
Complex Sy stem s 6 (1992) 301- 314

Learning from E xamples and G eneralization

J . D ent e
Laboratorio de Mecatronica, Insti tu to Superior Tecnico,

A v. Rovisco Pais, 1096 Lisbon Codex , Portugal

R . V ile la Mendes
CERN , Th eoretical Division ,

CH-1211, Geneve 23, Switzerland

Abstract. We analyze the issue of generalizat ion in systems that
learn from examples as a problem of representation of functions in
finite fields. It is shown th at it is not possible to design algorithms
with uniformly good generalizat ion propert ies in the space of all func­
tions. Th erefore th e problem of achieving good generalization prop­
erties becomes meaningful only if the functions being studied belong
to restricted classes.

We then prop ose th e implementation of systems endowed with sev­
eral distin ct (biased) strategies, allowing the explorat ion and identifi­
cation of the functional classes of learning prob lems. Two such strat e­
gies (polynomial learning and weighed majori ty rule) are developed
and tested on the problems of even-odd and two-or-more cluste rs.

1. Int r oduction

Whenever t he algorit hm required to program a spec ific t ask is not known
or t he task itself involves un certain feat ur es, learn ing from examples seems
to be a sensible approach . In cont rast to t he construct ion of approximate
representations, which remain forever commit ted to a set of simplifying as­
sumpt ions, learning from examples allows for systemat ic improvem ent . It
suffices to increase t he size of the training set , and the more examples are
presented the wiser the system becomes.

In concep t learning [1], t he generalization capability of a learn ing sys te m
is judged by its ability to take into account a number of spec ific observations
and then extract and ret ain t heir most imp or tant common features. When
learning from t he examples in a training set, t he issue of generalizat ion t here­
fore conce rns the problem of how well t he sys te m reacts to situat ions t hat are
not presen ted during the t raining per iod. This problem has been addressed
by many au thors [2- 13] in the last few years. The work has been carr ied out
mostly in the context of specific archit ect ures- neur al networks or classifier

302 J. Dent e and R. Vilela Mendes

systems , for example- or ass uming some properties of the funct ions to be
learn ed . Wolp er t [4, 5], for example, has developed a theory of generaliza­
tion that takes the point of view of generalization as sur face fit ting. This is
also the point of view of the regularization theory [14]. However , the notion
that the pro cess being learn ed can somehow be guessed or ant icipated , as
opp osed to being complete ly random , does not necessari ly imply that it fits
in the class of smoot h funct ions.

In this pap er we attempt a discussion of this issue in a general set ting. In
section 2 we develop a few concepts to study generalizat ion as a problem of
representation of functi ons in a finite algebraic field . T his is done in a way
that is independent of particular implementations or assumptions about the
classes of functions being studied. T he main issues to be addressed concern
the quest ions of whet her it is possible to classify learning algorithms on the
basis of their generalization perform ances and whether a general-purpose al­
gorit hm can be constructed , that is, an algorithm with good generalizat ion
capabilit ies for arbit rary functions. The resul ts concern ing these issues are
mostly negative in the sense that we conclude that , in the space of all fun c­
ti ons, all algorithms are essent ially equivalent, and a truly general-pur pose
algorithm is bound to have an average genera lizat ion rate of zero. Therefore,
good generalization perform an ces are to be expecte d only if the functi ons
being studied belong to par ti cular classes.

As a consequence of the general st udy we were led to suggest that , instead
of looking for generic well-perform ing algorithms , one should equip the learn­
ing systems wit h several distinct learning strategies, each one biased toward
a particular class of functions. Allowing the system to switch between th ese
distin ct strategies in the course of the learn ing process might opt imize the
performance and ident ify the functional class of the prob lem . In sect ions 3, 4,
and 5 two such strategies are described and tes ted on two classical pr oblems.

2 . Learning from examples and generalization

Learning is a term that is used in a var iety of contexts and applied to many
different pro cesses. The general noti on we want to retain here is the one of
learning as the capac ity to adapt, through interacti on with the environment ,
to perform a specific task. More precisely we characterize a learning system
as having a certain number of inputs thro ugh which it receives information
from the exte rn al world and a certain number of output s throu gh which it
acts on the environment . By coding the appropria te t ransducers, the inputs
and outputs may always be considered numbers from some algebraic field.

