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Abstract. Cellular automata with unb ounded memory, also known as
mathematical neuron models or threshold automata, have been stud­
ied in the single-cell case by a numb er of authors. In this paper these
automata are connected into multicelled networks and the dynamics
of the resulting complex systems examined for certain neighborhood
systems and interaction rules. Computer simulat ion and theoretical
analysis are both presented. Some of the previously known properties
of the dynamics of single cells persist in these systems, but many new
properties appea r. Most of th ese results pertain to networks of two or
three cells with very simple forms of interaction between cells; how­
ever , there are also some implications for more general, larger syst ems.

1. Introduction

The dyn amical beh avior of a single neural automaton wit h memory has been
investigated by a number of aut hors [1- 10], and has been shown to be ex­
t remely rich . In this paper , we formulate a par ticular mo del of such a neural
automaton in a way t hat permits assembling automata into mu lti celled sys­
te ms, and invest igate the computat ional and theo ret ical properties of t he
dynamics of such sys te ms. While we t reat only a few simple modes of in­
terac ti on in t hese sys tems , arbit rary neighborhood schemes and interaction
ru les are possible . Although many of the kn own dynamical properties of the
single-celled automaton persist in these larger systems, some qui t e interest ing
new features appear that require elucidation.

The precise st ruct ur e of the sing le neural automaton that we use is given
in section 2, where some of t he previous resu lt s per taining to it s interesting
dyn amics are also mentioned . The reformula t ion t hat permits t he assem­
blage of t hese automata into networks is given in sect ion 3, and some of the
computational simulatio n resul ts are presented. The dynamics of one partic­
ular typ e of two-celled network is investigated in sect ion 4, and the extension
to larger linear networks is given in section 5. A three-celled network is given
in section 6.
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2 . Cellular automata w ith memory

We use a form of the neuron model proposed by Caianiello [1, 2] and later
used by Yam agu ti and Rata [10], Cosnard and Gales [4], and others. If X n

represent s the state of the neuron at t ime n , X n E {O, I}, then the evolut ion
equat ion is

(1)

where T > 0, a < K < 1, and l!J(x) = a if x < 0, l!J(x) = 1 if x 2: O. The sum
can be viewed as memory in the form of a stored charge , in which case K
can be int erp ret ed as the rate of retention of the charge over one uni t time
interval. T is the threshold, wit h the cell "firing" (state 1) if the memory
falls below the threshold, otherwise becoming quiescent (st at e 0).

We will refer to an automat on defined by equat ion (1) as a cellular auto­
maton with (unbounded) m emory (CAM); it is called by some a mathema tical
neuron model or threshold autom aton.

Yam agu ti and Rata showed that stable periodic orbits of all periods, as
well as nonperiodic orbits , can occur in a CAM of the typ e just described [10].
More pr ecisely, for fixed K t hey showed a one-to-one corres po ndence between
disjoint subintervals in the interval a < T < 1/ (1 - K ) and all reduced
fract ions q/p in the un it interval, where p can be interpreted as the period
of an orbit . It follows that as T varies, wit h K fixed , there are exac t ly ¢(p)
disjoint subinte rvals in T for which there are orbits of period p , where ¢ is
Eu ler 's ¢-fun ction.

The resu lts just mentioned , and others, can be illust rated by computer
simulat ions of the evolution of a CAM. We have performed such simulat ions
for single-celled CAMs of the typ e defined above (as well as mul ti celled CAM s
to be discussed later ) for a wide range of values of K and T . The evolution
of the CAM is calculated to st eady state, then examined for the existe nce of
a fixed point or an n-cycle in the dynamics of the automaton. T he periods
found in such a series of calculat ions can then be displayed by color or shad­
ing in a KT-diagm m. Figure 1 shows the KT- diagram obtained when 400
generat ions of a single CAM are calculated for 64,000 different pairs of values
of K and T. K varies from a at the top to 1 at the bo t tom and T varies
from a at the left to 5 at the right. White indicates a fixed point and the de­
gree of shading indicat es the observed period (reduced modulo 3). It is easy
to see the single region of period- 2 dynamics (¢ (2) = 1) , two regions each
of period-3 or -4 dynamics (¢(3) = ¢(4) = 2) , and four regions of period-5
dynamics (¢ (5) = 4). The large fixed-point region at the upper right sat isfies
T > 1/ (1 - K ) and is called the saturation region since und er this condition
the cell state event ually is always 1 and the sum in equat ion (1) approac hes
it s maximum limit ing value of 1/ (1 - K ).



