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Cellular Automata as Algebraic Systems*
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Abstract. Infinite cellular automata have been studied mostly using
empirical and statistical techniques, with some combinatorial anal-
ysis. Here we show how concepts of universal algebra such as sub-
direct decomposition and chains of varieties can be applied to their
study. Cellular automata with ultimately periodic behavior are shown
to correspond to varieties of groupoids. Relationships between these
varieties are analyzed.

Introduction

A one-dimensional cellular automaton (CA) is determined by a quadruple
A = (S,l,7,0), where S is finite set (of states), ! and r are natural num-
bers, and ¢ is a mapping of S77+! into S, sometimes required to satisfy
7(0,0,...,0) = 0 for some state 0 in S (a quiescent state). The automaton
has a doubly infinite one-dimensional array of cells, named by the integers Z,
which are each initially (at time ¢ = 0) in one of the states in S. The states
of cells change in discrete time steps, t = 1,2,.... A configuration (or global
state) of the automaton is an assignment of a state to each cell. If s : Z — S
is a configuration, then s(7) naturally denotes the state of cell 7. The state
of cell n at time ¢ of the automaton .4 with initial configuration s is denoted
A;n(s). The state of a cell at time ¢ + 1 is determined by the states of the
cell, its [ left neighbors, and its r right neighbors at time ¢ according to o:

At+1,n(s) = U(-At,n—l(s): At,n—l+1(s)1 cee 1At,n+r(s))-

The global state or configuration of A at time ¢ is denoted A:(s). The
evolutionary behavior of the automaton is then observable from the sequence
of global states Ag(s) = s, A;(s), Az(s),..., which can be displayed one
underneath the other, forming an infinite two-dimensional array. In this
way, patterns in the evolution become readily visible. Numerous computer
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simulations have evidenced that the evolution of CAs can be very complex
even for small S, [, and r. Some CAs will evolve to constant or periodic
patterns for all or almost all initial configurations, others will give fractal
evolutionary diagrams, some give seemingly random patterns, and yet others
appear to exhibit some locally organized behavior. Many empirical studies
have been made of these behaviors [9], and there has been some combinatorial
analysis (e.g., [6]), mainly for totalistic automata or when the automaton has
a finite (circular) array of cells. An early algebraic and topological approach
to the relationship between the local CA rule o and the global behavior it
induces on the configuration space S is [4], but it does not explain the variety
of behaviors observed. The current paper investigates how some of the basic
concepts of universal algebra can be applied to determining the evolutionary
behavior of cellular automata. General references for universal algebra are
[7] and [3]. For the reader’s convenience, the definitions and results from
universal algebra relevant to this paper are summarized below.

The basic algebraic operations on groupoids—products, quotients, and
subalgebras—will be shown to have direct visual interpretations for the evo-
lution of the CA they define. Then cellular automata with eventually periodic
behavior are proved to correspond to subvarieties of groupoids, and various
relationships between these varieties are explored.

Cellular automata and groupoids

It has been shown (see [8] or, more directly, [1]) that [ = 1,7 = 0 is sufficient
to simulate all other CA in the sense that if A = (S, m,n,o) is any CA, then
thereisa CA B = (T,1,0,7), with T 2 S, and constants ¢ and k such that for
all s € SZ, By niet(s) = Agn(s). That is, from evolution diagrams for B one
can read off the corresponding evolution diagrams for A. But if l =1,7 =0
then o : S? — S is just a binary operation on S. A set with a single binary
operation on it that is not required to satisfy any particular extra conditions
is known in algebra as a groupoid. Groups and semigroups, with which the
reader may be more familiar, are examples of special groupoids that satisfy
extra conditions. The rest of this paper is therefore devoted to relating the
properties of CAs to algebraic properties of groupoids. For example, we may
ask whether there are special properties of the CA corresponding to groups,
or what conditions the groupoid must satisfy to give specified evolutionary
behavior of the corresponding CA. The condition that CAs have a quiescent
state 0 € S is natural for many purposes, and we will suppose henceforth
that our CAs obey it. Thus we will actually study “zero-pointed groupoids,”
that is, groupoids with an element 0 such that 0 -0 = 0, although many of
the results will be valid for arbitrary groupoids.

