
Complex Systems 6 (1992) 287-300

Effect of Noise on Long-term Memory
in Cellular Automata with Asynchronous Delays

between the Processors

R ez a Gharavi
Venkat A nantharam

School of Electrical Engineering, Cornell University,
Ithaca, N Y 14853, USA

Abst ract. We consider monotonic binary cellular automa ta on the
lat tice ZP as models of systems capable of long-term memory, that
is, capable of admitting multiple invariant configurat ions. Long-term
memory in cellular aut omata can be robust in t he presence of noise, so
that in a noisy environment the automaton may admit more than one
stationary distribution on configurations. We examine the effects of
asyn chronous communication delays between the processors on long­
term memory in cellular automata and describe when asynchronism
can cause the erasure of long-term memory in the presence of noise.
Our main result is a simple generalizat ion to the asynchronous com­
putation model of a deep result of Toom charac terizing th e invariant
configurat ions of monoto nic binary cellular aut omata tha t are robust
to noise. Several qualitat ive consequences of asynchronism are illus­
tr ated through examples.

1. Introduction

Cellular automata are simple computational models t hat ar e capable of ex­
hibiting a wide range of complex dynamical behavior (see [7]) . The com­
put at ion is conside red as pro ceeding synchronous ly via identi cal processors
at each sit e on a regular lat ti ce-usuall y ZP- and t he computational rule is
as sume d to be spat ia lly hom ogenous. In other wor ds, at every t ime st ep t he
state at a sit e is updated as a function of certain previous st at es of some
of the neighboring sites wit h a spat ially hom ogenous updat ing rule. The
interest in studying such auto mata comes from several point s of view. For
example, t here is a belief t hat t he complex dynami cal beh avior exhibite d
by thes e automata is a good mo del for the nat ur al stat ist ical beh avior of
physical syst em s such as gases, which cons ist of large numbers of int eract­
ing eleme nts. Another powerful source of reawakened int er est in cellular
auto mat a has been the development of par allel computat ional syste ms tha t
employ different types of regular architect ures (e.g., [1]) .
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A pro cessor at a site can be in one of a finite set of states , and the ent ire
collect ion of states at the sites is called a configuration. One of the remarkable
properties of certain cellular automaton updating rules is that they can admit
more than one invariant configuration, representing the ability to maintain
long-term memory. Further , it is known [6] that there are automata whose
long-term memory persists under noise. Even in environments in which the
stat e of a site may change du e to noise or computatio nal erro r , the evolu­
t ion of the automa to n is such that one can give a test that distinguishes
between initial cond itions even afte r arbit rarily long periods of t ime . T his
ability is particularly importan t from the point of view of the automaton as
a computational device, where the initi al configurat ion is the inpu t on which
the pro cessors perform their calculations (see [2]). For the operation to be
reliabl e in a noisy or unreliab le environment , we would require the syste m
to remember enough relevant information about its initial configurat ion over
arbitrar ily long period s of time . For a gene ra l discussion of the subject of
reliable computation , see the survey pap er [5].

Our interest in this pap er is in the persist ence of long-term memory in
automata operat ing in an unreliab le or noisy environment when there is also
unr eliabili ty in the data transfer between the process ors. We examine this
quest ion in an asy nchronous computat ional model, where the computations
are synchronous but there are unknown delays in the t ransmission of data
between processors. In other words, a processor carrying out a computat ion
may only have available to it delayed versions of the data on which it depend s.
Such a situation may arise when data is lost or delayed in transit between
the pr ocessors. We ass ume that the delays are bo unded by some integer d;
in other words, the sys tems we consider are parti ally asynchronous (see [1]).
We are par ticularly int erested in discussing how large a delay in data transfer
can be to lerated before the ability of the automaton to rememb er it s initi al
configuration br eaks down.

