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Abstract. We consider monotonic binary cellular automata on the
lattice ZP as models of systems capable of long-term memory, that
is, capable of admitting multiple invariant configurations. Long-term
memory in cellular automata can be robust in the presence of noise, so
that in a noisy environment the automaton may admit more than one
stationary distribution on configurations. We examine the effects of
asynchronous communication delays between the processors on long-
term memory in cellular automata and describe when asynchronism
can cause the erasure of long-term memory in the presence of noise.
Our main result is a simple generalization to the asynchronous com-
putation model of a deep result of Toom characterizing the invariant
configurations of monotonic binary cellular automata that are robust
to noise. Several qualitative consequences of asynchronism are illus-
trated through examples.

1. Introduction

Cellular automata are simple computational models that are capable of ex-
hibiting a wide range of complex dynamical behavior (see [7]). The com-
putation is considered as proceeding synchronously via identical processors
at each site on a regular lattice—usually ZP—and the computational rule is
assumed to be spatially homogenous. In other words, at every time step the
state at a site is updated as a function of certain previous states of some
of the neighboring sites with a spatially homogenous updating rule. The
interest in studying such automata comes from several points of view. For
example, there is a belief that the complex dynamical behavior exhibited
by these automata is a good model for the natural statistical behavior of
physical systems such as gases, which consist of large numbers of interact-
ing elements. Another powerful source of reawakened interest in cellular
automata has been the development of parallel computational systems that

employ different types of regular architectures (e.g., [1]).



288 Reza Gharavi and Venkat Anantharam

A processor at a site can be in one of a finite set of states, and the entire
collection of states at the sites is called a configuration. One of the remarkable
properties of certain cellular automaton updating rules is that they can admit
more than one invariant configuration, representing the ability to maintain
long-term memory. Further, it is known [6] that there are automata whose
long-term memory persists under noise. Even in environments in which the
state of a site may change due to noise or computational error, the evolu-
tion of the automaton is such that one can give a test that distinguishes
between initial conditions even after arbitrarily long periods of time. This
ability is particularly important from the point of view of the automaton as
a computational device, where the initial configuration is the input on which
the processors perform their calculations (see [2]). For the operation to be
reliable in a noisy or unreliable environment, we would require the system
to remember enough relevant information about its initial configuration over
arbitrarily long periods of time. For a general discussion of the subject of
reliable computation, see the survey paper [5].

Our interest in this paper is in the persistence of long-term memory in
automata operating in an unreliable or noisy environment when there is also
unreliability in the data transfer between the processors. We examine this
question in an asynchronous computational model, where the computations
are synchronous but there are unknown delays in the transmission of data
between processors. In other words, a processor carrying out a computation
may only have available to it delayed versions of the data on which it depends.
Such a situation may arise when data is lost or delayed in transit between
the processors. We assume that the delays are bounded by some integer d;
in other words, the systems we consider are partially asynchronous (see [1]).
We are particularly interested in discussing how large a delay in data transfer
can be tolerated before the ability of the automaton to remember its initial
configuration breaks down.

Our results are for a class of automata called monotonic binary tessella-
tions (MBTs), defined in section 2. In an MBT the state of each processor
is 1 or 0, and the all-zero and the all-one configurations are invariant under
the updating rule. Our main result is a simple generalization to the partially
asynchronous computational model of a deep result of Toom [6], which gives
necessary and sufficient conditions for the stability of the all-zero configura-
tion of an MBT to noise. Toom’s characterization is widely acknowledged to
be one of the deepest results to date about cellular automata—it is a simple
geometric characterization based on the geometry of the data set that a pro-
cessor depends upon for its computation. We discuss this in section 2 after
giving a formal definition of MBTs. Our result is stated and proved as The-
orem 2 in section 3. Our characterization of the stability of the states under
asynchronous computation allows us to discuss the effects of asynchronism
on the stability of states. Several qualitative aspects of this are brought out
through examples in section 4.
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2. Problem definition

