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Training Recurrent Neural Networks
via Trajectory Modification

D. Saad*
Faculty of Engineering, Tel Aviv University, 69978, Israel

Abstract. Trajectory modification of recurrent neural networks is
a training algorithm that modifies both the network representations
in each time step and the common weight matrix. The present al-
gorithm is a generalization of the energy minimization formalism for
training feed-forward networks via modifications of the internal rep-
resentations. In a previous paper we showed that the same formalism
leads to the back-propagation algorithm for continuous neurons and
to a generalization of the CHIR training procedure for binary neurons.
The TRAM algorithm adopts a similar approach for training recurrent
neural networks with stable endpoints, whereby the network represen-
tations in each time step may be modified in parallel to the weight
matrix. In carrying out the analysis, consistency with other training
algorithms is demonstrated when a continuous-valued system is con-
sidered, while the TRAM learning procedure, representing an entirely
different concept, is obtained for the discrete case. Computer simu-
lations carried out for the restricted cases of parity and teacher-net
problems show rapid convergence of the algorithm.

1. Introduction

Several methods have been applied to the training of recurrent neural net-
works (RNN) with stable endpoints [4, 5, 6] and to RNN that produce trajec-
tories in time [2, 7, 8, 9]. The two kinds of networks differ in their nature and
in the set of tasks to which they are applicable; their training procedures are
therefore tackled using different training algorithms. Most of these methods
are based upon direct modification of the weight matrix in accordance with
the decrement of a cost function related to the problem, which is usually
similar to the one used in the back-propagation (BP) algorithm [2]. All of
the training methods applied to RNN suffer from a very long training proce-
dure because one should obtain a weight matrix that fits all of the network
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representations in the various time steps, which enforces tough restrictions
on the desired weight matrix. Moreover, the training methods applied to
RNN with stable endpoints have two additional major restrictions:

e the endpoints should be stable; and

e there is no information concerning the various trajectories prior to the
endpoints (for both hidden and output neurons).

The methods currently used to train RNN with stable endpoints [4, 5]
concentrate on modifying the stable states—disregarding the trajectories—
by performing direct weight matrix modifications. On the other hand, the
rest of the RNN training algorithms, aimed at tackling trajectory tasks, focus
on a direct iterative weight matrix modification due to the required output
vector along the entire trajectory.!

Because each weight modification affects the entire trajectory, we use in
the trajectory modification (TRAM) algorithm a different approach designed
to modify all of the system representations in the various time steps, includ-
ing the stable point, according to a modification rule derived from the proper
cost function. The modification of the weight matrix, common to the entire
trajectory, is performed only after all of the system representations along the
trajectories have been defined, thus avoiding conflicts in the weight matrix
modifications. The modification rules for the trajectories, including the sta-
ble states, are derived according to the formalism described in a previous
paper [1], that is, a variation of the gradient descent procedure designed to
minimize a cost function and limit the required weight modifications. Once
the trajectories have been defined the weight matrix is modified according to
the perceptron learning rule (PLR) [10], derived from the same cost function
via the gradient descent procedure.

The performance of the TRAM algorithm was examined by applying the
procedure to train a net to produce the same input-output relations as those
produced by a teacher net with similar morphology and an arbitrarily chosen
weight matrix. To demonstrate the capabilities of RNN and examine the
ability of the TRAM algorithm to tackle difficult problems, we applied the
training procedure to solve the parity problem using as few hidden neurons
as possible (for NV input neurons, we used in these simulations N —1, N —2,
and even N — 3 hidden neurons). The computer simulations show a rapid
convergence of the training procedure for all cases, and a high percentage of
converging cases starting with an arbitrarily chosen weight matrix.

The computer simulations performed within the framework of this paper
were limited to problems with binary input and output vectors as well as
to RNN that produce stable endpoints. However, one should note that the
algorithm is useful for a much wider variety of problems:

1One exception to the concept of direct weight modification is the “moving targets”
algorithm presented by Rohwer [9] for producing trajectories with respect to a certain
continuous input. This algorithm is able to use the continuous system representations for
defining the required weight matrix modifications by solving a large set of linear equations.
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e Although the TRAM algorithm is designed to train RNN that produce
stable endpoints, one can use the same procedures to train RNN that
produce output trajectories, since the latter are actually special cases
of the former. The effectiveness of the algorithm for this task with
respect to the performance of the above-mentioned algorithms is not
examined within the framework of this paper.

e The system configuration examined in this paper includes binary input
and output vectors; however, the same procedures can be used to train
RNN with continuous input and output vectors (with hidden binary
units). The performance of the algorithm for problems with continuous
input or output vectors is not examined in this paper.