Dynamics of Multicellular Automata with Unbounded Memory 317

F igure 1: K T-diagram for a sing le-ce lled CAM, K in [0, I), T in [0,5] .
T he nu mb er s super im posed on the diagram are t he obse rve d periods
of t he dynami cs of t he automato n for the corresp onding values of K
and T .

3. Multicelled C A M s

In ord er to const ruct arr ays of interacti ng CAM cells, we proceed as follows.
We envision a single CAM cell, A, as consist ing of two components , A =
(m,c). Here m is a real number that can be thought of as int ernal memory,
ana logous to the cha rge in a storage bat tery, wit h no direct exte rnal effect .
c E {O, I } is the "state" of the cell that is visible to all "neighboring" cells
and may influence their behav ior. T he precise definitions of "neighborhood"
and of the mechan ism of mutual interact ion among cells must be elaborated
for each CAM network const ructed.

In the single-cell case , with a cell's neighborhood consisti ng of the cell
it self, one realization of such a CAM is as follows. If (m,c) denotes th e CAM
at t ime n and (m' , c') the CAM at time n + 1, we require

m' = F (m ,c), c' = B(m') ,

where F : .IR x {O, I } -7 .IR and B is a Boolean-valued function B : .IR -7 {O, I }.
T he simple special case in which

m'. = K m + c, c' = lIJ(T - m') (2)

can easily be shown to be equivalent to the single-celled CAM in equa tion (1)
above.

This approach permit s an easy extension to an arbitrary array of cells.
Let (m,c) denote an N-celled CAM at time t and (m',c') the same CAM at
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Figure 2: KT-diagram for a two-celled CAM (see equation (4)). The
coordinates are the same as in figure 1.

time t + 1, where m = (mo,m l , .. . , mN-d and c = (co , . .. ,CN-I) denote the
arrays of cell at t ributes for the N cells making up the CAM network. Then
we define

m; = F (mi ,M(c)), (3)

(4)

for real-valued F and Boolean- valu ed E , and where M (c) denotes the set of
states of cells in the neighborhood of the ith cell.

A simple example of a two-celled CAM can be defined as follows. Denote
the CAM by [(mo, co) , (m l ' CI)] at t ime t . T he evolut ion of the CAM then
proceeds in discrete t ime ste ps , with a prime denot ing time t + 1, by

m~ = K mo+ Clo c'o = llJ(T - m~) ;

m~ = K m, + Co , c~ = llJ(T - m~ ) .

Computer simulat ion of the two-celled CAM just described resul ts in the
KT-diagram shown in figur e 2, when initialized in the state [(1, 0), (1, .3)].
Not ice that the dynamics exhibits rather st riking differences from the related
single-celled CAM shown in figure 1, with numerous period-L, or fixed-p oint ,
regions superimposed on a back ground dynam ics that appears to be identi cal
to th at for a single cell.

4. D ynamics of a two-celled CAM

An examination of the K T-diagram of a two-celled CAM (shown in figur e 2)
raises interesting quest ions concern ing the pr ecise descrip tion of the many
regions of fixed-point dynamics. Some answers are provided in this sect ion .
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We first show that for certain init ial condit ions and for many of the pos­
sible values of the parameters K and T , the asymptot ic dynamics of the
two-celled CAM of equation (4) is identical to tha t of two isolated (i.e.,
uncoupled) cells governed by equat ion (1) or (2).

When necessary for clar ity we denote the two-celled CAM at t ime t by
[(m~t ) , c~t»), (m~t) , c~t» ) ]; that is, the cells are distinguished by the subscript
and the time indicated by the superscript . P rimes may also be used to
ind icat e t ime t + 1 as evolved from time t .

Theorem 1. Let the two-celled CAM in equation (4) be initi alized at t = 0
with mo = u , ml = 0, and 0 < j.L < 1, and wit h Co = e l chosen arbit rarily
from {O, I} . A lso let (K ,T ), 0 < K < 1, T > 0, lie outside th e region UR (Pn)
where R (Pn) = { (K , T ) : Pn(k) :::; T < Pn(k) + j.LKn+l, Pn a p olynomial of
degree n} , the uni on being taken over all p olynomials Pn with coefficien ts
from {O, I}. T hen each of th e two cells has the same asy mp to tic behavior as
th e single-celled CAM of equa tion (1) or (2).