Before defining an MBT, we will need the following items:

1. A function U : ZP*! — Z®+D" defined by

U(v) i (v+ (up,t1), .0+ (up,t,))

where r and p are positive integers and u; € ZP, t, <0 fori=1,...,r.
We denote ty = max;—y, - [ti]-

2. Aset V= {(s,t) € ZPt' : s € ZP, t > —tw}. Each point v € V is
denoted by the pair (s,t), where s € ZP is the space coordinate and
t € Z is the time coordinate, and we say v is located at s at time t. In
this section, all pairs (s,t) will be assumed to be of this form. We also

define W 4 (s,t) €V :i—tw <t <0},

3. A space-time configuration x € {0,1}V. The state of a point v € V
is denoted by z,, and for any A C V, by 4 € {0,1}* we will mean a
tuple, components of which are z,, a € A. We term a configuration
zw of W a base.

4. A monotonic function ¢ : {0,1}" — {0,1}, which means that if for
some 2,z € {0,1}" we have z; < 2 for ¢ = 1,...,7, then ¢(z) <
#(2'"). To avoid trivialities, we will assume that ¢(0,...,0) = 0 and
¢(17 Bsip 1) =1. By ¢(yU(v)) we will mean ¢(yv+(u1,t1)7 kY 7'yv+(ur,tr))'

We call any pair (U, ¢) satisfying the above conditions a (p-dimensional)
monotonic binary tessellation (MBT). Note that specifying U uniquely de-
termines V' and W. For an example of an MBT, see figures 1(a) and 1(b).
All of the following definitions are in relation to some fixed (U, ¢).

Definition. Given any base zy, we say a configuration y is a trajectory if
yw = zw, and if for all v € V' \ W we have 4, = ¢(yy()). We denote such
a configuration y by T(zw). By our assumptions on ¢, it is clear that a
configuration z with z, = 0 or 1 for all v € V' is a trajectory. We term these
two special trajectories the zero and the one trajectories, respectively.

Definition. A trajectory y is termed attractive if the following holds for any
trajectory x: if the set {a € W : z, # y,} is finite, then the set {a € V :
%o # Yo} is finite. Defining operator I by I(z,) &of {veAd:z =1} for
A C V, we see that the zero trajectory is attractive if for any trajectory z
such that |I(zw)| < oo, we have |I(T(zw))| < oo.

Definition. Given € € (0,1), let M, be a set of probability measures on the
o-algebra generated by the cylinder subsets of {0,1}V, such that a measure
u € M, if and only if for any finite A C V/,

1z, # $(Tuw)) Yo € A) < 4.
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Figure 1: An example of a one-dimensional MBT, where (u1,t;) =
(-1,-1), (ug,t2) = (0,—1), and (us,tz) = (1,—1) are repre-
sented respectively by vectors u, v, and w in part (a), and where
¢ is the majority rule. A section of a trajectory of this MBT
is given in part (b). The minimal zero sets of this example are

{(_17 _1)7 (0» _1)}> {(_17 _1)v (17 _1)}’ and {(07 _1)7 (la ’—1)}'

Given a base zw, M,(zw) denotes the set of measures in M, whose projection
to W is a § measure concentrated on zy. We term a trajectory y stable if

lim sup p(z, # y,) = 0. (1)
e neMe(yw)
vE

Definition. A set A C {(u1,t1),..., (ur,t;)} is called a zero set if the
condition (Ya € A : z, = 0) implies ¢(zy(o)) = 0. A zero set is minimal if it
contains no strictly smaller zero sets. Henceforth, Z,. .., Zg will denote all
of the distinct minimal zero sets of the (U, ¢) under discussion.

The lattice V in ZP*! will now be immersed in the real space R**! with
the same coordinates; for example, Z;’s now become collections of points in
RP*L. Given an MBT (U, ¢), we define o as follows:

Q
c=—1 U {av:veconv(Z,)},
"¢=1{acR:a>0}
where conv(Z,) is the convex hull of the set Z, in RF.

