
Complex Systems 6 (1992) 193-212

Global Optimization of Functions with
the Interval Genetic Algorithm

Marco Muselli"
Isti tu to per i Circuit i Elettronici,

Consiglio Nazionale delle Ricerche, 16145 Genova, Italy

Sandro Ridella
Dipartim ento di Ingegneria Biofisica ed Elet tronica,

Universitil di Genova, 16145 Genova, Italy

Abstract. A new evolut ionary method for the global optimizat ion
of fun ctions wit h cont inuous vari ab les is proposed . This algorit hm
can be viewed as an efficient par allelization of the simula ted anneal­
ing technique , although a suitable interval coding shows a close ana l­
ogy between real-coded genet ic algorit hms and the pr oposed meth od ,
called int erval genetic algorithm .

Some well-defined genet ic operators allow a considera ble improve­
ment in reliability and efficiency with respect to conventional simu­
la ted annealing even on a sequential compute r. Results of simulations
on Rosenbrock valleys and cost functi ons wit h fla t ar eas or fine-grain ed
local min ima are repor ted.

Furthermore, tests on classical pr ob lems in the field of neur al net­
works are presented . They show a possible practical application of th e
interval genetic algor ithm.

1. Introduction

T he solutions of many important problems , belonging to different scient ific
fields, der ive from the minimizat ion of a suitable cost funct ion with con­
ti nuo us var iables. Someti mes the behavior of this function is regular and
unimodal , and nonlinear programming techn iques [1] can reach good resul ts
in a short t ime.

In other cases, owing to func t ion complexity, these methods are almost
useless and global optimization algorit hms are required to obtain a sa tisfac­
tory value for the cost funct ion. Apart from particular situations in which
spec ific methods can be employed [2, 3], iterative random search pro cedures
are frequently a compelling choice for solving the problem .

*Electronic mail address: museLl i aar i.t t a . i ce .ge. cnr . i t .

194 Marco Muselli and Sandra Ridella

In analogy wit h the behavior of natural organisms random search algo­
rithms have often been called evolutionary m ethods; t he generat ion of a new
trial point corresponds to mu tation while a step toward the min imum can
be viewed as select ion . If we call basepoint t he point used for the curre nt
muta tion, the term hard selection is employed when we choose the opt imum
up to that moment as the basepoint . On the contrary, when the basepoint is
selected in a pr obab ilist ic way inside a populat ion of points or between two
consecutive points reached by the algorithm, we refer to this process as soft
select ion [4].

Devroye [5] has shown that under weak condit ions hard select ion meth ods
always converge to the global minimum of the cost function. Unfortunately,
in many cases these random searches are not applicable since the convergence
time is pract ically infin ite.

A well-known soft select ion technique is the sim ulate d annealing algo­
rithm , widely used in combinato rial pr oblems [6]. It comes from stati st ical
mechani cs, and its convergence pro pert ies have a theoreti cal foundation [7].
T he application of simulated annealing to optimizat ion pr oblems with con­
t inuous var iab les has been the object of many publicat ions. In some cases the
simple implement ation used in combinatorial opt imizat ion has been changed
radically in order to main tain the theoret ical validity of the resulti ng algo­
ri thms [8, 9]; in other cases, simple heurist ic method s with bet ter convergence
time have been developed [10].

Ot her evolut ionary techniques wit h soft select ion search for the global
minimum by proceedi ng wit h a populat ion of point s [4]. In combinatorial
opt imizat ion a great interest has been excited by the class of gene tic algo­
rithms [11, 12], which localize the opt imum by repeatedly applying some
well-suited random operators . These genetic operators include not only se­
lect ion and mutation , but also other more complex st ring manipulators.

T he algorit hm we propose in this paper is essentially an evolutionary
method in which the select ion follows the Metropolis crit erion [13], widely
used in classical simulated annealing. Furthermore, the introduction of some
par ti cular genet ic operators considerably spee ds up the convergence to the
global minimum . In sect ion 2 some fundament al concepts of simulated an­
nealing are reviewed and possible accelerat ions are emphasized . Sect ion 3
analyzes the similarit ies between the prop osed method and classical genetic
algorithms, while sect ion 4 deals with the det ails of implementati on . Simu­
lati on results and discussions are reported in sect ion 5.

2. Simulated annealing

Let us define the opt imizat ion pr oblem we are dealing with . Let the fun ct ion
f (x) be defined on a domain D c R", We want to find one of it s global
min ima X op t E D for which:

\:Ix E D (2.1)

Opt imizat ion with the Interval Genetic Algorithm 195

Let (X)i denote the i th compo nent of po int x ; we use the equivalent notation
Xi when it is not amb iguous .

The fun cti on f (x) must be measurab le and bounded on D , but it may be
neither cont inuous nor different iab le; in such a situat ion met hods that use
information on the gra dient are not applicable. For sake of simplicity, we
consider dom ains D of the following form:

D = {x E R'" : a ~ x ~ b , a ,b E n n} (2.2)

where a ~ x ~ b corr esponds to a ; ~ X i ~ bi for i = 1,2 , .. . , n , even
though the pr esented optimization algorit hms also works on fun ctions with
more complex domains.

