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Abstract. Infinite cellular automata have been studied mostly using
empirical and sta tistical techniques, with some combinatorial anal­
ysis. Here we show how concepts of universal algebra such as sub­
direct decomposition and chains of varieties can be applied to their
study. Cellular automata with ultimately periodic behavior are shown
to correspond to varieties of groupoids. Relat ionships between these
varieties are analyzed.

Int rod u ction

A one-dimensional cellular automaton (CA) is det ermined by a qu adruple
A = (S, I, r ,0-) , where S is finite set (of states) , 1 and r are natural num­
bers, and a is a mapping of s l+r+l into S, somet imes required to sa tisfy
cr (O , 0, ... , 0) = °for some st ate 0 in S (a quiescent state ). The automaton
has a doubly infinit e one-dimensional arr ay of cells, named by the integers Z,
which ar e each initially (at time t = 0) in one of the states in S. The state s
of cells change in discrete time ste ps, t = 1,2 , .. . . A configuration (or global
state ) of the automato n is an ass ignment of a state to each cell. If s : Z ---. S
is a configurat ion, t hen s (i) natur ally denotes the state of cell i . The state
of cell n at ti me t of the automaton A wit h ini ti al configurat ion s is denot ed
A t,n(s ). The state of a cell at t ime t + 1 is determined by the states of t he
cell, it s 1 left neighbors, and it s r right neighb ors at t ime t according to a :

The global state or configuration of A at t ime t is denot ed A t(s ). The
evolut ionary behav ior of the automaton is then observable from the sequence
of global states A o(s ) = s ,A1(s ),A2 (s ), . .. , which can be displayed one
underneath the other , forming an infini te two-dimensional arr ay. In this
way, patterns in the evolut ion become readily visibl e. Numerous computer

•A preliminary version of this paper was presented at the SIAM Conference on Discrete
Mathematics, Atlanta, June 1990.
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simulations have evidenced that the evolution of CAs can be very complex
even for small 5 , l , and r . Some CAs will evolve to constant or periodic
pattern s for all or almost all initi al configur ations, others will give fractal
evolutionary diagr am s, some give seemingly random patterns, and yet others
appear to exhibit some locally organized behavior. Many empirical studies
have been made of these behav iors [9J, and there has been some combinatorial
analysis (e.g ., [6]), mainly for totalist ic automata or when the automaton has
a finite (circular) array of cells. An early algebraic and topo logical approac h
to the relationship between t he local CA rul e IJ' and the global behavior it
indu ces on the configurat ion space 5 z is [4], bu t it does not explain the variety
of behaviors observed. The current paper investigates how some of the basic
concepts of un iversal algebra can be applied to determining the evolutionary
behav ior of cellular automata. Gen eral references for un iversal algebra are
[7J and [3J . For the reader 's convenience, the definit ions and results from
uni versal algebra relevant to this paper are summarized below.

The bas ic algebraic operations on groupoids- products , quotients , and
subalgebras-will be shown to have direct visual interpretat ions for the evo­
lution of the CA they define. T hen cellular automata with event ually period ic
behavior are proved to correspo nd to subvarieties of groupo ids , an d various
relations hips between these var iet ies are explored .

Cellular automata and groupoids

It has been shown (see [8J or , more direct ly, [1]) that l = 1, r = °is sufficient
to simulate all ot her CA in the sense that if A = (5, m , n , IJ' ) is any CA , then
there is a CA l3 = (T, 1, 0,T), with T :2 5 , and const ants c and k such that for
all s E 5 z, Bkt,n+ct(s) = A t,n(s). That is, from evolut ion diagram s for l3 one
can read off the corresponding evolut ion diagrams for A. Bu t if l = 1, r = °
then IJ' : 5 2 ----> 5 is just a binary op eration on 5. A set wit h a single binary
operation on it that is not requ ired to sa tisfy any particular extra condit ions
is known in algebra as a groupoid. Gro ups and semigroups , wit h which the
read er may be more familiar , are examples of special gro upo ids that satisfy
ext ra condit ions. The rest of this paper is therefore devoted to relating the
prop erties of CAs to algebraic pr oper ties of groupo ids . For examp le, we may
ask whether there are special properties of the CA corr espond ing to groups,
or what condit ions the groupoid must satisfy to give specified evolutionary
behavior of the corre sponding CA. The cond it ion that CAs have a quiescent
sta te 0 E 5 is natural for many purposes , and we will suppose hencefor th
th at our CAs obey it. Thus we will actually study "zero-pointed groupoids ,"
that is, groupo ids wit h an element °such that °.°= 0, although many of
the results will be valid for arbitrary gro upo ids.