Theorem 1. (Theorems 6 and 7 in [6].) The following are equivalent:

(a) o ={0}.
(b) The zero trajectory is attractive.

(¢) The zero trajectory is stable.

Condition (a) will be called Toom’s criterion.
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3. Asynchronous MBTs

We now introduce the possibility of delays between the processors. When
constructing a trajectory for an MBT, it is of course expected that a point
(s,t) € V has available to it the state of the points located at s+s1,...,s5+s,
at times ¢t + t1,...,t +¢,. (Recall that ¢;’s are negative quantities.) When
there are communication delays, (s,t) may have available to it the state of the
points located at s+s;, ..., s+$;,, but only at times previous to t+ty, ..., t+t,.
Loosely speaking, by an “asynchronous MBT” we mean an MBT with such
delays. (“Asynchronous MBT” is a misleading term because such a system
is not necessarily an MBT. We will later use the term “scenario” instead.)
By depth d of an asynchronous MBT we will mean the maximum allowable
delay. Note that for a given MBT and a given d > 0, there are infinitely
many such asynchronous MBTs.

We now define this concept formally. Given d, we let .S denote the set of
functions {7 : V\ W — {0,1,2,...,d}"}. As was done for an MBT, we first
need to define the following items:

1. the sets V! & {(s,t) € ZP+' : —tyy —d <t} and W' & {(s5,8) € V" :
t < 0};

2. for all 7 € S, a function U™ : V' \ W' +— V' defined by

U™ (v) & (v + (ug, t1 — 11(0)), - .., 0+ (tp, tr — 7(v)))

where 7;(v) denotes the ith component of 7(v).

Given a 7 € S, we say the pair (U, @) is the scenario 7 of the MBT
(U, ¢), or simply the scenario 7 whenever (U, ¢) is given. If 7(v) is a constant
r-tuple for all v € V' \ W', then 7 will be called a homogenous scenario.
Note that all homogenous scenarios are MBTs. Moreover, if that r-tuple is
(0,...,0), then (U™, ¢) is the same as (U, ¢). Loosely speaking, 7(v) are the
delays at v with which the data relevant to the computation at v is received.
In the following discussion it is assumed that some (U, ¢) is given.

All the definitions related to a configuration z € {0,1}"" of a scenario T
are analogous to those of an MBT. For completeness we will mention some of
them. Given a base zy and a 7 € S, we say a configuration y is a trajectory
for scenario 7, or simply a T trajectory, if yw = zw:, and if for all v € V'\ W'
we have y, = ¢(yur(v)). We denote such a configuration by T7(zw). Note
that the zero and the one configurations are 7 trajectories for all 7 € S.
By replacing V' with V', W with W', and T" with 77 in the definitions of
attractive and M, of (U, ¢), we get definitions for attractive and M for a
scenario 7. If in addition we replace M, with M, we get the definition of a
stable T trajectory. Finally, we define the operator C' by

CA) ¥ {(s,t—i)eV':i=0,...,d;(s,t) € A}
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for any A C V, and we define o/ ¢ R#+1) by

Q
o N U{aw:v € conv(C(Z,))}.

q=1a>0

Our main result is a characterization of when the zero trajectory in an
asynchronous MBT is stable under all scenarios.

Theorem 2. The following are equivalent:
(a) o' =0.
(b) The zero T trajectory is attractive for all T € S.

(¢) The zero T trajectory is stable for all T € S.

Before proving the theorem, we introduce the dominant MBT of (U, ¢),
denoted by (U’, ¢'), which is also an MBT. We define U’ : V' \ W’ — (V)¢
and ¢ : {0,1}"¢ — {0,1} as follows:

U'(v) ] (v+ (ug,t1),v+ (ur,t1 — 1), ..., v + (ug, 6 — d),
cors 0+ (Upy tr — d)),

d d
def
& (zriw) = ¢ (\/ Tot(ustimi)s s $ﬂ+(u,.,t,_¢)) .

i=0 =0
Clearly, ¢’ is monotonic. We denote a trajectory of (U’, ¢') with base zy- by
T'(zw) and call it a dominant trajectory. In order to apply Theorem 1 to
(U, ¢'), we will need to know its minimal zero sets.