A dir ect application of classical simulate d annealing to the pro blem above
could be realized as follows. The dom ain D is subdivided in to r regions that
are indexed in progressive order , and every region must be small enough that
the fun ct ion f(x) is almost constant in it s interior . T hus, we can associate
wit h the j th region , for j = 1, . . . , r , the value f (X j) at a particular point X j

belonging to it .
Our general optimization problem is then solved by determining a region

j opt for which

k = 1, .. . , T (2.3)

It must be pointed out that every pract ical problem can be put in this form
owing to the limited precision offered by a compute r.

We are now dealing with a combinatorial opt imization problem to which
classical simulate d annealing can be applied . For every region i , a set Sj ,
called the neighborhood set , is defined. Sj contains the ind exes of the regions
that are "close" to the jth in some sense (according to a prob lem-dep endent
criterion) . A possibl e choice in our case is the following:

(2.4)

(2.5)

where the par ameter 8 > °can depend on j .
The algorithm starts in a parti cular region ha, t hen it cont inuously tries

to find a bet ter solution by searching the neighborhoo d set of the cur rent
region . In pr act ice, if hi is the region considered at the i t h it erati on , a st ep
of the simula ted annealing is formed by the following two act ions:

Mutation A region k E S hi is chosen with un iform prob abi lity.

Selection The region hi+1 for the next it eration is obtained by applying the
Met rop olis crit erion [6]: if!;;. f = f (Xk) - j(Xh,) , a random number
~ E [0, 1] is taken and

{
k if ~ < e - £::,.fIT

hi+1 = hi if ~ > e- f::,. fIT

wh ere T is a cont rol parameter , called temperature.

196 Marco Muselli and Sandra Ridella

T he convergence to the region jopt (and consequent ly to the global mini­
mum of the cost function) is guarant eed [14] if the temperatur e T is decreased
at fixed intervals (annealing sched ule). The sequence of valu es Ti, t = 1, 2 .. . ,
must sat isfy the relations

lim Tt= O
t -s-co

and
c

Tt > -­
- log t

(2.6)

for a large constant c E R . Moreover , enough time must be spent at each
temperature Tt to reach thermal equilibrium. In pr acti ce, an annealing sched­
ule sa tisfying (2.6) is too slow; the search for adequate annealing schedules
is st ill a subject of study.

T he accur acy in finding the global minimum depends on the number r
of regions into which the domain D has been subdivided. Such a number
rapidly increases wit h the dimension n of D , leading to excess ive search time.
T he number of iterations needed for the convergence can be redu ced consid­
era bly by removing the constraint of fixed neighborhood sets . In particular ,
if the am plit ude in (2.4) changes dynamically, the optimization process can
be adapt ive; thus , the sear ch can be rough at first and subsequent ly more
refined [10] . Unfortunately, this approach does not meet the requirements
for the theoret ical convergence to the global minimum; nevertheless, modifi­
cations of this kind and changes to the annealing schedule are importan t for
a practical applicat ion of the method .

A further increase in convergence speed can be obtain ed by an efficient
implementation on parallel comp uters. From a detai led analysis of this prob­
lem [7, pages 95- 114] arises t he sequential nature of simulated annealing; in
fact , a good efficiency can be achieved only wit h a high int eract ion among
the processors. In the next sect ion we propose a simple parallelization of
simulated annealing that leads to a fast and reliable optimization met hod,
even if it do es not satisfy the convergence theorems mentioned above.

3. The interval genetic algorithm

T he most common way to par allelize an evolutionary method is by perform­
ing the search using a populati on of points; at every ite ration the individuals
are updated by applying a hard or soft select ion mechani sm . Among the
method s of this kind , the class of geneti c algorithms [11, 12] turns out to be
very interesting. They simulate natural selectio n and recombination in orde r
to obtain a high degree of robustness in the search .

A genetic algorithm is generally defined by four components:

1. A chromosomal representation of the solut ion space (domain D).

2. A method of creati ng the initial population.

3. A metho d of assigning a cost funct ion value to the chromosomal rep­
resentation .

4. Some genet ic ope rato rs that cause the evolut ion of the population .

Optimization with the Int erval Genetic Algorithm 197

Let us analyze in det ail the choices that lead to the definition of the int erval
genet ic algor it hm .

3.1 Chromosomal representation

Some theoreti cal considerat ions regarding the convergence mechani sms of
genet ic algorithms advise us to perform the search for the global minimum not
in the dom ain D , but in an associate d space. A suitable coding combines the
elements of such space, called chromosomes, with the corr espond ing points
of D. Such a coding is then called chromosomal representati on.

The schema theory proposed by Holland [11] and in par ti cular the prin­
ciple of minimal alphabet give valid motivations for the use of binary st rings
as chromoso mes. In this way the number of schemata available for genet ic
pro cessing is maximi zed. On the ot her hand, ot her considerations , such as
the advantage of a more natural problem coding or the necess ity of a bet ter
accur acy in the location of minimum, lead to real chro moso mes. An interest­
ing analysis of this cont roversy can be found in [15], where Goldberg lays the
foundations for a theoreti cal underst anding of the efficiency of real genet ic
algorit hms.

In the interval genet ic algor ithm the following coding choice has been
mad e: every point xED is associated wit h an interval of the type

[x]o= {y E D : [Yi - xii::; 8i , i = 1, . .. ,n } (3.1)

where Xi, Yi , and 8i are the i th components of x , y , and 8, respectively. The
par amet er 8 is called am pli tude, and changes in an adapt ive way during the
search .