The theoretical basis of the TRAM algorithm for continuous and binary
neurons is explained in sections 2 and 3, respectively, while the implementa-
tion of the algorithm in a complete training procedure is presented in section
4. The examination of the algorithm via computer simulations is presented
in section 5.

2. Modification rules for recurrent nets with continuous neurons

Most of the training methods that exist for RNN and feed-forward (FF)
nets are based on direct modification of the weight matrix, as derived from
a gradient descent procedure, designed to decrease a defined cost function.
In conjunction, the basis of the TRAM algorithm is the use of the network
representations in each time step as dynamical parameters together with
the weight matrix elements, which are modified to minimize the proper cost
function.

The modification rules for these representations, related to the current
system configuration, are derived from an energy function similar to the one
used originally in the recurrent back-propagation (RBP) algorithm:

P Nout
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where 77 is the desired output vector related to the p vector out of P training
vectors used in the training procedure; v”° is the continuous-value output
vector in the stable state of the system, related to the p training input vector;
and N°" is the number of output neurons in the system. We will use the
index k& whenever we want to emphasize that we regard only the output
neurons; other indexes are related to all of the neurons. The dynamical
equation of the system in a certain time step ¢ is of the form

(t+1) (Z ) f @t +1)) 2)
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where
Pt 4 1) Z 08 (3)

The function f, which represents the neural response, is considered a nonlin-
ear operator acting on the product of the weight matrix W and the vector
vP(t), thus connecting the representations in two consecutive time steps v?(t)
and vP(t + 1).

As with the BP algorithm, we shall search for a procedure that minimizes
the energy F defined by equation (1). The system representations and the
training rules for modifying the weight matrix are easily obtained for FF
networks [1]; however, deriving similar modification rules directly for the
RNN configuration is much more complicated. We therefore regard the RNN
as an FF network with an infinite number of layers: each layer of length N,
representing the state of the entire system at a certain time step, is connected
to the next layer by the same weight matrix W. Assuming that for a certain
pattern the system reaches a stable state in time step T, one can sketch the
configuration of the FF net as in figure 1.

Although we are interested in minimizing the energy function defined by
equation (1), it will be useful to define a set of energy functions in each of
the time steps for deriving the various modification rules. Assuming that we
know the proper representation 77(t) required for each time step ¢ to produce
the proper output vector, we define the following set of energy functions, for
each time step ¢, similar to equation (1):

Z Z (v (¢ O (4)
p=11i=1
where N is the total number of neurons in the net. For simplicity we will
derive the modification rules by considering only the mutual effect of two
contiguous layers, assuming we know the desired output for the second layer,
TP(t+1). We consider both the weight matrix and the system representation
at time ¢ as the free parameters for minimizing the energy function E(t + 1)
related to vP(t + 1), the actual representation of layer ¢ + 1.
The derivative of the energy function E(t + 1) is of the form

dE(t+1) OE(t+1)dW zp:aEt—i—l)va()
T~ oW 4T ur(t)  dT

(5)

where 7 is the training index and the derivatives are applied to each inter-
connection weight and each neuron of the representation vectors. The follow-
ing changes in W and vP shall assure a negative contribution to the energy
function:
OE(t+1)

oW,
—nw (07 (t+1) — 77 (t + 1) f' (wi (¢ + 1)) v (t) (6)
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Figure 1: Development of a fully recurrent net with a stable end vector

in time.
AvE(t) __8@22:;)1)
N
= —mg(vz’-’(ﬂrl) =7t +1)) f (uf(t + 1)) Wy (7)

where f’ stands for the derivative of f with respect to the argument in the
parens, and 7,, and 7, are convergence coefficients.
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Allowing these changes to both the system representations and the
weights, the energy function E(t + 1) will decrease with each iteration and
converge to a minimum value. The order of performing the various modifica-
tions is not determined according to the gradient descent procedure, so they
can therefore be applied in principle to each “training vector” v?(t) taken
one at a time or to any number of them taken in parallel. However, this
set of modification rules is related to the connection between two contiguous
time steps, decreasing the cost function E(t + 1), whereas we are interested
in minimizing the global cost function (equation (1)) via the weight matrix
that is common to all time steps and patterns. Therefore we will first modify
all of the system representations according to equation (7), and then apply
the required changes in the trajectories to weight matrix modifications.