The operation of the groupoid A defining a cellular automaton A will be
denoted by multiplication, or just juxtaposition. If s is an initial configura-
tion of A then

Avi(s) =s(i—1)s(i) forallieZ (1)
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and, in general,
Aip14(8) = Aric1(s)Api(s) forall ¢t € N and all i € Z. (2)

Another way to express these relationships is in terms of a (right) shift opera-
tor, 2, and a global version of the groupoid operation. If s is a configuration,
then the configuration Z(s) is defined by (Z2(s))(i) = s(i — 1). If s and t are
configurations, then s -t is the configuration defined by (s-t)(7) = s(i) - t(2).
We note that shift commutes with this globalized multiplication (see [4]),
that is,

E(s-t) = =(s) - Z(t). (3)

In this notation, if s is the current configuration of a CA then the configura-
tion at the next time instant is s - Z(s), or

Aryi(s) = As(s) - E(Ai(s)). (4)

There are several algebraic operations that can be applied to groupoids
and therefore, as we will see in the next section, to cellular automata. The
most fundamental are the direct product, quotients (homomorphic images),
and taking subalgebras. These operations are defined for algebras in general
and groupoids in particular in a similar way as for groups or rings. If (A, -4)
and (B,-p) are groupoids, their direct product (A x B,-) is the groupoid
on the cartesian product A x B with the groupoid operation defined by
(a1,b1) « (az,b2) = (a1 -4 a2,by -p ba). A mapping # : A — B is a groupoid
homomorphism if for all a;,a, € A, 8(a; -4 az) = 6(ay) - 0(az). Such a @
is an isomorphism if it is onto and one-one. A homomorphism from A into
itself is called an endomorphism. A groupoid B is a quotient of a groupoid
A if there is a homomorphism from A onto B. B is isomorphic to A if there
is an isomorphism between them. Refer to [7] or [3] for more information.

Algebraic operations on cellular automata

The following definitions can be made for any [, 7, but we will only be inter-
ested in [ = 1,7 = 0, so we assume these values henceforth and omit them
from the notation.

A cellular automaton B = (B, ) is a subautomaton of a CA A = (A, o)
if and only if B C A and for all b € B% and for all t € N and n € Z,
Ay (b) = B, (b). That is, the evolution of A is identical with that of B for
all initial configurations containing only states in B.

A cellular automaton B = (B, 7) is a quotient automaton of a CA A =
(A, o) if and only if there is a mapping 6 of A onto B such that for all t € N,
n€Z,ands € AZ,

0(Ain(s)) = Bia(0(s))

where 60(s) denotes the vector obtained from s by applying € to each compo-
nent.
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Figure 1: (a) Evolution of a three-state CA from an initial config-
uration of one cell in state 1 for 50 generations. (b) Evolution of a
two-state quotient CA of the automaton in (a) under the mapping
grey — white, black — black, white — white. The rule for this CA
is o(z,y) = = + y (mod 2).

This means that the evolution diagram for B(s) can be obtained from the
one for A(s) just by replacing every state s by 6(s), as illustrated in figure 1.
If the mapping 6 is also one-one, then B is isomorphic to A. A cellular
automaton A = (A, 0) is a product automaton of the cellular automata B
and C if and only if A= B x C, and for all t,n € N and all s € AZ,

-At,n(s) = (Bt,n("rl (S))vct,n("h(s)))

where 7 (s) is the vector obtained from s by replacing each state a = (b, ¢) by
b, and m»(s) is similarly obtained by replacing a with c. If A is isomorphic to a
product of B and C then the evolution diagram for A is just the superposition
of the evolution diagrams of B and C (imagine them drawn on transparencies),
as illustrated in figure 2.

Theorem 1. Let A, B, and C be cellular automata corresponding to group-
oids A, B, and C, respectively. Then A is isomorphic to (a subautomaton of,
a quotient automaton of) B if and only if A is isomorphic to (a subgroupoid
of, a quotient groupoid of) B. A is the product automaton of B and C if and
only if A is the groupoid product of B and C.

Proof. The subgroupoid case is clear. For the quotient case, suppose A is a
quotient automaton of B. Let § : A — B be the quotient map. Then it will
be shown that € is a groupoid homomorphism, so that B is a quotient of A.
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Figure 2: (a) Evolution of the three-state automaton whose rule is
given by o(z,y) = 22 +y (mod3). (b) Evolution of the product
automaton of the CAs in figure 1(b) and figure 2(a). At this resolution,
all non-zero values appear black.

Let a and b be any two elements of A. Let s be any initial configuration with
s(0) = a and s(1) = b. Then

0(A1,1(s)) = Bi1(6(s))
from the property of being a quotient automaton and, using (1), this gives
0(ab) = 6(a)d(b).

