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Training Recurrent Neural Networks
VIa Trajectory Modification

D. Saad*
Faculty of Engin eering, Tel A viv University, 69978, Israel

Abstract. Traj ectory modification of recurrent neur al networks is
a training algorithm that modifies both th e network representat ions
in each tim e step and th e common weight matrix. The present al­
gorithm is a genera lization of th e energy minimization formalism for
tr ainin g feed-forward networks via modifications of th e int ern al rep­
resent ati ons. In a previous paper we showed that th e same form alism
leads to th e back-propagation algorithm for cont inuous neurons and
to a generalization of the CHIR training procedure for binary neur ons.
The TRAM algorithm adopts a similar approach for tr aining recurrent
neur al net works with stable endpoints , whereby the network represen­
ta tion s in each time step may be modified in parallel to the weight
matrix. In carry ing out the analysis, consistency with other training
algorithms is demonstrat ed when a cont inuous-valued system is con­
sidered, while th e TRAM learning procedure, repr esentin g an ent irely
different concept, is obtained for the discrete case. Computer simu­
lations carr ied out for th e restricted cases of parity and teacher-n et
problems show rapid convergence of th e algorit hm.

1. Introduction

Sever al methods have been applied t o the t raining of recurrent neural net­
works (RNN) with stable end po ints [4, 5, 6] and to RNN that produce traj ec­
t ories in time [2, 7, 8, 9]. The two kinds of networks differ in t he ir nature and
in the set of t asks to which they are applicable; their t raining procedures are
therefore tackled using differ ent training algorit hms. Most of these methods
are based upon direct modification of the weight matrix in accordance with
the de crement of a cost func t ion related t o the pr oblem , which is usu ally
sim ila r to the one used in the back-propag ation (BP ) a lgor it hm [2]. All of
the training methods applied to RNN suffer from a very long training proce­
dure because on e should obtain a weight matrix that fits a ll of the network
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representatio ns in the various t ime steps , which enforces to ugh restrictions
on the desired weight matrix. Moreover , the tr aining met hods applied to
RNN wit h stab le endpoints have two addit ional major rest rict ions:

• the endpoints should be stable; and

• there is no information concern ing the various tr aj ectories pr ior to the
endpoints (for both hidd en and output neurons).

T he met hods curr ent ly used to train RNN with stable endpoints [4, 5]
concent ra te on modifying the stable st ates- disregarding the tr aj ectories­
by performing direct weight matrix modificat ions. On the ot her hand , the
rest of the RNN training algorithms, aimed at tackling trajectory tasks, focus
on a direct iterat ive weight matrix mod ificat ion due to the requ ired output
vecto r along the ent ire trajecto ry. '

Becau se each weight modification affects the ent ire trajectory, we use in
the trajectory modification (T RAM) algorithm a different approach designed
to modify all of the system representat ions in the various t ime ste ps, includ­
ing the stable point , according to a modificati on rule derived from the pro per
cost fun ct ion . The mo dification of the weight matrix, common to the entire
traj ectory , is performed only after all of the system repr esentations along the
t ra jecto ries have been defined, thus avoiding conflicts in the weight mat rix
modificat ions. T he mod ification rul es for the trajectories, including the sta­
ble states , are derived according to the formalism described in a previous
paper [1], that is, a variat ion of the gradient descent pr ocedure designed to
minimize a cost funct ion and limit the required weight modificat ions. Once
the t rajectories have been defined the weight matrix is mod ified according to
the perceptron learni ng rule (P LR) [10], derived from the same cost funct ion
via the gradient descent procedure.

The performan ce of the TRAM algorithm was examined by applying the
pro cedur e to train a net to pr oduce the same input-output relations as those
produced by a teacher net with similar morphology and an arbit rarily chosen
weight matrix . To demonstrat e the capabilit ies of RN N and exam ine the
ability of the TRAM algorithm to tackle difficul t problems, we applied the
training procedure to solve the parity problem using as few hidden neurons
as possible (for N input neurons, we used in these simulations N - 1, N - 2,
and even N - 3 hidden neurons). T he compute r simulat ions show a rapid
convergence of the t raining procedur e for all cases, and a high percentage of
converging cases start ing with an arbitrarily chosen weight matrix.

T he compute r simulat ions performed wit hin the fram ework of this paper
were limi ted to problems wit h binary input and output vectors as well as
to RNN that prod uce st ab le endpoints . However , one should note that the
algorithm is useful for a much wider variety of problems:

l One exception to the concept of dir ect weight modification is the "moving targets "
algorit hm presen ted by Rohwer [91 for prod ucing t ra jectories wit h respect to a certain
cont inuous inpu t. This algorit hm is ab le to use t he cont inuous syst em representat ions for
defining t he requi red weight matri x modificat ions by solving a large set of linear equat ions.
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• Although the TRAM algorithm is designed to train RN N that produce
stable endpoints , one can use the same pro cedures to tr ain RNN that
pro du ce ou tpu t trajecto ries, since the lat ter are actually special cases
of the former . The effectiveness of the algor it hm for this tas k with
resp ect to the performance of the above-mentioned algorithms is not
examined wit hin th e fram ework of this paper.