Lemma 1. If Zy,...,Zq are all of the minimal zero sets of (U,¢), then
C(Zy),...,C(Zg) are all of the minimal zero sets of (U', ¢').

Proof. By virtue of the V’s in the definition of ¢/, it is clear that the C(Z;)’s
are zero sets, and furthermore that they are indeed minimal. Now let A’ be a
minimal zero set of (U’, ¢). Since it is minimal, it must have the form C(A)
for some A € W. It is then easy to see that A must be a minimal zero set of

(U,¢)-1

Lemma 2. Given any base zw, there exists a 7 € S such that T'(zw') =
TT(CL'W/).

Proof. Let z = T'(zw/) and y = T (zw~). We will construct the desired T
inductively. Assume that we know the values of 7(v) for all v € {(s,t) : t <
t°} for some t° > 0. Letting a = (5,t° + 1), where s € ZP, we define 7(a)
as follows. If V&g Zat(u;;—i) = 0, then 7j(a) can be arbitrary. Else, if the
expression equals one, then for some k, Ty (y;¢;,—k) = 1, and we let T(a) = k.
Simple verification shows that ¢/(zyi(s)) = ¢(zy-(o)). B

Proof of Theorem 2. We will first show that (a) implies (b). Let zw-
be any base such that |I(zw-)| is finite. By Theorem 1, (a) implies that
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the zero state is attractive for the dominant MBT, that is, [I(T"(zw))| is
finite. Now (T'(zw))y > (T7(zw:)), for all v € V' and 7 € S, a fact easily
established by induction. Thus, |I(T"(zw))| > |I(T7(zw))| for all 7 € S,
which implies (b).

Now we will prove that (a) implies (c). Let z be the zero trajectory and
M! be the M, set of the dominant MBT. Again by Theorem 1, (a) implies
that

lim sup p(z,=1)=0.
0 ueM(zw)
veV

Therefore, given u” € M7 (zy+) (where 7 € S and € € (0,1) are arbitrary),
if we can find a @' € M!(zw/) such that p'(z, = 1) > p"(z, = 1) for all
v € V'\ W', we will be done. Let u” and € be fixed.

We now define a {0,1}"" valued random variable e on an auxiliary space
Q = {0,1}"" such that P(e, = 1Vv € A) = " (z,, # ¢(Tur(n)) Vv € A) for all
finite A. We know that the last term is not greater than e/!. Then for each
w € Q, we construct random states as follows. For all v € W/, 2/, = 2] =0,
and v € V' \ W,

¢T($Ur(v)), If €y = 0, (;5,(1’[]/(1,))7 lf €y = 0,
G T, =

¢T($U’(v))a if €y = 11 17 if €y = 17

where (+) is the logical negation operator. Let ' be the measure induced by
x'; that is, for any state y, we will have u/(z, =y, Vv € A) = P(z, =y, Vv €
A) for all finite A. Note that for allw € Q, 2, > 7 for all v € V'\ W', which
implies P(z, = 1) > P(z] =1). Thus

W(sa=1) = P(d, = 1)
> P(z] =1)
= p'(zs = 1)

On the other hand, for any finite A,

W (xy # ¢ (xuw)) Vv € A) < P(e, = 1Vv € A)
£ oM,

which implies p' € M.

We will now show by contradiction that (b) implies (a). Assume o’ # 0.
Then by Theorem 1 the zero trajectory is not attractive for (U”, ¢'), that is,
there exists an zw: such that |I(zw-)| is finite but |I(T"(zw-))| is infinite. By
Lemma 2 there exists a scenario 7 such that I(T"(zw:)) = I(T"(zw)). Thus
for this 7 the zero state is not an attractive T trajectory.