The systems that we will be concern ed with are not those that learn by
being taught what rul es to follow, bu t those th at learn by being presented
with a certain number of correc t input- output pair s (Ii ,Oi). The set of
input- output pairs (Ii , Oi) presented dur ing the training pr ocess is called the
training set. If all that is required from the system is an accurate repr oduct ion
of the learned examples, then the system is called a data basis. If the system
is provided with some a priori knowledge (ru les of inference) in such a way

Learning from Examples and Generaliza tion 303

that any input , even if not contained in the training set, uni quely provides the
desired out put, then it is called an expert system. If, however, no a pri ori rul es
are supplied and one nevertheless expects the system to react meaningfully
to inputs not contained in t he tr aining set , we say that the system possesses
generalization capacity .

We now qu antify the noti on of generaliza tion of a learning system. Let
there be N inpu ts and M outputs that may t ake p different states, p being
a prime number. This impli es no loss of gener ality becau se, for any other
number q of possible states , we may always assign a subse t of input terminals
to repr esent the digit s of the number q in the p-basis . A system wit h no
a priori const raints should be able to represent any F: ----7 Fp

M functi on
f; (x) , Fp being the prime field of charac terist ic p [15]. Considering each of the
components I. separate ly, all one really has to deal with is the repre sentation
problem for an Fp

N
----7 Fp function. There are (pv" such fun ctions.

A learnin g algorithm asso ciates with each tr aining set T of K (K ~ pN)
input- output pair s {(Xi ,Yi)} , where Xi E F: and Yi E Fp , a unique function
gT(X) such that gT(Xi) = Yi for all (Xi, Yi) E T. The fun cti on gT(X) may be
one among (p)pN - K functions.

For each fun ction f to be learned an d for each training set T , we define
the global generalization rate t(T, J) by

1 1
t (T ,1) = N K L "((gT(X) - f(x)) -

p - x'l-T P
(2.1)

where "((0) = 1 and "((x) = 0 for x =1= O. t (T ,1) measures the ra te of
corr ect pr edictions gT(X) = f (x) for inputs not contained in the tr aining set
subt racted from the probability of being correct by chance . If t(T, J) > 0 we
say that th ere is global generalization for the pair (T, J) .

However , in a situat ion of continuous learning, it is not very important
to know how the system will react to all possible inputs not contained in the
training set. The imp ortan t issue is to know how it will react to the next
input x' becau se, given the chance of comparing the pr op osed output gT(X')
with the actual value f(x'), the system may incorp orat e this new piece of
information and read ap t itself to the enlarged trainin g set. This lead s to the
notions of sequent ial learning and sequenti al generalization. Each ord ered
sequence 5 = {(Xi ,Yi = f(Xi)), i = 1, ... , K} of input- output pair s is called
a learning ins tance for the function f. The point of insisting on sequences is
that the reaction and performan ce of the learning algorithm may change with
the order in which the t raining pairs are present ed . For each learning instan ce
a sequential learning (SL) algorithm generates a sequence offunctions gi such
that gi(Xi) = f(Xi) for i ~ K.

Con sider a chain of learning inst an ces 5 j = {(Xi ,Yi = f(Xi)), i ~ j}. The
sequent ial generalization rate is defined by

(2.2)

304 J. Dente and R. Vilela Mendes

Defining an SL algorithm correspo nds to specifying the functi on gi chosen in
response to all possible pair s (Xi, Yi) at each level of a sequence of length pN
At level K there is st ill a choice of (p)pN_K functions compat ible with the
chain SK = {(Xi ,Yi), i :S K} , and there are rrf";i/ p(pN - j) br an ches when
all possible sequences are taken into account . Therefore there are

(2.3)

different sequent ial learning algorit hms . This is, of course , a very large num­
ber even for relatively sma ll N and p. It would seem desirabl e to charac terize
a small set of "efficient" algorithms , if they exist, or at least to divid e them
into equivalence classes acco rding to some performan ce crite rion .

If t S(SK ,j) = - l i p for all K-that is, if the algorit hm A fails at each
step for the complete chain S and the funct ion j -we say that j is a complete
[ai lure (CF) jun ction for (A , S). Conversely, if the prediction is correct at
every ste p, j is called a complete success (CS) junction for (A , S).