For the converse, if § : A — B is a groupoid homomorphism onto B, let
s be any configuration of A. Then for all n € Z we have 0(s(n — 1)s(n)) =
0(s(n — 1))0(s(n)), which says

0(A1n(s)) = Bon-1(0(s))Bon(8(s))-

The right-hand side is just B; ,(0(s)), that is, (A; .(s)) = B1,(0(s)) for all
n. Since s was any configuration of A, we can take it to be the configuration
at time t — 1 to establish the same equality for any time ¢ instead of 1.

The proof for products is similar. B

The real content of the theorem is just that the basic algebraic operations
on groupoids have direct visual counterparts for the evolution diagrams of
the CAs they define. This makes results from universal algebra meaningful
for CAs. An ideal situation would be if there were a small number of finite
groupoids from which all others could be obtained by the fundamental alge-
braic operations discussed above. Then we would only need to understand
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the behavior of the CAs corresponding to these “building blocks” to deter-
mine the behavior of all CAs. In fact, there is no such finite set of finite
groupoids from which all others can be obtained by taking finite products,
quotients, and subalgebras, because there are infinitely many finite groupoids
that cannot be expressed this way in terms of more elementary groupoids.
These are known as the subdirectly irreducible groupoids. It is a basic the-
orem of universal algebra that any finite groupoid is a subdirect product of
finitely many subdirectly irreducible groupoids (which are quotients of the
given groupoid). (Consult [7] or [3] for further information.) Although this
is a better result than if we decomposed only by direct products (then any
groupoid with a prime number of elements would be indecomposable), there
are still too many subdirectly irreducible groupoids for this result to be re-
ally useful. It does demonstrate, however, that we need only determine the
behavior of subdirectly irreducible CAs to understand the behavior of all
CAs.

If we restrict our attention to special classes of groupoids then we may ob-
tain better decomposition results. For example, the fundamental theorem of
abelian groups says that any finite abelian group is a direct product of cyclic
p-groups (see section I1.2 in [5] for example). Thus, to understand abelian
group CAs, we need only determine the behavior of CAs corresponding to
the groups Z,= (p is a prime, m any positive integer). This can be achieved
with some precision.

Let the elements of the cyclic group Z, be denoted by {0,1,2,...,n—1},
where 0 is the identity element and 1 is a generator. The behavior of the
cellular automaton A corresponding to Z, on any initial configuration can
be determined from its behavior on the initial configuration 1 defined by

£ 1 ifi=0
1) = { 0 otherwise.
Indeed, using + for the abelian group operation, then in the notation of (3)
and (4), for all configurations s and t,
Ai(s+t)=(s+t)+Z(s+t) by (4)
=s+t+Z(s)+Z=(t) by (3)
= (s+Z(s)) + (t + Z(t)) by commutativity

Since any initial configuration s can be expressed as s = 2 s(i)Z(1),
this shows that for any initial configuration s, any ¢ > 1, and any ¢ € Z,

i

Api(s) =Y s(k)Ayi—i(1). (6)

k=0

Furthermore, it is easily established by induction that A, (1) = (fc) (modn),

where the binomial coefficient (,tc) is understood to be 0 if £ > ¢t or k < 0.
Combining this with (6) yields the following theorem.
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Theorem 2. Let A be the CA corresponding to the cyclic group Z,. Then
for any initial configuration s and any t > 1,

Aute) = 500, ) (o).

k=0

This theorem can be used together with the fundamental theorem of
abelian groups to obtain A;; for any abelian group A, by first expressing A
as a direct product of Z, for various p,k and then using the theorem on
each factor.

While this decomposition theory is quite successful for abelian groups,
such good results should not be expected for other types of groupoids because
of the lack of analogues for the fundamental theorem of abelian groups, and
the lack of (6). Even for nonabelian groups a complete analysis appears
difficult.

Varieties and periodic behavior

Algebraic operations are at the heart of one of the most successful approaches
to the classification of algebras in general, which is by varieties. A variety is
a class of algebras (with a fixed number of operations) that is closed under
the formation of isomorphic copies of quotients, subalgebras, and arbitrary
products. A fundamental result of Birkhoff [2] says that varieties can equiva-
lently be defined as those classes of algebras that satisfy a (possibly infinite)
set of identities (see below for a formal definition of satisfaction of an iden-
tity). Familiar examples of varieties include groups and rings, but not fields
(which are not closed under products).

