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Abstract. Cellular automata with unbounded memory, also known as
mathematical neuron models or threshold automata, have been stud-
ied in the single-cell case by a number of authors. In this paper these
automata are connected into multicelled networks and the dynamics
of the resulting complex systems examined for certain neighborhood
systems and interaction rules. Computer simulation and theoretical
analysis are both presented. Some of the previously known properties
of the dynamics of single cells persist in these systems, but many new
properties appear. Most of these results pertain to networks of two or
three cells with very simple forms of interaction between cells; how-
ever, there are also some implications for more general, larger systems.

1. Introduction

The dynamical behavior of a single neural automaton with memory has been
investigated by a number of authors [1-10], and has been shown to be ex-
tremely rich. In this paper, we formulate a particular model of such a neural
automaton in a way that permits assembling automata into multicelled sys-
tems, and investigate the computational and theoretical properties of the
dynamics of such systems. While we treat only a few simple modes of in-
teraction in these systems, arbitrary neighborhood schemes and interaction
rules are possible. Although many of the known dynamical properties of the
single-celled automaton persist in these larger systems, some quite interesting
new features appear that require elucidation.

The precise structure of the single neural automaton that we use is given
in section 2, where some of the previous results pertaining to its interesting
dynamics are also mentioned. The reformulation that permits the assem-
blage of these automata into networks is given in section 3, and some of the
computational simulation results are presented. The dynamics of one partic-
ular type of two-celled network is investigated in section 4, and the extension
to larger linear networks is given in section 5. A three-celled network is given
in section 6.
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2. Cellular automata with memory

We use a form of the neuron model proposed by Caianiello [1, 2] and later
used by Yamaguti and Hata [10], Cosnard and Goles [4], and others. If z,
represents the state of the neuron at time n, x,, € {0,1}, then the evolution
equation is

Tpt1 = U (T =3 i Kizn_i> 5 (1)

i=1

where T > 0,0 < K < 1,and U(z) =0if z < 0, U(z) = 1 if z > 0. The sum
can be viewed as memory in the form of a stored charge, in which case K
can be interpreted as the rate of retention of the charge over one unit time
interval. T is the threshold, with the cell “firing” (state 1) if the memory
falls below the threshold, otherwise becoming quiescent (state 0).

We will refer to an automaton defined by equation (1) as a cellular auto-
maton with (unbounded) memory (CAM); it is called by some a mathematical
neuron model or threshold automaton.

Yamaguti and Hata showed that stable periodic orbits of all periods, as
well as nonperiodic orbits, can occur in a CAM of the type just described [10].
More precisely, for fixed K they showed a one-to-one correspondence between
disjoint subintervals in the interval 0 < 7' < 1/(1 — K) and all reduced
fractions ¢/p in the unit interval, where p can be interpreted as the period
of an orbit. It follows that as T varies, with K fixed, there are exactly ¢(p)

disjoint subintervals in T" for which there are orbits of period p, where ¢ is
Euler’s ¢-function.

The results just mentioned, and others, can be illustrated by computer
simulations of the evolution of a CAM. We have performed such simulations
for single-celled CAMs of the type defined above (as well as multicelled CAMs
to be discussed later) for a wide range of values of K and 7. The evolution
of the CAM is calculated to steady state, then examined for the existence of
a fixed point or an n-cycle in the dynamics of the automaton. The periods
found in such a series of calculations can then be displayed by color or shad-
ing in a KT-diagram. Figure 1 shows the KT-diagram obtained when 400
generations of a single CAM are calculated for 64,000 different pairs of values
of K and T. K varies from 0 at the top to 1 at the bottom and T' varies
from 0 at the left to 5 at the right. White indicates a fixed point and the de-
gree of shading indicates the observed period (reduced modulo 3). It is easy
to see the single region of period-2 dynamics (¢(2) = 1), two regions each
of period-3 or -4 dynamics (¢(3) = ¢(4) = 2), and four regions of period-5
dynamics (¢(5) = 4). The large fixed-point region at the upper right satisfies
T >1/(1— K) and is called the saturation region since under this condition
the cell state eventually is always 1 and the sum in equation (1) approaches
its maximum limiting value of 1/(1 — K).