Proof. By hypothesis, we have c~O ) and c~O ) both equal to th e common value
c(O), say, and for every K E (0, 1), T !f- [Po (K) ,j.LK + Po(K )] for any choice
Po(K ) wit h Boolean coefficients. Thus T !f- [c(O ), j.LK + c(O) j. This implies that
either

T < m~l ) = e( O) :::; j.LK + e(O) = m~l ) ,

and thus e~l ) = cP) = 0, or

m~l ) < mp) + e (O) :::; T ,

and thus e~l) = ep) = 1. In either case we see that e~l) = e~l) , with common
value e(1), say. Now suppose that e~n) = e~n) , wit h common value e(n), for
n = 0,1 ,2, . . . , m - 1. Then

and

Also, we know by hypoth esis that T!f- [Pm_l (K),j.L K m + Pm- l(K)], that is,

T!f- [e(O)Km- 1 + . . . + e(m- l), j.LK m + e(O) K m- 1 + . . . + e (m- l )] .

T his impl ies that either

T < (m ) < (m )m o _ m 1 ,

and thus e~m) = e~m) = 0, or

(m) < (m) < Tm o _ m 1 _ ,
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and thus c~m) = cim ) = 1. In either case we see by mathematical induction

that c~m) = cim ) , for m = 0,1 ,2, . . . , and thus the two cells always have the
same st at e under the state d hyp otheses.

It remain s to be shown that the memory values of the two cells approach
a common valu e. We kn ow that

and

for some polynomial P n -l ' Upon subt rac ti ng these we get

Since K E (0,1) , by hypothesis, this qu antity approaches zero in the limit
as n ---> CXJ. Hence we have shown that the memory levels in the two cells
approach the same level. Thus, asymptot ically, a reference of a cell to the
state of a neighbor is identical to a reference to it s own st at e, showing that
the dyn amic s is that of the single-celled CAM of equat ion (1) or (2) .•

If both cells of the two-celled CAM in equ ation (4) are initialized with
the same values of m and c, then any reference by either cell to the other
is equivalent to a self reference by t hat cell, and thus the two-celled CAM
clearly can have any behavior possible for the single-celled CAM .

The result just established explains the single-celled behavior of the
asy mpto t ic dynamics of the two-celled CAM of equat ion (4) in the part
of the KT-diagram outs ide the fixed-point (white) regions of figure 2. That
figur e also clearly demonstrates the empirical result that there are many
overlapping regions of such period-1 dynamics. We now give a theoretical
confirmation of the observed convergence of the dynamics to a stable fixed
point in certain of these regions.

Theorem 2. Let the two-celled CAM of equation (4) be initialized to
[(j.l, 1), (0.0, 1)] with 0 < j.l < 1 and with 0 < K < 1, T > O. Th en the
automaton converges to the fixed point [(1/ (1 - K), 0) , (0.0 , 1)] in the re­
gions defined by

1. 1 + K + K 2 + .. . + K " < T < 1 + K + K 2 + ... + K " + j.lKn+\
n = 0,1 ,2, . .. ,

or
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Proof. We first consider regions of type (1). Let n be arbitrary, n > 1.
Then, by th e hypotheses,

m~i ) = KJL + 1 :S T , so c~i ) = 1U(T - KJL - 1) = 1,

and

m~1) = K . 0 +1 :S T , so C~i) = 1U(T - 1) = 1.

We now suppose that c~ ) = c~j) = 1 for j = 0,1 , . . . , m - 1 where m - 1 < n .
Then

and

m (m ) = 0+ K m - i + ... + K + 1 < T so C(im ) = 1.1 - ,

Therefore c~ ) = c~j) = 1 for j = 0,1 ,2 , . . . , n, by mathematical induction.
However ,

and

m~n+1 ) = 0 + K " + ... + K + 1 :S T , so c~n+ i) = 1.

Now suppose that c~ ) = °and c~j ) = 1 for j = n + 1, n + 2, .. . ,p - 1, for
p - 1 2: n + 1. Then

m~) = K PJL + KP-i + . . . + K + 1 > T , so c~) = 0,

and

m~p) = 0 + K P-i + . . . + K P- n-i :S T , so c~p) = 1.