Our resul ts are for a class of automata called monotonic binary tessella­
ti ons (MBTs), defined in section 2. In an MBT the state of each pro cessor
is 1 or 0, and the all-zero and the all-one configur at ions are invariant under
the updating rule. Our main result is a simple generalization to the par ti ally
asynchronous computat ional model of a deep resul t of Toom [6], which gives
necessary and sufficient condit ions for the stability of the all-zero configura­
t ion of an MBT to noise. Toom 's characterizat ion is widely acknowledged to
be one of the deepest results to date about cellular automata- it is a simple
geometric characte rization based on the geomet ry of the data set that a pro­
cessor depends upon for its computation. We discuss this in section 2 afte r
giving a formal definition of MBTs . Our res ult is stated an d proved as T he­
orem 2 in sect ion 3. Our characterizat ion of the stability of the states under
asyn chronous computat ion allows us to discuss the effects of asynchronism
on the st abil ity of states . Several qualit ative aspect s of this are brought out
through examples in sect ion 4.
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2. Problem definition

Before defining an MBT , we will need the following it ems:

1. A function U : Z p+1 f-+ z(p+1 )r defined by
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where T and p are positi ve integers and u; E Z P, t, < afor i = 1, . . . , T .

We deno te tw = maxi=l ,...,r Iti l.

2. A set V = {(s , t) E Zp+1 : s E Z P, t 2: -tw}. Eac h point v E V is
denoted by the pair (s , t ), where s E Z P is the space coordinate and
t E Z is th e tim e coordina te , and we say v is located at s at time t. In
thi s section, all pair s (s, t ) will be ass umed to be of this form . We also

define W ~f {(s, t ) E V : -tw :S t < a}.

3. A space-time configumtion x E {a, I} V. The state of a point v E V
is denot ed by Xv and for any A C V , by XA E {a , l} A we will mean a
t uple, comp onents of which are X a , a E A. We term a configurat ion
Xw of W a base.

4. A monotonic fun cti on ¢ : {a, 1Y f-+ {a, I} , which mean s that if for
some z,z' E {a,lY we have Zi:S z~ for i = 1, ... , T, then ¢(z ) :S
¢( z' ). To avoid t rivialit ies, we will assume that ¢(a, ... ,a) = a and
¢ (1, . .. , 1) = 1. By ¢(YU(v») we will mean ¢(Yv+ (ul, td , " " Yv+(ur,tr »)·

We call any pair (U,¢) satisfying th e above condit ions a (p-dimensi onal)
monotonic bin ar y tesse lla t ion (MBT) . Note that spec ifying U uniquely de­
termines V and W . For an example of an MBT, see figur es l (a) and l(b).
All of the following definitions are in relation to some fixed (U,¢).

Definition. Given any base Xw , we say a configuration Y is a lrajecto ru if
Yw = Xw, and if for all v E V \ W we have Yv = ¢(YU(v» ). We denote such
a configurat ion Y by T( xw). By our assumptions on ¢, it is clear that a
configuration x with Xv = aor 1 for all v E V is a traj ectory. We term these
two special tr aj ectories the zero an d the one trajectories, resp ectively.

Definition. A traj ectory Y is termed attmctive if the following hold s for any
traj ect ory x : if the set {a E W : Xa -# Ya} is finit e, then th e set {a E V :

Xa -# Ya} is finit e. Defining operator I by I( xA) ~ {v E A : Xv = I} for
A C V , we see that the zero tr ajectory is attractive if for any tra jectory x
such that II (xw) 1< CXJ, we have II(T (xw)) 1< CXJ.

Definition. Given E E (a,1) , let MEbe a set of probability measures on the
O'-algebra generat ed by the cylinder subsets of {a, l}V , such that a measure
u. E MEif and only if for any finit e A C V,
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Figure 1: An example of a one-dimensional MBT , where ( U I , t l ) =
(- 1,-1), (uz,tz) = (0,-1), and (U3, t3) = (1, -1) are repre­
sented respectively by vectors u , v , and w in part (a), and where
¢ is the majority rule. A section of a trajectory of this MBT
is given in part (b). The minimal zero sets of this example are
{ (- 1, - 1),( 0,-1)} , {( -1 , -1), (1, -1 )} , and { (0, - 1), (1, - 1)}.

Given a base Xw , ME(xw) denotes the set of measures in MEwho se project ion
to W is a 0 measure concentrated on Xw . We term a t rajectory y stable if

lim sup J-L (xv =I- Yv) = o.
E- O f.L EM , (yw )

v EV

(1)

D efinition. A set A C {(U I , t l ) , ... , (u" q } is called a zero set if t he
condit ion (Va E A : Xa = 0) implies <fy(XU( O» ) = o. A zero set is minimal if it
contains no st rict ly smaller zero sets. Hencefor th, Zl , . . . , ZQ will denote all
of the dist inct minimal zero sets of the (U, <fy ) under discussion .