Dynamics of Multicellular Automata with Unbounded Memory 317

Figure 1: KT-diagram for a single-celled CAM, K in [0,1], T in [0, 5].
The numbers superimposed on the diagram are the observed periods
of the dynamics of the automaton for the corresponding values of K

and T'.

3. Multicelled CAMs

In order to construct arrays of interacting CAM cells, we proceed as follows.
We envision a single CAM cell, A, as consisting of two components, A =
(m,c). Here m is a real number that can be thought of as internal memory,
analogous to the charge in a storage battery, with no direct external effect.
c € {0,1} is the “state” of the cell that is visible to all “neighboring” cells
and may influence their behavior. The precise definitions of “neighborhood”
and of the mechanism of mutual interaction among cells must be elaborated
for each CAM network constructed.

In the single-cell case, with a cell’s neighborhood consisting of the cell
itself, one realization of such a CAM is as follows. If (m, ¢) denotes the CAM
at time n and (m/, ') the CAM at time n + 1, we require

m' = F(m,c), d = B(m),

where F' : Rx{0,1} — R and B is a Boolean-valued function B : R — {0, 1}.
The simple special case in which

m. = Km + c, d=0(T —m') (2)

can easily be shown to be equivalent to the single-celled CAM in equation (1)
above.
This approach permits an easy extension to an arbitrary array of cells.

Let (m,¢) denote an N-celled CAM at time ¢ and (7', ¢') the same CAM at
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Figure 2: KT-diagram for a two-celled CAM (see equation (4)). The
coordinates are the same as in figure 1.

time ¢ 41, where ™ = (mg,m4,...,my_1) and € = (co, . .., cy—1) denote the
arrays of cell attributes for the N cells making up the CAM network. Then
we define

mi = Fm, Ni®)), ¢ = B(m), (3)

for real-valued F' and Boolean-valued B, and where N;(¢) denotes the set of
states of cells in the neighborhood of the ith cell.

A simple example of a two-celled CAM can be defined as follows. Denote
the CAM by [(mo, ), (m1,c1)] at time ¢. The evolution of the CAM then
proceeds in discrete time steps, with a prime denoting time ¢ + 1, by

my = Kmo+¢1, ¢y =U(T —my);
my = Kmy + ¢y, ¢ =U(T —my).

(4)

Computer simulation of the two-celled CAM just described results in the
KT-diagram shown in figure 2, when initialized in the state [(1,0),(1,.3)].
Notice that the dynamics exhibits rather striking differences from the related
single-celled CAM shown in figure 1, with numerous period-1, or fixed-point,
regions superimposed on a background dynamics that appears to be identical
to that for a single cell.

4. Dynamics of a two-celled CAM

An examination of the K7T-diagram of a two-celled CAM (shown in figure 2)
raises interesting questions concerning the precise description of the many
regions of fixed-point dynamics. Some answers are provided in this section.
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We first show that for certain initial conditions and for many of the pos-
sible values of the parameters K and T, the asymptotic dynamics of the
two-celled CAM of equation (4) is identical to that of two isolated (i.e.,
uncoupled) cells governed by equation (1) or (2).

When necessary for clarity we denote the two-celled CAM at time t by
[(mg),cgt)), (mgt) ,cgt))]; that is, the cells are distinguished by the subscript
and the time indicated by the superscript. Primes may also be used to
indicate time ¢t + 1 as evolved from time ¢.

Theorem 1. Let the two-celled CAM in equation (4) be initialized at t = 0
with mg = pu, my = 0, and 0 < pu < 1, and with ¢y = ¢; chosen arbitrarily
from {0,1}. Alsolet (K,T),0< K <1, T > 0, lie outside the region UR(p,,)
where R(p,) = {(K,T) : pu(k) < T < pu(k) + uK™*, p, a polynomial of
degree n}, the union being taken over all polynomials p, with coefficients
from {0,1}. Then each of the two cells has the same asymptotic behavior as
the single-celled CAM of equation (1) or (2).