Finally, we will show that (c¢) implies (a), also by contradiction. Again
assume o’ # 0. Then there exists a ray § C ¢’ originating from the origin.
By Theorem 8 and Lemma 11 in [6], we know that there exists a finite set
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A C {(s,t) € R**! : £ < 0} such that the set P % (A + 8) NV’ possesses

the property that PNW' C I(zw-) implies P C I(T'(zw)). For example, A
can be defined as

Q
A=—(p+1)> conv(Z,) + B+b,
q=1

where B is a unit cube in RP*! that is added to make A + ¢’ contain points
(s,t) € V' for all t > 0; and b is a vector that is added to make (s,t) € A
= t < 0 [6]. Other choices can also work.
To facilitate the rest of the proof, we define the sets D, C V' for n > 0
by
D, ¥ {(s,t) e A+B:n<t<n+d+tw}nV.
We also let y be the state

(1, ifveP;
Yo = 0, otherwise.

We claim that if v € {(s,t) € P : t > 0}, then ¢'(yy-(n)) = 1. To see this,
note that (a,...,a) — U'(a) is a constant for all a € V' \ W'. Therefore, by
Theorem 8°in [1], for any dominant trajectory = such that D, C I(z), we
have D,,; C I(z), for any non-negative integer n.

We now construct a scenario 7 as follows. If v € P, then 7(v) can be
arbitrary. If v € P, then as we argued ¢'(yy/(»)) = 1, and as was done in
the proof of Lemma 2, we can define 7(v) such that ¢(yy-(»)) = 1. With this
7, simple inductive arguments show that for any 7 trajectory z such that
D,, C I(z), we have D,, C I(z) for all m > n.

We now construct a measure g, € M. Let w € {0,1}V'"\W' and define a
map I': {0,1}V"\W' — {0,1}V by

def | O, ifae W',
i max((zyr(a)), wa), if a € V'\ W'

Let fi. be a Bernoulli measure on {0,1}""\W' such that for any finite A C V"

fie(wa = 1Va € A) = €4,
Let ju, designate the measure {0,1}"" induced by the measure ji, on {0,1}V"\W'
with the map I'. Clearly p. € M7 (zw:), where z is the zero state.
For any t, let s; be such that (s;,t) € P. Now, by the arguments in the
previous paragraph, if w, = 1 for all v € D,, for some n > 0, then (I'(w)), =1
for all a € Dy, with m > n. Thus the condition (I'(w)),, ,) = 1 is ensured if

there is some n < t such that w, = 1 forallv € D,,. Let n; g i(tw+d). Then,
clearly, the events “w, = 1 for all a € D,,,” are independent of each other.

The probability of every quoted event is at least €V, where N 4 SUP,>0Dn,
a finite integer. Thus

pe(Tepn=1)>1—(1— eN)It/(tw+d)1 Lo T
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In other words, the zero state is not a stable 7 trajectory. B

Thus, in order to determine if the zero trajectory of an MBT is stable
under asynchronism, it is enough to apply Toom’s criterion to the dominant

MBT.

Remark 1. Dual arguments can be used to study the stability of the one
trajectory under asynchronism. We are particularly interested in the effects
of asynchronism on MBTs where both the zero and the one trajectories are
stable. We will discuss these effects through a series of examples in section 4.

Remark 2. The concept of stability used in Theorems 1 and 2 is rather
strong, namely, an MBT is called stable only if equation (1) holds with
the supremum over all 4 € M,. In particular, this requires stability under
asymmetric noise where 0’s can become 1’s, but not vice versa. It would be
interesting to characterize stability under more symmetric noise models (e.g.,
with positive probabilities for each kind of error). See, however, Example 3
of section 4, which shows that asynchronism can cause MBTs with multiple
stable trajectories to become ergodic even under symmetric noise.