Therefore c~) = °and c~j ) = 1 for j = n + 1, n + 2, . . ., by mathematical
induction. Hence

lim m~) = lim [KjJL +I:K i
] = 1/(1 - K) ,

)--+00 ) -+00 i =O

and

lim m~j ) = lim (Kj-i + ...+ K j- n- l) = 0.
) -+00 J -+CO

The proof for regions of typ e (2) is similar and is therefore omitted.•

Theorem 2 establishes th e asymptotic fixed-point behavior of the two­
celled CAM of equa tion (4) in all of th e period-I (whit e) regions that appear
as st rips running from the top to the bottom of the KT-diagram in figure 2.
The extremely complicated nature of other possible condit ions for period-I
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Figure 3: Successive enlargements of portions of figure 2.
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dyn amics can be seen in figure 3, which shows successive enlargements of a
region of figur e 2.

Since the regions just treat ed in Theorem 2 are included in those of The­
orem 1 (ou tsid e t he un ion of which the behavior is single-celled in nature) ,
it can be conjectured that any two-celled CAM satisfying the conditions of
T heorem 2 has a dynamics that approaches the dynami cs of a single-celled
CAM, or converges to a fixed point . It should be noted , however , that Theo­
rems 1 and 2 are limi ted to a very specific initi al configuration of the CAM .
Other initi al condit ions may give quite different dynamics.

The result s of this sect ion have, as an applica t ion , the following rather
star tling consequence. Let us sup pose that two isolated rooms are con­
st ruc ted and are to be heated by thermostatically cont rolled heaters. Supp ose
that the spec ific mode of op erat ion of the heaters is such that they are ac­
tivat ed at each uni t time interval if the temp erature of the room is below
the threshold sett ing T of the thermostats, which is the same for each of
the two rooms, and that if act ivated, each of the hea ters imparts one uni t
of heat into the room. Further , suppose that the ambient temperature is
zero , that the ini ti al heat content of one room is /-i and that of the ot her
is zero , and that cooling takes place according to Newton 's law of cooling,
with a heat retention factor of K during one t ime period . Finally, suppose
that the wiring is crossed so that th e thermostat in each room cont rols the
heater in the other room. The behavior of this dynamical system is identical
to the two-celled CAM of this section , so T heorems 1 and 2 apply. Thus, one
concludes that , for pairs K ,T not in the white regions of figur e 2, the two
rooms eventually behave as if the wiring was correct ly installed , bu t in the
white regions one room will never be heated while the ot her will be heated
to the greatest possible degree.

5 . Extension to larger arrays of cells

We first consider an arbit rary linear arr ay of CAM cells of the typ e introdu ced
in sect ion 3, wit h the neighborhood of a cell consist ing of the single cell next
on the right , more spec ifically described below. As before, we use the two­
component model of a CAM cell and consider an ar bit rary number N of cells
denoted , at time t , by Ai = (mi' c.). The cells are assembled into a linear
network with th e evolut ion of the network describ ed by

m;= Kmi +ci+1 , c; = l[] (T - m; ), i= O,1 ,2 , . .. , N - l , (5)

where a prime again denotes t ime t + 1 and where "wraparound" is invoked
at the ends of the array, that is, t he cell ind ex is redu ced modulo N so that
A N = Ao. In the following, by synchronous behavior of a mult icelled CAM
we mean any time all of the cells in the CAM have the same values of memory
m and state c. If t he cells have the same dynami c behavior , but shifted in
t ime , the behavior is said to be asynchronous. T he next result extends one
obtained in the pr evious sect ion wit h a two-celled CAM.
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F igure 4: KT-diagram of a three-celled CAM (see equation (5)) in i­
ti alized at [(1, 0.2) , (1, 0), (1, 0)].

Theor em 3. (M. Smith) Let the N-celled CA M of equation (5) be ini tialized
with m i = f.Li ::::: °and Co = Cl = . . . = CN-I, C; E {0,1}. A lso let (K ,T) ,°< K < 1, T > 0, lie outside the region UR(Pn), where R (Pn) = { (K,T ) :
Pn(x ) + K n+1f.Lmin :S T < Pn(x) + K n+1f.Lmax, P« a p olynomial of degree n} ,
the union being taken over all polynomials P« with coefficients from {O , I}.
Here f.Lmin = min{ f.Lo, . . . , f.LN- d and f.Lmax = max{f.Lo, . . . , f.LN- d · Th en each
of the N cells approaches , asym ptotically and in synchroniza tion , the same
behavior as the single-celled CA M of equation (1) or (2) .

Proof. The pro of is essenti ally an extension of the pr oof of Theorem 1 and
so is omit ted . •

The KT-di agram for the CAM of equation (5), with N = 3, is shown
in figur e 4. There are no fixed-p oin t regions (other than the satur ation
region T > 1/ (1- K )), however there are noti ceab le st rips outside which the
dynami cs is th at of a single-celled CAM. This CAM will be studied further
in sect ion 6.