The choice of the coding (3.1) is based on the following considera t ions :

1. Any optimization method finds at every iteration a po int x * , which is
an app roximation of the global minimum X opt. If 8 refers to the erro r
mad e in this approximat ion , t hen we have

X opt E [x]o (3.2)

As t he algorithm cont inues, it finds new optimal po int s with lower
cost function values, and the error 8 changes wit h t ime . T hus , at any
iteration we can associate with every t rial point an uncert ainty interval
[x]o containing the global minimum X opt.

2. The concept of schema in t he classical theory of genetic algorithms [12]
has a natural correspo ndence in the interval coding (3.1) . Suppose we
use bin ary st rings with five bits for cod ing nu mb ers in the range [0, 32].
We have implicitly chosen a minimum approximation of the location of
every point . Consequent ly, we can know the global minimum Xo pt only
within an error 8 = 0.5.

Now, consider the schema Osl l « (where * is the don 't care symbol).
The schema corres ponds to the st rings 00100 ,00111 ,01110 , and 01111 ,

198 Marco Muselli and Sandro Ridella

or , with the normal binary coding, to t he points 6.5, 7.5, 14.5, and 15.5.
But , as previously noted , the minimum approximat ion is 8 = 0.5, so
this schema identifies the following union of intervals:

O*l h ---> [6, 7] U [7, 8J U [14, 15] U [15, 16] = [6, 8J U [14, 16] (3.3)

Thus, the global mini mum of the cost fun ct ion is located by the schema
O*lh at most within an error 88 = 4.

Since the use of disjointed intervals for a single schema is not a t he­
oretical constraint , we can alte rnat ively deal with contiguous-interval
schemata having the same un certainty (e.g., [6, 10J). T herefore , from
definit ion (3.1) we find tha t a point is assoc iated with all the schemata
(intervals) cent ered in it .

From this particular kind of coding der ives the name in terval geneti c algo­
rithm, used for the proposed optimiza t ion method .

T his chromosomal repr esentat ion is ana logous to the concept of virtual
characters introdu ced by Goldb erg [15]. Both definit ions refer to subsets of
the domain D that contain the attract ion basins of the cost function minima.
T he use of monodimensional slice for the definit ion of virtual characters
is motivated by the exponent ial reduction in the select ion probability for
high-dimensional intervals. Such a problem can be overcome by adaptively
cha nging the amplitude 6 in the optimization process. Cod ings of the typ e
in (3.1) are called compound virtual characters in [15], and the possible
advantages deriving from their use are mentioned in a foot note.

Finally, the interval coding overcomes (at least parti ally) the blocking
problem widely examined in [15J. In fact , the minimi zation is simultane­
ously performed on all of the function variables; this prevents a search in a
given direction from hiding the t rue position of the global minimum. T he
overcoming of blocking is shown by the simulation result s (sect ion 5) .

3 .2 Initial population a n d cost function value

Let [Xjk denote the jth interval, with j = 1, . . . , m , of a generic popula­
t ion in the interval genet ic algorit hm (m is the populat ion size) . At the first
iteration the centers Xj are randomly chosen in D, whereas the amplitudes
6j must be wide enough to include the whole domain D. The initial uncer­
tainty in the knowledge of the global minimum is act ually the highest ; thus
a possible choice for 6j at the first iteration is

j = 1, ... ,m (3.4)

where a and b are the bounds of D in (2.2) .
The choice of a cost funct ion value for the generic interval [XJ6 is also

of great importance. An est imate of the minimum for f (x) in [X]6 could
allow efficient select ion of the most promising intervals in the search for the
global optimum. Such an est imate could be obtained thro ugh some steps

Optimization with the Interval Genetic Algorithm 199

of a local optimization algorithm . Nevertheless, as a first approximat ion we
have omi t ted this possibility and have used the value f (x) in the center of
the interval [xJs- In this way we can verify the effectiveness of the pr oposed
met ho d wit hout possible (and useful) acce lerat ions coming from fast local
optimization techniques.

At this point we wan t to emphasize that the interval genetic algorit hm
does not require a suitable function scaling, as most genetic algorithms do.
Although the pre sented result s refer to positive functi ons, negative valu es are
equally allowed .

3.3 Genetic operators

The evolution of the populati on is caused by the repeated app lica t ion of five
genet ic operators: reproducti on , crossover , merging, mutation , and selection.
The reproduction operator chooses inside the current population two intervals
[xJ. and [y]" which will be used for the generat ion of a new offspring . In
the interval genet ic algorit hm this choice is mad e by suitably applying the
Boltzman n distribution

(
f (X))p ([x].) ()(exp - ----;y;- (3.5)

where f(x) is the cost fun cti on value corresponding to the interval [xJo.
Besides it s import anc e from a physical point of view , the Boltzmann

distribution yields two interesting pr op erties:

• It do es not need a cost fun ct ion scaling ; negative values of f(x) can be
used direct ly in (3.5) .

• The temperature value regulates the choice made by the reproduction
operator , as in the Met ropolis criterion. In fact , if T « f (x) , all the
population intervals will have the same probabil ity of being chosen; in
contrast , if T ~ f (x) , only the intervals with lower cost functi on values
will be select ed.