Proof. By hypothesis, we have c((,o) and c§°) both equal to the common value
9, say, and for every K € (0,1), T & [po(K), uK + po(K)] for any choice
po(K) with Boolean coefficients. Thus T ¢ [c¢(%), uK +c(®]. This implies that
either

T < m(()l) =cO < puK + 9 = mgl),

and thus c(()l) = c(ll) =0, or

mi) <m{P + 0 <7,

and thus cgl) = cgl) = 1. In either case we see that cél) = c(ll), with common

value ¢, say. Now suppose that ¢ = ™, with common value ¢, for

n=20,1,2,...,m—1. Then
mi™ = K™u+ cOK™ ! 4+ (WK™ 2 ... 4 (MK 4 D)
and
m{™ = O™ 1 4 (WE™2 ... 4 | 4 (),
Also, we know by hypothesis that T & [pp—1(K), uK™ + pm-1(K)], that is,
T [COK™ ! 4. g™ yK™ 4 O™ 4. dm=D),
This implies that either
T < mff) < ™,
) (m)

and thus ¢{™ = ™ =0, or

mg™ <m™ < T,
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and thus cém) = cgm) = 1. In either case we see by mathematical induction
that c(()m) = cgm), for m =0,1,2,..., and thus the two cells always have the
same state under the stated hypotheses.

It remains to be shown that the memory values of the two cells approach
a common value. We know that

mén) = pp-1(K)

and
m{" = pK™ + pn_1(K)

for some polynomial p,_;. Upon subtracting these we get
m{™ — m{™ = uK™.

Since K € (0,1), by hypothesis, this quantity approaches zero in the limit
as n — oco. Hence we have shown that the memory levels in the two cells
approach the same level. Thus, asymptotically, a reference of a cell to the
state of a neighbor is identical to a reference to its own state, showing that
the dynamics is that of the single-celled CAM of equation (1) or (2). H

If both cells of the two-celled CAM in equation (4) are initialized with
the same values of m and ¢, then any reference by either cell to the other
is equivalent to a self reference by that cell, and thus the two-celled CAM
clearly can have any behavior possible for the single-celled CAM.

The result just established explains the single-celled behavior of the
asymptotic dynamics of the two-celled CAM of equation (4) in the part
of the KT-diagram outside the fixed-point (white) regions of figure 2. That
figure also clearly demonstrates the empirical result that there are many
overlapping regions of such period-1 dynamics. We now give a theoretical
confirmation of the observed convergence of the dynamics to a stable fixed
point in certain of these regions.

Theorem 2. Let the two-celled CAM of equation (4) be initialized to
[(1,1),(0.0,1)] with 0 < u < 1 and with 0 < K < 1, T > 0. Then the
automaton converges to the fixed point [(1/(1 — K),0),(0.0,1)] in the re-
gions defined by

1L.1+K+K*+-- +K"<T<1+K+K?>+. + K"+ uK*t,
n:O’1)27""

or

2 K"<T < K"+ pK™ n=0,1,2,....



Dynamics of Multicellular Automata with Unbounded Memory 321

Proof. We first consider regions of type (1). Let m be arbitrary, n > 1.
Then, by the hypotheses,

Vo Kp+1<T, so ) =UT-Ku—1)=1,

and
m) =K. 041<T, so "=0UT-1)=1.
We now suppose that c(()j) = cgj) =1forj=0,1,...,m—1wherem—1< n.
Then
mi™ = K™u+ K™+ +K+1<T, soc™ =1,
and
m™=0+K™ 4. ..+ K+1<T, soc™ =1.
Therefore cgj) = cgj) =1 for 5 =0,1,2,...,n, by mathematical induction.
However,
mi™ =Ky + KM+ K+1>T, soc™™ =0,
and

(nH) =0+K"+---+K+1<T, soc(1"+1):1.

Now suppose that céj) =0 and cgj) =lforj=n+1n+2,...,p—1, for
p—12>n+1. Then

P KPy+ KP4+ K4+1>T, socgp)zo,
and
m® =0+ KP4 4 KPLLST, sod? =1.

