Complex Systems 6 (1992) 301-314

Learning from Examples and Generalization

J. Dente
Laboratério de Mecatrénica, Instituto Superior Técnico,
Av. Rovisco Pais, 1096 Lisboa Codex, Portugal

R. Vilela Mendes
CERN, Theoretical Division,
CH-1211, Genéve 23, Switzerland

Abstract. We analyze the issue of generalization in systems that
learn from examples as a problem of representation of functions in
finite fields. It is shown that it is not possible to design algorithms
with uniformly good generalization properties in the space of all func-
tions. Therefore the problem of achieving good generalization prop-
erties becomes meaningful only if the functions being studied belong
to restricted classes.

We then propose the implementation of systems endowed with sev-
eral distinct (biased) strategies, allowing the exploration and identifi-
cation of the functional classes of learning problems. Two such strate-
gies (polynomial learning and weighed majority rule) are developed
and tested on the problems of even-odd and two-or-more clusters.

1. Introduction

Whenever the algorithm required to program a specific task is not known
or the task itself involves uncertain features, learning from examples seems
to be a sensible approach. In contrast to the construction of approximate
representations, which remain forever committed to a set of simplifying as-
sumptions, learning from examples allows for systematic improvement. It
suffices to increase the size of the training set, and the more examples are
presented the wiser the system becomes.

In concept learning [1], the generalization capability of a learning system
is judged by its ability to take into account a number of specific observations
and then extract and retain their most important common features. When
learning from the examples in a training set, the issue of generalization there-
fore concerns the problem of how well the system reacts to situations that are
not presented during the training period. This problem has been addressed
by many authors [2-13] in the last few years. The work has been carried out
mostly in the context of specific architectures—neural networks or classifier

302 J. Dente and R. Vilela Mendes

systems, for example—or assuming some properties of the functions to be
learned. Wolpert [4, 5], for example, has developed a theory of generaliza-
tion that takes the point of view of generalization as surface fitting. This is
also the point of view of the regularization theory [14]. However, the notion
that the process being learned can somehow be guessed or anticipated, as
opposed to being completely random, does not necessarily imply that it fits
in the class of smooth functions.

In this paper we attempt a discussion of this issue in a general setting. In
section 2 we develop a few concepts to study generalization as a problem of
representation of functions in a finite algebraic field. This is done in a way
that is independent of particular implementations or assumptions about the
classes of functions being studied. The main issues to be addressed concern
the questions of whether it is possible to classify learning algorithms on the
basis of their generalization performances and whether a general-purpose al-
gorithm can be constructed, that is, an algorithm with good generalization
capabilities for arbitrary functions. The results concerning these issues are
mostly negative in the sense that we conclude that, in the space of all func-
tions, all algorithms are essentially equivalent, and a truly general-purpose
algorithm is bound to have an average generalization rate of zero. Therefore,
good generalization performances are to be expected only if the functions
being studied belong to particular classes.

As a consequence of the general study we were led to suggest that, instead
of looking for generic well-performing algorithms, one should equip the learn-
ing systems with several distinct learning strategies, each one biased toward
a particular class of functions. Allowing the system to switch between these
distinct strategies in the course of the learning process might optimize the
performance and identify the functional class of the problem. In sections 3, 4,
and 5 two such strategies are described and tested on two classical problems.

2. Learning from examples and generalization

Learning is a term that is used in a variety of contexts and applied to many
different processes. The general notion we want to retain here is the one of
learning as the capacity to adapt, through interaction with the environment,
to perform a specific task. More precisely we characterize a learning system
as having a certain number of inputs through which it receives information
from the external world and a certain number of outputs through which it
acts on the environment. By coding the appropriate transducers, the inputs
and outputs may always be considered numbers from some algebraic field.
The systems that we will be concerned with are not those that learn by
being taught what rules to follow, but those that learn by being presented
with a certain number of correct input-output pairs (I;, O;). The set of
input-output pairs (I;, O;) presented during the training process is called the
training set. If all that is required from the system is an accurate reproduction
of the learned examples, then the system is called a data basis. If the system
is provided with some a priori knowledge (rules of inference) in such a way

Learning from Examples and Generalization 303

that any input, even if not contained in the training set, uniquely provides the
desired output, then it is called an ezpert system. If, however, no a priori rules
are supplied and one nevertheless expects the system to react meaningfully
to inputs not contained in the training set, we say that the system possesses
generalization capacity.