It might be hoped that common identities such as commutativity and
associativity holding for the groupoid of a CA would lead to characteristically
recognizable behaviors. In fact, the more usual identities do not appear to
give recognizable behavior, but identities can be found to characterize certain
CA behaviors. That is, there are identities such that a CA has certain (shift-
periodic) behavior if and only if the groupoid of the CA satisfies the identities.

A groupoid identity is an equation s = t where s and ¢ are groupoid

terms in the variables zy,z,...,2,. A groupoid A satisfies the identity
s =t if for every n-tuple (ay,as, ..., a,) of elements from A, the expressions
slz1/ay, ..., z,/a,] and t[z1/aq,. .., z,/a,] evaluate to the same element of

A, where z;/a; denotes, as usual, the replacement of z; by a; at all occurrences
of z;. A more algebraic definition of satisfaction of an identity can be given
in terms of free algebras and homomorphisms.

The free groupoid F(X) on a set X is just the set of all groupoid terms
involving only elements of X, with the groupoid operation applied to two
terms s and ¢ defined to yield the term s-¢. F(X) has the property that any
mapping from X into any other groupoid G can be extended uniquely to a
homomorphism from F(X) to G. With this terminology, a groupoid G will
satisfy an identity s = ¢ written on the variables in X if and only if, for any
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mapping of X into G, the unique extension ¢ : F(X) — G of the mapping
has ¢(s) = ¢(t). This equivalent definition of satisfaction will be used in the
proofs below.

A cellular automaton A is periodic if, for all initial configurations, the
rows of its evolution diagram eventually start repeating periodically. More
precisely, A is k-periodic (starting at generation g) if there exists ¢ € N such
that for all s € A% and all t > g,

-At+k,n (S) — -At,n (S)

Period k is defined to include periods less than k£ so that the groupoids
corresponding to all k-periodic CAs will form a variety. A similar remark
applies to g.

Theorem 3. For each g,k € N, the groupoids defining k-periodic cellular
automata after g generations form a variety, Vg . If g < h then Vg, C Vi,
and if k divides p then Vg, C V.

Proof. Let A be a CA. Let s be an initial configuration of A. Define
inductively

g =s(), st =siys] (7)

5

Then it follows from (1) and (2) that for all i € Z and all t € N, A;;(s) = st
is the value of cell 7 of A in generation ¢. A visual aid to this formulation
of the CA evolution is presented below, with the entry in row ¢ under c;
denoting the state of cell j in generation %.

c_1 Co C1 Co C3
C_2C_1 C_1Co CoC1 C1Co CaC3
(c—sc—2)(c—2c-1) (c2c1)(c-1c0) (c-1c0)(coc1) (cocr)(crcz) (crc2)(caca)

According to the definition, A is k-periodic starting at generation g if and
only if

stk =5t foralli€Zandallt > g. (8)

For example, referring to the diagram above, to obtain period 2 starting at
generation 0 all the values in the third row have to be the same as those
immediately above them in the first row; that is, (¢;—2¢;—1)(ci—1¢;) = ¢; for
all 4. Since the ¢; can assume any values in the state set, this requires that
the groupoid satisfy the identity (zy)(yz) = z. The values in the fourth row
(not shown) also need to equal those in the second, and so on. It is fairly easy
to see that if the groupoid of the CA satisfies the identity (zy)(yz) = z, then
these further conditions are also satisfied. The general case is now examined.

We will define identities on the variables X = {xo, 2}, Z2, ...} whose satis-
faction by a groupoid will be shown to be equivalent to the periodicity of the
corresponding CA. To specify the identities, let A be the left shift operator
on words on X. That is, if w is a word on X, then A(w) is the word obtained



Cellular Automata as Algebraic Systems 245

from w by simultaneously replacing all occurrences of z; by z;4; for all 4.
(Let Ag: X — X : z; — x;41. Then A is the (unique) extension of Ag to an
endomorphism of the free groupoid on X.)

Define groupoid terms «; inductively by

Qo =Zo, Qip1 = A(oy) - oy ©))

for i € N. Thus o is z17, @z is (z2x1)(%120), and so forth. Then the variety
V, i of CAs that have period k after g generations is defined by

Ogtf = O. (10)

For suppose the groupoid A satisfies the identity (10). We must show that
(8) is satisfied. Choose ¢ € Z and t € N. Let fy : X — A be the map defined
by fo(z;) = si_;, and let f be the extension of this map to a homomorphism
from the free groupoid on X to A. Then, according to the definitions (7) and
(9), f(amm) = s7** for all m. Since A was assumed to satisfy (10), it follows
that f(agx) = f(a,), which gives, by the previous sentence, sITRHE _ ot
This is equivalent to (8) since ¢ € N was arbitrary.