Therefore céj) = 0 and cgj) =1for j =n+1,n+2,..., by mathematical
induction. Hence

j=1
lim m{) = hm Kip+ ZK’:I =1/(1-K),
and
lim m? = lim (K9 4 .-+ K1) =0,
J—?OO ]—’OO

The proof for regions of type (2) is similar and is therefore omitted. B

Theorem 2 establishes the asymptotic fixed-point behavior of the two-
celled CAM of equation (4) in all of the period-1 (white) regions that appear
as strips running from the top to the bottom of the K7-diagram in figure 2.
The extremely complicated nature of other possible conditions for period-1
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Figure 3: Successive enlargements of portions of figure 2.
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dynamics can be seen in figure 3, which shows successive enlargements of a
region of figure 2.

Since the regions just treated in Theorem 2 are included in those of The-
orem 1 (outside the union of which the behavior is single-celled in nature),
it can be conjectured that any two-celled CAM satisfying the conditions of
Theorem 2 has a dynamics that approaches the dynamics of a single-celled
CAM, or converges to a fixed point. It should be noted, however, that Theo-
rems 1 and 2 are limited to a very specific initial configuration of the CAM.
Other initial conditions may give quite different dynamics.

The results of this section have, as an application, the following rather
startling consequence. Let us suppose that two isolated rooms are con-
structed and are to be heated by thermostatically controlled heaters. Suppose
that the specific mode of operation of the heaters is such that they are ac-
tivated at each unit time interval if the temperature of the room is below
the threshold setting T of the thermostats, which is the same for each of
the two rooms, and that if activated, each of the heaters imparts one unit
of heat into the room. Further, suppose that the ambient temperature is
zero, that the initial heat content of one room is p and that of the other
is zero, and that cooling takes place according to Newton’s law of cooling,
with a heat retention factor of K during one time period. Finally, suppose
that the wiring is crossed so that the thermostat in each room controls the
heater in the other room. The behavior of this dynamical system is identical
to the two-celled CAM of this section, so Theorems 1 and 2 apply. Thus, one
concludes that, for pairs K, 7T not in the white regions of figure 2, the two
rooms eventually behave as if the wiring was correctly installed, but in the
white regions one room will never be heated while the other will be heated
to the greatest possible degree.

5. Extension to larger arrays of cells

We first consider an arbitrary linear array of CAM cells of the type introduced
in section 3, with the neighborhood of a cell consisting of the single cell next
on the right, more specifically described below. As before, we use the two-
component model of a CAM cell and consider an arbitrary number N of cells
denoted, at time ¢, by A; = (my,¢;). The cells are assembled into a linear
network with the evolution of the network described by

mi=Km;+c¢y1, =UT-m)), i=0,1,2,...,N—1, (5)
where a prime again denotes time t + 1 and where “wraparound” is invoked
at the ends of the array, that is, the cell index is reduced modulo N so that
An = Ap. In the following, by synchronous behavior of a multicelled CAM
we mean any time all of the cells in the CAM have the same values of memory
m and state c. If the cells have the same dynamic behavior, but shifted in
time, the behavior is said to be asynchronous. The next result extends one
obtained in the previous section with a two-celled CAM.
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Figure 4: KT-diagram of a three-celled CAM (see equation (5)) ini-
tialized at [(1,0.2), (1,0), (1,0)].

Theorem 3. (M. Smith) Let the N-celled CAM of equation (5) be initialized
with m; = p; > 0 and ¢g = ¢; = -+ = ey_1, ¢; € {0,1}. Also let (K, T),
0< K <1, T >0, lie outside the region UR(p,), where R(p,) = {(K,T) :
() + K" pipin < T < po() + K™ iy, P a polynomial of degree n},
the union being taken over all polynomials p, with coefficients from {0, 1}.
Here fimin = min{pio, ..., n-1} and pimax = max{go, ..., n—-1}. Then each
of the N cells approaches, asymptotically and in synchronization, the same
behavior as the single-celled CAM of equation (1) or (2).

Proof. The proof is essentially an extension of the proof of Theorem 1 and
so is omitted. B

The KT-diagram for the CAM of equation (5), with N = 3, is shown
in figure 4. There are no fixed-point regions (other than the saturation
region T > 1/(1 — K)), however there are noticeable strips outside which the
dynamics is that of a single-celled CAM. This CAM will be studied further
in section 6.