We now quantify the notion of generalization of a learning system. Let
there be IV inputs and M outputs that may take p different states, p being
a prime number. This implies no loss of generality because, for any other
number q of possible states, we may always assign a subset of input terminals
to represent the digits of the number ¢ in the p-basis. A system with no
a priori constraints should be able to represent any szv — sz‘/[function
fi(z), F, being the prime field of characteristic p [15]. Considering each of the
components f; separately, all one really has to deal with is the representation
problem for an FV — F, function. There are (p)pN such functions.

A learning algorithm associates with each training set T of K (K < p™)
input-output pairs {(z;,v;)}, where z; € F]fv and y; € F,, a unique function
gr(z) such that gr(z;) = y; for all (z;,y;) € T. The function gr(z) may be
one among (p)?" ~X functions.

For each function f to be learned and for each training set 7', we define
the global generalization rate t(T, f) by

4T,) = g X v (ox(o) — () — (21)
T

where v(0) = 1 and (z) = 0 for z # 0. (7T, f) measures the rate of
correct predictions gr(z) = f(z) for inputs not contained in the training set
subtracted from the probability of being correct by chance. If ¢(T, f) > 0 we
say that there is global generalization for the pair (T, f).

However, in a situation of continuous learning, it is not very important
to know how the system will react to all possible inputs not contained in the
training set. The important issue is to know how it will react to the next
input x’ because, given the chance of comparing the proposed output gr(z')
with the actual value f(z'), the system may incorporate this new piece of
information and readapt itself to the enlarged training set. This leads to the
notions of sequential learning and sequential generalization. Each ordered
sequence S = {(z;,y;: = f(z:)), i =1,..., K} of input-output pairs is called
a learning instance for the function f. The point of insisting on sequences is
that the reaction and performance of the learning algorithm may change with
the order in which the training pairs are presented. For each learning instance
a sequential learning (SL) algorithm generates a sequence of functions g; such

Consider a chain of learning instances S; = {(z;,y; = f(z;)), ¢ < j}. The
sequential generalization rate is defined by

K-1

t5(Sk,f) = g 2o 1 (0(wi) = flwan) = - (22)

304 J. Dente and R. Vilela Mendes

Defining an SL algorithm corresponds to specifying the function g; chosen in
response to all possible pairs (7;,v;) at each level of a sequence of length p".
At level K there is still a choice of (p)?" ~¥ functions compatible with the
chain Sg = {(z;,3:), @ < K}, and there are [['' p(p" — j) branches when
all possible sequences are taken into account. Thcrefore there are

e (O (2.3)

different sequential learning algorithms. This is, of course, a very large num-
ber even for relatively small N and p. It would seem desirable to characterize
a small set of “efficient” algorithms, if they exist, or at least to divide them
into equivalence classes according to some performance criterion.

If ts(Sk, f) = —1/p for all K—that is, if the algorithm A fails at each
step for the complete chain S and the function f—we say that f is a complete
failure (CF) function for (A, S). Conversely, if the prediction is correct at
every step, f is called a complete success (CS) function for (A, S).

For a chain S = {(z;,%:)}, denote by S = {z;} the sequence of input
values and by S® = {y;} the sequence of output values. Then there are
p(p—1)P" =1 CF functions and p CS functions for each pair (A, SW). Given
an algorithm, the choice of the functions g; that are generated at each step
is completely determined by the pairs (z;,y;) with j < 4. To construct a
CF function it suffices to define f(z;11) # ¢i(zir1), and for a CS function
f(zir1) = gi(wit1). Taking into account the p-multiplicity in the first step
and possible function choices in the others, the result follows.

The conclusion is that all algorithms are CS- and CF-equivalent and
therefore, in the space of all functions, there is no absolute criterion for se-
lecting a particular class of algorithms as having better performance than any
others. Similar conclusions are obtained if instead of CF and CS functions
one considers the classes of well-represented and badly represented functions,
defined as those for which t5(S, f) > 0 and t5(S, f) < 0, respectively.

Another notion that, again in the space of all functions, is self-defeating
is the notion of an unbiased general-purpose algorithm. This would be an
algorithm that is equally efficient for all possible functions. On the average
any such algorithm would be equivalent to a stochastic algorithm that at each
step K of the learning process chooses at random one among the (p)”N“K
functions compatible with the training set. But for such an algorithm the
average generalization rate is zero, and the algorithm has no generalization
capacity.