• T he system configurat ion exa mined in this pap er includes binary inp ut
and output vectors; however , the same pr ocedures can be used to t rain
RNN with continuous inpu t and output vectors (with hidden binar y
un its). T he performance of the algorithm for pr oblems wit h cont inuous
input or output vectors is not examined in this pap er.

T he theoret ical basis of the TRAM algorithm for cont inuous and binary
neuro ns is explained in sections 2 and 3, respec t ively, while the implementa­
tion of the algorithm in a complete tr aining procedure is pr esented in section
4. The examination of the algorithm via computer simulations is pr esented
in sect ion 5.

2. Modification r u les for recu r rent nets w ith continuous n eurons

Most of the tra ining met hods that exist for RNN an d feed-forward (F F )
net s are based on direct mod ificat ion of the weight matrix , as derived from
a gradient descent procedure, designed to decrease a defined cost function .
In conjunct ion, the basis of the TRAM algorithm is the use of the network
representations in each time step as dynamical parameters together wit h
the weight mat rix elements , which are modified to minimize the proper cost
fun ction .

T he mod ification rules for these represent ations, related to the curre nt
sys tem configurat ion, are derived from an energy func tio n similar to the one
used originally in the recurrent back-propagation (RBP) algor it hm:

P N o u t

E = L L (v~,o - T1:)2
p= l k = l

(1)

where T P is the desired output vector related to the p vector out of P tr aining
vecto rs used in the training pr ocedure; vP,O is the continuous-value output
vector in the stable state of the system , related to the p t raining inp ut vector;
and N out is the number of output neurons in the system. We will use the
ind ex k whenever we want to emphas ize that we regard only the output
neurons; other indexes are related to all of the neurons. The dyn ami cal
equation of the system in a certain time ste p t is of the form

vf( t + 1) = f (~ WijV;' (t)) = f (uf(t + 1)) (2)
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where
N

Uf(t + 1) == L Wijvf(t)
j = l
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(3)

(4)

(5)

The functi on [ , which represents the neural response, is considered a nonlin­
ear operato r acting on the product of the weight matrix W and the vector
vP(t), thus connecting the repr esentations in two consecutive t ime steps vP(t )
and vP(t + 1).

As with the BP algorithm, we shall search for a pr ocedure that minimizes
the energy E defined by equat ion (1). The system representations and the
t ra ining rules for modifying the weight matrix are easily obtained for FF
networks [1]; however , deriving similar modification rules dir ectl y for the
RNN configurat ion is much more complica ted . We therefore regard the RN N
as an FF network wit h an infinite number of layers: each layer of length N ,
representing the state of the ent ire sys tem at a certain time ste p, is connected
to the next layer by the same weight matrix W. Assuming that for a certain
pattern the system reaches a stable state in time ste p T , one can sketch the
configuration of the FF net as in figur e 1.

Although we are interest ed in minimizing the energy functi on defined by
equation (1) , it will be useful to define a set of energy fun ctions in each of
the time ste ps for deriving the vari ous modificati on rules. A ssum ing that we
kn ow the proper repr esentation TP(t) required for each time step t to produce
the pro per output vecto r, we define the following set of energy functions, for
each time step t , similar to equat ion (1):

P N
E (t) = L L (vf( t) - T[(t)) 2

p=l i=l

where N is the total number of neurons in the net . For simplicity we will
derive the modifi cation rule s by considering only the mutual effect of two
cont iguous layers, assuming we know the desired output for the second layer ,
TP (t+ 1). We consider both the weight matrix and the system represent ation
at t ime t as the free paramete rs for minimizing the energy funct ion E(t + 1)
relat ed to vP(t + 1), the actual repr esentation of layer t + l.

The derivative of the energy funct ion E(t + 1) is of the form

dE(t + 1) _ oE (t + 1) dW -? oE(t + 1) dvP(t)
dT - oW dT +~ ovp(t) dT

where T is the tr aining index and the derivatives are applied to each int er­
connect ion weight and each neuron of the representation vectors. The follow­
ing changes in W and vP shall assure a negative contribution to the energy
functi on:

oE (t + 1)
.6.Wij =

oWij
= -TJw (vf(t + 1) - T[(t + 1)) l' (uf( t + 1)) vf (t ) (6)
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Figur e 1: Development of a fully recurrent net with a stable end vector
in time.

A P( ) = _ 8E (t + 1)
L>.VJ t 8vj(t)

N

= - TJv L (vf(t + 1) - Tf(t + 1)) J'(uf(t + 1)) Wi j
i= l

(7)

where t' stands for the derivative of f with respect to th e argument in th e
parens, and 7Jw and TJv are convergence coefficients .
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Allowing these cha nges to both the system representations and the
weights , t he energy function E(t + 1) will decrease wit h each iterat ion and
converge to a minimum value. T he order of performing the various modifica­
tions is not determined according to the gradient descent procedure, so they
can therefore be applied in principle to each "training vector" vP(t ) taken
one at a time or to any number of them taken in parallel. However, this
set of modification rules is relat ed to the connect ion between two contiguous
time steps, decreas ing the cost funct ion E (t + 1) , whereas we are interested
in minim izing the global cost junction (equation (1)) via the weight matr ix
t hat is common to all t ime steps and pat terns. Therefore we will first modify
all of the system representat ions according to equation (7) , and then apply
the required cha nges in the trajectories to weight mat rix mod ifica tions.