We will now examine explicitly the application of the set of modification
rules (equations (6) and (7)) for minimizing the global cost function (equa-
tion (1)). The RNN presented in figure 1 includes two different dynamical
stages:

1. the trajectory, between t = 0 and ¢t = T'; and

2. the stable state, presented as a constant representation between t =T
and t — oo.

We start by modifying the stable state of the system, applying the modi-
fication rule (equation (7)) to the system representations in the second stage.
We assume that we obtained an erroneous output vector at the stable state
vP° £ 7P where

Tk = i (to) ©)
77 = vl (tw) (9)

for to, — oo and k € output neurons.

Since we are interested in a stable output vector of value 77, the first
modification of the stable state representation that yields the desired result
is straightforward: we simply replace the actual output neurons with those
of the desired vector 77. The first modification will therefore be

AV (too) = T (too) — v7 (teo) (10)

where the only actual modifications occur in the output neurons since the
hidden neurons of 7% are arbitrary, and are therefore chosen to be equal to
those of vP. The role of this modification is to correct the output neurons of
the stable state to the desired values in all of the time steps related to the
second dynamical stage. We therefore apply this modification to all of the
time steps where T' < t < to.

The next step is to modify the previous system representation in time step
teo — 1 in order to support the desired output vector. Applying equation (7)
we get the modification for the t,, — 1 representation:

Avf(teo — 1) = =10 Y (V] (teo) — 7 (te0)) ' (1 (te0)) Wi (11)

=1
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Note that the modification is actually related only to the hidden neurons,
since the input neurons remain fixed and the output neurons in each time step
are corrected by the use of equation (10) in all time steps related to the stable
phase. After applying the modification rule for the system representation in
time step t., — 1, we obtain a new desired vector:

75 (teo — 1) = ¥ (teo — 1) + A} (to — 1) (12)

This new target vector defines a new energy function similar to equation (4)
for time step t, — 1, from which one can derive the required modifications
for previous time steps. Introducing the new target vector 77 (t. — 1) and
the new energy function E(t, — 1), one can apply rule (7) to obtain the
modification required for the system representation at time step t,, — 2:

N

AV (too = 2) = =00 (V] (teo — 1) — T (teo — 1)) f (uf (o — 1)) Wi

= (13)
Writing the modified vector explicitly—using the fact that v?(t, — 1) =
VP (to) and [ (uf(to — 1)) = f' (uF(tw)) for all stable state representations—
one obtains
AvE(te —2) =
— SN (8 (tos) = T (too)) | Mo’ (U (teo)) Wig + 12 ([f’(up(too))W]z)ij]
(14)

We shall thereafter apply the same procedure to all previous time steps
of the stable phase, thus obtaining an infinite series of required changes for
the system representations. Accumulating all of the changes, we obtain the
ultimate modification required for the vectors that represent the stable state.
Since all of the vectors of the stable phase are equal, we will modify the first
vector vP(T); all other vectors related to the stable phase will get identical
representations:

N
AY(T) = 77 (teo) = ¥ (too) = (07 (tee) = 77 (teo) - [ (uF(tee)) Wi
+ 12 ([ (@ (o)) W), + 2 (I (P ()W) 4] (15)

Using the identity matrix é;;, one obtains a new form:

AVE(T) = Z(T too) = U5 (toc)) * [61.]+7711f (u7 (t)) Wi
+ m([f’(up(too))W] ), + ([ @ (t)) W) 4] (16)

It can easily be shown that this infinite series is identical to the inversion of
a matrix of the form

Ly = b — muf’ (uf{te)) Wiy (17)
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Using the new form, equation (16) becomes

A(T) =1 3 (7 (teo) — 01 (b)) [L7']y5
Nout
=m > ((T) = v (T)) [L 7] (18)

k=1

After implementing the modification of the stable state, expressed by
equation (18), we can then apply the weight modification rule (equation (6))
to obtain the required weight matrix modifications that result from the mod-
ification of the stable state:

Nout
AWi;=n g_: (E(T) = vp(D)) f' (W (T)) v ()L i (19)

where 7 = n,7,. Surprisingly we obtain the same rule as in references [4]
and [5], even though we considered an RNN with discrete time steps whereas
[4] and [5] considered an RNN with continuous time flow.?