In conclusion, the only possibility for obtaining meaningful generaliza-
tion performance in practical algorithms lies in the hope that somehow the
functions that one encounters in the natural sciences belong to restricted
classes as opposed to being completely generic in the whole function space.
If that is the case it makes sense to endow the system with several distinct
biased learning strategies and eventually provide for a switch of strategies
on the basis of the results obtained during the learning process. If one of

Learning from Examples and Generalization 305

the alternative strategies works successfully, then not only have we obtained
a performing system, but at the same time we have identified the class of
functions that is at play in the studied process. If, conversely, neither of the
biased strategies works, we at least gain the information that the process is
of a new kind and might be used to characterize a new functional class.

In the following sections we explore two (biased) learning strategies that
rely on different assumptions concerning the class of functions being learned.
In defining the generalization criteria we concern ourselves merely with the
algorithms that generate the functions at each step of the learning process.
Concrete hardware implementations of the learning concepts, through neural
networks and/or logical arrays, are possible but will not be discussed in this
paper. The following learning criteria are considered:

1. The system reproduces correctly the input—output patterns of the train-
ing set and configures itself to represent the “simplest” function that
is compatible with the learned patterns.

2. The system reproduces the input—output patterns of the training set
and, when presented with a new input, makes a “smooth” interpolation
between the learned output patterns.

Of course, as emphasized by the quotation marks, the notions of simple
function and smoothness have to be defined precisely. In (1) and (2) the
criteria are similar to those used in experimental science where the data is
fitted using a low-degree polynomial, a trigonometric function, or a minimal
curvature constraint. In the case of real-valued functions, fitting data to a
simple function leads to a solution very similar to the minimal curvature
constraint. In finite fields, however, the corresponding requirements produce
different results.

An szv — F, function is a linear combination of polynomials, namely [15]

@ =3 1@ 1= -z (1- n —2n)™) (2.4)

FEFN
JeF,

where Z = (z4,...,2n), ¥ = (¥1,-..,yn), and the sum runs over all pV el-
ements of FN. The functional simplicity criterion used in section 3 states
that, at each stage of the learning process, the system should represent the
polynomial using the smallest degree and smaller number of monomials that
accurately reproduce the learned examples. If, however, the smoothness
assumption (2) is preferred, we have the requirement that the represented
function, for an input pattern not belonging to the training set, interpolate
between the values taken for nearby input patterns. This requires the intro-
duction of the notion of distance between input patterns. Notice, however,
that not all input terminals may be equally significant. For example, the
patterns 01111 and 10000 have a Hamming distance [16] of 5 whereas 10101
and 00101 have a Hamming distance of 1. However, if the patterns are con-
sidered binary representations of real numbers, the former are much closer
to each other than the latter. For simplicity, in our algebraic treatment we

306 J. Dente and R. Vilela Mendes

will consider the characteristic of the finite field to be sufficiently large for
the input terminals to be independent; for example, each input refers to a
different physical variable, as opposed to being digits in the coding of the
same variable. Hence all inputs are equally significant. This notion is made
precise by requiring that the definition of distance be symmetric in the input
variables. Alternatively we might include in the distance definition different
weights for each input variable. The symmetric approach of enlarging the
finite field is simpler for the theoretical discussion, although for concrete elec-
tronic implementations binary coding and asymmetrically weighed distance
functions are more convenient.

3. Functional simplicity and polynomial learning

The criterion used in this section for the construction of the learning algo-
rithm requires that, at each step of the learning process, the simplest poly-
nomial be represented that is compatible with the input—output patterns of
the current training set. By simplest polynomial we mean a polynomial with
the smallest number of monomials of lowest degree.

If the training set has K patterns, a straightforward although not very
efficient method is to consider a polynomial with K monomials and obtain its
coefficients from the solution of a K x K linear system in F},. The polynomial
is obtained by the following recursive process: Each time a new pattern is
added to the training set, a monomial

{e5%
i

(]

ag .
ik

T gl v

is added, where {%;,%2,...,%} is the set of inputs where the new pattern is
non-zero, and the exponents oy, @, ..., are as small as possible, compat-
ible with non-duplication of monomials already included. For example, if no
pattern has previously appeared in which {7y, 42, ...,1} is the non-zero set,
then oy = a3 = ++- = a3, = 1. Otherwise we examine the powers «; in the
corresponding monomials and add one unit to one of the a’s.