Two-d imensional cellular automat a with memory have also been investi­
gat ed empirically by computer simulat ion . Figure 5 shows two of the KT­
diagram s th at have been obtain ed for these automata .

6 . Synchrony and as ynchrony in t he dynam ics of a linear t hree­
celled CAM

A three-celled CAM, connected in a circle and evolving according to equa­
tion (5), has already been considered for certain init ial conditions and shown
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Figure 5: KT- diagram s of two-dimensional CAMs. On the left is the
diagram of a 3 x 2 CAM and on the right that of a 5 x 4 CAM .
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Figure 6: KT-diagram for a three-celled CAM (see equation (5)) ini­
tialized at [(1,0 ), (0, 0), (0, 0)].

to lead to synchro nous behavior , wit h each of the cells acting as a single-celled
CAM in much of the KT-plane. However , ot her initi al cond itio ns have been
found to result in convergence to a steady-state dynamics, which appears to
be devoid of (synchro nous) sing le-cell behav ior throughout the unsaturated
portion of the KT-plane.

An interest ing example of this behavior ap pears in figur e 6, which shows
the KT-diagram of a thr ee-celled CAM init ialized in the state [(1,0), (0,0) ,
(0,0)]. Only period s of length 6, 9, 12, .. . , 3n , .. . are observed to occur. Fur­
ther analysis of the steady st ate reveals period-6 dynam ics of the form 000111
(03 13 ) in the state of each cell of the CAM . If we let om1n denote a period
consist ing of m consecut ive Os followed by n consecut ive Is, we find period-9
dynamics of the forms 05 14 and 0415

, period-12 dynamics of the forms 0715
,

0616
, and 051 7

, and so forth.
The following lemma is useful in explaining some of the features of this

three-celled CAM.

Lemma. Let A be a three-celled CA M that evolves according to equati on (5)
with wraparound . Th en the foll owing types of behavior of A cannot occur:

1. Ci = I , c; = Ci+l = 0, with any T > 0,

2. c; = C;+l = I , with Ci E {O , I} and T < 1.

Proof. (1) T he st ated conditions , together with equation (5), require that
m, < T and K mi > T , an obvious contradiction since K < 1.
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(2) Under the stated conditions we find that Kin; + 1 < T , again an
obv ious contradict ion since T < 1, K > 0, and m i 2: o. •

As point ed out above , no periods shorter than 6 were observed to occur
in the computer simul ations of this CAM. T he following theorem shows that
such pe riod s ar e not possible.

Theorem 4 . T he three-celled CA M of equation (5), with T < 1, has no
asynchronous p eriodi c behavior with period less than 6.

Pro of. We suppose that dy namics of periods less than 4 have already been
examined and consider the possible period-4 dyn amics. Of the 24 = 16
pos sible cycles of length 4 for a particular cell, say cell 0, only three- lOOO ,
1100 , and 1110-need be considered, since all others are eit her t ra ns lations
of one of these or have a short er pe riod of 1 or 2. We will analyze the two
cases in detail ; one of which we will show cannot occur , and the other we
will show can occur on ly with all three cells ac t ing in synchronizat ion . We
first consider the case 1100. The condit ions of the ini t ializat ion , periodicity
of per iod 4, and wrap around immediately give the state values shown in
the table below at t ime t = 0, where two period s have been shown . For
convenience, we denote c~j) by cij and an unsp ecified entry by a dot .

T ime ---.
Cell a 1 1 a a 1 1 a a
c-n i a el1 el2 el3 a cl1 el2 el3
Cell 2 a e21 c22 a e21 e22
Cell a 1 1 a a 1 1 a a

By the lemma, el l = 1, el3 = 0, c21 = 0, an d c22 = 0, as indicated in the
following updated tab le.

1 1 a a 1 1
a 1 e12 a a 1
a a a a a
1 1 a a l l

a a
el2 a
a
a a

But this implies that , to sa t isfy the lemma , el2 must be 1 when t he sub -array

1 el2
a

is considered, but canno t be 1 when the sub-array

el2 a
a

is considered-obviously an impossibility. Thus the pe riod-4 cycle 1100 can­
not occur.
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Now consider the cycle 1000. Direct applicat ion of the lemma immedi­
ately requ ires that the state table, in the form used above, be as follows.