Since the weight matrix is common to both the first and second dynami-
cal stages, any weight modification prior to determining the representations
required for the first phase of the trajectory might result in a completely
different trajectory and stable point. We therefore should first continue the
trajectory modifications until the full trajectories are defined, and only then
modify the weight matrix common to all of them.

Once the new stable vector has been defined using equation (18), we can
apply the modification rule (equation (7)) to modify the representation of
the prior time step, T'— 1, then adopt the new stable vector v?(T") + Av?(T)
as the desired vector:

N
AT = 1) = ~7, 3 (2(T) ~ 72(T)) £ (2(T) Wy (20)
i=1
We can therefore obtain a new representation for the T'— 1 time step via the
modification rule mentioned above. Note that this time we modify both the
hidden and the output neurons, and we do not add any enforced correction
to the output neurons as we did for the stable state (equation (10)).

We can apply the same rules for all of the trajectories up to the first time
step and to all trajectories related to the various input vectors, and thus
obtain a new set of trajectories to be implemented by the weight modification
rule (equation (6)).

This part of the procedure actually retrieves the BP-through-time algo-
rithm [2] since the modification rules (6) and (7) have to retrieve the BP
algorithm exactly [1]. The only difference between this procedure and the
BP-through-time algorithm is that here the problem of defining the stable
vector was tackled differently.

2A similar result, obtained via other considerations, was also published recently by
Williams and Peng [11].
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This part of the procedure also shows resemblance to other RNN training
algorithms that produce trajectories in time [9, 7]. One of these algorithms
[9] explicitly makes use of modifying system representations to obtain the
weight matrix modifications, although these modifications are obtained by
solving a large set of linear equations instead of the iterative solution used
in this work.

The procedure presented thus far shows the relation between the TRAM
procedure and currently used training algorithms. However, we do not expect
a significant improvement due to the minor differences between the algorithm
in its continuous form and other currently used algorithms. The improve-
ment in the training performance will result from discretizing the network
and the algorithm.

3. Modification rules for recurrent nets with binary neurons

After proving the consistency of the energy minimization approach for the
continuous-valued net with that of RBP algorithms, we apply the same theo-
retical tools to the case of a discrete-valued net. We define an energy function
similar to the one used for the continuous-valued net (equation (1)):

NOut
E=3 > -1y (21)
k=1

p=1

All notations are similar to those used in equation (1) with one difference: the
operator f, which represents the neural response in the dynamical equation
of the system (equation (2)), is now defined as the sgn function, and therefore
all neurons are of a binary representation (+1,—1).

As in the previous case, we shall search for a procedure to minimize the
energy E, described above, by allowing modifications to both the trajecto-
ries and the weight matrix. Applying similar methods to those mentioned
above to obtain the trajectory and weight modifications for the discrete case
will face one difficulty: the modifications for the trajectory and the weight
matrix depend on the derivative of the neural response as shown earlier (equa-
tions (6) and (7)). Since the sgn(z) function has zero derivative for most of
its range, we approximate it by a function that has a small, almost constant,
positive derivative along most of its dynamic range, as explained explicitly
in [1]. We also neglect the region near z = 0, where the derivative is not
constant, by defining the width of this area to be smaller than our resolution.

The trajectory and weight matrix modifications, as expressed in equa-
tions (6) and (7), are applicable also to the discrete case. Note, however,
that the derivative function f’, which is always positive, can be omitted
in both equations: in the equation for discrete trajectory modifications we
are interested only in sign changes, whereas in the equation for weight ma-
trix modifications the contribution of the derivative f’ can be included in the
convergence coefficient 7. By expressing the modification equations explicitly
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one obtains
AW;; = —ny (VE(t) — 77 (8)) v5 (¢t — 1) (22)

AVP(t) = —g:(vf(t-i-l) — 7P (t+ 1)) Wy (23)

)
i=1

Note that the required weight matrix modifications AW;; have the form of
the perceptron learning rule for each pair of system representations related
to successive time steps. Applying the modification of the trajectories is
more complicated due to the discrete nature of the representations. The
modification of a system representation (equation (23)) requires flipping some
of its bits. Such flips will be enforced whenever the modification term Av?
is of opposite sign to the value of v?.