We will now examine explicit ly the application of the set of modification
ru les (equat ions (6) and (7)) for minim izing the global cost fun ction (equa­
tion (1)) . The RNN presented in figure 1 includ es two different dyn ami cal
stages:

1. the trajecto ry, between t = 0 and t = T ; and

2. the stable state , presented as a constant representation between t = T
and t --+ 00 .

We start by modifying the stable state of the system, applying the modi­
fication rule (equation (7)) to the system representations in the second stage.
We assume that we obtained an erro neous out put vector at the stable state
vP'o i' TP, where

Tk == Tk(too )
vf'o == vf(too)

(8)
(9)

for too --+ 00 and k E output neur ons.
Since we are int erest ed in a stable output vecto r of value Tk' the first

modification of the stable state repr esentation that yields the desired result
is st raight forward : we simply replace the actua l output neurons wit h those
of the desired vector Tk' The first mod ification will therefore be

(10)

(11)

where the only actual modifications occur in the output neur ons since the
hidden neur ons of T P are arbit ra ry, and are therefore chosen to be equa l to
those of vp

. T he role of this modification is to corre ct the output neur ons of
the stable state to the desired values in all of the time st eps related to the
second dynam ical stage. We th erefore apply this mod ification to all of the
time steps where T ::::: t ::::: too '

The next step is to mod ify the previous syst em represent ation in t ime step
too - 1 in order to support the desired output vecto r. Applying equation (7)
we get the modification for the too - 1 repr esent ation:

N

t:.vj (too - 1) = -T/v L (vf(too) - Tr(too )) !' (uf(t oo ))Wi j
i = l
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Note that the mod ification is actually relat ed only to the hidden neur ons,
since the input neurons remain fixed and the output neurons in each time step
are corr ect ed by the use of equation (10) in all t ime steps rela ted to the stable
phase. After applying the modification rule for the system representation in
t ime step too - 1, we obtain a new desired vector:

(12)

T his new target vector defines a new energy funct ion similar to equation (4)
for t ime st ep too - 1, from which one can derive the required modifications
for pr evious t ime ste ps. Int roducing the new target vector rJ(t oo - 1) and
the new energy function E (too - 1), one can apply rule (7) to obtain the
mod ificat ion requi red for the system representation at time step too - 2:

N

tlv7j(too - 2) = - 17vL (vf(t oo - 1) - r[ (too - 1)) f' (uf(too - 1)) Wij
i= l (13)

Writing the modified vecto r explicit ly- using t he fact that vf(too - 1) =
vf(too) and l' (uf(too - 1)) = t ' (uf (too)) for all stable state representations­
one obtains

tlvj (too - 2) =

- 2:~1 (vf(t oo ) - r[(too )) [17vf' (uf(too )) Wij + 17~ ( [f/(uP(too ))W]2)ij]

(14)

We shall thereafte r apply the same procedure to all previous t ime steps
of the stable phase, thus obtaining an infinite series of required changes for
the system represent at ions. Accumulati ng all of the changes , we obtain the
ultimate mo dificat ion required for the vecto rs that represent the stable state.
Since all of the vectors of the st able phase are equal, we will mod ify the first
vector vP(T); all other vectors related to the stable phase will get identi cal
represent ations:

N

tlvj (T ) = rJ(too ) - v7j(too) - L (vf (too ) - r[ (too )) . [77vf' (uf(too)) Wij
i = l

(15)

Using the identi ty matrix Oij , one obtains a new form:

N

tlvj (T ) = L (r[ (too ) - vf(too)) . [Oij + 17vf' (uf(too)) Wij
i = l

(16)

It can easily be shown that this infinite series is ident ical to the inversion of
a mat rix of the form

(17)
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Using the new form, equat ion (16) becomes

N

/::"v1j(T) = TJv L (Tf( too ) - vf(too ) ) [L- l] i j

i= l

== TJv L (TnT ) - vnT )) [L- 1
] kj

k=l

D. Seed,

(18)

After implementing the modifi cation of the stable state , expressed by
equation (18) , we can then apply t he weight modification ru le (equ ation (6))
to obtain the required weight matrix modifi cations that result from the mod­
ification of the stable state :

Nout

/::"Wi j = TJ L (TnT) - v~(T)) l' (uf(T)) v1j (T )[L- 1
] ki

k=l

(19)

where TJ == TJvTJw· Surprisingly we obtain the same rule as in references [4J
and [5], even though we considered an RNN with discrete time steps whereas
[4] and [5] considered an RNN with cont inuous t ime flow.2

Since the weight matrix is common to both the first and second dynami ­
cal stages, any weight modifi cation prior to determining the representat ions
required for the first ph ase of the traj ectory might result in a completely
different t rajecto ry and stable point . We therefore should first cont inue the
traj ectory modifi cations until the full traj ectories are defined , and only then
modify the weight matrix common to all of them.