Two-dimensional cellular automata with memory have also been investi-
gated empirically by computer simulation. Figure 5 shows two of the KT-
diagrams that have been obtained for these automata.

6. Synchrony and asynchrony in the dynamics of a linear three-

celled CAM

A three-celled CAM, connected in a circle and evolving according to equa-
tion (5), has already been considered for certain initial conditions and shown
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Figure 5: KT-diagrams of two-dimensional CAMs. On the left is the
diagram of a 3 x 2 CAM and on the right that of a 5 x 4 CAM.
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Figure 6: KT-diagram for a three-celled CAM (see equation (5)) ini-
tialized at [(1,0),(0,0), (0,0)].

to lead to synchronous behavior, with each of the cells acting as a single-celled
CAM in much of the K7T-plane. However, other initial conditions have been
found to result in convergence to a steady-state dynamics, which appears to
be devoid of (synchronous) single-cell behavior throughout the unsaturated
portion of the KT-plane.

An interesting example of this behavior appears in figure 6, which shows
the KT-diagram of a three-celled CAM initialized in the state [(1,0), (0,0),
(0,0)]. Only periods of length 6,9,12,...,3n,... are observed to occur. Fur-
ther analysis of the steady state reveals period-6 dynamics of the form 000111
(0%13) in the state of each cell of the CAM. If we let 0™1™ denote a period
consisting of m consecutive 0s followed by n consecutive 1s, we find period-9
dynamics of the forms 0°1* and 0%1°, period-12 dynamics of the forms 071°,
0616, and 0°17, and so forth.

The following lemma is useful in explaining some of the features of this
three-celled CAM.

Lemma. Let A be a three-celled CAM that evolves according to equation (5)
with wraparound. Then the following types of behavior of A cannot occur:

1. ¢;=1,c =¢iy1 =0, with any T > 0,
2. d=cp1=1, withe; € {0,1} and T < 1.

Proof. (1) The stated conditions, together with equation (5), require that
m; < T and Km; > T, an obvious contradiction since K < 1.
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(2) Under the stated conditions we find that K'm; + 1 < T, again an
obvious contradiction since T'< 1, K > 0, and m; > 0.}

As pointed out above, no periods shorter than 6 were observed to occur
in the computer simulations of this CAM. The following theorem shows that
such periods are not possible.

Theorem 4. The three-celled CAM of equation (5), with T" < 1, has no
asynchronous periodic behavior with period less than 6.

Proof. We suppose that dynamics of periods less than 4 have already been
examined and consider the possible period-4 dynamics. Of the 2¢ = 16
possible cycles of length 4 for a particular cell, say cell 0, only three—1000,
1100, and 1110—mneed be considered, since all others are either translations
of one of these or have a shorter period of 1 or 2. We will analyze the two
cases in detail; one of which we will show cannot occur, and the other we
will show can occur only with all three cells acting in synchronization. We
first consider the case 1100. The conditions of the initialization, periodicity
of period 4, and wraparound immediately give the state values shown in
the table below at time ¢ = 0, where two periods have been shown. For
convenience, we denote c? ) by cij and an unspecified entry by a dot.

Time —
Cell 0 1 1 0 0 1 1 0 0
Cell 1 0 cll cl12 ¢13 0 ¢l1l ¢l12 cl13
Cell 2 0 21 ¢22 - 0 21 22
Cell 0 1 1 0 0 1 1 0 0

By the lemma, c¢11 =1, ¢13 = 0, ¢21 = 0, and ¢22 = 0, as indicated in the
following updated table.

11 0 011 0 O
01 c12 0 0 1 c12 0
oo o0 - 00 0 -
11 0 011 0 O

But this implies that, to satisfy the lemma, ¢12 must be 1 when the sub-array

1 cl2
0

is considered, but cannot be 1 when the sub-array

cl2 0
0

is considered—obviously an impossibility. Thus the period-4 cycle 1100 can-
not occur.
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Now consider the cycle 1000. Direct application of the lemma immedi-
ately requires that the state table, in the form used above, be as follows.