Due to the coefficient 7, the weight changes (equation (22)) contribute
much less to the energy function than those due to the trajectory changes
(equation (23)). This might lead to traps in local minima and to situations in
which the slow weight modifications cannot implement the rapidly changing
trajectories in the weight matrix. These obstacles can be avoided by updat-
ing the weights several times after defining the trajectory, thus allowing the
system to stabilize the weight matrix in a global minimum. The number of
times one should perform the weight change procedure after defining the tra-
jectories is determined experimentally. In the simulations presented below
this number was chosen to be roughly the number of input neurons in the
system; choosing other “reasonable” values does not have a significant effect
on the results.?

Since each trajectory modification results in a weight matrix modifica-
tion, we should minimize the number of trajectory changes to avoid exces-
sively restrictive demands that cannot be implemented using weight matrix
modifications. Minimizing the number of modifications requires selecting the
changes that contribute most to the energy functions, namely those whose
implementations might prevent the use of additional modifications. Esti-
mating the contributions of the various modifications can be achieved by
comparing the energy difference before and after the modification:

2

AE(t+1) =ZZ[ (i ; (v2(2) +Av()))—ff(t+1)

p=1i=

—

-2 3 |1 (S ) - <t+1>r 1)

p=11i=1

30ne can make a rough estimate for this number either in the form presented in our
previous paper [1], comparing the energy contributions of the two changes, or by using
PLR estimating techniques since this is a perceptron problem of O(N?) connections and
O(P - L) patterns (P is the number of patterns and L is the number of layers). However,
since these estimates are not accurate and are rather useless, we omitted them from this

paper.
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Using the discrete representation of the neurons and expanding AE(t+1)
around the argument u? (¢ + 1), one obtains the following expression for the
energy difference [1]:

AE(t+1)=— zP: i i i (ug’(t + 1)) Wi AvE(t)7f (t + 1) (25)

Since f’ is a positive constant, as indicated earlier, equation (25) becomes

P N N

AE(t+1)oc =Y ) > WyAvk () (t+1) (26)

p=1i=1j=1

Therefore, the neural flips with maximal contribution will be those
for which the expression in equation (26) is minimal, that is, when

L i, Wi AvP(t)7](t 4 1) is maximal. The need for a bit flip will be
examined for these neurons selected with respect to all system representa-
tions related to the stable state of the various training patterns.

Relating this selection mechanism for the second dynamical stage is sim-
ple since we choose to modify only the most contributing neurons in each
backward step until the procedure comes to a halt. The actual modification
following the entire procedure affects only a single meaningful representation
related to time step 7', thus having a limited effect on the weight matrix.
The role of this weight matrix modification is to keep the end vector stable,
thus enforcing a two (identical) layer restriction.

However, using this rule for the first dynamical stage is more compli-
cated since each modification of a representation influences the energy of
the previous time step. We therefore should examine the cumulative energy
contribution related to all time steps,

P N T

D22 Wy () (t+1) (27)

p=11i=1t=1

Calculating equation (27) is simple in theory, but in implementing this crite-
rion we face a practical problem since each modification of a representation
in a certain time step will affect all of the representations related to preceding
time steps, and will thus affect the summation expressed in equation (27).
The method used to avoid the problem is to select and modify the most
contributing neurons in time step ¢’ according to the cumulative energy con-
tribution in the backward pass up to that stage that is, the contribution
included between time steps ¢ and T, Z e R Wi AvE ()P (t + 1).
These modifications will not actually be zmplemented at first, but will be
regarded as if they were implemented for further modiﬁcations related to
prior time steps. Once the entire trajectory is “modified” in this manner, we
conclude the summation of equation (27) by selecting the most contributing
neurons over all patterns and time steps. Here also the need for a bit flip
will be examined for the selected neurons with respect to all system repre-
sentations related to the various training patterns.
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The last significant point we should cover before turning to the actual
implementation of the algorithm is the question of the temporal location
of the stable point in the trajectory. Defining the new stable point by per-
forming the above-mentioned modification and selection rules (equations (26)
and (23)) yields a new desired stable vector. This vector might resemble a
representation related to a time step earlier than T, and thus it might be bet-
ter to advance the temporal location of the stable vector to an earlier stage.
Two methods have been considered to define the location of the stable vector
along the trajectory:

e the representation in which the activation most closely resembles the

stable vector (# where YN | u?(¢')v?(T) is maximal); and

e a random point between t =1 and t =T

Due to the extra computation required for the first possibility, and in order
to insert some stochasticity into the algorithm, we used the second method in
the simulations described below. However, we should note that the algorithm
performance was similar when the first method was applied.