T hus , by using an annealing pro cess for the temperature T , the search for the
global minimum is ini ti ally uniform on the whole domain D and subsequent ly
dwells up on the most promising populati on intervals.

The crossover operator generat es a new interval [z]-y start ing from the
points [x]. and lyle chosen by reproduction . It is based on th e following
relations:

{

X '
Zi = t

Y i

wit h pro b . 0.5
with pro b. 0.5

'Yi = {8i w~th pro b . 0.5
e, with prob. 0.5

(3.6)

These two relations are t ight ly bound to each other : the pr obabi listic choice
is the same for the two assignments . So, if Zi = Xi then 'Yi = 8i ; likewise, if
Zi = Y i then 'Yi = Ci . Such an operator can be viewed as a dir ect extension
of a discrete multi ple-p oint crossover.

200 Marco Muselli and Sandra Ridella

From (3.6) we find that crossover is useless for n = 1 since the offspring is
equivalent to a parent interval. For n ;::: 2 this operator consi derably increases
the convergence speed ; in fact, t he compo nent swapping helps overcome local
minima and avoid the blocking problem [15].

The m erging ope rator is ap plied as an alternative to crossove r , and gen­
erates a new offspring [z] , starting from two par ents [X]6 and [y]<chosen by
reproduction . It s purpose is to join the information contained in the intervals
[Xl6 and [y]<. The merging op erator is p erform ed in the following way:

[z], = [X]6n [y]< (3.7)

taking into acco unt that if the intersecti on is empty, t he ope rato r is not
app lied.

Wi th the simple definitio n (3.7), merging poin ts out the most promising
region s of the dom ain D that the algorit hm has enco unte red in it s execut ion .
Therefore, such an operator makes a synt hesis rather than a real search , and
it s application probability must be kept small.

The mutation operator searches an interval [X]6 for a better point y . The
int erval [Xl6 has been obtained directly by reprodu ction or derives from the
applica t ion of crossover or merging . The amplit ude 8 is not modified by
mutation since the un certainty in the location of the global minimum is not
affecte d by this ope rator.

The choice of the point y can be done in two ways :

• A t random: y is chosen inside the interval [X]6 according to a given
probability dist ributi on .

• By minimization: y is obt ained through some steps of a local optimiza­
tio n method.

In analogy with mu tation in the classical simulated annealing, t he interval
genet ic algorit hm uses a uniform prob ability distribution for the choice of
the point y . Since the search process is essent ia lly based on t he mutation
ope rator, t his is applied at every iterat ion .

Through the rep eated application of reproduction, crossover , merging,
and mutati on , m new inte rvals [Xm +j]6m +j , wit h j = 1, .. . , m , are gener­
ated start ing from t he current p opulation [Xl]6" . . . , [Xm]6m . The selection
operator chooses among these 2m intervals the m individuals that will form
the next population . It ap plies t he Metropolis crite rion in the same way as
classical simula ted annea ling does. If [Yj]<j is the jth int erval of the next
populat ion , we have

[yk = {[Xm+ j]6m +j if ~j ::; P j

J J [Xj k If~j >pj

where ~j is a random number in the range [0, 1], and P j is given by

(3.8)

(
f(xm+) - f(X))

P j = exp _ J J
T

j = 1, . .. ,m (3.9)

Optimization with the Interval Genetic Algorithm 201

T he Met ropo lis crite rion (3.8) has theore t ical foundations that ensur e
the convergence of the simulated annealing algorithm to the global minimum
under suitable conditions [7J. In any case it is an interestin g method for con­
trolling the behavior of the opt imizat ion process. In general, t he Metropolis
crite rion pr efers configurations with lower cost funct ion values, bu t allows
local minima to be overcome by accept ing uphill moves. Therefore, it s appli­
cation has great imp ortan ce even from the point of view of implementation .

4. Implementation

The interval genetic algorit hm proceeds by successively applying reproduc­
t ion , crossover , merging, mutation , and select ion until it sat isfies the stop­
ping criterion. While reproducti on , mu tation , and select ion are performed
at every iterat ion , crossover and merging have a corresponding application
probab ility denoted by Pc and PM , respect ively. From th e peculiar it ies of
these operators we dire ctl y obtain the relation PM «: 1, whereas the inequal­
ity Pc ::::: 0.5 prevent s the destruction of promising intervals that the mutation
operator has st ill not examined .

A simple trick in the reproduct ion operator increases the convergence
speed of the method. Let [Xj>]6

j
> be the int erval in the curre nt population

with the minimum cost funct ion value. The following quan t it ies are evalu­
ated :

j = 1, ... , m (4.1)

where ~j is a rand om number in the ran ge [0, 1]. The two int ervals wit h
minimum values of TJj are then returned by the reproduction operator.

4.1 Temper ature

As pr eviously noted , the parameter temperature cont rols the applicat ion of
reproduct ion and select ion. A vari ety of considerations and the analogy with
simulated annealing advise us to lower this par amet er st arting from a suitable
initial value . However , determining the prop er annealing schedule for a given
problem is frequently a matter of t rial and erro r , even if it is a decision of
great importan ce.