Conversely, suppose A has period k after g generations. Then (8) holds
for every initial configuration, and we must show that A satisfies the identity
(10). Let ag,as,...,aq4r be any elements of A. Let hg : X — A be any
map such that ho(z;) = a; for i < g+ k. Let h be the extension of hg
to a homomorphism of the free groupoid on X into A. We must show that
h(ag+k) = h(ay). Let s be an initial configuration of A with s(2) = agqi—s, % =
0,1,...,9+ k. Define s! for this s as in (3). Then h(a;) = s}, follows from
(7) and the definition of h. By (8), sgi’; = 59,4, which gives f(agix) = h(ay)
as required. Thus these CAs are characterized by the identity (10), which
shows they form a variety.

Finally, it is clear from the definition that if a CA has period k after g
generations, then it also has period k after ¢ generations for all ¢ > g, and
that it also has period mk for all m = 1,2,3,... (after g generations). B

Corollary 3.1. A product automaton of periodic automata is periodic. In
fact, if A € Vg and B € V), then A x B € V,,, . where m = max(g, h)
and ¢ = lem(k, p).

Proof. From Theorem 3 we have Vg € Vs € Ve and Vg, CV,, , C
V.. since both k and p divide ¢. The result follows at once since varieties
(Ve in particular) are closed under products. B

Corollary 3.2. For all natural numbers n and k there exists a natural
number px(n) such that if a CA with at most n states is k-periodic, then
it is k-periodic after px(n) generations; that is, V,, (n)x contains all cellular
automata of period k with at most n states. Also, for every n there exists
m(n) such that if a CA on n states is periodic, then it has period at most m(n).
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Proof. This follows immediately from the facts that for given k, g < h
implies V. C V), (the varieties form an ascending chain), and that there
are only finitely many CAs on a given finite state set. B

It is perhaps surprising how fast the varietal chains stabilize, at least for
small state sets. A computer enumeration showed p;(3) = 4, u2(3) =5, and
u1(4) > 6. In fact, as might be expected, there are relatively few CAs that
are periodic (for all initial configurations). Of the 2,352 non-isomorphic CAs
on three states satisfying 0-0 = 0, 191 are 1-periodic and 256 are 2-periodic
(see table 1 below). Also, m(3) = 2. Thus, there are only 256 periodic CAs
with three states (and [ = 1,7 = 0). Let C3 denote the set of three-element
groupoids. The computer enumeration showed that C3 N Vg ar11 =C3NVy,
for all g < 4. Since p;(3) = 4, we may conclude this holds for all g. Similarly,
since we find CsN V5, =C3N V5 for all g < 5, and p»(3) = 5, we conclude
the equality holds for all g. Moreover, since 7(3) = 2, we have the next
theorem.

Theorem 4. For all positive integers k and g, C3N Vg apy1 =C3 NV, and
C3 n Vg,2k = Cg n Vg,Z-

Since periodic three-state CAs have period at most 2 (7(3) = 2), and
H2(3) = 5, any three-state periodic CA has period (at most) 2 starting by
generation 5. From the proof of Theorem 3 (see equation (10) and following),
such CAs are characterized by satisfying the identity a7 = as.

Theorem 5. A three-state cellular automaton with 0 -0 = 0 is periodic if
and only if its groupoid satisfies the identity a; = as; explicitly this identity
(L5t - )t - w0) (s - o) (- ww))]
[((tu - wo) (wo - vw)) ((wo - vw) (vw - wz))]}
Al((tu - wo) (wo - vw)) ((wv - vw) (vw - wz))]
(v - ve)(vw - w))((vw - wa)(ws - 9))]})
-({l((tw - wv) (wv - vw))((wv - vw) (vw - wz))]
(- v)(ow - w)) (v - wa) (wz - zy))]}
A - vw) (0w - we)) (v - wa)(ws - 29)))
[((ow - wa) (ws - zy)(ws - y)(zy - y2)]})
— [((wo - v) (ow - wa))((vw - we)(wz - 2))]
(o - wa)(ws - zy)) (ws - oy)(zy - y2)).