4. The complete algorithm

We will now combine the above-mentioned modification rules into a com-
plete algorithm for an RNN with stable endpoints and binary representation.
The various stages of the algorithm described below are also presented as a
flowchart in figure 2.

Initialization

The weight matrix is chosen randomly while keeping the input vector fixed
(Wi =1, W;; =0, Vi € input neurons, j ¢ input neurons).

Introduction of training patterns

The training patterns are introduced to the system, producing the current
trajectories that are related to the training ensemble. Trajectories related to
input patterns that produce a proper output pattern are adopted unchanged
and are not modified throughout the algorithm.

Definition of stable states

A backward pass is performed for the dynamical stage according to the mod-
ification equation (23) and the following paragraphs. This procedure is per-
formed for each of the training patterns one after the other to obtain the
set of desired stable vectors related to the training ensemble. The stable
vectors obtained by this process will define the required representations of
the hidden neurons for the stable vectors together with the output neurons
defined previously by the training requirements. We start by modifying the
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most contributing neurons (according to equation (26)) in the system repre-
sentations related to time step t,, — 1 (i.e., the time step that precedes the
“last layer”), using the notations of figure 1. For carrying out the modifica-
tion and for selecting the most contributing neurons, we define the current
stable vector, with modified output neurons in agreement with the desired
output vector, as the initial stable target vector. By updating the repre-
sentation related to time step to, — 1 (containing proper output neurons) we
obtain a target representation for this step that differs from the actual vec-
tor related to it. Due to this difference we obtain in the same manner the
target vector for time step t,, — 2; we assume that the desired stable vector
of the system in time step t,, — 2 is the same as for time step t,, — 1-—that
is, TP(tes — 2) = 7P(te — 1)—and we select the neurons to be modified in
accordance with equation (23) The target vector for this modification rule
is T(to — 1), the actual “output” vector for this layer is v”(t, — 1), and
the target vector to be modified according to equation (23) is 7°(te — 2).
In the same manner we modify the system representations related to time
steps teo — 3, too — 4, and so forth until this procedure comes a halt, that is,
until the desired target vector is no longer modified. This new vector is our
desired stable vector for the rest of the procedure.

The modification procedure might cause a certain hidden neuron of a
target “stable vector” to flip back and forth during the backward pass due
to alternating conditions in the entire target vector. In order to prevent
this possibility and to assure the termination of the stable state modification
procedure, a limiting condition is enforced that prevents a bit flip if the
energy contribution related to it is higher than the previous flip of the same
neuron.

An additional modification of the algorithm for improving its performance
is to weight the representation modifications required by output neurons
differently from those required by hidden neurons, since the representations
of the output neurons are strictly defined whereas the representations of the
hidden neurons are rather fluid. This modification converts equation (23) to
the form

N
AVP(t) = =) (WPt +1) — P (t+ 1) &Wy; (28)
i=1
where € > ¢;, Vk € output neurons, j € hidden neurons. We should
emphasize that the improvement due to this modification is minor. A ratio
of 3 between these two coefficients was used in the simulations described
below; however, choosing a ratio of 2 or 5 does not significantly influence the
performance of the training algorithm.

It is also important to note that this iterative procedure can be performed
even if there is no stable state for the system. Instead of adopting a real
stable state, one can adopt any state of a certain time step as a “stable
state,” then perform the modification procedure in relation to that vector
and obtain a new desired vector, which approximates a stable state that is
in agreement with the current weight matrix. This procedure therefore offers



Training Recurrent Neural Networks via Trajectory Modification 227

a method that overcomes a basic problem of most RBP algorithms, namely
how to tackle non-converging training patterns. The internal steps of this
stage together with the following stage are presented in figure 3.

Definition of stable state position

Once the stable state is defined one must choose the proper time step in
which stability occurs. In the simulations described below a random choice
of this time step was used in the range 1 < ¢t < T'. However, another criterion
can be used with success similar to that described above (choosing the time
step # related to max 3N | u?(¢')v?(T)).