4. Examples
We conclude our discussion with several examples and a theorem.

Example 1. Here we note that there are MBTs such that for a given d,
the zero trajectory is attractive for all of the homogenous scenarios but not
attractive for all scenarios. For example, consider a one-dimensional (U, ®)
with (u1,t1) = (2, —1), (us,t2) = (3, —1), and ¢(a,b) = aAb. Let d = 2. By
Theorem 1 the zero trajectory is attractive for all four possible homogenous
scenarios, whereas by Theorem 2 it is not so for all scenarios. The reason for
this becomes clear when we try to construct a scenario 7 according to the
procedure in the proof. For this example, we can take

P={(s,t)eV':—3s—2<t< -1s}.

Then, for instance, for the point (—4,0) we get 7((—4,0)) = (0,0), while for
the point (0,0) we get 7((0,0)) = (0,1) or (1,1). (See figure 2.)

Example 2. The next two examples show how asynchronism may affect
the zero and the one trajectory differently. Let a; = (—1,2,—1), ax =
(—1,0,—1), az = (1,0,—1), and a4 = (0,2, —3). Define U by the assignment
(uiyt;) = ai, 1 = 1,2, 3,4, and define ¢ by zero sets {a1, as}, {az,as}, {as, as},
{as, a1}, and one sets {a;,as}, {az,as}. Such sets do determine a unique
monotonic ¢.

By Theorem 1, the zero and the one trajectories are both stable for this
(U,¢). However, by Theorem 2, the one trajectory becomes unstable for
some scenarios when d > 1, while the zero trajectory remains stable for all d.
In the next example we will show how both the one and the zero trajectories
may become unstable for different values of d. (See figure 3.)
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Figure 2: Constructing a scenario as prescribed by Example 1. Given
the base, we want a 7 that guarantees a state of 1 for all points in
the slab P. The two lines in the figure are the boundary of P. For
example, in order to get a state 1 for the point (—4,0), we cannot have
any delays (i.e., 7(—4,0) = (0,0)), whereas to get a state 1 at point
(0,0), we must have 72(0,0) = 1. Thus 7 cannot be homogenous.

‘TSZ

t

Figure 3: The origin and U(0) of the MBT in Example 2. By Theorem
1, both the zero and the one trajectories are stable for this MBT;
however, by Theorem 2, the one trajectory may become unstable for
any d > 1, whereas the zero trajectory remains stable for all d.

Example 3. Here we indicate that the depth of asynchronism needed to
erase the stability of the zero trajectory can be different from that for the
one trajectory. Let a; = (3,2,-2), ay = (3,1,-2), a3 = (9,2,—2), and
ag = (9,3,—4). Define U by the assignment (u;,t;) = a;, ¢ = 1,2,3,4, and
define ¢ (uniquely) by zero sets {ay,as}, {az, as}, {as,as}, {as,a:}, and one
sets {ay,as}, {az, a4}

Now Theorem 1 tells us that the zero and the one trajectories are stable
for this (U, ¢). Theorem 2 and simple geometric arguments show that the
one trajectory becomes unstable for some scenarios when d = 1, whereas the
zero trajectory becomes unstable when d = 2. Thus the zero and the one
trajectories may behave differently under asynchronism. (See figure 4.)
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Figure 4: The origin and U(0) of the MBT in Example 3. By Theorem
1, both the zero and the one trajectories are stable for this MBT;
however, by Theorem 2, the one trajectory becomes unstable for some

scenarios when d = 1, whereas the zero trajectory becomes unstable
when d = 2.