For a cha in S = {(Xi,Yin, deno te by S (1) = {xd the sequence of input
valu es and by S(2) = {Yd the sequence of output valu es. Then th ere are
p(p - l)pN-l CF junctions and p CS junctions [or each pair (A , S(1»). Given
an algor it hm , the choice of the functions gi that are generated at each step
is complet ely det ermined by the pair s (Xj ,Yj) with j < i . To const ru ct a
CF function it suffices to define j(Xi+l) =1= gi(Xi+l), and for a CS fun ction
j(xi+d = gi(Xi+l). Taking into acco unt the p-mult iplicity in the first step
and possible function choices in the others , the resul t follows.

The conclusion is that all algorithms are CS- and CF-equivalent and
therefore, in the spac e of all funct ions , there is no ab solute crite rion for se­
lecting a particular class of algorithms as having better performan ce than any
ot hers. Similar conclusions are obtained if inst ead of CF and CS functions
one considers the classes of well-represented and badly represented fun cti ons,
defined as those for which t s(S, j) > °and t s (S , j) < 0, respecti vely.

Another notion that , again in the space of all fun ctions, is self-defeat ing
is the noti on of an unbiased gen eral-purpose algorithm. This would be an
algorithm that is equally efficient for all possible functi ons. On the average
any such algorithm would be equivalent to a stochas t ic algorit hm that at each
step K of the learning pro cess chooses at random one among the (pjPN - K

functi ons compatible with the training set. But for such an algorithm the
averag e gerieraliza tion rat e is zero, and the algorit hm has no genera liza tio n
capac ity.

In conclusion , the only possibili ty for obtaining meaningful generaliza­
tion performance in pr acti cal algori thms lies in the hop e that somehow the
functions that one encounters in the natural sciences belong to restrict ed
classes as opposed to being complet ely generic in the whole fun ction space.
If that is the case it makes sense to endow the system with several distinct
biased learning strategies and eventually provide for a swit ch of st rateg ies
on the basis of the results obtain ed during the learning pro cess. If one of

Learnin g from Examples and Generalization 305

the alte rnati ve st rategies works success fully, then not only have we ob tain ed
a performing sys tem, but at the same time we have identifi ed the class of
fun ctions that is at play in the st udied pro cess. If, conversely, neither of the
biased strategies works, we' at least ga in the inform at ion that the process is
of a new kind and might be used to charac terize a new fun cti onal class.

In the following sections we explore two (biased) learning st ra teg ies that
rely on different assumptions concern ing the class of functions being learned .
In defining the generalization crite ria we concern ourse lves merely with the
algorithms that genera te t he fun ctions at each step of the learning process.
Con cret e hardware implementations of the learning concepts , through neur al
networks and/or logical arrays , are possible but will not be discussed in this
pap er. The following learning criteria are considered :

1. T he system reproduces correct ly the input- output patterns of the tr ain­
ing set an d configures it self to represent the "simplest" fun cti on that
is compat ible with the learned pat terns.

2. The syste m reproduces the input- ou tput patterns of the training set
and, when pr esented wit h a new input , makes a "smooth" int erp olati on
between the learned output patterns.

Of cours e, as emphas ized by the quot ation marks, the notions of simple
functi on and smoothness have to be defined pr ecisely. In (1) and (2) the
crite ria are similar to those used in experimental science where the dat a is
fitted using a low-degree polynomial , a trigonometric function, or a minimal
curvature const raint . In the case of real-valu ed functions, fitting dat a to a
simple function lead s to a solut ion very similar to the minimal curvatur e
const raint . In finit e fields, however , the corresponding requirements produce
different results.