The operation of the groupoid A defining a cellular automaton A will be
denoted by mult iplicat ion , or just juxtaposition . If s is an init ial configura­
t ion of A t hen

A1,i(S) = s (i - l )s (i ) for all i E Z (1)
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and , in general,

A t+l,i(S) = At,i- I(S)At,i(S) for all tEN and all i E Z .
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(2)

Another way to express these relationships is in terms of a (right) shift opera­
tor , 3 , and a global version of the groupoid operation. If s is a configur at ion ,
then the configur ation 3 (s ) is defined by (3(s ))(i) = s (i - I) . If s and t are
configurat ions, then s . t is the configuration defined by (s . t )(i) = s (i) . t (i).
We note that shift commutes with this globalized mult iplication (see [4]),
that is,

3 (s · t ) = 3 (s ) · 3(t ). (3)

In t his notat ion , if s is the cur rent configuration of a CA then the configura­
t ion at the next time instant is s . 3 (s ), or

(4)

There are several algebraic operat ions that can be applied to groupoids
and therefore , as we will see in the next sect ion , to cellular automata . T he
most fundamental are the direct product , quotients (homomorphic images) ,
and tak ing subalgebras . T hese operat ions are defined for algebras in general
and groupoids in particular in a similar way as for groups or rings. If (A, 'A)
and (B , ·s ) are groupoids, their direct product (A x B ,' ) is the groupoid
on the cartes ian product A x B wit h the groupo id operat ion defined by
(al , bl) · (a2,b2) = (al' A a2,bl ·S b2). A map ping (): A --> B is a groupoid
homomorphism if for all aI , a2 E A, (}(al 'A a2) = (}(al) 'S (} (a2)' Such a ()
is an isomorphism if it is onto and one-one. A homomorphism from A into
it self is called an endomorphism . A groupoid B is a quotient of a groupoid
A if t here is a homomorph ism from A onto B . B is isomorphic to A if there
is an isomorph ism between them. Refer to [7] or [3] for mor e information .

Alge brai c operatio ns on cellular automat a

The following definiti ons can be mad e for any l ,r , bu t we will only be int er­
ested in l = 1, r = 0, so we assume these values henceforth and omit them
from the notat ion.

A cellular automaton 13 = (B, T) is a subautomaton of a CA A = (A , O')
if and only if B ~ A and for all b E B Z and for all tEN and nEZ,
At,n(b) = 13t,n(b). T hat is, the evolut ion of A is identical with that of 13 for
all init ial configurations containing only states in B.

A cellular automaton 13 = (B ,T) is a quoti ent automaton of a CA A =
(A ,O') if and only if there is a map ping () of A onto B such that for all tEN,
nEZ, and s E AZ

,

where (}(s) denotes the vecto r obtained from s by applying () to each compo­
nent .
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Figure 1: (a) Evolution of a three-state CA from an initial config­
uration of one cell in state 1 for 50 generat ions. (b) Evolut ion of a
two-stat e quotient CA of the automat on in (a) under the mapping
grey 1-+ white, black 1-+ black, white 1-+ white. The rule for th is CA
is a (x , y ) = x + y (mod 2).

T his means that the evolut ion diagram for 8 (s) can be obtained from the
one for A(s) just by replacing every state s by 8(s), as illustrated in figure 1.
If th e mapping 8 is also one-one , then 8 is isom orphic to A. A cellular
automato n A = (A, a) is a product automaton of the cellular automata 8
and C if and only if A = B x C , and for all t ,n E N and all s E AZ

,

where 1fl (S) is the vector obtained from s by replacing each state a = (b,c) by
b, and 1f2(S) is similarly obtained by replacing a wit h c. If A is isomor phic to a
product of 8 and C then the evolution diagram for A is just the superpos it ion
of the evolution diagrams of 8 and C (imagine them dr awn on transparencies) ,
as illustrated in figur e 2.