The lat t ice V in Z p+l will now be immersed in the real space R P+l wit h
the same coordinates ; for example, Z;'s now become collections of po ints in
R P+ l Given an MBT (U, <fy) , we define (Y as follows:

Q

(Y = - n U {av : v E conv(Zq)} ,
. q=l { "ER:,,~O}

where conv(Zq) is the convex hull of the set Zq in R P+l .

Theorem 1. (Theorems 6 and 7 in [6}.) The following are equivalent:

(a) (Y = {O}.
(b) Th e zero trajectory is attractive.

(c) The zero trajectory is stable.

Condition (a) will be called Toom's criterion.
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3. Asynchronous MBTs

We now introduce the possibility of delays between the processors. When
const ructing a t ra jectory for an MBT, it is of course expected that a point
(8, t) E V has available to it the state of the points located at 8+S1,. . . , 8+ Sr

at t imes t + t1,... ,t + t r . (Recall that t;'s are negative quant it ies.) When
t here ar e communication delays, (8, t ) may have availab le to it the state of the
points located at S+81, . .. , 8+8r , bu t only at t imes previous to t+t1, .. . , t+tr .

Loosely speaking, by an "asynchronous MBT" we mean an MBT with such
delays. ("Asyn chronous MBT" is a misleading term because such a syste m
is not necessari ly an MBT. We will later use the term "scenario" inst ead .)
By depth d of an asynchronous MBT we will mean the maximum allowable
delay. Note that for a given MBT and a given d > 0, there are infinitely
many such asynchronous MBTs.

We now define this concept form ally. Given d, we let 5 denote the set of
functions {T : V \ W f---+ {O, 1, 2, . .. ,dY} . As was done for an MBT, we first
need to define the following items:

1. the sets V' ~ {(s, t ) E Zp+l -tw - d :S t} and W' ~ {(s ,t) E V' :
t < O} ;

2. for all T E 5 , a function U" : V' \ W' f---+ V ' defined by

where T;(V) denotes the ith component of T(V).

Given a T E 5 , we say the pair (UT, ¢) is the scenario T of the MBT
(U,¢), or simply the scenario T whenever (U,¢) is given. If T(V) is a constant
r-tuple for all v E V' \ WI , then T will be called a hom ogenous scenario.
Note that all homogenous scenarios are MBTs. Moreover , if that r -t uple is
(0, . . . , 0), then (W ,¢) is the same as (U,¢). Loosely speaking, T(V) are the
delays at v with which the dat a relevant to the computation at v is received .
In the following discussion it is assumed th at some (U,¢) is given.

All t he definitions relat ed to a configurat ion x E {O, l}V' of a scenario T

are analogous to those of an MBT. For complete ness we will mention some of
them. Given a base x w' and a TE 5 , we say a configuration y is a traj ectory
for scenario T , or simp ly a T traj ectory , if Yw' = X W', and if for all v E V' \ W'
we have Yv = ¢ (YW(v)). We denote such a configur ati on by Tr( xw'). Note
that the zero and th e one configurat ions are T traj ectories for all T E 5 .
By replacing V with V ' , W with W' , and T with T T in the definitions of
attrac t ive and MEof (U, ¢), we get definitions for attractive and M; for a
scenario T. If in addit ion we replace MEwith M; , we get th e definiti on of a
stable T traj ectory. Fin ally, we define the operator C by

C(A) ~ {(8,t - i) E V' : i = 0, .. . , d;(8, t) E A}
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for any A C V , and we define (J' C R (p+l ) by

Q
(J' cjg - nu{o v : v E conv(C(Zq))} .

q=l a~O

Our main result is a charac teriza t ion of when the zero trajectory in an
asynchronous MBT is stable under all scenarios.

T heorem 2. The followin g are equivalent :

(a) (J' = o.
(b) Th e zero T trajectory is at tractive for all T E S .

(c) The zero T trajectory is stable for all T E S.

Before proving the theorem , we introduce the dominant MBT of (U, ¢),
denoted by (U', ¢'), which is also an MBT . We define U' : V' \ w' f-> (V'yd
and ¢' : {O, 1}Td f-> {O, I} as follows:

U'(v) cjg (v + (Ul' td , v + (Ul, t 1 - 1), . . . ,v + (Ul, t 1 - d),

. .. , v + (UT,tT - d)),

¢' (XU'(v) ) ~f ¢ C~ XV+(Ul.tI- i), .. . , i~ Xv+(Ur,tr -i) ) .