An F: ---> Fp fun ction is a linear combination of polyn omials, nam ely [15]

f(1) = L fCY) (1 - (YI Xly-l) ... (1 - (YN - XNY- I) (2.4)
yEF!!

where 1 = (Xl , " " XN), iJ = (YI , . .. ,YN), and the sum runs over all pN el­
ements of F:. The fun ctional simp licity crite rion used in sect ion 3 states
that , at each stage of the learn ing process, the system should represent the
polynomial using the smallest degree and smaller number of monomi als that
accurate ly reproduce the learned examples. If, however , the smoo thness
assumpt ion (2) is preferre d, we have the requirement that the represented
fun ction, for an input pattern not belonging to the tr aining set, interp olat e
between the values taken for nearby input pat terns. This requires the int ro­
du ction of the notion of distan ce between input pat terns. Noti ce, however ,
that not all input terminals may be equally significant . For example, the
patterns 01111 an d 10000 have a Hamming dist an ce [16] of 5 whereas 10101
and 00101 have a Hamming dist ance of 1. However , if the patterns are con­
sidered bin ary repr esentations of real numbers, the form er are much closer
to each other than the latter. For simp licity, in our algebraic treatment we

306 J. Dente and R. Vil ela Mendes

will consider the characterist ic of the finite field to be sufficient ly large for
the input terminals to be independ ent ; for example, each input refers to a
different physical variable, as oppose d to being digit s in the coding of the
same variable. Hence all inputs are equa lly significant. This notion is mad e
pr ecise by requiring that the definition of dist an ce be symmetric in the input
variables. Alternatively we might include in the distan ce definition different
weight s for each input variable. The symmet ric approach of enlarging the
finite field is simpler for the theoreti cal discussion , although for concre te elec­
tron ic implementations binary coding an d asy mmetrically weighed dist an ce
fun ctions are more convenient .

3. Functional simplicity and polynomial learning

The criterion used in this sect ion for the construct ion of the learning algo­
rithm requires that , at each st ep of the learning process, the simp lest poly­
nomial be represent ed that is compat ible with the input- output pat terns of
the curre nt training set . By simplest pol ynomi al we mean a po lynomial with
the smallest number of monomials of lowest degr ee.

If the t raining set has K patterns, a st raight forward alt hough not very
efficient method is to consider a polyn omial with K mon omials and obtain its
coefficients from the solut ion of a K x K linear system in Fp . The polynomial
is obtained by the following recursive pro cess: Each time a new pattern is
added to the t raining set , a monomial

is added , where {iI , i2, ... ,id is the set of inputs where the new pattern is
non- zero , and the expo nents a I, a 2, ... , ak are as small as possible , compat­
ible with non-duplica t ion of monomials already included . For example, if no
pattern has previously appeared in which {iI , i2, . . . , id is the non-zero set ,
t hen al = a2 = ... = ak = 1. Otherwise we examine the powers ai in the
corres po nding monomials and add one unit to one of the a 's .

It would be convenient to develop algorit hms such that , inst ead of having
to compute anew all of the coefficients , one uses the pr eviously polynomial ,
adds a new term , and possibly changes a few coefficients. Below we develop
one such algorithm for the PI: case .

Consider then the bin ar y case , x E F!!. Define Z{;l,...,id to be the set of
N-patterns that have zeros in the complement of the positions iI , ... ,ik :

Z{;l ,.. ,id = {x : in ~ {i l , . . . , id => Xin = o} (3.1)

We may now rewrite (2.4) in monomial form:

In t he set of N-patterns a partial order relation is defined by

(3.2)

iff Xi = 1 => Yi = 1 (3.3)

Learning from Examples and Generalization 307

0110 0111

(a) (b)

Figure 1: Sets of patterns connected by the order relation (3.3). The
arrows point toward larger patterns.

For example, if N = 4, a = 1100, b = 0110 , and c = 1110 , then a .:; c and
b .:; c, but a and b are not comparable by this ord er relat ion.

For an element iJof a given (training) subset T of F2
N

, we define subT(iJ)
to be the set of all least upper bounds of elements smaller than iJ in T:

subT(iJ) = {{(i) : {(i) =I iJ; e-: iJ=? «<{(k) for some k}

For example, if

T = {1110 ,1100 ,0110,0100,1000,0000}

then

subT(1 110) = {1100 ,0110}

(3.4)

For each element iJ in the training set T , we also define the subset E (iJ)
of points smaller than iJ that can be reached from iJ by an even number of
paths forming unbroken loops. For example, in figure l(a)

E (1110) = {0100}

whereas in figure 1(b)

E(1111) = {OOOO}

and E (1100) = {OOOO}

For all t he other pattern s z in the figures, E(z) is empty. Notice that in
figure l(a) the pattern 0000 do es not belong to E(1110) because the loop is
broken by the line from 1100 to 0100 .