Theorem 1. Let A, 8 , and C be cellular automat a corresponding to group­
oids A, B , and C , respectively. Then A is isom orphic to (a subautomaton of,
a quotient automaton of) 8 if and only if A is isomorphic to (a subgroupoid
of, a quo tient groupoid of) B. A is the product autom aton of 8 and C if and
only if A is the groupoid pro duct of B and C.

Proof. T he subgroupoid case is clear. For the quotient case, sup pose A is a
quotient auto ma ton of 8 . Let 8 : A ---> B be the quotient map . Then it will
be shown that 8 is a gro upoid homomorphi sm , so that B is a quotient of A.
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(a) (b)

Figure 2: (a) Evolution of the three-st ate aut omato n whose rul e is
given by O"( x ,y) = x 2 + y (mod 3) . (b) Evolution of th e product
automaton of the CAs in figure 1(b) and figure 2(a). At this resolution,
all non- zero valu es appear black.

Let a and b be any two elements of A. Let s be any initial configuration with
s(O) = a and s(l) = b. Then

e(Al,l(s)) = B1,1(e(S))

from the property of being a quotient auto maton and , using (1) , this gives

e(ab) = e(a)e(b).

For the converse, if e:A -+ B is a groupoid homomorphism onto B , let
s be any configuration of A. Then for all n E Z we have e(s(n - l)s(n)) =

e(s(n - l))e(s(n)), which says

e(A1,n(s)) = BO,n-l(e(s))Bo,n(e(s)).

The right-hand side is just B1,n(e(s)) , that is, e(A1,n(s)) = B1,n(e(s)) for all
n . Since s was any configur at ion of A, we can take it to be the configurat ion
at time t - 1 to establish the same equality for any time t inst ead of 1.

The pro of for product s is similar. •

The real content of the theorem is just that the basic algebraic op erations
on groupoids have dire ct visu al counte rparts for the evolut ion diagrams of
the CAs they define. This makes results from universal algebra meaningful
for CAs. An ideal situat ion would be if there were a small number of finit e
groupoids from which all others could be obtained by the fundamental alge­
braic operations discussed above. Then we would only need to underst and
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the behavior of the CAs corresponding to these "building blocks" to det er­
mine the behavior of all CAs. In fact , t here is no such finite set of finit e
groupo ids from which all others can be obtained by taking finit e produ cts,
quotients, and subalgebras , becau se there are infinitely many finite groupoids
tha t cannot be expressed this way in terms of more element ary groupoids .
These are known as the subdir ectly irr educible gro upoids. It is a basic the­
orem of universal algebra that any finite groupo id is a subdir ect product of
finit ely many subdirectly irr educible groupoids (which are quot ients of the
given groupo id) . (Consult [7J or [3] for fur ther inform ation .) Although this
is a better resul t than if we decomposed only by direct prod ucts (t hen any
groupo id wit h a prime number of elements would be indecomposable), there
are still too many subdir ect ly irredu cible groupoids for this resul t to be re­
ally useful. It does demonstrate, however , that we need only determine the
behavior of subdirect ly irr educible CAs to understand the behavior of all
CAs.

H we restrict our attention to special classes of gro upoids then we may ob­
tain better decomposition resu lts. For example, the fundam ental theorem of
ab elian groups says that any finit e abelian group is a dire ct product of cyclic
p-group s (see sect ion 11.2 in [5] for example) . Thus, to underst and abelian
group CAs, we need only det ermine the behavior of CAs corresponding to
the groups Zpm (p is a prime, m any positi ve int eger) . This can be achieved
with some pr ecision .

Let the elements of the cyclic group Zn be denot ed by {o, 1,2, ... , n - I },
where 0 is the identi ty element and 1 is a generator . The behavior of the
cellular automaton A corresponding to Zn on any initial configurat ion can
be determined from its behavior on the initi al configurat ion i defined by

A . {lif i=O
1 ~ =( ) 0 ot herwise.