For example, an initi al temperat ur e that is too high leads to a pure ran­
dom search with a possible waste of iterat ions; if the initial temperature is
to o low, the algorit hm can get st uck in a local minimum. A simp le method
for an adaptive choice of the annealing schedule is comparing, at regular in­
tervals, the cur rent temperature with the differences between the values of
f (x) in the population .

In t he int erval genetic algorithm the value of T is updat ed every NT
it erations according to the following relation:

T (k + NT) = T (k) / aT (4.2)

202 Marco Muselli and Sandra Ridella

where T(k) is the temperature at the kth it eration and O'.T > 1 is a fixed
constant . Every time (4.2) is applied, the term T (k + NT) is compared with
Tm in · G , where Tm in « 1 is a small par amet er and G is the geomet ric mean of
the differences b etween the cost fun ction values in the populati on intervals
and the minimum value f (x *) up to the moment ,

()

11m

G = /1 (J(Xj) - f (x*))

If T(k + NT) < Tmin' G , the algor it hm sets

T (k + NT) = max (G, If(x*)1)

(4.3)

(4.4)

and cont inues its search . By means of this cont rol a small value for NT can
be used without having too low a temperature T during the optimiza t ion
process. The relation (4.4) is also used for init ializing the value of T .

4.2 Amplitudes

The amplit udes Dj in t he population intervals are up dated in a similar way :
every N6 it erations the components of Dj are multiplied (divided) by a fixed
constant 0'.6 > 1 if t he optimum value is improved (is not improved) . When

i = 1, . . . , n and j = 1, .. . , m (4.5)

where x* is t he curre nt opt imum point , all t he amplit udes are reset to the
initial value (3.4) . Omin is a positive constant that contains the desir ed max­
imum ap proximation in the location of the global minimum.

NT consecutive amplit ude resets are allowed withou t vari ati ons of the
current optimum; afte rwards , t he search is stopped .

Unfortunate ly, t his updat ing mechanism leads to a commo n value for each
amplitude compo nent and for each population interval. This pr oblem can be
avoided by using a small correction. Every t ime a population interval [Xj]6;
has a lower cost fun ction value than the cur rent optimum x*, it s amplit ude
Dj is changed according to the following ass ignment :

(4.6)

In this way the amplit udes ar e increased mostly in the direct ion of curre nt
optimum.

4. 3 P arallelization and sim u lated a n nealin g

T he implementat ion of the interval genet ic algorit hm on a parallel compute r
with a shared memory is almost immediate. In fact, the only global opera­
tions are the updating of the amplit udes (every N6 it erations) and tempera­
ture (every NT iterations) . T hus, it is possible to assign the generat ion of a

Optimization with th e In terval Genetic A lgorithm 203

new interval to a different processor , which consecut ively performs repro duc­
tion , crossover, merging, and mutation. This can be done in an asy nchronous
way, by loading and storing informat ion in the common memory.

On ly the select ion operator must be performe d by the pr ocessors at the
same t ime , after the generat ion of m new int ervals. T he temperature and
amplit ude updating can be assigned to one of the pr ocessors considered as a
master.

Wi th this simp le imp lementation we can reach a speed-up that is close
to m , the population size (if the number of processors is greate r th an m).
Such a resu lt does not take into account pos sib le parallelizati ons in the cost
function evaluat ion .

If we leave out the important contributions of reproduction , crossover ,
and merging, the interval genetic algorithm becomes a simple execut ion of m
simulated annealings [10]. We have already poi nt ed out that the neighbo r­
hood sets change during the opt imization process, leading to inhomogeneous
Markov chains even if the temperature is kept constant . T he class ical theory
is then no more applicable, and the convergence to the global minimum is
not theoretically ensured . On the other hand , the resul ts pr esented in [10]
shows that such simulated an nealing algorithm has a good reliability .

The addition of reproduction , crossover , and merging simply introduces
ot her variations in the neighborhood set structure . Thus, the int erval genet ic
algor ithm can be viewed as a possible para llelization of simulated annealing .
Goldb erg [16] has shown that the applicat ion of a mor e complex select ion
operator leads to a Boltzmann dist ribution across the populat ion in a discrete
genetic algor it hm. A similar operator can probably be defined for the interval
cod ing .

5. Tests and results

To analyze the features of the interval genet ic algor it hm (IGA) , we have made
some tests on different cost funct ions. We have alread y noted the int rinsic
parallelism of the method , but it is important to know it s perfor man ce on a
sequent ial computer in comparison wit h ot her algor it hms .

We have chosen for this purpose two well-known optimization techniqu es:
simulated annealing (SA) [10], which is slow but reliab le; and the Powell
met ho d (PM) [17], a fast local optimization algorithm . We have not used dis­
crete genetic algorithms since the desired precision requi res too long st rings;
moreover , different coding and function scaling can lead to high variat ions
in the results.

Three gro ups of tests were made on convent ional funct ions , and two other
gro ups concerned the application of optimization in the field of neural net­
works . In the lat ter case we considered the back-propagation (BP) algorithm
[18], widely used in practical problems, instead of the Powell method.

For every test fun ction we too k four values for the dimension n of the
domain D , and for each dimension we made 50 runs of each algorithm. T his
led to a reasonable set of statistics for the convergence speed , measured

204 Marco Muselli and Sandra Ridella

by the mean time (in te rms of evaluations of the cost fun cti on) needed for
satisfact ion of the stopping criterion.