1 0 0 0 1 0 0 0
1 el l el2 0 1 ell el2 0

c20 0 c22 0 c20 0 c22 0
1 0 0 0 1 0 0 0

There are now four cases for ell , el2. T he case 1,0 gives a tran slation of
1100, which has already been considered above; the case 0,1 gives 1010,
which has the shorter period 2 and thus need not be considered here. The
case 1,1 , toget her wit h the lemma, leads to the following tab le.

1 0 0 0 1 0 0 0
1 1 1 0 1 1 1 0
0 0 c22 0 0 0 c22 0
1 0 0 0 1 0 0 0

But this again lead s to a cont radict ion , since t he lemma requires c22 = 1 in

1 0
c22

and c22 = 0 in

c22 0
o

Finally, the case 0,0 lead s to the following table.

1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0
1 0 c22 0 1 0 c22 0
1 0 0 0 1 0 0 0

But c22 must be 0 by the lemma. Thus the three cells must be synchronized
in this case.

The proofs for the other n cycles, n < 6, are similar . •

For period 6, an example of a cycle can be shown, by calculation, to be
the following when K = 0.3 and T = 0.7.

T ime m 1 el m 2 c2 m3 c3

0 1.3910 0 1.0113 0 0.1252 1
1 0.4173 1 1.3034 0 0.0375 1
2 0.1252 1 1.3910 0 1.0113 0
3 0.0375 1 0.4173 1 1.3034 0
4 1.0113 0 0.125 2 1 1.3910 0
5 1.3034 0 0.0375 1 0.4173 1
6 1.3910 0 1.0113 0 0.1252 1
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This period-6 cycle has each of the cells following the cycle 000111 in
asyn chronous fashion , with cell i + 1 delayed by two t ime ste ps with respect
to cell i . The following theorem shows that this is the only period- 6 behavior
of a three-celled CAM obeying equ at ion (5), and also delimits the region of
the KT-diagram where this behavior can occur.

Theorem 5 . Let A be a three-celled CA M evolving according to equation
(5), with T < ma.x{l , 1/ (1 - K )} . Th en A has no asynchronous periodic
behavior of period 6 except with each cell having the cycle 000111 . Further­
m ore, such period-6 behavior can occur only in the portion of the K T-plane
where

Proof. The proof that 000111 is the only asynchronous period-6 cycle under
the stated condit ions follows from the lemma by the met hods used in the
proof of Theorem 4, and thus will not be given . The details show, however ,
that for this case the state dynamics are as given in the following tab le, in
which the format is the same as that used previously.

Cell 0
Cell I
Cell 2

1 1 1 00 0
00 1 1 1 0
1 000 1 1

Let m denote the memory value of cell 0 at the start of the cycle at ti me = O.
T hen , by equat ion (5) , we have the following inequalities during the six ste ps
of the cycle.

m ~T

Km ~T

K 2m ~ T

K 3m + 1 > T

K 4m +K + 1 > T

K 5m + K 2 + K + 1 > T

In the next step , periodicity gives the equality

K 6m + K 3 + K 2 + K = m ,

from which m is found to be m = (K +K 2 + K 3 )/ (I- K 6
) . The inequ alities

give three lower bounds and three up per bounds on T and , afte r sub st it uting
the value just found for m , th e greatest lower bound and the least upp er
bound yield the bounds stated in the theorem . •

Although the bounds just established for the 6-cycle of type 000111 agree
reasonably well with the simulation resul ts shown in the KT-diagram of fig­
ur e 6, there is yet some discrepan cy. Calculat ion of bounds of regions ex­
hibiti ng other types of st eady-st ate periodi c dynami cs of type 1mon , by the
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F igure 7: An enlargement of a portion of t he KT-diagram of figure 6.

method used above, shows an overlap of parts of each pair of adjacent re­
gions , within which the dynamics can converge to any one of two or more
steady-state cycles, depending on the initial condit ions used . This permits
rather complex boundaries between regions of the KT-diagram with a par­
t icular typ e of steady st ate. This can be seen in figure 7, which shows an
enlargement of a portion of figure 6.

7 . Concluding remarks

Whether there exist ot her possible periodic solutions of equation (5) tha n
those of the typ e 1man is an open question ; likewise whether all periods must
be multiples of three, as suggested by the simulat ions . Also, neighb orhood
systems N and form s of F and B in equa t ion (3) that are different from the
very limited cases dealt with here require much more study.
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