The learning algorit hm is now defined requiring the sys te m, after a train­
ing set T , to represent the following fun ction:

f(i) = ?= xi' ...x}J' (f(iJ) + _~ f({) + _~_f(7n) (3.5)
yE T ~EsubT(Y) 1JEE(y)

308 J. Dente and R. Vil ela Mendes

For exa mple, for the traini ng set in figure l (a) the coefficient of XIX2X3 is
{j (1110) + j (1100) + j (0110) + j (OlOO)}, and in figure l (b) the coefficient
of XIX2X3X4 is {f (l1 l1) + j (1100) + j (0111) + j (OOOO)} .

For N = 4, if the learning sequence is

1110 0100 1100 0110 0000 1000

the sequence of polynomials generated by the system would be:

(3.6)

1. j (1110)x lx2x3

2. j (0100)x2+ {f (1110) + j (0100)} XIX2X3

3. j(0100)x2+ {f (1100) + j (0l00)}XIX2+ {f (1110) + j (1100)}XIX2X3

4. j (0100)x2+ {f (1100) + j (0100)}XIX2+ {j (0110) + j (0100)}x 2x3

+ {f(1110) + j (1100) + f(0110) + j(0100)}XIX2X3

5. j(OOOO) + {f(0100) + j(0000)}X2+ {f(1100) + j(0100)} XIX2

+ {f(0110) + j(0100)}x2x3

+ {f (1110) + j (1100) + j(0110) + j(0100)} XIX2 X3

6. j (OOOO) + {f (1000) + j (OOOO)}Xl + {f(OlOO) + j (0000)}X2

+ {f (1100) + j (0100) + j (1000) + j (OOOO)}XIX2

+ {f (0110) + j (0l00)}x2x3

+ {f (1110) + j (1100) + j (0110) + j (0100)}XIX2X3

The changes in the coefficients of some of the monomials, introduced in
previous learni ng steps, result from the changes in the topology of the training
set each t ime a new pattern is added.

The learning algorithm defined by equa tion (3.5) guarant ees that , for a
t raining set of K elements, the learned exa mples are correct ly reproduced and
the funct ion represented by the system has at most K mon omials of degree
less than or equa l to the maximum number of ones in the inpu t pattern s of
the training set .

For hardware implementat ions, the following network-li ke approach to
computing th e coefficients of the polynomial is prob ab ly useful. For a training
set T of K pat terns we write the corres ponding polynomial, compute d at the
pattern g (j), as follows:

J(

P(g(j)) = j (g(j)) = L cnIn(g (j))
n = l

T he monomial In that corresponds to the pattern g(n) is

(3.7)

Learning from Examples and Generalization

Figure 2: Equivalent network that computes the polynomial coeffi­
cients for the training set in figure 1(a).

309

Then In(g (j)) -# 0 if and only if g(n) :s: g(j) , and we may rewrite (3.7) as

Cj = f (g(j)) + L Cn
g (n)q,(j)

(3.8)
n

with W jn = 1 if g(n) < g (j) and W j n = 0 ot herwise.

The coefficients of the po lynomial are the solutions of the linear sys te m
(3.8) , and may be obtained by the following iterat ive process:

Cj(t + 1) = f (g(j)) +L W j nCn(t)
n

(3.9)

Under iterat ion the coefficients become fixed , start ing from the lowest ele­
ments and movi ng up along the chains . Aft er a finit e number of ste ps, equal
to the size of the lar gest chain , the dyn amical syste m (3.9) converges to the
solut ion of (3.8) . T herefore the calcula tion of the coefficients of the polyno ­
mial is equivalent to the evolut ion of a network with synapt ic streng ths one
or zero, as defined by the order relation. Figur e 2 shows the network corre ­
spo nding to the 6-element training set in (3.6) . The stat ionary output values
of th e nodes afte r the time evolu tion are the coefficients of the po lynomial.

4 . Smoothness and weighed m ajority rule

Infinite fields (and in cont rast to what one is familiar with for real-valu ed
fun ctions) , fitting a set of data po ints to a polynomial of low degree does
not guarantee a smooth interpolation of the data . For example, in Fs the
simplest polynomial that fits the points 1 (0) = 0 and f (2) = 1 is f (x) = 3x.