If any of the fifty runs exceeded ten milli on evaluatio ns , t hat search was
aborted and the rem aining runs skipped . Ten milli on evaluations was there­
fore the limit for any single sea rch (indicated in the tables of results with t he
not ation > 10M) . Mor eover , when a method converged at a local minimum,
it was stopped and restarted at a new point ; all the initial points were chosen
randoml y with a uniform probability inside the cost fun ction domain D.

Some pr eliminary runs (which are not t aken into acco unt in the tables
of results) were mad e to obtain goo d values for the parameters of each algo­
ri thm . Such values were then kep t constant thro ughout the tests, except for
the initial t emperature To of SA. In fact , for some test functions a constant
To did not allow the convergence of SA for all t he chose n dimensions n .

The par ameters of IGA were ass igned the following values:

m = 20

Pc = 0.2

PM = 0.005

NT = 200

O'.T = 1.5

Tmin = 0.001

No = 100

0'.0 = 2

NT = 50

8min was set to different values for tests on convent ional fun cti ons and those
in the field of neural networks, since the desir ed accuracy in the location of
the global minimum is different for the two cases. Thus, we chose :

• 8m in = 10-6 for tests on conventional cost functions .

• 8min = 0.1 for tests on neural networks.

5.1 Rosenbrock function

The first group of tests refers to the Rosenbrock function , which represents a
classical test for optimization algorit hms. It is defined in the following way :

n-l

f (x) = LIDO. (Xi+ l - X?)2 - (1 - Xi)2

i = l

(5.1)

for n 2: 2. This fun ction has a single local-global minimum at the poin t Xopt
having components

i = 1, . . . ,n (5.2)

A three-dimensional sketch of this cost fun ction is pr esented in figure 1.
We chose four values of n , n = 2, 4, 6, and 8, whil e the bounds for the

domain D were

a, = -1000 and b, = 1000 i = 1, ... , n (5.3)

The convergence crite rion we adopted is

max I(X·)i - (xopt) .1< 10- 3

l ~~~n t

which depends only on the optimal point X · found by the algorit hm.

(5.4)

Optimi zation with the Interval Genetic Algorithm

\ VV\J.. Y.\L .J?-'

Figure 1: Two-dimensional representation of the Rosenbrock function.

Rosenbr ock function

n 2 4 6 8

Algorithm Evaluations performed

IGA 28,595 319,428 536,409 723,138

SA 627,047 1,331,321 3,317,919 > 10M
PM 2,905 6,277 12,545 26,965

Table 1: Comparative simulation results on the Rosenbrock function.

205

The simulat ion results are reported in tab le 1. In this case the test fun c­
tion is unimodal and different iable in the whole dom ain D. Thus, local op­
timization algorit hms like PM are considerably fast er than it erative random
search pr ocedures (like IGA and SA), as shown in tab le 1. IGA, par t icularly
suited for the optimization of multimod al cost functi ons, is slackened by its
major complexity, but it is considerably fast er than SA.

5 .2 P lateau function

From [19] we obtained two test functions with cont inuous var iables having
relevant complexity . The first of them is called the plateau junction and is

206 Marco M uselli and Sandra Ridella

Figure 2: Two-dimensional representation of the plat eau function.

defined by

4

f (x) = L 2500 · max l l OOO· IXi lJ
j = l '

for (j - l)h < i :'S: j h (5.5)

where lyJ denotes the truncation of y , and h = n/4. For the sake of simplic­
ity, we took values for n that are multiples of 4.

As one can see, the plateau function is formed by a lar ge number of flat
regions whose values gradually decrease toward the global minimum. All the
points x for which

(5.6)

are actually global minima having f (x) = 0; each optimization algorit hm
converges when it finds one of these points.

W hen two var iables were kept constant , we obtained for the plateau func­
ti on wit h n = 4 the plot pr esent ed in figur e 2. T he bounds for the domain D
are given by (5.3) ; the results for n = 4, 8, 12, and 16 are shown in tab le 2.

In t his group of test s, P M was stoppe d in the flat areas of the cost func ­
tion ; thus , its performan ce degrad ed from n = 4 to n = 16, where the limi t of
ten million was reached . In cont ras t, t he numb er of evaluat ions for IGA in­
crease d almost linearly wit h n, improvin g the valu es obtained for SA. Despi te
its slowness, SA always converged , emphasizing its reliability.

Optimizati on with the Interval Gene tic Algorithm

Pl ateau funct ion

n 4 8 12 16

Algorithm Evaluations p erform ed

IGA 11,238 18,168 29,976 52,764

SA 745,478 1,585,093 2,436,362 3,477,751

PM 319 10,938 357,735 > 10M

Table 2: Comparat ive simulation results on the plateau function.

Porcupine function
n 2 4 6 8

Algorithm E valuations performed

IGA 34,124 18,214 21,715 40,708

SA > 10M > 10M > 10M > 10M

PM > 10M > 10M > 10M > 10M

Table 3: Comparat ive simulation results on the porcupine function.

