
P’

A three-dimensional sketch of this cost function is presented in figure 1.
We chose four values of n, n = 2, 4, 6, and 8, while the bounds for the
domain D were

a; =—1000 and b, =1000 :=1,...,n (5.3)
The convergence criterion we adopted is
112%}51 (2%); = (@opt);| < 107 (5.4)

which depends only on the optimal point &* found by the algorithm.
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Figure 1: Two-dimensional representation of the Rosenbrock function

Rosenbrock function

n 2 | 4 6 8
Algorithm Evaluations performed
IGA 28,595 | 319,428 | 536,409 | 723,138
SA 627,047 | 1,331,321 | 3,317,019 | > 10M
PM 2,905 6,277 | 12,545 | 26,965

Table 1: Comparative simulation results on the Rosenbrock function.

The simulation results are reported in table 1. In this case the test func-
tion is unimodal and differentiable in the whole domain D. Thus, local op-
timization algorithms like PM are considerably faster than iterative random
search procedures (like IGA and SA), as shown in table 1. IGA, particularly
suited for the optimization of multimodal cost functions, is slackened by its
major complexity, but it is considerably faster than SA.

5.2 Plateau function

From [19] we obtained two test functions with continuous variables having
relevant complexity. The first of them is called the plateau function and is
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Figure 2: Two-dimensional representation of the plateau function.

defined by

f(z) = iZSOO - max [ 1000 - |z4|] for (j —1)h <i < jh (5.5)

Jj=1

where |y| denotes the truncation of y, and h = n/4. For the sake of simplic-
ity, we took values for n that are multiples of 4.

As one can see, the plateau function is formed by a large number of flat
regions whose values gradually decrease toward the global minimum. All the
points « for which

max |z;| < 107° (5.6)
1<i<n

are actually global minima having f(x) = 0; each optimization algorithm
converges when it finds one of these points.

When two variables were kept constant, we obtained for the plateau func-
tion with n = 4 the plot presented in figure 2. The bounds for the domain D
are given by (5.3); the results for n = 4, 8, 12, and 16 are shown in table 2.

In this group of tests, PM was stopped in the flat areas of the cost func-
tion; thus, its performance degraded from n = 4 to n = 16, where the limit of
ten million was reached. In contrast, the number of evaluations for IGA in-
creased almost linearly with n, improving the values obtained for SA. Despite
its slowness, SA always converged, emphasizing its reliability.
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Plateau function
n 4 8 12 16
Algorithm Evaluations performed
IGA 11,238 | 18,168 | 29,976 | 52,764
SA 745,478 | 1,585,093 | 2,436,362 | 3,477,751
PM 319 10,938 357,735 > 10M

Table 2: Comparative simulation results on the plateau function.

Porcupine function
n 2 | 4] 6] 8
Algorithm Evaluations performed
IGA 34,124 | 18,214 | 21,715 | 40,708
SA > 10M | > 10M | > 10M | > 10M
PM >10M | > 10M | > 10M | > 10M

Table 3: Comparative simulation results on the porcupine function.

5.3 Porcupine function

A second interesting test function, derived from [19], is called the porcupine
function, and is defined by

f(@) = 10000 - (¢ + 1.52) (5.7)

where

n 108(n —
c=10"Y |z and z2=10%n-—c)—2- {#J (5.8)
=1

The truncation in (5.8) causes the particular behavior of this function
which has a huge number of local minima in its domain (i.e., every time
[108(n—c)] is an even number). The value of f(a) at these points slowly de-
creases toward the global minimum @ in the axes’ origin having f(opt) =
0. The behavior of the porcupine function is presented in figure 3 for n = 2.

Also in this group of tests the bounds for the domain D are given by (5.3),
and the convergence criterion is (5.4). The results for n = 2, 4, 6, and 8 are
reported in table 3.

The high density of local minima stopped both SA and PM. In contrast,
IGA always converged within a small number of cost function evaluations,
which shows the reliability and efficiency of IGA. IGA searches for the global
minimum using a population of points, allowing exchange of information on
the cost function behavior among the individuals.