Clearl y, ¢' is monotonic. We deno te a t ra jectory of (U', ¢' ) with base Xw' by
T' (x w' ) and call it a dominant trajectory. In order to apply Theorem 1 to
(U',¢'), we will need to know it s minimal zero sets.

Lemma 1. If Zl ,"" ZQ are all of th e minimal zero sets of (U, ¢), th en
C( Zl) "'" C(Zq) are all of th e minimal zero sets of (U' , ¢').

Proof. By virtue of the V's in the definition of ¢' , it is clear that the C(Zi) 'S
are zero sets , and furthermore that they ar e indeed minimal. Now let A' be a
min imal zero set of (U' ,¢'). Since it is minimal, it must have the form C(A)
for some A E W. It is then easy to see that A must be a minimal zero set of
(U,¢).•

Lemma 2. Given any base XW', th ere exists a T E S such that T'(xw') =

TT( XW')'

Proof. Let x = T' (xw') and y = T T(xw' ). We will const ruct the desired T

inductively. Assume that we know the values of T(V) for all v E {(s, t) : t :::::
to} for some to ?: o. Letting a = (s , to + 1), where s E ZP, we define T(a)
as follows. If vi; xa+(uj,tj -i) = 0, then Tj(a) can be arbit ra ry. Else, if the
expression equals one, then for some k, xv+(uj ,tj-k) = 1, and we let T(a) = k,
Simple verification shows that ¢' (XU'(a) ) = ¢(XUT (a) )' •

Proof of Theorem 2. We will first show that (a) imp lies (b) . Let Xw'
be any base such that II(xw') 1 is finite. By T heor em 1, (a) imp lies that
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the zero state is at tract ive for the dominant MBT, that is, II (T ' (xw,))1 is
finit e. Now (T'( xw')) v 2: (TT(XW' ))v for all v E V' and T E 5 , a fact easily
est ab lish ed by induction. Thus, II (T' (xw,))1 2: II (TT(xw' ))1 for all T E 5 ,
which implies (b).

Now we will prove that (a) implies (c). Let z be the zero traj ect ory and
M~ be the M<set of the dominan t MBT. Again by Theorem 1, (a) implies
that

lim sup f-l( xv ~ 1) = 0.
<~O !-' EM;( zw )

vE V

Therefore, given f-lT E M;(zw') (where T E 5 and E E (0,1) are arbit rary),
if we can find a f-l' E M~(zw') such that f-l' (xv = 1) 2: f-lT( XV = 1) for all
v E V' \ W' , we will be done. Let f-lT and E be fixed .

We now define a {O, 1}v' valued random vari ab le e on an auxiliary space
Sl = {O , 1}v' such t hat Pi e; = 1 'I v E A) = f-lT( XV =1= ¢(XUT(V») 'I v E A ) for all
finit e A. We know that the last term is not greate r than E1AI. Then for each
w E Sl, we construct random states as follows. For all v E W' , x~ = x~ = 0,
and v E V' \ W' ,

x: = { ¢T( XijT (V») ' If ev = 0,

¢T(XijT(V» ), If ev = 1,

x~ = { ¢'( XU' (V») , ~f ev=0,

1, If ev - 1,

where n is t he logical negati on op erator. Let f-l' be the measur e induced by
x'; t hat is, for any state y , we will have f-l' (xv = Yv 'Iv E A) = Pix'; = Yv'Iv E
A ) for all finit e A. Note that for all w E Sl, x~ 2: x~ for all v E V' \ W' , which
implies P(x~ = 1) 2:P(x~ = 1). Thus

f-l'( XV= 1) = P(x~ = 1)
2: P(x: = 1)
= f-lT( XV= 1).

On the ot her hand, for any finit e A ,

f-l'( XV =1= ¢' (XU'(v») 'I v E A) ::; Pi e; = 1 'I v E A)

< E1A1- ,

which implies f-l' E M~ .

We will now show by cont ra dict ion that (b) implies (a) . Assume (J' =1= 0.
Then by Theorem 1 the zero t rajecto ry is not at t racti ve for (U' ,¢'), that is ,
there exists an Xw' such that II(xw,)1is finit e but II (T ' (xw' ))1is infinite. By
Lemma 2 there exists a scenario T such that I(T'(xw')) = I (TT(xw' )). Thus
for this T t he zero state is not an attract ive T traj ectory.