On ce the new stable vect or has been defined using equ at ion (18) , we can
apply the modification rul e (equ ation (7)) to modify the represent ation of
the prior time ste p, T - 1, then adopt the new stable vector vP(T ) + /::"vP (T)
as the desired vector:

N

/::"v1j(T - 1) = -TJv L (vf(T ) - T;(T) ) I' (uf(T)) Wi j
i= l

(20)

We can therefore obtain a new representation for the T - 1 t ime ste p via the
modification ru le mentioned above. Not e that this t ime we modify both the
hidden and the output neurons , and we do not add any enforced corr ection
to the output neurons as we did for the stable state (equat ion (10)) .

We can apply the same rules for all of the trajecto ries up to the first time
ste p and to all traj ectories related to the various input vect ors, and thus
obtain a new set of tr aj ectories to be implemented by the weight modifi cation
rul e (equat ion (6)).

This part of the pro cedure actually retrieves the BP-through-time algo­
rithm [2] since the modification ru les (6) and (7) have to retrieve the BP
algorithm exac t ly [IJ. The only difference between this procedure and the
BP-through-time algorithm is that here the pr oblem of defining the stable
vecto r was tackled differently.

2 A similar result , obtained via ot her considera tions, was also published recently by
Williams and Peng [11].
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T his part of the pro cedure also shows resemb lan ce to other RNN training
algor it hms that produ ce trajecto ries in t ime [9, 7J. One of these algorithms
[9J exp licit ly makes use of modifying syste m representati ons to obt ain the
weight matrix modifi cations, although th ese modifications are obtained by
solving a large set of linear equat ions instead of the iterative solution used
in t his work.

The procedure presented thus far shows the relation between the TRAM
procedur e and curre nt ly used tr aining algorit hms . However , we do not expect
a significant imp rovement due to th e minor differences between the algorit hm
in its continuous form and ot her cur rent ly used algorit hms . T he improve­
ment in the t raining perform ance will result from discret izing the network
and the algorithm .

3. Modification rules for recurrent nets with binary neurons

After proving the consistency of the energy minimizat ion approach for the
continuous-valued net wit h that of RBP algorithms , we apply the same theo­
reti cal too ls to the case of a discret e-valued net. We define an energy funct ion
simil ar to the one used for the cont inuous-valued net (equation (1)):

P Nout

E = I: I: (v~,O - 71:)2
p= l k=l

(21)

All not ati ons are similar to those used in equat ion (1) wit h one difference: the
op erator I, which represents the neural response in the dynamical equat ion
of the system (equ ation (2)) , is now defined as the sgn fun cti on , and therefore
all neurons are of a binary represent at ion (+ 1, - 1).

As in the prev ious case , we shall search for a procedur e to minimize the
energy E , described ab ove, by allowing modifications to bot h the t rajecto­
ries and the weight mat rix . Applying similar method s to those mentioned
above to obtain the trajectory and weight modifications for the discrete case
will face one difficulty: the modifications for the traj ectory and the weight
mat rix depend on the derivative of the neural response as shown earlier (equa­
t ions (6) and (7)) . Since the sgn(x ) fun ct ion has zero derivat ive for most of
it s range, we approximate it by a fun ction t hat has a small, almost constant,
positive derivative along most of its dynamic ran ge, as explained explicit ly
in [1]. We also neglect the region near x = 0, where the derivative is not
constant , by defining the width of this area to be smaller than our resolut ion.

The tr ajectory and weight matrix modi ficat ions, as expressed in equa­
tions (6) and (7) , are applicable also to the discrete case. Not e, however ,
that the derivative fun ct ion 1', which is always posit ive, can be omit ted
in bo th equations : in the equat ion for discrete traj ectory modifications we
are interest ed only in sign changes , whereas in the equation for weight ma­
trix mod ifications the cont ribut ion of the derivat ive t' can be included in the
convergence coefficient T). By express ing the modification equations explicitly
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one obtains

.6.Wij = - 'I')w (vf(t) - Tnt))v;( t - 1)
N

.6.v; (t ) = - L (vf(t + 1) - Tn t + 1)) Wij
i = l

D. Saad

(22)

(23)

Note that the requi red weight matrix modifications .6.Wij have the form of
the perceptron learning rule for each pair of syst em representations related
to successive t ime steps. Ap plying the modificat ion of the trajectories is
more complicated due to the discrete nature of the representat ions. The
mo dification of a system repr esentati on (equat ion (23) ) requires flipping some
of it s bits. Such flips will be enforced whenever the modificati on term .6.v;
is of opposite sign to the value of vr

Due to the coefficient '1') , t he weight changes (equat ion (22)) cont ribute
much less to the energy function than those du e to the t rajectory changes
(equation (23)). This might lead to t raps in local minima and to sit uations in
which t he slow weight mod ificat ions cannot implement the rap idly changing
trajectories in the weight matrix. T hese obstacles can be avoided by up dat­
ing the weights several t imes afte r defining the trajectory, thus allowing the
system to stabilize the weight matrix in a global minimum. The number of
ti mes one should perform the weight change procedu re after defining the tra­
jectories is determined experimentally. In the simulat ions pr esented below
this number was chosen to be roughly the number of input neurons in the
syste m; choosing ot her "reasonable" values does not have a significant effect
on the results."