Indeed , using + for the abelian group ope ration , then in the notat ion of (3)
and (4) , for all configur at ions s and t ,

A1(s+t) = (s + t) + 3(s + t) by (4)

=s+ t+3(s) +3(t) by (3)
= (s + 3 (s) ) + (t + 3 (t )) by commutativity

= A1(s) + A1(t ). (5)

Since any initial configura tion s can be expressed as s = L~-oo s( i) 3 i (i ),
t his shows that for any initi al configur at ion s , any t ~ 1, and any i E Z ,

i

At,i(S) = I: s(k) At ,i_k(i) .
k= Q

(6)

Furtherm ore, it is easily established by induction that At,k(i) = (~) (mo d n ),

where the binomial coefficient (~) is underst ood to be 0 if k > t or k < O.

Combining this wit h (6) yields the following theorem .
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Theorem 2. Let A be the CA corresponding to the cyclic group Zn. Th en
for any ini tial configuration s and any t ~ 1,

At,i(s) = t s (k) ( . t ) (mod n).
k =O z - k

This theorem can be used together with the fundam ental theorem of
abelian groups to obtain At,i for any abelian group A, by first expressing A
as a direct product of Zpk for various p , k and then using the theorem on
each factor.

While this decomposition theory is quite success ful for abelian groups ,
such good result s should not be expected for ot her types of groupo ids because
of the lack of analogues for the fundamental theorem of abe lian groups , and
the lack of (6). Even for nonab elian groups a complete analysis appears
difficult.

Varieties an d p eriodic b ehavior

Algebraic operations ar e at the hear t of one of the most success ful approaches
to the class ification of algebras in general, which is by variet ies. A variety is
a class of algebras (with a fixed number of operations) that is closed under
the formation of isomorph ic copies of qu otients, subalgebras , and arbit rary
products. A fundam ental result of Birkhoff [2J says that variet ies can equiva­
lently be defined as those classes of algebras tha t satisfy a (possibly infinit e)
set of identi ties (see below for a formal definit ion of sa tisfact ion of an iden­
t ity ) . Fam iliar examples of variet ies include groups and rings , bu t not fields
(which are not closed und er product s) .

It might be hoped that common ident it ies such as commutativity and
associativity holding for the groupo id of a CA would lead to characterist ically
recognizab le behaviors. In fact , the more usual identi ties do not appear to
give recognizabl e behavior , bu t identi ties can be found to characterize certain
CA behaviors. T hat is, t here are ident ities such that a CA has certain (shift­
periodic) behavior if and only if the gro upo id of the CA satisfies the identi ti es.

A groupo id identi ty is an equa tion s = t where sand t are groupo id
terms in the var iab les Xl , X2, , Xn. A groupo id A sa tisfies the identity
s = t if for every n-tuple (ar, a2 , , an) of elements from A, the expressions
S[XI/al ' " ' ' xn/an] and t [xI/ar, , xn/ anl evaluate to the same element of
A , where x. ]a, denotes, as usual , the rep lacement of Xi by a; at all occurrences
of Xi . A mor e algebraic definit ion of satisfact ion of an ident ity can be given
in te rms of free algebras and homomorphisms.

The free groupoid F (X ) on a set X is just the set of all groupoid terms
involving only elements of X , with the groupo id operation app lied to two
te rms sand t defined to yield the te rm s - t . F (X ) has the prop er ty that any
map ping from X into any other groupo id G can be extended uni quely to a
homomorphi sm from F (X) to G. W it h this te rmi nology, a gro up oid G will
satisfy an ident ity s = t written on the variables in X if .and only if, for any
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mapping of X into G, the unique extension ¢ : F (X) --t G of the mapping
has ¢(s) = ¢(t ). T his equivalent definition of satisfaction will be used in the
proofs below.

A cellular automaton A is periodic if, for all initi al configurations , the
rows of its evolut ion diagram eventua lly start repeating periodically. More
precisely, A is k-periodic (starting at generation g) if there exists 9 E N such
that for all s E AZ and all t ::::: s,

Period k is defined to include periods less tha n k so that the groupoids
corres ponding to all k-p eriodic CAs will form a var iety. A similar remark
applies to g.

Theorem 3. For each g, k E N, the group oids definin g k-periodic cellular
automata after 9 generations form a variety, V g,k . If 9 :s: h then V g,k ~ V h,k,

and if k divides p then V g ,k ~ V g,p.