Finally, we will show that (c) implies (a) , also by cont radict ion . Again
assume (J' =1= 0. Then there exist s a ray (3 C (J' originating from the origin .
By Theorem 8 and Lemma 11 in [6], we know that there exists a finit e set
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A C { (s,t ) E R P+l : t < O} such that the set P ~ (A + (3) n V ' possesses
the property that P nWI C I (xw' ) implies P C I (TI(xw' )). For example, A
can be defined as

Q

A = -(p + 1) L conv (Zq) + B + b,
q= l

where B is a unit cube in R P+l that is added to make A + a' contain points
(s, t) E V I for all t 2': 0 ; and b is a vector that is added to make (s, t ) E A
=* t < 0 [6]. Other choices can also work.

To facilit ate t he rest of the proof, we define the sets Dn C V I for n 2': 0
by

Ii; ~ { (s,t ) E A + (3 : n :::: t < n + d + tw } n VI .

We also let y be the state

{
I , if v E P ;

Yv = 0, otherwise.

We claim that if v E {(s,t) E P : t 2': O} , then q/ (yU' (v) ) = 1. To see this,
note that (a, . . . ,a) - UI(a) is a constant for all a E V I \ W' . T herefore, by
T heorem 8 in [1], for any dom inant trajectory x such that D n C I (x), we
have D~+i C I (x), for any non-negati ve integer n .

We now cons truct a scenario T as follows. If v if- P , t hen T(V) can be
arbitrary. If v E P , t hen as we argued ¢/(yU'(v)) = 1, and as was done in
the proof of Lemma 2, we can define T(V) such that ¢(YUT(V)) = 1. With this
T , simple indu ctive arguments show that for any T trajectory x such that
o; C I (x ), we have o; C I (x) for all m 2': n.

We now cons truct a measure J.l€ E M;. Let W E {O, l }V'\ W' and define a
map r : {O, l} V'\ W' t---+ {O,1Y' by

clef { 0 , if a E W ' ,
Xa = max(¢(xUT(a)),Wa), if a E V ' \ WI.

Let /J,€ be a Bernoulli measure on {O, I }V'\ W' such that for any finite A C V I

/J,€(wa = 1Va E A) = E
1A1.

Let J.l€ designate the measure {O, 1V' induced by the measure /J,€on {O, 1}V'\ W'

wit h the map r . Clearly J.l€ E M; (zw') , where z is the zero state .
For any t , let St be such that (St , t ) E P . Now, by t he arguments in the

previous par agraph, if W v = 1 for all v E D n for some n 2': 0, then (r(w))a = 1
for all a E Dm with m 2': n. T hus the condit ion (r(w)) (s"t) = 1 is ensure d if

there is some n :::: t such that W v = 1 for all v E Dn . Let n i ~ i(tw +d). Then ,
clearl y, the events "wa = 1 for all a E Dn i " are independent of each ot her.

T he probab ility of every quoted event is at least EN , where N ~ sUPn>oDn,
a finit e integer. T hus -

J.l€(X(s" t) = 1) 2': 1 - (1 - EN ) [tf(tw + d)]~ 1.
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In other words, the zero state is not a stable 7 tr ajectory. •

Thus, in order to determine if th e zero traj ectory of an MBT is stable
under asynchronism, it is enough to apply Toom's crite rion to the domi nant
MBT.

Remark 1. Dtial argument s can be used to st udy the stability of the one
t rajectory under asynchronism. We are particularly interested in the effects
of asy nchronism on MBTs where bot h the zero and the one trajectories are
stable. We will discuss these effects through a series of examples in section 4.

Remark 2. The concept of st ability used in Theorems 1 and 2 is rather
strong, namely, an MBT is called stable only if equa tion (1) holds wit h
the supremum over all M E ME' In particular , this requires stability under
asymmet ric noise where O's can become 1's, bu t not vice versa. It would be
int eresting to charact erize stability under more symmetric noise models (e.g.,
with positive probabilities for each kind of error). See, however , Example 3
of sect ion 4, which shows that asynchronism can cause MBTs wit h multiple
st able t rajectories to become ergodic even under symm et ric noise.

4 . Examples

We conclude our discussion with several examples and a theorem.