5.4 Parity function

Supervised learning of neural networks is an important application for the
optimization techniques. The choice of a weight matrix that minimizes the
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Figure 3: Two-dimensional representation of the porcupine function.

error for a given training set has indeed great practical interest. Unfor-
tunately, the cost functions deriving from this problems have in general a
high number of local minima; thus, many trials starting from different initial
points are often required to obtain correct values for the network weights.

We have chosen two classical problems that are widely used for testing
the learning rules. The first concerns the training of a two-layer feed-forward
network that has to generate the parity bit for a binary string of length q.
It is known that g hidden neurons are needed for doing such operations [20],
so the optimization algorithm must find the (g + 1)? values for the weights
of the networks (including the biases).

We considered cases with ¢ = 2, 3, 4, and 5, where the corresponding cost

functions have, respectively, n = 9, 16, 25, and 36 variables and are defined
in the following way:

)= (i - 0j(x))” (5.9)

t; = £1 is the correct output for the jth input pattern, while o;(x) is the
output obtained by using the weights contained in .
The neurons have a hyperbolic tangent transfer function:

eV — e Y

evY+e Y

g(y) = tanhy = (5.10)
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Parity function
n_ [9(¢g=2)[16(¢=3)]25(g=4) |36 (¢="5)
Algorithm Evaluations performed
IGA 457 1,012 ] 312438 [ 148,113
SA 10,760 519,936 > 10M > 10M
BP 889 20,913 > 10M > 10M

Table 4: Comparative simulation results on the parity function.

where y is the neuron input and g(y) the corresponding output.
In this group of tests the domain D had the following bounds:

a;=-10 and b =10 i=1,...,n (5.11)
The convergence is reached when
max, [t; —oj(x*)] < 0.1 (5.12)

This stopping criterion does not explicitly depend on the cost function value;
nevertheless, the condition (5.12) requires that the point @ is very close to the
global minimum. With this choice we can analyze in depth the characteristics
of IGA.

The simulation results are shown in table 4. In the runs with BP we used
the acceleration procedure suggested by Vogl et al. [21].

In this case IGA was the fastest method; only for ¢ = 2 did BP have
a similar performance. For ¢ = 3 and ¢ = 4 both SA and BP reached the
maximum limit of ten million evaluations.

5.5 Symmetry function

The last group of tests concerns the problem of training a two-layer neural
network that must find the presence of symmetry in a binary string of length
g. In this case only two hidden neurons are needed for doing such operation
[20]; the number of weights in the network is therefore n = 2q + 5.

The tests performed considered the values ¢ = 3, 4, 5, and 6, which
corresponds to cost functions (5.9) with n = 11, 13, 15, and 17 variables,
respectively. The bounds for the domain D and the stopping criterion were
(5.11) and (5.12), respectively, as for parity. The simulation results are re-
ported in table 5.

The reliability and the efficiency of IGA are again emphasized with re-
spect to BP and SA.

6. Conclusions

A new global optimization method, called the interval genetic algorithm,
has been described. It can be viewed as an efficient parallelization of the



210 Marco Muselli and Sandro Ridella

Symmetry function
n 11(q=3)[13(¢q=4)[15(¢=5)[17 (¢=6)
Algorithm Evaluations performed
1GA 3,481 44,302 54,944 140,458
SA 113,793 881,288 994,640 > 10M
BP 9,351 | 408,960 | 2,347,939 | > 10M

Table 5: Comparative simulation results on the symmetry function.

simulated annealing technique, or as a particular type of real-coded genetic
algorithm.

Although the tests presented in this paper do not claim to give exhaustive
information on the interval genetic algorithm, they provide a first examina-
tion of its properties, such as convergence speed and reliability. On the basis
of the results we have shown, some considerations follow:

1. The interval genetic algorithm seems faster and more reliable than the
well-known simulated annealing, since the search for the global mini-
mum is done using a population of points.

2. Because of its complexity the proposed method is well suited for the
optimization of multimodal functions; in simpler cases a local mini-
mization procedure, like the Powell method, is more efficient.

3. The interval genetic algorithm can be made parallel with a speed-up
close to the population size.

Finally, in the field of neural networks the presented method is considerably
faster than the back-propagation algorithm, widely used up to now.

Further tests on different cost functions (also derived from the training
of neural networks) are proceeding in order to analyze in greater detail the
real possibilities of the interval genetic algorithm.
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