Example 4. This example demonstrates that asynchronism may cause
a non-ergodic MBT (that is, one with several stable trajectories) to be-
come ergodic. In fact, this can happen under symmetric noise models (see
Remark 2). Consider the two-dimensional MBT (U, ¢), where (uj,t;) =
(2,0,—1), (ug,t2) = (1,1,-2), (us,t3) = (0,2,—2), and ¢ is the majority
voter rule. (See figure 5(a).) We also define u. € M, by the relation

:U‘E(mv 7& ¢($U(v))VU € A) — CIAI

for any finite A C V. In other words, the probability of an error at any
point is independent of other points and is equal to e. Now let p and p!
be such measures in M (z%,) and M,(z},), respectively, where z° is the zero
trajectory and z! is the one trajectory. In view of Theorem 1, we have

lim sup pl(z # 0) = 0 and limsup i (z # 1) = 1.
=0 yey =1 yey
Now consider the homogenous scenario 7, where 7(v) = (1,0,0) for all
v. This MBT is actually composed of infinitely many non-interacting, one-
dimensional MBTs that are independent of each other. To see this, take 7
to be the plane in V"’ that goes through the origin and has a normal (1,1,1)
(figure 5(b)). Intersection of m with V" is a lattice isomorphic to {(s,t) €
Z? : t > —3}, which we will call V”. Consider the one-dimensional MBT
(U", ¢), where (ug,t1) = (—1,—2), (u2,t2) = (0,—2), and (us, t3) = (1,—2).
Define p0 and p! for (U”, $), as was done previously. It has recently been
shown that this one-dimensional automaton is ergodic under symmetric noise
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Figure 5: The origin and U(0) of the original MBT of Example 4
are indicated in part (a). Once we let 7(v) = (1,0,0) for all v, the
origin and U7 (0) will lie on the plane that has a section of it shaded
in part (b). It is then easy to see that the MBT (U7, ¢) is composed
of infinitely many non-interacting, one-dimensional MBT's that reside
on planes parallel to the mentioned plane.

of arbitrary small error probability € (see [3]). In particular, defining p? and
wl for (U”, ¢), as was done previously, we have

lim sup p2(z #0) = 1/2 and lim sup pl(z #1) =1/2.
=0 yeyn 0 yeyr

Once we see that (U7, ¢) is composed of infinitely many such one-dimensional

MBTs operating on planes parallel to the one mentioned, the ergodicity of

(U7, ¢) follows.

As a final remark, we conclude with a discussion of the possibility of the
constructing one-dimensional examples in which asynchronism has a nontriv-
ial effect. This is marginally related to the famous positive rates conjecture
(2, 4].

It is clearly possible to construct one-dimensional MBT's in which the zero
and the one configurations are trajectories. It is then natural to ask if they
can both be stable. If this were so it would be easy to construct scenarios
in which asynchronism erases memory by considering homogenous scenarios
where the automaton breaks up into zero-dimensional automata, which are
clearly ergodic.

The following theorem shows that in a one-dimensional MBT the zero
and the one trajectories cannot both be stable.

Theorem 3. No one-dimensional MBT (U, ¢) can have both a stable zero
trajectory and a stable one trajectory.
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Figure 6: As mentioned in the Proof of Theorem 3, oy = {0} implies
the existence of a line L through the origin that properly separates
some Y), from some Y.

Proof of Theorem 3. Let Y;,...,Y, be an enumeration of the minimal one
sets of ¢ and Z1, ..., Z,, be an enumeration of the minimal zero sets of ¢ (see
Remark 1). Since Z; is a minimal zero set of ¢, even if z = 0 on U(0) \ Z;,
we will have ¢(zy(o)) =1 if z, = 1 for all @ € Z;. Thus none of the ¥;’s can
be contained in U(0) \ Z;, that is, each Y; meets every Z;.

Let op be the o set of (U, ¢) as before. We define an analogous set oy
for the minimal one sets of (U, ¢). In view of Remark 1, the one trajectory
is stable (attractive) if and only if oy = {0}. Now assume that the zero
trajectory is stable. Since this implies that o9 = {0}, there must exist a
line L through the origin that properly separates some conv(Y}) from some
conv(Y}), and thus Y}, from Y] (figure 6). Now since each Z; meets both Y}
and Y}, L must meet each conv(Z;). Thus oy contains {(s,t) € L : ¢t > 0},
which implies that the one trajectory is not stable. B
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