310 J. Dente and R. Vilela Mendes

Comput ing f (l) one now obtain s 3, inst ead of 0 or 1 as smooth extrapolat ion
would suggest.

To carry to finit e fields a notion analogous to smooth extrapolat ion in
the reals, one wants the value of the funct ion at a point to be close to the
value at neighborin g point s. To define what a neighb or is requi res a notion
of distance. In coding theory the not ion of Hamming distance is used , this
being the number of posit ions where two patterns differ from each other.
T his is the natural not ion for coding because what one is concerned with is
the number of erro rs in a message. Here, however , where the value of the
variables are associate d wit h the intensity values of some physical quantity,
it seems more reasonable to use the vector dist an ce

{ }

1/ 2

d(x,y) = i((Xi - Yi)2 (4.1)

For a pattern xE Fp
N and a subset T C F:' , we define the set of neighb ors

of x in T , neiT(x) , as the set of T-pattern s that lie on the boundary of the
largest empty hypercube around x.

The training algorithm is now defined by requ iring that after the tr aining
set T has been present ed to the learn ing system, this one must represent the
fun ction

f (x) = L f (y) (1 - (Y1 - X1)P-1) . .. (1- (YN - xNy- 1)
iiET

+ L Int { ~ + (L _1_) - 1 L f ((}_ }
iill T 2 (EneITCii) d(y,O (EneITCii) d(y,~)

(4.2)

That is, the system repr oduces the exa mples already lear ned , and for the new
patterns it uses the values at neighb oring points weighed by the dist ances.

5. E x amples

The algorithms for polynom ial learni ng (sect ion 3) and weighed majority
rule (section 4) were tested in two problems wit h N = 8 and p = 2. The
first is the "even-odd" problem , in which the function to be learned is zero
when the binary number repr esent ed by the inp ut pattern is even, an d one
when the binary number is odd . The second is the "two-or-more clust ers"
or "cont iguity" funct ion . T his function is one when t here are two or more
clusters of ones, and zero otherwise. The results are shown in figur es 3 and 4.
In figures 3(a) and 4(a) we plot the fraction of accurate outputs as a fun ction
of the relative size of t he trainin g set .

Learning from Examples and Generalizat ion 311

1,00

0,90

0,80

0,70

0,60

0,50

0,40

0,30

0,20

0,10

0,00

0,01 0,11 0,20 0,30 0,40 0,50 0,59 0,69 0,79 0,89

(a)

1,00

0,90

0,80

0,70

0,60

0,50

0,40

0,30

0,20

0,10

0,00

0,oI 0,11 0,20 0,30 0,40 0,50 0,59 0,69 0,79 0,89

(b)

Figure 3: Even-odd problem (1. Polynomial learni ng, 2. Weighed
majority rule). (a) Fraction of accurate outputs versus relat ive size of
the training set . (b) Efficiency factor.

Let K be the size of the training set T , nt = 2N be the total number of
dist inct input patterns, and n e be the number of generalization errors at a
given st ep of t he learni ng process. We define the efficiency fact or

n e
1]=1 - -­

nt - K

The efficiency facto r is related to the global generalizat ion rate, defin ed in
section 2, by 1] = t (T, f) +(l/p) . One exp ects that , by pure chance, half of the

312 1. Dente and R. Vilela Mend es

1,00

0,90
2

0,80 l
0,70 -:-

0,60

0,50

0,40

0,30

0,20

0, 10

0,00

0,01 0, 11 0,20 0,30 0,40 0,50 0,59 0,69 0,79 0,89

(a)

1,00 t
2 ----------"'"

0,90

0,80 T
0,70 -!-
0,60

0,50

0,40

0,30

0,20

0,10

0,00

0,0 1 0, 11 0,20 0,30 0,40 0,50 0,59 0,69 0,79 0,89

(b)

Figure 4: T wo or more clusters problem (1. Polynomial learning,
2. Weighed majority rul e). (a) Fract ion of accurate outputs vers us
rela tive size of the trai ning set. (b) Efficiency factor.

outputs will be the correc t ones (for p = 2) , hence th ere is generalization
only if T/ > 0.5. The efficiency factor is plotted in figures 3(b) and 4(b).