Example 1. Here we note that there are MBTs such that for a given d,
the zero traj ectory is attractive for all of the homogenous scenarios bu t not
at t rac t ive for all scenarios. For example, consider a one-dimensional (U, <I»
wit h (UI, t l) = (2, - 1), (U2 ,t2) = (3, - 1), and ¢(a, b) = a r. b. Let d = 2. By
Theorem 1 the zero trajectory is attractive for all four possible homogenous
scena rios, whereas by Theorem 2 it is not so for all scena rios. The reason for
this becomes clear when we try to construct a scenario 7 according to the
pro cedure in the proof. For this example, we can take

p = {(s ,t ) E V ' : - ~s - 2 S t S - ~ s} .

T hen, for instan ce, for the point (-4, 0) we get 7(( - 4,0 )) = (0, 0), while for
the point (0, 0) we get 7((0,0 )) = (0, 1) or (1, 1). (See figur e 2.)

Example 2. The next two examples show how asynchro nism may affect
the zero and the one trajecto ry differently. Let al = (-1 , 2, - 1), a2 =
(- 1,0, -1), a3 = (1,0 , - 1), an d a4 = (0,2, -3). Define U by the assignment
(u, , ti) = ai, i = 1, 2,3, 4, and define ¢ by zero set s {aI, a2}, {a2' a3}, {a3' a4 },
{a4' ad , and one sets {aI , a3}, {a2' a4}' Such sets do determ ine a unique
monotonic ¢.

By T heore m 1, the zero and the one t rajectories are both st ab le for this
(U,¢). However , by Theorem 2, the one t rajectory becomes unstable for
some scenarios when d 2: 1, while the zero t rajectory remains stable for all d.
In the next example we will show how both the one and the zero t rajectories
may become unstable for different values of d. (See figure 3.)
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Figure 2: Construct ing a scenario as pr escribed by Example 1. Given
the base, we want a 7 that guarantees a state of 1 for all poin ts in
t he slab P . The two lines in the figure are the bo undar y of P . For
example, in orde r to get a state 1 for t he point (-4,0 ), we cannot have
any delays (i.e., 7(-4,0 ) = (0,0)), whereas to get a state 1 at point
(0,0 ), we must have 72 (0,0) = 1. Thus 7 cannot be homogenous.

Figure 3: The origin and U(O) of t he MBT in Example 2. By Theorem
1, both the zero and the on e trajectories are stable for t his MBT;
however , by Theorem 2, t he one trajectory may become unstable for
any d 2 1, whereas the zero trajectory remains stable for all d.

Example 3 . Here we indicate th at the depth of asynchronism needed to
erase the stability of the zero trajectory can be different from th at for the
one t raj ecto ry. Let al = (3, 2, - 2), a2 = (3, 1, -2) , a3 = (9,2 , - 2), and
a4 = (9,3, -4) . Define U by the assignment (Ui, til = ai, i = 1, 2, 3, 4, and
define ¢ (uniquely) by zero sets {al ,a2}, {a2,a3}, {a3,a4}, {a4,ar}, and one
set s {aI,a3}, {a2,a4}'

Now Theorem 1 tells us that the zero and the one traj ectories are stable
for this (U,¢). Theorem 2 and simple geometric arguments show th at the
one tr aj ecto ry becomes unstable for some scenarios when d = 1, whereas th e
zero t ra jectory becomes unstable when d = 2. Thus the zero and the one
t rajectories may behave different ly under asynchronism. (See figure 4.)
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Figure 4: The origin and U(O) of the MBT in Example 3. By Theorem
1, bot h the zero and the one trajectories are stable for this MBT;
however, by Theorem 2, the one trajectory becomes unstable for some
scenarios when d = 1, whereas the zero trajectory becomes unstable
when d = 2.
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Exa mple 4 . This example demonst rates that asy nchronism may cause
a non-ergodic MBT (t hat is, one wit h several stable trajec to ries) to be­
come ergo dic. In fact , this can happ en under symmetric noise models (see
Remark 2). Consider the two-dimensional MBT (U,¢), where (Ul, td =
(2,0, - 1), (U2 , t2) = (1, 1, -2) , (ua, ta) = (0,2 , - 2), and ¢ is the majority
vot er ru le. (See figure 5(a).) We also define /-1. E M . by the relation