Trajectory modification

The modification procedure for the rest of the trajectory is similar to the
modification of the stable state. One difference in this procedure is that
the desired output neurons are not defined prior to the stable state, so we
therefore modify them in a manner similar to the modification of the hid-
den neurons, that is, according to equation (23). A second difference is the
method for selecting the candidates for modification (i.e., the most contribut-
ing neurons). As indicated earlier, the source of the problem is the need to
examine the contribution of a modification to the cumulative energy in all
time steps, due to the influence of each modification on representations re-
lated to preceding time steps. We therefore choose during the backward pass
the “most contributing neurons” according to the cumulative contribution up
to the present stage (for modifying the representation related to time step ¢/
we examine the expression — Zz’;l 3 Wi AvE(t)rf (t+1)). By select-
ing the most contributing neurons we can update the desired representations
for time step ¢', and thus obtain the required modifications for time step ¢ —1
and the energy contribution resulting from these modifications to be added
to the cumulative energy contribution. Once the entire trajectory has been
modified for each pattern, we select the most contributing neurons over all
patterns and all time steps. Here also the need for a bit flip will be examined
for the selected neurons according to equation (23) and with respect to all
system representations related to the various training patterns.

It is advisable to select the optimal neurons to be modified from the group
of the most contributing neurons by examining the selected neurons’ activa-
tion |uP|. Modification of neurons with minimal activation (in absolute value)
has minimal effect on the weight matrix and is therefore preferred. One can
therefore select from the “most contributing neurons” the actual neurons
that will be modified using a criterion based on minimal accumulating ac-
tivation Y27, |u?(¢)|. The minor improvement obtained using this selection
rule, as found in some of the simulations, does not justify the additional
computation.

A flow chart summarizing the trajectory modification stage is presented
in figure 4.
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Figure 3: A flow chart for defining the modified stable vector.
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Applying weight modification

Once the desired trajectories and stable vectors have been defined, the weight
modification rule (equation (22)) is applied to adapt the weights to the new
set of system representations. Since the weight modification rule is actu-
ally the PLR, we simply apply the perceptron procedure to a huge set of
vector pairs that represent the full trajectories related to all input patterns.
Whenever the introduction of a training vector leads to the desired stable
output vector, no weight modification occurs. Moreover, the actual trajec-
tory and stable point are adopted as the desired ones. Two additional minor
modifications for the PLR that were used in our simulations are:

e If the total sum of the absolute values of all weights is less than the
absolute value of the self-activating weight (3;.; [Wi;| < [Wi), we set
W;; to a small random value.

e If the total sum of the absolute values of all weights is less than the
absolute value of the threshold (3o |[Wi;| < [Wig|), we set Wi to a
small random value.

These modifications are applied for obvious reasons: a threshold or self-
activating weight that are larger than all other weights prevent the neuron
from representing any function other than a trivial one.

The weight modification procedure is applied several times in the manner
described above until all of the training vectors produce the proper related
output vectors or, if it fails to converge, until a certain number of iterations
R is met. R is defined by the size of the net and the complexity of the
problem. As a rule of thumb, in most of our simulations R was set equal to
the number of input neurons.

If the PLR fails to adapt the weights for producing the proper output vec-
tors with respect to all related training input vectors, we repeat the process
starting from the second stage.

5. Computer simulations

One of the problems in examining the performance of the TRAM algorithm is
the lack of tasks especially adequate for RNN with stable end vectors; more-
over, there is no work that scales the performance of any training algorithm
for such a task in relation to the size of the net nor with the size of the prob-
lem. We therefore choose two different tasks for examining the performance
of the algorithm: the teacher problem, simulating a real world problem; and
parity, for presenting especially difficult tasks and for demonstrating the su-
periority of RNN over FF networks. In our computer simulations we trained
recurrent networks with various configurations and randomly chosen initial
parameters to solve these two problems, for several hundred cases.*

4For small nets we used approximately 200 cases and for larger nets we examined 50
or 100 cases.
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To make an adequate comparison between the TRAM algorithm and
other training algorithms aimed at training RNN with stable endpoints—such
as the RBP [4, 5] algorithm and the Bolzmann Machine training algorithm
[6]—we examined the performance of these algorithms in training RNN on
problems similar to those presented below. The performance of the TRAM
algorithm for these tasks was significantly better than the other algorithms.
For example, the RBP algorithm and the Bolzmann Machine training algo-
rithm required approximately 100 and 500 iterations, respectively, to solve
the simple XOR problem, compared to 20 iterations required by the TRAM
algorithm. The difference in performance increases rapidly with the size and
complexity of the problem, thus preventing an accumulation of statistical
data required for an adequate comparison in the various cases.