The algorithms were tested in uncorr elated trial runs, the pat terns to be
included in the evolving training set being chosen at random . The plots in
figures 3 and 4 show the average over a typical set of three tri als.

For the even-odd problem, both algorit hms show generalization capabili­
ties and their average performance is similar , although the "weighed major­
ity ru le" has larger fluctuations than "polynomial learning," which t herefore

Learning from Ex amples and Generalization 313

see ms mor e appropriate for this problem. For t he two-or-more clusters prob ­
lem, "p olynomial learnin g" has no gene raliza t ion capacity, the number of
acc urate outputs (b eyond t hose of the trai ning set) b eing consist en t wit h
pure chance (rJ rv 0.5) . The "weighed m ajority rule" algor it hm, however , is
ext remely efficient in this problem .

These result s illust ra t e what we have stated b efore , t hat t here is no uni­
versal genera lizat ion st rat egy. A gene ral learning module would thus b e
better eq uipp ed with severa l com plementary stra tegies and with t he ability
to swit ch b etween the strategies to optim ize its p erform ance. A difficulty
ar ises, however , from t he fact t hat lea rning algor ithm s and hardware archi­
tect ures are relat ed , in t he se nse t hat some algor it hms are mor e suited than
others for a given architect ure.

References

[1] T . M. Mitchell, "Generalizat ion as Search," Artificial Intelligence, 18 (1982)
203-226.

[2] J . Denker , D. Schwartz, B. Wittner , S. Solla , R. Howard , L. J ackel, and
J . Hopfield , "Large Au tomat ic Learning, Rule Extraction , and Generaliza­
tion," Complex Systems, 1 (1987) 877- 922.

[3] E . B. Baum and D. Haussler , "What Size Net Gives Valid Generalization?"
Neural Computation, 1 (1989) 151-1 60.

[4] D. H. Wolpert , "A Benchmark for How Well Neur al Nets Generalize," Bio­
logical Cyberne tics, 61 (1989) 303-313.

[5] D. H. Wolpert, "A Mat hemat ical Theory of Generalization ," Comp lex Sys­
tems,4 (1990) 151- 249.

[6] A. Lapedes and R. Far ber , "Non-linear Signal P rocessing Using Neural Nets:
P rediction and System Modelling," Los Alamos preprin t LA-UR-87-2662
(1987) .

[7] E. Mjolsness, D. H. Sharp, and B. K. Alpert , "Scaling, Machine Learning,
and Genet ic Neur al Nets ," Los Alamos preprint LA-UR-88-142 (1988) .

[8] D. Psalt is and M. Neifeld , "T he Emergence of Generalization in Networks
with Const ra ined Repr esent ations," pages 371-381 in Proceedings of the 1988
IEEE In ternational Conference on Neural Networks, volume 1, San Diego
(1988) .

[9] F . Vallet and J .-G. Cailton, "Recognit ion Rates of the Hebb Rul e for Learning
Boolean Funct ions," Physical Review A, 41 (1990) 3059-3065.

[10] S. I. Gallant, "A Conn ect ionist Learn ing Algorithm with P rovable General­
ization and Scaling Bounds," Neural Networks, 3 (1990) 191- 20l.

[11] H. Sompolinsky, N. Tishby, and H. S. Seung, "Learn ing from Examples in
Large Neural Networks," Physical Review Lett ers, 65 (1990) 1683-1 686.

314 J. Dente and R. Vilela Mendes

[12] C . Bis hop , "Improving the Generaliza tion Proper ties of Radial Basis Function
Neural Netwo rks ," Harwell pr eprint AEA F US 94 (1991).

[13] J. Siet sma and R. J. F . Dow , "Creat ing Artificial Neural Networks T hat
Generalize," Neural N etworks, 4 (1991) 67-79.

[14] T . Poggio, V. Torr e, and C. Koch, "Computer Vision and Regulari za ti on
T heory," Natu re, 317 (1985) 314- 319.

[15] R. Lidl and G. Pil z, A pplied Abst ract Algebra (Berlin , Springer-Verlag, 1984).

[16] D. Welsh , Codes and Cryptography (Oxford , Oxford Uni versity P ress, 1988) .