for any finite A C V. In other word s, the probability of an error at any
point is independ ent of ot her points and is equal to E. Now let /-1~ and /-1;
be such meas ures in M.(x~) and M.( xh,) , resp ecti vely, where XO is the zero
traj ectory and Xl is the one trajectory. In view of Theorem 1, we have

lim suP/-1~(x i- 0) = °
e-c-O vE V

and lim suP/-1~(x i- 1) = 1.
€ ---+l vE V

Now consider the homogenous scenario T, where T(V) = (1,0 ,0) for all
v. This MBT is actually composed of infinitely many non-interacting , one­
dimensional MBTs that are independent of each ot her. To see this, take 1r

to be the plane in V' that goes thro ugh the origin and has a normal (1, 1, 1)
(figur e 5(b)) . Intersect ion of 1r with V' is a latt ice isomorphic to {(s , t) E
Z2 : t ;::: -3}, which we will call V". Consider the one-dimensional MBT
(U" ,¢) , where (ul, td = (-1, -2) , (U2,t2) = (0,-2) , and (ua, ta) = (1, -2).
Define /-1~ and /-1; for (U",¢), as was done pr eviously. It has recently been
shown that this one-d imensional automaton is ergo dic under symmet ric noise
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(a) (b)

Figure 5: The origin and U(O) of th e original MBT of Example 4
are indicat ed in part (a). Once we let T(V) = (1,0,0) for all v, the
origin and U'T(O ) will lie on the plane that has a section of it shaded
in part (b). It is then easy to see that the MBT (U'T ,¢) is composed
of infinitely many non-interacting, one-dimensional MBTs th at reside
on planes parallel to the mentioned plane.

of ar bit rary small error probability E (see [3]). In part icular , defining f-i~ and
f-i~ for (U",¢), as was done pr eviously, we have

lim sup f-i~(x =I 0) = 1/2
~---+O vE V "

and lim sup f-i~(x =11) = 1/2.
€---+ O vE V "

On ce we see that (U'T , ¢) is composed of infinitely man y such one-dimensional
MBTs ope ra t ing on plan es par allel to the one mentioned , t he ergo dicity of
(W ,¢) follows.

As a final remark , we conclude with a discussion of the possibility of the
const ruct ing one-dimensional examples in which asy nchronism has a nontriv­
ial effect . This is mar gin ally related to the fam ous posit ive rates conjecture
[2 ,4J.

It is clearly po ssibl e to construct one-dimensional MBT s in which the zero
and the one configurat ions are traj ectories. It is th en natural to ask if they
can both be stable. If t his were so it would be easy to cons t ruct scenarios
in whi ch asy nchronism erases memory by considering homogenous scenarios
where the automaton breaks up into zero-dimensional automata, which are
clearl y ergo dic.

The following theorem shows that in a one-dimensional MBT the zero
and the one traj ect ories cannot both be stable.

Theorem 3. No one-dimension al MBT (U, ¢) can have both a stable zero
traj ectory and a stable one traj ect ory.
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Figure 6: As mentioned in the Proof of Theorem 3, 0"0 = {O} implies
the existence of a line L thro ugh the origin that properly separates
some Yk from some 1'1.

Proof of Theorem 3 . Let YI, . .. , Yn be an enum eration of the minimal one
sets of ¢ and Z1, . . " Zm be an enum erat ion of the minimal zero sets of ¢ (see
Rem ark 1). Since Zj is a minimal zero set of ¢, even if x = 0 on U (O) \ Zj ,
we will have ¢(XU(O» ) = 1 if Xa = 1 for all a E Zj. Thus none of the Yi 's can
be cont ained in U( O) \ Zj , t hat is, each Yi meets every Zj.

Let 0"0 be the 0" set of (U, ¢) as before. We define an analogous set 0"1

for the minimal one sets of (U,¢). In view of Remark 1, the one trajectory
is stable (attract ive) if and on ly if 0"1 = {O}. Now ass ume that t he zero
t rajectory is stable. Since this implies that 0"0 = {O} , there must exist a
line L through the origin that properly separates some conv(Yk ) from some
conv(Yi) , and thus Yk from 1'1 (figure 6). Now since each Zj meets both Yk

and 1'1 , L must meet each conv(Zj ). T hus 0"1 cont ains {(s, t) E L : t 2: O} ,
which implies that the one trajectory is not stable. •
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