It would be convenient to develop algorithms such that, instead of having
to compute anew all of the coefficients, one uses the previously polynomial,
adds a new term, and possibly changes a few coeflicients. Below we develop
one such algorithm for the F¥ case.

Consider then the binary case, € Fy'. Define Z{Ai,l,“.,ik} to be the set of

N-patterns that have zeros in the complement of the positions %4, ..., %:
Zgl,“.,ik} = {&'s Iy & s st} =2, =0} (3.1)

We may now rewrite (2.4) in monomial form:

f@= 3 wyow, >, @) (3.2)
fitmie} e
In the set of N-patterns a partial order relation is defined by

<y iff =1y =1 (3.3)

Learning from Examples and Generalization 307

1110

0110 0111

(a)
Figure 1: Sets of patterns connected by the order relation (3.3). The
arrows point toward larger patterns.

For example, if N = 4, a = 1100, b = 0110, and ¢ = 1110, then a < ¢ and
b < ¢, but a and b are not comparable by this order relation.

For an element ¥ of a given (training) subset T of Fi¥, we define subq (%)
to be the set of all least upper bounds of elements smaller than ¢ in T

subr(§) = {€(3) : £(6) £ §; ¥ < § = & < (k) for some k}
For example, if

T ={1110,1100,0110,0100, 1000, 0000} (3.4)
then

subp(1110) = {1100, 0110}

For each element ¢ in the training set T', we also define the subset E(%)
of points smaller than ¢ that can be reached from ¢ by an even number of
paths forming unbroken loops. For example, in figure 1(a)

E(1110) = {0100} and E(1100) = {0000}
whereas in figure 1(b)
E(1111) = {0000}

For all the other patterns Z in the figures, E(Z) is empty. Notice that in
figure 1(a) the pattern 0000 does not belong to E(1110) because the loop is
broken by the line from 1100 to 0100.

The learning algorithm is now defined requiring the system, after a train-
ing set T', to represent the following function:

f@=Yat [f@D+ X fE+ £(@) (3.5)

yeT Eesubr (F) € E(Y)

308 J. Dente and R. Vilela Mendes

For example, for the training set in figure 1(a) the coefficient of z;zsz3 is
{f(1110) + f(1100) + f(0110) + £(0100)}, and in figure 1(b) the coefficient
of z1zoxszy is {f(1111) + £(1100) + f(0111) + £(0000)}.

For N = 4, if the learning sequence is

1110 0100 1100 0110 0000 1000 ... (3.6)
the sequence of polynomials generated by the system would be:

8 1110)IE1.’E2{E3

£
2. f(0100)zy + {f(1110) + £(0100)}z 2973
3. £(0100)zy + {£(1100) 4+ £(0100)}z 22 + {f(1110) + £(1100)}z;z223
4

. f(0100)z5 + {f(1100) + f(0100) }x1x2 + {£(0110) + £(0100) }z2z3
+ {f(1110) + f(1100) + £(0110) + f(0100)}z1 2273

5. f(0000) + {£(0100) + f(0000)}zy + {f(1100) + f(0100)}z 2,
+ {f(0110) + f(0100)}zsz3
+ {f(1110) + f(1100) + £(0110) + f(0100)}z1z573

6. f(0000) + {f(1000) + f(0000)}z; 4+ {f(0100) + f(0000)}z,
+ {f(1100) + f(0100) + f(1000) + f(0000)}z1z,
+ {f(0110) + £(0100)}z25
+ {f(1110) + f(1100) + f(0110) + f(0100)}z1z2z3

The changes in the coefficients of some of the monomials, introduced in
previous learning steps, result from the changes in the topology of the training
set each time a new pattern is added.

The learning algorithm defined by equation (3.5) guarantees that, for a
training set of K elements, the learned examples are correctly reproduced and
the function represented by the system has at most K monomials of degree
less than or equal to the maximum number of ones in the input patterns of
the training set.

For hardware implementations, the following network-like approach to
computing the coefficients of the polynomial is probably useful. For a training
set T' of K patterns we write the corresponding polynomial, computed at the
pattern a(j), as follows:

K
P(a()) = f(a(i) = X ealu(a(d)) (3.7)
n=1
The monomial I,, that corresponds to the pattern a(n) is

L, = xtln(n)x;rz(n) . xt;vN(")

Learning from Examples and Generalization 309

f(1110)

f(0110)

f(0100)

Figure 2: Equivalent network that computes the polynomial coeffi-
cients for the training set in figure 1(a).