The teacher problem

The teacher problem is defined by creating a net with a morphology similar to
the learning net, having a randomly chosen set of weights. This net produces
a set of output vectors related to the set of training input vectors. The train-
ing vectors that produce stable output vectors are used as the training set of
the system since there exists a solution net for solving this problem, namely
a net that produces for each input vector of the training net a corresponding
stable output vector.

Since the functions created by a random choice of weights differ from one
another, one must measure the training performance of the net using a sta-
tistical measure. The measure used in our simulations is the median number
of learning steps required to train networks with random initial weights (the
learning nets) so they perform similarly to randomly chosen networks (the
teacher nets). To calculate properly the number of modification steps re-
quired to train a net, we consider each weight modification related to a single
time step and each modification of the representation related to a single step
as one learning step.

Before describing the results of the simulations it is important to describe
how the teacher problem varies with respect to the number of neurons in
the system. We observed that for smaller networks many trivial nets are
randomly created with respect to the entire ensemble, for which the system
converges to a stable vector. This is indicated by a large number of converging
training vectors. As the system becomes larger the percentage of converging
training vectors decreases, creating seldomly trivial nets. Figure 5 presents
the median percentage of converging cases with respect to the number of
hidden and output neurons in the system (the input neurons are fixed and
are therefore excluded from the number of dynamic neurons in the system).

In the simulations we used various network configurations to examine how
the TRAM algorithm performance is affected by the problem’s complexity.
The examined configurations were N:1:1, N:2:1, N:3:1, and N:N:1
(input neurons : hidden neurons : output neurons, respectively) for N = 3, 4,
5, 6, 7, and 8 input neurons (see figure 6), and N:N:1, N:N:2, N:N:3,
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required to train a net to perform in a manner similar to a randomly
chosen teacher net of the following configurations: N:1:1, N:2:1,
N:3:1,and N:N:1.
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and N : N : N for similar values of N (see figure 7). The algorithm parameters
were: 1 = 0.4 for both the weight updates and the thresholds; the repetition
parameter R = N; the number of neurons considered for modification was
usually a third of the hidden neurons (obviously never less than 1); a single
neuron was selected for modification throughout the entire trajectory.

The maximum number of iterations varied from 100 for the first set of
configurations to 500 for the second set, each iteration being carried over
the exhaustive training set. The percentage of training procedures that con-
verged to a proper solution varied from 90% to 100%.

By examining the number of time steps required for the system to con-
verge one can observe an interesting phenomenon, illustrated in figure 8 for
two configurations: the solution networks converge to the same output vec-
tors faster and with smaller variance than the teacher nets.

The parity problem

A parity criterion is one that yields an output of 1 when the number of +1
bits in the input vector is even and —1 otherwise. In the simulations we used
N =2, 3, 4, 5, and 6 input neurons; N, N — 1, N — 2, and N — 3 neurons
in the hidden layer (for those values where such a choice is applicable); and
a single output neuron. The algorithm parameters were similar to those
used for the teacher problem, except for the repetition parameter R since
this problem is much harder. The values of R used for this problem were
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R=4,6,7,10, and 20, corresponding to the number of input neurons. Here
also we obtained a high percentage of converging training procedures, even
though it was somewhat lower than for the teacher problem (70% to 100%).
Figure 9 shows the median number of steps required to train the net of this
configuration to produce the proper output vectors.

It is important to note that these simulations indicate the superiority of
RNN over FF nets for solving hard tasks since the parity problem for some
of these configurations cannot be solved using FF nets with equal numbers
of given neurons.

6. Conclusion

We have demonstrated that a continuously valued multilayer system, where
both the system representations and the interconnection weights are simulta-
neously modified according to energy minimization principles, behaves sim-
ilarly to existing RNN training algorithms such as the RBP, BP through
time, and others in which only the weights are modified directly as a re-
sult of different considerations. By applying a similar approach to a discrete
system we obtained the TRAM algorithm, which has some resemblance to
training algorithms used for FF nets and that are based on modification of
the internal representations, such as the CHIR algorithm. Computer simu-
lations examining the performance of the TRAM algorithm on the “teacher
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problem” and the “parity problem” show a more rapid and reliable conver-
gence than other existing methods of this type, raising the possibility of a
new, rapidly converging learning algorithm for RNN.
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