Proof. Let A be a CA. Let s be an initi al configurat ion of A. Define
induct ively

. s~ = s(i), S~+l = sLs~ . (7)

T hen it follows from (1) and (2) t hat for all i E Z and all t E N, At,i(S) = s~

is the value of cell i of A in generat ion t . A visual aid to this formulat ion
of the CA evolut ion is presented below, wit h t he entry in row i under Cj

denot ing the state of cell j in generation i.

~l ~ ~ ~ ~

C-2C- l C-l~ ~Cl C1C2 C2C3

(~3~2)(C-2~1) (~2C- l)(C-1CO) (~lCO)(~Cl) (~Cl)(C1C2) (C1C2)(C2C3)

According to the definition , A is k-p eriodic start ing at generat ion 9 if and
only if

s;+k = s; for all i E Z and all t ::::: g. (8)

For exa mple, referr ing to the diagram above, to obtain period 2 start ing at
generat ion 0 all the values in the third row have to be the same as those
immediately above them in the first row; that is, (Ci- 2Ci-d (Ci-1 Ci ) = c; for
all i . Since the Cj can assume any values in the state set , this requir es that
the groupoid sat isfy the identity (xy)(yz) = z. T he values in the four th row
(not shown) also need to equa l those in the second , and so on. It is fairl y easy
to see that if the groupoid of the CA sat isfies the ident ity (xy)(yz) = z, then
these fur ther condit ions are also sat isfied. The general case is now examined .

We will define ident it ies on the variab les X = {Xo, X l , X2, . . .} whose sat is­
fact ion by a groupoid will be shown to be equivalent to the period icity of th e
corresponding CA. To spec ify the identi ties, let A be the left shift operator
on words on X . That is, if w is a word on X , then A(w) is the word obtained
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from w by simultaneously replacing all occur rences of Xi by Xi+! for all i .
(Let Ao : X --> X : Xi /-7 Xi+1' Then A is the (unique) extension of Ao to an
endomorphism of the free group oid on X .)

Define groupo id terms a; inductively by

(9)

for i E No Thus 0:1 is X1XO, 0:2 is (x2xd(X1 XO) , and so forth. Then the vari ety
V g,k of CAs that have period k afte r 9 generat ions is defined by

(10)

For suppose the groupoid A sat isfies the identi ty (10) . We must show that
(8) is satisfied . Cho ose i E Z and tEN. Let fo : X --> A be the map defined
by f o(x j) = sLj , and let f be the exte nsion of this map to a homomorphism
from the free groupoid on X to A. Then , according to the definitions (7) and
(9) , f( O:m) = sr'+t for all m. Since A was assumed to sat isfy (10), it follows
that f( O:gH) = f( O:g), which gives, by the pr evious sente nce , s;+k+t = s;+t.
This is equivalent to (8) since t EN was arbit rary.

Conversely, suppose A. has period k afte r 9 generat ions . Then (8) holds
for every initial configurat ion, and we must show that A sat isfies the ident ity
(10). Let ao, al, . . . , agH be any elements of A. Let ho : X --> A be any
map such that hO(Xi) = a; for i ::; 9 + k . Let h be t he extension of ho
to a homomorphi sm of t he free groupoid on X int o A. We must show that
h( O:g+k) = h( O:g). Let s be an initi al configuration of A.with s( i) = agH- i, i =
0, 1, . . . , 9 + k . Define s; for this s as in (3) . Then h( O:t ) = S~H follows from

(7) and the definition of h. By (8), s;t~ = s;H'which gives f( O:gH ) = h(O:g)
as required. Thus these CAs are charac te rized by the identity (10) , which
shows they form a variety.

Finally , it is clear from the definition that if a CA has period k afte r 9
generatio ns , then it also has period k afte r t generations for all t > g , and
that it also has period mk for all m = 1,2, 3, . . . (aft er 9 generat ions). •

Corollary 3 .1. A product automaton of periodi c automata is periodic. In
fact , if A. E V g,k and B E Vh ,p , then A. x B E V m ,e where m = m ax(g ,h)
and c = lcm(k ,p) .