207

5 .3 Porcupine function

A second interesting t est function, derived from [19], is called the porcupine
fu nction , and is defined by

f(x) = 10000· (c + 1.5z)

where

(5.7)

n

C = 10-3 L IXil
i = l

and 6 l 10
6
(n - C)Jz = .10 (n - c) - 2 . 2 (5.8)

The truncation in (5.8) causes the particular behavior of this function
which has a huge number of local minima in its domain (i.e. , every t ime
l106 (n - c)J is an even number). T he value of f (x) at these points slowly de­
creases toward the global minimum Xopt in the axes' origin having f(xopt) =
O. The behavior of the porcupine function is pr esented in figur e 3 for n = 2.

Also in this group of test s the bounds for the domain D are given by (5.3) ,
and the converge nce criterion is (5.4). T he result s for n = 2, 4, 6, and 8 are
reported in t abl e 3.

The high den sity of local minima stopped both SA and PM . In cont ras t ,
IGA always converged within a small number of cost functi on evaluat ions ,
which shows the reliabil ity and efficiency of IGA. IGA searches for the global
minimum using a population of points, allowing exchange of information on
the cost function behavior among the indi viduals.

5.4 Parity funct ion

Supervised learn ing of neural networks is an importan t application for the
optimization techniques. The choice of a weight matrix that minimizes the

208 Marco M uselli and Sandra Ri della

Figure 3: Two-dimensional representation of the porcupine function.

erro r for a given training set has indeed great pr act ical interest . Unfor­
tunately, the cost funct ions deriving from this problems have in general a
high number of local minima ; thus , many trials start ing from different initial
po ints are often requ ired to obtain correct values for the network weight s.

We have chosen two classical problems that are widely used for test ing
the learni ng ru les. T he first concerns the t raining of a two-layer feed-forward
network that has to generate t he par ity bit for a binary st ring of length q.
It is known that q hidd en neurons are needed for doing such operations [20],
so the optimization algorithm must find the (q + 1)2 values for the weights
of the networks (including the biases).

We considered cases wit h q = 2, 3, 4, and 5, where the corresponding cost
fun ct ions have, respect ively, n = 9, 16, 25, and 36 variab les and are defined
in t he following way:

2q

f(x) = L (tj - OJ(X))2 (5.9)
j = l

t j = ± 1 is the corre ct out put for the jth input pattern , while OJ(x) is the
output obtained by using the weight s cont ained in x.

T he neurons have a hyperb olic tangent t ransfer function:

eY - «»
g(y) = tanh y = (5.10)

ev + e- Y

Optimization with the Int erval Genetic A lgorithm

Parity fun ct ion

n 9 (q = 2) 16(q =3) 25(q=4) 36(q= 5)

A lgorithm Evaluations performed

IGA 457 1,912 312,438 148,113

SA 10,760 519,936 > 10M > 10M

BP 889 20,913 > 10M > 10M

Table 4: Comparative simu lation res ult s on t he parity function.

where y is the neuro n inpu t and g(y) t he corr esponding output .
In this group of te st s the domain D had the following bounds:

209

a; = - 10 and bi = 10

T he convergenc e is reached when

i = 1, ... , n (5.11)

(5.12)

T his stopping criterion does not explicitly depend on the cost function value;
nevertheless, the condit ion (5.12) requires that the po int x is very close to the
global minimum. W ith this choice we can an alyze in depth the charact eristics
of IGA .

T he simulation result s are shown in tab le 4. In the runs with BP we used
the acceleration procedure suggest ed by Vogl et al. [21].

In t his case IGA was the fast est method; only for q = 2 did BP have
a similar performance. For q = 3 and q = 4 both SA and BP reached the
maximum limit of ten million evaluations.

5. 5 Symmetry funct ion

T he last group of tests concerns the problem of tr aining a two-layer neural
network that must find the pr esence of symmetry in a bin ar y string of length
q. In t his case only two hidden neurons are needed for doing such op eration
[20]; the numb er of weights in the network is therefore n = 2q + 5.

The tests performed considered the values q = 3, 4, 5, and 6, which
corresponds to cost funct ions (5.9) with n = 11, 13, 15, and 17 variab les,
respectively. The bounds for the domain D and the stopping crit erion were
(5.11) an d (5.12), respecti vely, as for parity. The simulat ion result s are re­
po rted in table 5.

T he reliability and the efficiency of IGA are again emphasized wit h re­
spect to BP and SA.

6. Conclusions

A new global optimization met hod , called the interval genet ic algorithm,
has been described. It can be viewed as an efficient parallelization of the

210 Marco Mu selli and Sandra Ridella

Symmet ry fun cti on

n 11 (q = 3) 13 (q= 4) 15 (q = 5) 17 (q = 6)

Algorithm Evaluat ions p erform ed

IGA 3,481 44 ,302 54 ,944 140 ,458

SA 113,793 881,288 994,640 > 10M

BP 9,351 408 ,960 2,347 ,939 > 10M

Table 5: Comparative simulat ion results on the symmetry function.

simula ted annealing techn ique, or as a part icular type of real-coded genet ic
algorithm.

Although the tes ts presented in this pap er do not claim to give exhaust ive
information on the interval genetic algorithm, th ey provide a first examina­
tion of its properties, such as convergence speed and reliability. On the basis
of the resul ts we have shown , some considera t ions follow:

1. The interval genet ic algorit hm seems fast er and more reliab le than the
well-known simula ted annealing , since the sea rch for the global mini­
mum is done using a populat ion of points.