1
1

c20

1

There are now four cases for c¢11,cl12. The case 1,0 gives a translation of
1100, which has already been considered above; the case 0,1 gives 1010,
which has the shorter period 2 and thus need not be considered here. The
case 1,1, together with the lemma, leads to the following table.

O

But this again leads to a contradiction, since the lemma requires ¢22 =1 in

1
c2

0
1
0
0

2

0 0 O
cll c¢12 0
0 22 0
0 0 0

1 0 0
1 11 ¢l12 0
c20 0 22 0
1L 0 0

0 010

1
c22
0

o O o

0

and ¢22 =0 in
22 0

0

11
00
10

0 O
1 0
c22 0
0 0

Finally, the case 0,0 leads to the following table.

1

1
1
1

But ¢22 must be 0 by the lemma. Thus the three cells must be synchronized
in this case.
The proofs for the other n cycles, n < 6, are similar. B

For period 6, an example of a cycle can be shown, by calculation, to be

0

0
0
0

0 0
0 0
c22 0
0 0

=

0

(== e R an)

0
0
c22
0

oo oo

the following when K = 0.3 and 7' = 0.7.

Time

0

O UL W N

ml
1.3910
0.4173
0.1252
0.0375
1.0113
1.3034
1.3910

cl

OO O MHMHO

m2
1.0113
1.3034
1.3910
0.4173
0.1252
0.0375
1.0113

c2

= T R S = (R o T o

m3

0.1252
0.0375
1.0113
1.3034
1.3910
0.4173
0.1252

c3

— 000

John W. Layman
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This period-6 cycle has each of the cells following the cycle 000111 in
asynchronous fashion, with cell 7z 4+ 1 delayed by two time steps with respect
to cell 4. The following theorem shows that this is the only period-6 behavior
of a three-celled CAM obeying equation (5), and also delimits the region of
the K'T-diagram where this behavior can occur.

Theorem 5. Let A be a three-celled CAM evolving according to equation
(5), with T < max{1,1/(1 — K)}. Then A has no asynchronous periodic
behavior of period 6 except with each cell having the cycle 000111. Further-
more, such period-6 behavior can occur only in the portion of the K'T-plane
where

K+ K*+ K3 <1+K4+K5
1—- K¢ - 1—- K8®

Proof. The proof that 000111 is the only asynchronous period-6 cycle under
the stated conditions follows from the lemma by the methods used in the
proof of Theorem 4, and thus will not be given. The details show, however,
that for this case the state dynamics are as given in the following table, in
which the format is the same as that used previously.

Cel0O 1 1 1000
Celll 001110
Cell2 1 000 11

Let m denote the memory value of cell 0 at the start of the cycle at time = 0.
Then, by equation (5), we have the following inequalities during the six steps
of the cycle.
m<T
Km<T
K*m<T
K*m+1>T
K'm+K+1>T
Km+K +K+1>T

In the next step, periodicity gives the equality
Km+ K+ K?*+ K =m,

from which m is found to be m = (K + K?+ K®) /(1 — K*). The inequalities
give three lower bounds and three upper bounds on 7" and, after substituting
the value just found for m, the greatest lower bound and the least upper
bound yield the bounds stated in the theorem. B

Although the bounds just established for the 6-cycle of type 000111 agree
reasonably well with the simulation results shown in the K7-diagram of fig-
ure 6, there is yet some discrepancy. Calculation of bounds of regions ex-
hibiting other types of steady-state periodic dynamics of type 1™0", by the
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Figure 7: An enlargement of a portion of the K T-diagram of figure 6.

method used above, shows an overlap of parts of each pair of adjacent re-
gions, within which the dynamics can converge to any one of two or more
steady-state cycles, depending on the initial conditions used. This permits
rather complex boundaries between regions of the K7-diagram with a par-
ticular type of steady state. This can be seen in figure 7, which shows an
enlargement of a portion of figure 6.

7. Concluding remarks

Whether there exist other possible periodic solutions of equation (5) than
those of the type 1™0" is an open question; likewise whether all periods must
be multiples of three, as suggested by the simulations. Also, neighborhood
systems A and forms of F' and B in equation (3) that are different from the
very limited cases dealt with here require much more study.
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