Since each t raject ory modification result s in a weight matrix modifica­
tion , we should minimize the number of trajectory changes to avoid exces­
sively rest rictive deman ds that cannot be implemented using weight matrix
mo difications. Minimizing the number of mod ificat ions requires select ing the
changes that cont ribute most to the energy functions, nam ely those whose
implementations might pr event the use of addit ional modificat ions. Est i­
mat ing the cont ribut ions of the various modifications can be achieved by
comparing the energy difference before and afte r the modifica tion :

.6.E (t + 1) =~~ [1(~ Wij (v; (t ) + .6.V; (t)) ) - Tn t + 1)r
-~~ [1 (~ WijV; (t)) - Tnt + l )r (24)

30 ne can make a rough est imate for this numb er eit her in t he form presented in our
previous pa per [1], comparing th e energy cont ribut ions of th e two chan ges, or by using
P LR est ima ting techn iques since t his is a percept ron problem of O(N2

) connect ions and
O( P· L) pat terns (P is the num ber of pat tern s and L is t he numb er of layers). However ,
since th ese est ima tes are not accura te and are rath er useless, we omitted t hem from t his
pap er .
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Using the discrete representation of the neurons and expanding !::" E (t + 1)
arou nd the argument u:'(t + 1) , one obtains the following expression for the
energy difference [1]:

P N N

!::" E (t + 1) = - L L L J' (uj(t + 1)) Wij!::"Vj (t )Tf(t + 1) (25)
p=l i = lj=l

Since i' is a pos it ive constant , as ind icated earl ier , equation (25) becomes

P N N

!::"E(t + 1) (X - L L L Wij!::"vj (t )T[ (t + 1)
p=li= lj=l

(26)

Therefore, the neur al flips with maxim al cont ribut ion will be those
for which the expression in equation (26) is minimal, that is, when
I::: =l I::~l Wij!::"Vj(t)Tf(t + 1) is maximal. The need for a bi t flip will be
examined for these neurons selected wit h respect to all system repr esenta­
tions related to the stable state of the various training pattern s.

Relating this select ion mechanism for the second dynam ical stage is sim­
ple since we choose to modify only the most contributing neurons in each
backward st ep unt il t he pro cedure comes to a halt . T he actual mod ificat ion
following the ent ire pr ocedure affects only a single meaningful representation
related to t ime st ep T , thus having a limi ted effect on the weight matrix.
T he role of this weight matr ix modification is to keep the end vect or stable,
thus enforcing a two (identi cal) layer restrict ion.

However , using this ru le for the first dynamical stage is mor e compli­
cated since each modificati on of a representat ion influences the energy of
the previous t ime st ep . We therefore should examine the cumulative energy
contribution related to all tim e steps,

P N T

L L L Wij!::"Vj (t )Tf(t + 1)
p= li=lt= l

(27)

Calculating equat ion (27) is simple in theory, bu t in implementing this crite­
rion we face a pr actical problem since each modification of a representat ion
in a cert ain t ime step will affect all of the representatio ns related to preced ing
t ime ste ps, and will thus affect the summat ion expressed in equation (27).
The met hod used to avoid t he pr oblem is to select and modify t he most
contribu ting neurons in time step t f accord ing to the cumulat ive energy con­
tribution in the backward pass up to th at stage, that is, t he contribut ion
included between time ste ps t' and T , I::: =l I::~l I::;=t' Wij !::"Vj (t )Tf(t + 1).
T hese modifications will not actually be implemented at first , bu t will be
regarded as if they were implemented for further modificat ions related to
pr ior t ime st eps . Once the ent ire trajectory is "modified" in this manner , we
conclude the summat ion of equat ion (27) by selecting the most contri buting
neurons over all pat terns and t ime ste ps. Here also the need for a bi t flip
will be examined for the selected neurons with respect to all syst em repre­
sentations related to the various training pattern s.
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The last significant point we should cover before turning to the actual
implementation of the algorithm is th e questio n of the temporal location
of the stable point in the trajectory. Defining the new stable point by per­
forming the above-mentioned modi fication and selection rul es (equat ions (26)
and (23)) yields a new desired stable vector. T his vecto r might resemb le a
repr esenta tion related to a time ste p earlier than T , and thus it might be bet­
ter to advance the temporal locat ion of the stable vecto r to an earl ier stage.
T wo methods have been considered to define the locat ion of the stable vecto r
along the trajectory :

• the repr esentation in which the act ivation mos t closely resemb les the
stable vector (t' where L~l uf(t') vf(T) is maximal); and

• a rand om point between t = 1 and t = T.