2. Becau se of it s comp lexity the proposed met ho d is well suited for the
optimization of mul ti modal fun ctions; in simpler cases a local mini­
mization pr ocedure, like the Powell method , is more efficient .

3. T he interval gene t ic algorit hm can be mad e parallel with a sp eed-up
close to the population size.

Fi nally, in the field of neur al networks t he presented method is considerably
faster than the back-propagation algorithm, widely used up to now.

Further test s on different cost functions (also der ived from the training
of neur al networks) are proceeding in order to analyze in grea ter det ail the
real possibil iti es of the interval genet ic algorit hm.

Acknowledgments

We thank the referee for his careful reading of the manuscrip t and for his
useful suggest ions.

R eferen ces

[1] D. G. Luenberger, Introduction to Linear and Nonlinear Programming (Read­
ing, MA, Addison Wesley, 1984).

[2] E. Hansen, "Global Optimization Using Interval Analysis: The Multi­
Dimensional Case," Numerische Mat hematik , 34 (1980) 247-270.

[3] C. C. Meewella and D. Q. Mayne, "Efficient Domain Partitioning Algorithms
for Global Opt imizat ion of Rational and Lipschitz Continuous Functions,"
Journ al of Optimi zation Th eory and Appli cations, 6 1 (1989) 247-270.

Optimization with the Interval Genetic Algorithm 211

[4] R. Galar , "Evolutionary Sea rch wit h Soft Selection ," Biological Cy bernet ics,
60 (1989) 357- 364.

[5] L. P. Devroye , "On the Convergence of St atist ical Sear ch ," IEEE Transactions
on Systems , Man, and Cyb ernetics, 6 (1976) 46- 56.

[6] S. Kirkpa trick, C. D. Gela t t , and M. P . Vecchi , "Opt imizat ion by Simula ted
Annealing ," Science, 220(4598) (1983) 671-680.

[7] E . Aarts and J. Korst , Simulat ed Annealing an d Boltzmann Machines: A
Stochasti c Approach to Combinatorial Optimization and Ne ural Compu ting
(Chicester , Wi ley, 1989).

[8] S. Geman and C.-R. Hwan g, "Diffusions for Global Optimization ," SIAM
Journal of Control and Optimi zation , 24 (1986) 1031- 1043.

[9] F. Aluffi-P ent ini , V. P arisi, and F. Zirilli , "A Glob al Op timization Algorithm
Using Stochas tic Differential Equations," ACM Transacnons on Mathemati­
cal Software, 14 (1988) 345-365.

[10] A. Coran a , M. Marchesi, C . Mar tini, and S. Ridella , "Minimizing Mu ltimod al
Functions of Continuous Variables wit h the Simulated Annealing Algor ithm,"
ACM Transactions on Mathematical Software, 13 (1987) 262-280.

[11] J . H. Holland , Adap tation in Nat ural and Artificial Systems (Ann Arbor ,
University of Michigan Press , 1975).

[12] D. E . Goldbe rg , Genet ic A lgorithms in Search , Optim izat ion , and Machine
Learning (Reading, MA , Ad dison Wesley, 1989) .

[13] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller , and E. Teller , "Equa­
tions of Stat e Calculations by Fas t Computing Machines ," Journ al of Chem ­
ical Physics, 21 (1953) 1087-1091.

[14] D. Gem an and S. Geman , "Stochastic Relaxati on , Gibbs Dist ributions, and
t he Bayesian Restoration of Images," IEEE Transactions on Patt ern Analysis
an d Machine In telligence, 6 (1984) 721-741.

[15] D . E. Goldberg, "Real-coded Genetic Algor ithms, Vir tual Alphab et s , and
Blocking," Complex Syst ems , 5 (1991) 139- 167.

[16] D . E. Goldberg, " A Note on Bolt zmann Tournament Select ion for Genetic Al­
gorit hms and Populat ion-Oriented Simulated Annealing," Complex Systems,
4 (1990) 445- 460.

[17] F. S. Acton, Num erical Me thods That Work (New York, Harper and Row ,
1970), 464-467.

[18] D . E. Rumelhar t , G. E. Hinton , and R. J . Williams, "Learning Representa­
tions by Back-Propagating Errors ," Nature, 323 (1986) 533-536.

212 Marco Mu selli and Sandra Ridella

[19] D. H. Ackley, "An Empirical Study of Bit Vector Function Optimization, "
pages 194-200 in Gen eti c A lgorithms and Simulat ed Annealing, edite d by
L. Davis (London, Pitman , 1987).

[20] D. E . Rumelhart , G . E . Hin ton, and R. J. Willi ams, "Learn ing Internal Repre­
sentat ions by Error Propagation," cha pte r 8 in Parallel Distribute P ro cessing:
Volume 1, edite d by D. E . Rumelhart and J. L. McClelland (Cambridge, MIT
Press, 1986) .

[21] T . P. Vogl, J. K. Man gis, A. K. Rigl er , W. T . Zink , and D. L. Alkon, "Ac­
celerating the Convergence of the Back-Propagation Method," Biological Cy­
berneti cs, 59 (1988) 257-263.