Then I,(a(7)) # 0 if and only if @(n) < a(j), and we may rewrite (3.7) as

¢ =fle@+ X e

a(n)<a(j)

= f(2() + > Wjnca (3.8)

with Wj, =1 if a(n) < a(j) and W}, = 0 otherwise.

The coefficients of the polynomial are the solutions of the linear system
(3.8), and may be obtained by the following iterative process:

¢i(t+1) = f(a(5)) + Y Winca(t) (3.9)

Under iteration the coefficients become fixed, starting from the lowest ele-
ments and moving up along the chains. After a finite number of steps, equal
to the size of the largest chain, the dynamical system (3.9) converges to the
solution of (3.8). Therefore the calculation of the coefficients of the polyno-
mial is equivalent to the evolution of a network with synaptic strengths one
or zero, as defined by the order relation. Figure 2 shows the network corre-
sponding to the 6-element training set in (3.6). The stationary output values
of the nodes after the time evolution are the coefficients of the polynomial.

4. Smoothness and weighed majority rule

In finite fields (and in contrast to what one is familiar with for real-valued
functions), fitting a set of data points to a polynomial of low degree does
not guarantee a smooth interpolation of the data. For example, in F; the

simplest polynomial that fits the points f(0) = 0 and f(2) =1is f(z) = 3z.

310 J. Dente and R. Vilela Mendes

Computing f(1) one now obtains 3, instead of 0 or 1 as smooth extrapolation
would suggest.

To carry to finite fields a notion analogous to smooth extrapolation in
the reals, one wants the value of the function at a point to be close to the
value at neighboring points. To define what a neighbor is requires a notion
of distance. In coding theory the notion of Hamming distance is used, this
being the number of positions where two patterns differ from each other.
This is the natural notion for coding because what one is concerned with is
the number of errors in a message. Here, however, where the value of the
variables are associated with the intensity values of some physical quantity,
it seems more reasonable to use the vector distance

4(@,9) = {;(xi = yi)z}m 1)

For a pattern Z € FZfV and a subset 7' C FPN , we define the set of neighbors
of Z in T, neip(Z), as the set of T-patterns that lie on the boundary of the
largest empty hypercube around Z.

The training algorithm is now defined by requiring that after the training
set T has been presented to the learning system, this one must represent the
function

@ =@ (1 - @ -z)?) - (1- (v —2n)f)

yeT
—1
1 1
+X Itis+| Y ——x ¥ fsl
y¢T £€neir(7) d(y,) EEHEiT(:’D d(yv)
x (1= —zp") - (1- v —zn)™) (4.2)

That is, the system reproduces the examples already learned, and for the new
patterns it uses the values at neighboring points weighed by the distances.

5. Examples

The algorithms for polynomial learning (section 3) and weighed majority
rule (section 4) were tested in two problems with N = 8 and p = 2. The
first is the “even-odd” problem, in which the function to be learned is zero
when the binary number represented by the input pattern is even, and one
when the binary number is odd. The second is the “two-or-more clusters”
or “contiguity” function. This function is one when there are two or more
clusters of ones, and zero otherwise. The results are shown in figures 3 and 4.
In figures 3(a) and 4(a) we plot the fraction of accurate outputs as a function
of the relative size of the training set.

Learning from Examples and Generalization 311

1,00 1
0,90
0,80
0,70
0,60
0,50
0,40
0,30
0,20
0,10
0,00

0,01 0,11 0,20 0,30 0,40 0,50 0,59 0,69 0,79 0,89

(a)

0,00
0,01 o,11 0,20 0,30 0,40 0,50 0,59 0,69 0,79 0,89

(0)
Figure 3: Even-odd problem (1. Polynomial learning, 2. Weighed
majority rule). (a) Fraction of accurate outputs versus relative size of
the training set. (b) Efficiency factor.