Du e to the extra computation required for the first possibility, and in order
to insert some stochasticity into the algorithm , we used the second method in
the simulations describ ed below. However , we should note that the algorithm
performan ce was similar when the first method was ap plied.

4. The complete algorit hm

We will now combine the above-ment ioned modificat ion ru les into a com­
plet e algorit hm for an RNN with stable endpoints and bin ary represent ation .
The various stages of the algorithm describ ed below are also pr esent ed as a
flowchar t in figur e 2.

In itialization

The weight matrix is chosen randomly while keeping the input vector fixed
(Wi i = 1, Wi j = 0, 'Vi E input neurons, j ~ input neurons).

Introduction of training patterns

The training patterns are introduced to the system , producing the curre nt
traj ectories that are relat ed to the t ra ining ensemble. Trajectories related to
input patterns that produce a pr oper output pattern are adopted unchan ged
and are not modified thr oughout the algorithm .

D efinit ion of stable states

A backward pass is performed for the dynam ical stage according to the mod­
ification equation (23) and the following paragraphs. This pr ocedure is per­
formed for each of the training pattern s one afte r the other to obtain the
set of desired stable vecto rs related to the t raining ensemble. The stable
vectors ob tained by this pro cess will define the requ ired representations of
t he hidden neurons for the stable vectors together with t he output neurons
defined pr eviously by the training requirement s. We start by modifying the
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Figure 2: The TRAM algorithm: a flow chart.
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most cont ributing neurons (according to equation (26)) in the system repre­
sentations related to time ste p too - 1 (i.e. , the time ste p that precedes the
"last layer" ) , using the notati ons of figur e 1. For carry ing out the mod ifica­
t ion and for selecting the most cont ributing neurons, we define the cur rent
stable vecto r , with modified output neurons in agreement wit h the desired
output vector, as the initial stable targ et vector . By up dating the repre­
sentat ion relat ed to t ime st ep too - 1 (containing proper- outpu t neurons) we
obtain a target representati on for this step that differs from the actual vec­
tor related to it . Due to this difference we obtain in the same manner the
target vector for t ime ste p t oo - 2; we assume that the desired stable vector
of the system in time ste p too - 2 is the same as for ti me step too - I -e-that
is, TP(too - 2) == TP(too - I )- and we select the neurons to be modified in
acco rdance with equation (23) . The target vector for this modificat ion rule
is TP(too - 1) , the actual "output" vector for this layer is vP(too - 1) , and
the target vecto r to be modified according to equation (23) is TP(too - 2).
In t he same mann er we modify the system representat ions related to time
steps too - 3, t oo - 4, and so forth until this pro cedur e comes a halt , that is,
un ti l the desired t arget vector is no longer mod ified . This new vector is our
desired stable vecto r for the rest of the procedure.

The modi ficat ion procedure might cause a certain hidd en neuron of a
target "stable vector" to flip back and for th during the backward pass du e
to alte rn at ing conditions in the ent ire target vector. In order to prevent
this possibility and to assure the termination of the stable state modification
pro cedure, a limi ting condit ion is enforced that prevents a bit flip if the
energy cont ribut ion related to it is higher than the pr evious flip of the same
neur on .

An additional modification of the algorit hm for improving its perform an ce
is to weight the representat ion modifications required by output neurons
different ly from those required by hidden neurons, since the represent at ions
of the output neuro ns are st rict ly defined whereas the repr esentati ons of the
hidden neurons are rather fluid . T his modi fication converts equation (23) to
the form

N

t:.vf (t ) = - L (vf( t + 1) - Tf( t + 1)) Ei Wij

i = l

(28)

where Ek > Ej , Vk E output neuro ns, j E hidden neurons. We should
emphasize that the improvement due to this mod ification is minor . A ratio
of 3 between these two coefficients was used in the simulations described
below; however , choosing a rati o of 2 or 5 does not significant ly influence the
performa nce of the tr aining algorithm .

It is also important to note that this iterati ve procedure can be performed
even if ther-e is no stable state for- the system. Instead of adopt ing a real
stable state, one can adopt any state of a certain t ime step as a "stable
state," then perform the modification procedure in relat ion to that vector
and obtain a new desired vector , which approximates a stable state that is
in agreement wit h the curre nt weight matrix. T his procedur e therefore offers
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a method that overcomes a basic pr oblem of most RBP algorithms, name ly
how to tackle non-converging training pattern s. The internal steps of this
stage together wit h the following stage are presented in figure 3.

Definition of stable st a t e position

Once the stable state is defined one must choose the proper time ste p in
which stability occurs. In the simulat ions described below a random choice
of this t ime step was used in the range 1 ::; t ::; T . However , another crite rion
can be used wit h success similar to that described above (choosing the time
step t' related to max2:~l u;(t')vf(T)).