Shift-periodic CAs

When using [ = 1,7 = 0 to simulate CAs with other neighborhoods, a
shift factor is introduced (see the second section). Therefore, to investigate
periodic CAs in general, the definition in the last section should be broadened
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as follows. An (I = 1,7 = 0) cellular automaton A is shift-periodic of period
k and shift factor ¢, starting at generation g, if, for all initial configurations
s of A,

Atk nte(s) = Ayn(s) forallt > gandalln e Z.

For shift-periodic CAs there is this generalization of Theorem 3, whose
proof is similar to that of Theorem 3.

Theorem 6. For each g,k,c € N, the groupoids defining cellular automata
of period k with shift factor ¢ starting in generation g form a variety Vg .
defined by the identity

g4k = A°(ay)

where «; is as in Theorem 3 and A€ is the c-fold composition of the left shift
operator.

If A= (A,-) is a groupoid, let A°? = (A, o), where aob=b-a. The next
result shows that in analyzing V. it is usually only necessary to consider
c < [%5].

Theorem 7. 1. If ¢ > g+ k then Vg . is empty if g = 0 and otherwise
consists precisely of all groupoids satisfying o, = 0.

2. Let C, denote the class of n-element groupoids and let ¢ < [#£]. Then

A€CNVope if AP ECNV, 10

Proof. To prove (1), note that a,. has variables zo, z1, . . ., Zg4r and A°(oy)
has variables Z¢, Zcy1, - - ., Tegg, SO that if ¢ > g-+k then they have no variables
in common. Also our groupoids satisfy 0 -0 = 0. The result follows. For
(2), observe that x; — x41—; induces an involution on the free groupoid on
{z0,21,...,Tgtx}, which are the variables occurring in oygyr. B

The results on varietal chains for periodic CAs generalize as follows. The
proofs are similar to the periodic case.

Theorem 8. 1. If g < h then Vg C Vi Thus for each k,c,n € N
there exists a number py, .(n) such that if a cellular automaton with n
states is shift-periodic of period k with shift factor ¢ then this starts at
generation pi.(n).

2. If a = ged(k, ¢) and there exists m such that pa = mk and da = mc
then Vg,k,c g Vg,p,d-
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Shift factor 0: R 1 2 3 4
0 1 4 1 4
1 35 47 35 47
2 | 143 178 143 178
3 | 182 236 182 236
4 | 191 255 191 255
5 | 191 256 191 256
6 | 191 256 191 256

Shift, factor 1: 421 1 2 8 4
0 1 0 0 0
1 35 11 1 1
2 | 143 52 34 34
3 (182 81 54 54
4 1191 94 60 60
5 (191 96 60 60
6 [191 97 60 60
7 1191 97 60 60

Shift factor 2: 2\ 1 2 3 4 5 6
0 0 1 0 0 0 0
1 1 35 1 11 1 1
2 34 178 34 52 34 34
3 54 236 54 81 54 54
-+ 60 255 60 94 60 60
5 60 256 60 96 60 60
6 60 256 60 97 60 60
7 60 256 60 97 60 60

John Pedersen

Table 1: Numbers of non-isomorphic cellular automata in Vg ;.. The
entries in the last two columns for shift factors 1 and 2 (and all
higher k) reflect the groupoids satisfying ay = 0 (see Theorem 7).
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Again by computer enumeration we have obtained p11(3) = 4, p21(3) =
6, and py1(3) =4 for k > 3.

The complete results of the computer enumeration for three-state CAs
are presented in table 1. Each entry gives the number of non-isomorphic
zero-pointed groupoids (I = 1,7 = 0 CAs with a quiescent state) of order
three with the given period k starting in the given generation g at each shift
amount.

From these enumerations and an examination of the identities involved,
it appears very likely that no further models arise for larger shift factors.
If this is so then there are only 293 non-isomorphic one-dimensional CAs
with three states that give stable (or shift-periodic) evolution for all initial
configurations, from the total of 2,352. The figure of 293 is obtained from
the 256 groupoids occurring with period 2 (no shift or shift 2) plus the 37
out of the 97 occurring with period 2 for shift 1 that are not already in the
256.

For four states, the numbers are much larger and we do not have complete
results. For example, there are 508,144 non-isomorphic zero-pointed four-
element groupoids of period 1 (shift 0) starting in generation 3.

Although the numbers of periodic CAs get much larger for more states,
so of course do the total numbers of non-isomorphic CAs with that number
of states. Asymptotically, the fraction of periodic CAs can be expected to be
vanishingly small, as the freedom for non-periodicity increases. A thorough
investigation of asymptotics and other issues left open by the above results
awaits another paper.
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