Let K be the size of the training set 7', n, = 2V be the total number of
distinct input patterns, and n. be the number of generalization errors at a
given step of the learning process. We define the efficiency factor

The efficiency factor is related to the global generalization rate, defined in
section 2, by n = t(T, f)+(1/p). One expects that, by pure chance, half of the

312 J. Dente and R. Vilela Mendes

0,01 o,11 0,20 0,30 0,40 0,50 0,59 0,69 0,79 0,89

(a)

; : ~

1,00
0,90
0,80

0,70
0,60 +
0,50 +
0,40 + 1
0,30 -
0,20 +
0,10 +
0,00

0,01 o,11 0,20 0,30 0,40 0,50 0,59 0,69 0,79 0,89

(b)
Figure 4: Two or more clusters problem (1. Polynomial learning,

2. Weighed majority rule). (a) Fraction of accurate outputs versus
relative size of the training set. (b) Efficiency factor.

outputs will be the correct ones (for p = 2), hence there is generalization
only if n > 0.5. The efficiency factor is plotted in figures 3(b) and 4(b).

The algorithms were tested in uncorrelated trial runs, the patterns to be
included in the evolving training set being chosen at random. The plots in
figures 3 and 4 show the average over a typical set of three trials.

For the even-odd problem, both algorithms show generalization capabili-
ties and their average performance is similar, although the “weighed major-
ity rule” has larger fluctuations than “polynomial learning,” which therefore

Learning from Examples and Generalization 313

seems more appropriate for this problem. For the two-or-more clusters prob-
lem, “polynomial learning” has no generalization capacity, the number of
accurate outputs (beyond those of the training set) being consistent with
pure chance (7 ~ 0.5). The “weighed majority rule” algorithm, however, is
extremely efficient in this problem.

These results illustrate what we have stated before, that there is no uni-
versal generalization strategy. A general learning module would thus be
better equipped with several complementary strategies and with the ability
to switch between the strategies to optimize its performance. A difficulty
arises, however, from the fact that learning algorithms and hardware archi-
tectures are related, in the sense that some algorithms are more suited than
others for a given architecture.

References

[1] T. M. Mitchell, “Generalization as Search,” Artificial Intelligence, 18 (1982)
203-226.

[2] J. Denker, D. Schwartz, B. Wittner, S. Solla, R. Howard, L. Jackel, and
J. Hopfield, “Large Automatic Learning, Rule Extraction, and Generaliza-
tion,” Complez Systems, 1 (1987) 877-922.

[3] E. B. Baum and D. Haussler, “What Size Net Gives Valid Generalization?”
Neural Computation, 1 (1989) 151-160.

[4] D. H. Wolpert, “A Benchmark for How Well Neural Nets Generalize,” Bio-
logical Cybernetics, 61 (1989) 303-313.

[5] D. H. Wolpert, “A Mathematical Theory of Generalization,” Complez Sys-
tems, 4 (1990) 151-249.

[6] A. Lapedes and R. Farber, “Non-linear Signal Processing Using Neural Nets:
Prediction and System Modelling,” Los Alamos preprint LA-UR-87-2662
(1987).

7] E. Mjolsness, D. H. Sharp, and B. K. Alpert, “Scaling, Machine Learning,
g g
and Genetic Neural Nets,” Los Alamos preprint LA-UR-88-142 (1988).

[8] D. Psaltis and M. Neifeld, “The Emergence of Generalization in Networks
with Constrained Representations,” pages 371-381 in Proceedings of the 1988
IEEFE International Conference on Neural Networks, volume 1, San Diego
(1988).

[9] F. Vallet and J.-G. Cailton, “Recognition Rates of the Hebb Rule for Learning
Boolean Functions,” Physical Review A, 41 (1990) 3059-3065.

[10] S. I. Gallant, “A Connectionist Learning Algorithm with Provable General-
ization and Scaling Bounds,” Neural Networks, 3 (1990) 191-201.

[11] H. Sompolinsky, N. Tishby, and H. S. Seung, “Learning from Examples in
Large Neural Networks,” Physical Review Letters, 65 (1990) 1683-1686.

314 J. Dente and R. Vilela Mendes

[12] C. Bishop, “Improving the Generalization Properties of Radial Basis Function
Neural Networks,” Harwell preprint AEA FUS 94 (1991).

[13] J. Sietsma and R. J. F. Dow, “Creating Artificial Neural Networks That
Generalize,” Neural Networks, 4 (1991) 67-79.

[14] T. Poggio, V. Torre, and C. Koch, “Computer Vision and Regularization
Theory,” Nature, 317 (1985) 314-319.

[15] R. Lidl and G. Pilz, Applied Abstract Algebra (Berlin, Springer-Verlag, 1984).

[16] D. Welsh, Codes and Cryptography (Oxford, Oxford University Press, 1988).