Trajectory modification

The modificat ion pr ocedure for the rest of the tr ajec tory is similar to the
modification of the stable state. One difference in this procedur e is that
the desired output neuro ns are not defined prior to the stable state, so we
therefore modify them in a manner similar to the modificat ion of the hid­
den neurons, that is, according to equa t ion (23) . A second difference is the
met ho d for select ing the candidates for mod ificat ion (i.e., t he most cont ribut­
ing neur ons). As indicated earlier, t he source of the problem is the need to
examine the contribut ion of a modification to the cumulative energy in all
time steps, du e to the influence of each modificati on on representations re­
lated to preceding time ste ps. We therefore choose during t he backward pass
the "most cont ributing neurons" according to the cumulative cont ribution up
to the pr esent stage (for modifying the representation rela ted to t ime ste p t '
we examine the exp ression - 2: :=1 2:~1 2:;=t' Wi j t. vj (t)Tf(t +1)). By select­
ing th e most contribut ing neuro ns we can updat e the desired repr esentations
for t ime ste p t' , and thus ob tain the required modifications for time ste p t' - 1
and the energy contribution resulting from these modifications to be added
to the cumulat ive energy cont ribut ion . Once the entire t rajectory has been
modified for each pattern , we select the most cont ributing neuro ns over all
patterns and all t ime steps . Here also the need for a bit flip will be examined
for the selected neurons according to equation (23) and with resp ect to all
system repr esent ati ons relat ed to the various training pattern s.

It is advisable to select the opt imal neurons to be modifi ed from the group
of the most contributi ng neurons by examining the select ed neurons' act iva­
t ion luPI. Modification of neurons with minimal ac tivat ion (in absolute value)
has minimal effect on the weight mat rix and is therefore preferred . One can
therefore select from the "most cont ributing neurons" the actual neurons
that will be modified using a criterion based on minimal accumulating ac­
t ivat ion 2: ;=l luf( t ) l. The minor improvement obtained using t his select ion
rule, as found in some of the simulat ions, does not justify the add it ional
computation .

A flow chart summarizing the trajectory modifi cation stage is pr esented
in figur e 4.
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Applyi ng weight modifica tion

Once the desired tr ajectories and st ab le vectors have been defined , the weight
modificat ion ru le (equation (22)) is applied to adapt the weights to the new
set of system repr esentations. Since the weight modification rule is act u­
ally the PLR, we simply apply the percept ron pr ocedure to a huge set of
vector pairs that represent the full tr ajectories related to all input pat terns.
Whenever the introduct ion of a training vector leads to the desired stable
output vector , no weight modification occurs. Moreover , the actual trajec­
to ry and stable point are adop ted as the desired ones. Two addit ional minor
modi ficat ions for t he PLR that were used in our simulatio ns are:

• If the total sum of the absolute values of all weights is less than th e
absolute value of the self-ac t ivat ing weight (2:#i IWij l < IWii !), we set
Wii to a small ran dom value.

• If the total sum of the absolute values of all weight s is less than the
absolute value of the threshold (2:# o IWij l < IWiD!), we set Wi O to a
small ran dom value.

T hese modificati ons are applied for obvious reaso ns: a threshold or self­
activating weight that are larger than all other weight s prevent the neuron
from repr esenting any function ot her than a trivial one.

The weight modification procedure is applied several times in the manner
descr ibed above unt il all of the t rai ning vectors produce the proper relat ed
output vect ors or , if it fails to converge, until a certain number of iterati ons
R is met. R is defined by the size of the net and the complexity of the
problem . As a ru le of thumb, in most of our simulat ions R was set equal to
the number of input neurons.

If the PLR fails to adapt the weights for produ cing the proper output vec­
to rs wit h respect to all related t rai ning inpu t vectors, we repeat the process
start ing from th e second stage.

5. C om p uter sim ula t ions

One of the problems in examining the performance of the T RAM algorithm is
the lack of tasks espec ially adequate for RNN wit h stable end vectors; more­
over , there is no work that scales the performan ce of any training algorithm
for such a task in relation to the size of the net nor with the size of the pr ob­
lem . We therefore choose two different tasks for examining the performance
of the algorithm: the teacher problem , simulat ing a real world problem; and
parity, for pr esenting especially difficult tasks and for demonst rat ing the su­
periori ty of RNN over FF networks. In our computer simulations we t rained
recurrent networks with various configurat ions and randomly chosen ini ti al
param eters to solve these two pro blems, for several hu ndred cases ."

4 For small net s we used approximately 200 cases and for larger nets we examined 50
or 100 cases.
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To make an adequate comparison between th e T RA M algorithm and
ot her training algor it hm s aimed at training RNN wit h stable endpointsv-such
as the RBP [4, 5] algorithm and the Bolzmann Machine train ing algorit hm
[6]~we examined the perform an ce of these algorit hm s in training RNN on
pro blems similar to those pr esented below. The performance of the T RAM
algorithm for these tasks was significant ly better than the other algorithms.
For example, the RBP algorit hm and t he Bolzmann Machine training algo­
rithm required approximately 100 and 500 iterations, respectively, to solve
the simple XOR problem , compared to 20 iterations required by the TRAM
algorit hm. T he difference in perform an ce increases rapid ly wit h the size and
complexity of the pr oblem , thus pr eventing an accumulation of stat ist ical
data required for an adeq uate comparison in the var ious cases.