Proof. From Theorem 3 we have V g,k ~ V m,k ~ V m,e and V h,p ~ V m,p ~
V m,e since both k and p divide c. The result follows at once since vari eti es
(Vm,e in particular) are closed under product s. •

Corollary 3.2. For all natural numb ers n and k there exists a natural
number fLk(n) such that if a CA with at most n states is k-p eriodic, then
it is k-p eriodic afte r fLk(n) generations; that is, Vl'k(n),k contains all cellular
automat a of period k with at most n stat es. Also, for every n there exists
1f(n) such that if a CA on n states is periodic, then it has period at most 1f(n) .
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Proof. This follows immediately from the facts that for given k, g ::; h
imp lies V g,k ~ V h,k (the varieties form an ascending chain) , and that t here
are only finit ely many CAs on a given finite state set . •

It is perh ap s sur prising how fast the vari et al chains stabilize, at least for
small state sets. A compute r enumerat ion showed Ih (3) = 4, 112(3) = 5, and
111 (4) 2': 6. In fact , as might be expected, there are relatively few CAs that
are periodic (for all initial configurat ions). Of the 2,352 non-isomorphic CAs
on three states sat isfying 0 . 0 = 0, 191 are l-periodic and 256 are 2-period ic
(see table 1 below). Also, 11"(3) = 2. T hus, there are only 256 period ic CAs
with thr ee states (and l = 1, r = 0). Let C3 denote the set of three-element
group oids. The computer enumerat ion showed that C3 n V g ,2k+l = C3 n V g ,l

for all g ::; 4. Since 111(3) = 4, we may conclude this holds for all g. Similarly,
since we find C3 n V g,2k = C3 n V g,2 for all g ::; 5, and 112(3) = 5, we conclude
the equality holds for all g. Moreover , since 11" (3) = 2, we have the next
theorem.

Theorem 4. For all positi ve integers k and g, C3 n V g,2k+l = C3 n V g ,l and
C3 n V g,2k = C3 n V g ,2 '

Since periodic thr ee-state CAs have period at most 2 (11"(3) = 2), and
112(3) = 5, any three-state periodic CA has period (at most ) 2 st arting by
generation 5. From the proof of T heorem 3 (see equation (10) and following),
such CAs are characterized by satisfying the identi ty 0'.7 = 0'.5'

Theorem 5. A three-state cellular automaton with 0 . 0 = 0 is periodic if
and only if its groupoid satisfies the identity 0'.7 = 0'.5; explicitly this identi ty
is

({[ ((st · tu)(tu· uv))((tu· uv)(uv .vw))]
· [((tu· uv)(uv · vw))((uv · vw)(vw ·wx))]}
· { [((tu · uv)(uv .vw))((uv .vw)(vw .wx))]
· [((uv . vw)(vw .wx))((v w .wx)(wx . xy))]})
· ({[((tu' uv)(uv · vw))((uv · vw)(vw· wx)) ]
· [((uv · vw)(vw· wx))((v w ·wx)(wx · xy))]}
· {[ ((uv · vw)(vw· wx))((v w· wx)(wx · xy))]
· [((vw· wx)(wx · xy))((wx· xy)(xy · yz))]} )

= [((uv · vw)(vw .wx)) ((vw .wx)(wx · xy))]
· [((vw· wx)(wx · xy))((wx · xy)(xy · yz))].

Shift-periodic CAs

When using l = 1, r = 0 to simulate CAs wit h ot her neighborhood s, a
shift factor is introduced (see the second sect ion). T herefore, to invest igate
periodic CAs in general, the definition in t he last section should be broad ened
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as follows. An (I = 1, r = 0) cellular aut omaton A is shift -peri odic of period
k and shift factor c, start ing at generat ion g, if, for all ini ti al configurat ions
S of A ,

A t+k,n+c(S) = A t,n(s ) for all t ~ 9 and all n E Z.

For shift -periodic CAs there is this generaliza t ion of T heorem 3, whose
proof is similar to that of Theorem 3.

T h eor em 6. For each g, k,c E N, the gro upoids defining cellular autom ata
of p eriod k wi th shift factor c starting in genera tion 9 form a variety V g,k,c
defined by the identi ty

wh ere ai is as in Theorem 3 an d Ac is the c-fold com position of th e left shift
op erator.