The teacher problem

The teacher problem is defined by creating a net with a morphology similar to
t he learning net , having a randomly chosen set of weights. This net produces
a set of out put vectors related to the set of training inpu t vectors . The train­
ing vecto rs that produce stable output vectors are used as the training set of
the system since ther e exists a solut ion net for solving this problem , namely
a net that prod uces for each input vecto r of the t raining net a corresponding
st able out put vector.

Since t he functi ons created by a random choice of weight s differ from one
another , one must measure the t raining performance of the net using a sta­
t ist ical measure. The measure used in our simulations is the median number
of learning st eps required to t ra in networks wit h random initi al weight s (the
learning nets) so they perform similarly to ran domly chosen networks (the
teacher nets). To calculate prop erly the number of modification ste ps re­
quired to t rain a net , we consider each weight modification related to a single
time step and each modification of the represen tation r-elated to a single step
as one learning step.

Before describing the resul ts of the simulat ions it is imp ortan t to describe
how the teacher problem vari es with respect to the number of neurons in
the system. We observed that for smaller networks many trivial net s are
randomly created with resp ect to the ent ire ensemb le, for which the system
converges to a stable vect or . This is indicated by a large number of converging
training vecto rs. As the system becomes larger the percentage of converging
tr aining vectors decreases, creat ing seldomly trivial nets. Figure 5 pr esents
the median percentage of converging cases with respect to the number of
hidden and output neurons in the system (the inp ut neurons are fixed and
are therefore excluded from the number of dynami c neur ons in the system) .

In the simulat ions we used various network configurations to examine how
the TRAM algorithm performan ce is affected by the problem 's complexity.
The examined configurat ions were N: 1 : 1, N :2: 1, N :3 : 1, and N :N :1
(inp ut neurons: hidden neurons: output neurons, respectively) for N = 3, 4,
5, 6, 7, and 8 input neurons (see figur e 6), and N :N :1, N: N: 2, N: N: 3,
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and N :N: N for similar values of N (see figure 7) . The algorithm par am eters
were: TJ = 0.4 for both the weight updates and the thresho lds; the repetition
param eter R = N ; the number of neurons considered for modifi cation was
usually a third of the hidden neuron s (obviously never less than 1); a single
neuron was selected for modificat ion throughout the ent ire trajectory.

T he maximum number of iterati ons var ied from 100 for the first set of
configur ations to 500 for the secon d set , each iterati on being carri ed over
the exhaust ive training set . The percent age of training procedures that con­
verged to a pr oper solution varied from 90% to 100%.

By examining the number of t ime ste ps required for the system to con­
verge one can observe an interesting phenomenon , illust rated in figur e 8 for
two configurations: the solut ion networks converge to the same output vec­
to rs faster and with smaller vari an ce t han the teacher nets.

The parity problem

A pari ty criterion is one that yields an output of 1 when the number of +1
bits in the input vector is even and - 1 otherwise. In the simulat ions we used
N = 2, 3, 4, 5, and 6 input neurons; N , N - 1, N - 2, and N - 3 neurons
in t he hid den layer (for those valu es where such a choice is applicab le) ; an d
a single output neuron . T he algorithm par ameters were similar to those
used for the teacher pro blem , except for the repeti ti on param eter R since
this problem is much harder. The values of R used for this problem were
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R = 4, 6, 7, 10, and 20, corresponding to the number of input neurons. Here
also we obtained a high percentage of converging training pro cedures, even
though it was somewhat lower than for the teacher problem (70% to 100%) .
Figure 9 shows the median number of steps required to train the net of this
configuration to produce the proper output vectors.

It is important to note that these simulations indi cat e the superiority of
RNN over FF nets for solving hard tasks since th e parity problem for some
of these configurat ions cannot be solved using FF net s with equal numbers
of given neurons.

6. Conclusion

We have demonstrated that a cont inuously valued multi layer system , where
both the system representations and the interconnection weights are simulta­
neou sly modifi ed according to energy minimization principles, behaves sim­
ilarl y to exist ing RNN training algorithms such as the RBP, BP through
time, and others in which only the weight s are modifi ed dir ect ly as a re­
sult of different considera t ions . By applying a similar approach to a discret e
sys tem we obtain ed the TRAM algorit hm, which has some resembl ance to
t raining algorithms used for FF net s and that are based on modification of
the internal representations, such as the CHIR algorithm . Compute r simu­
lations examining the performanc e of the TRAM algorithm on the "teacher
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problem" and the "parity problem" show a more rapid and reliable conver­
gence than ot her exist ing met ho ds of this ty pe , raising t he possibili ty of a
new, rap idly converging learning algorit hm for RNN .
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