If A = (A ,, ) is a groupoid , let AOp = (A , 0) , where a 0 b = b · a. T he next
result shows that in analyzing V g,k,c it is usually only necessary to consider

c~ r~l

Theorem 7. 1. If c > 9 + k then V g,k,c is em pty if 9 = 0 an d otherwise
consists precisely of all gro upoids satis fy ing a g = O.

2. Let c, denote the class of n-element group oids an d let c ~ r~l . Then

A E c, n V g,k,c iff A OP E Cn n V k r~l- .9 , t 2 C

Proof. To prove (1), note that ag+k has variables x o, Xl ," " x g+k and AC( a g)
has variables Xc, Xc+1> ' . . , x c+g, so that if c > g+k t hen they have no var iables
in common. Also our groupo ids sat isfy 0 . 0 = O. T he result follows. For
(2), observe that Xi f-+ Xg+k - i induces an involution on the free groupoid on
{ Xo, Xl , ... ,xg+d, which are the variab les occurr ing in ag+k. •

The results on variet al chains for periodic CAs generalize as follows. The
proofs are similar to the periodic case.

T heorem 8. 1. If 9 ~ h then V g,k,c <;;; V h,k,c' Thus for each k, c, n E N
there exists a number I-lk,c(n ) such that if a cell ular automaton with n
states is shi ft -p eriodic of p eriod k with shift factor c then this starts at
genera tion I-lk,c(n) .

2. I f a = gcd(k , c) an d there exis ts m such that pa = m k and da = m c
then v ,» <;;; v.,:
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Shift factor 0: g\k 1 2 3 4
0 1 4 1 4
1 35 47 35 47
2 143 178 143 178
3 182 236 182 236
4 191 255 191 255
5 191 256 191 256
6 191 256 191 256

Shift fact or 1: g\k 1 2 3 4
0 1 0 0 0
1 35 11 1 1
2 143 52 34 34
3 182 81 54 54
4 191 94 60 60
5 191 96 60 60
6 191 97 60 60
7 191 97 60 60

Shift factor 2: g\k 1 2 3 4 5 6
0 0 1 0 0 0 0
1 1 35 1 11 1 1
2 34 178 34 52 34 34
3 54 236 54 81 54 54
4 60 255 60 94 60 60
5 60 256 60 96 60 60
6 60 256 60 97 60 60
7 60 256 60 97 60 60

Table 1: Numbers of non-isomorphic cellular automata in V g,k,c ' The
entries in the last two columns for shift factors 1 and 2 (and all
higher k) reflect the groupoids sat isfying Cig = 0 (see Theorem 7).
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Again by comp uter enumeration we have obt ained Ill ,l (3) = 4, 1l 2,l (3) =
6, and Il k ,l (3) = 4 for k ::::: 3.

T he complet e result s of the compute r enumerat ion for three-state CAs
are presented in tab le 1. Each entry gives the number of non-isomorphi c
zero-pointed groupo ids (l = 1, r = 0 CAs wit h a quiescent state) of order
three wit h the given perio d k start ing in the given generat ion 9 at each shift
amount .

From these enumerat ions and an examinat ion of the identit ies involved ,
it appears very likely that no fur ther mod els arise for larger shift factors.
If this is so then there are only 293 non-isomorphi c one-dimensional CAs
wit h thr ee states that give stable (or shift-periodic) evolution for all ini t ial
configurations , from the total of 2,352. T he figur e of 293 is obtained from
the 256 gro upoids occurr ing with period 2 (no shift or shift 2) plus the 37
out of the 97 occur ring with period 2 for shift 1 that are not already in the
256.

For four st ates, t he numbers are much larger and we do not have complete
results. For example, there are 508,144 non-isomorp hic zero-pointed four­
element groupoids of period 1 (shift 0) start ing in generation 3.

Although the numbers of period ic CAs get much larger for more states,
so of course do the to tal nu mbers of non-isomorp hic CAs wit h that number
of st at es. Asymptot ically, the fract ion of periodi c CAs can be expected to be
vanishingly small, as the freedom for non-periodicity increases. A thorough
invest igation of asymptot ics and ot her issues left open by the above result s
awaits another paper.
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