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Abstract. This paper considers the effect of stochasticity on the qual-
ity of convergence of genetic algorithms (GAs). In many problems, the
variance of building-block fitness, or so-called collateral noise, is the
major source of variance, and a population-sizing equation is derived
to ensure that average signal-to-collateral-noise ratios are favorable
to the discrimination of the best building blocks required to solve a
problem of bounded difficulty. The sizing relation is modified to per-
mit the inclusion of other sources of stochasticity, such as the noise of
selection, the noise of genetic operators, and the explicit noise or non-
determinism of the objective function. In a test suite of five functions,
the sizing relation proves to be a conservative predictor of average cor-
rect convergence, as long as all major sources of noise are considered in
the sizing calculation. These results suggest how the sizing equation
may be viewed as a coarse delineation of a boundary between two dis-
tinct types of GA behavior. At small population sizes the GA makes
many errors of decision, and the quality of convergence is largely left
to chance or to the serial fix-up of flawed results through mutation or
other serial injection of diversity. At large population sizes, GAs can
reliably discriminate between good and bad building blocks, and par-
allel processing and recombination of building blocks lead to the quick
solution of even difficult deceptive problems. Additionally, the paper
outlines a number of extensions, including the development of more
refined models of the relation between generational average error and
ultimate convergence quality, the development of online methods for
sizing populations via the estimation of population-sizing parameters,
and the investigation of population sizing in the context of niching and
other schemes designed for use in problems with high-cardinality solu-
tion sets. The paper also discusses how these results may one day lead
to rigorous proofs of convergence for recombinative GAs operating on

problems of bounded difficulty.
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1. Introduction

An education in genetic algorithms (GAs) begins tamely enough with an
initiation to the rites of strings, schemata, selection, genetic operators, and
other GA paraphernalia. The first applications to some problem of interest
follow in short order, with enough success to justify further experimentation.
In the back of the user’s mind, however, many detailed doubts and questions
linger. How long does it take for GAs to converge, and to what quality
answer? What classes of problems can GAs be expected to solve to global
optimum? What mix of operators and parameter settings is required to
permit such a desirable happenstance? When posed jointly in this fashion,
the questions facing the GA community appear dauntingly interrelated and
difficult; but starting with Holland’s efforts of almost two decades past, and
continuing with the renewed interest in GA theory over the last five years,
the questions are being divided and conquered through that combination of
theory and experimentation appropriate to tackling such complex systems as
genetic algorithms.

In this paper we carry on in that spirit of optimistic reductionism, and
consider a single question that has puzzled both novice and experienced GA
users alike: how can populations be sized to promote the selection of correct
(global) building blocks? The answer comes from statistical decision theory
and requires that we examine building-block signal differences in relation to
population noise. It is somewhat surprising that noise must be considered
even when GAs tackle deterministic decision problems, until one recognizes
that building-block or collateral noise is the cost of parallel subproblem solu-
tion within a selective-recombinative GA.

We consider population sizing in the presence of noise by first reviewing
six essential elements to GA success. This leads to a brief historical review of
past efforts connected with building-block decision making and population
sizing. A simple population-sizing equation is then derived, and is used to
calculate population sizes for a sequence of test functions displaying vary-
ing degrees of nonlinearity, nondeterminism, and nonuniform scaling. This
simple sizing equation is shown to be a conservative yet rational means of
estimating population size. Extensions of these calculations are also sug-
gested, with the possibility that these methods may be used to develop fully
rigorous convergence proofs for recombinative GAs operating on problems of
bounded difficulty.

2. A bird’s-eye view of GA essentials

When one is mired in a GA run, it is often difficult to discern why things
do or do not work. Since Holland’s identification of schemata as the unit of
selection [30, 31] and specification of a bound on their expected growth [33],
a much clearer picture has emerged regarding the conditions necessary for
successful discovery. Despite supposed challenges to GA theory that “turn
Holland on his head,” all known GA results can be explained in purely
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mechanistic terms using variations or extensions of Holland’s argument; and
elsewhere the six conditions for GA success have been itemized [18]:

1. Know what the GA is processing: building blocks.

2. Ensure an adequate supply of building blocks either initially or tempo-
rally.

3. Ensure the growth of necessary building blocks.
4. Ensure the mixing of necessary building blocks.

5. Solve problems that are building-block tractable; recode those that are
not.

6. Decide well among competing building blocks.

In the remainder of this section, we will briefly review the first five of
these building-block conditions, and more comprehensively consider the last.

2.1 Building blocks—the first five essentials

The first three essentials in our list are familiar to most readers of this paper
and are not considered further, except to note that the attempts to dress
schemata in more elegant mathematical vestment [36, 42] may be consid-
ered as special cases of Holland’s original (and largely ignored) formulation
of schemata as similarity subsets of interacting and hierarchically intercon-
nected finite-state machines [30, 31].

The fourth essential—the issue of mixing—has been little explored, and
even in Holland’s original monograph it receives only passing mention. Never-
theless, it is certainly the point at which the recent challenges [3, 8, 40, 41]
to Holland’s call for low-disruption crossover operators will ultimately fall
or stand. In this paper we continue to ignore this important issue, except
to say that our choice of low-disruption crossover operators and utilization
of tight linkage (when necessary) was guided by the recognition that mixing
behavior is important to GA success. While the authors just cited have
shown that disruption can be reduced sufficiently to permit building-block
growth, no convincing evidence of high-order mixing success—empirical or
otherwise—has yet been offered. The Second Law of Genetic Algorithms (if
one exists) is most certainly a mixing law, but its form has only been hinted
at [21, 33]. Further theoretical and empirical study of mixing is underway at
Illinois and results from that study will be reported at a later date; whatever
the answers to the mixing question are, they will most certainly come from
proper application of schema thinking.

Thought along building-block lines has led to the discovery of problems
that in an average sense are maximally misleading [7, 11, 13, 14, 16, 34, 43].
Mitchell and Forrest [35] have pointed out that these ideas are not yet fully
mature, but the exploration of average-sense deception has led to more chal-
lenging test function design. Their fuller exploration is likely to lead us to
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better mental models of what makes a problem easy or hard for a GA. The
fact that some of these stick-figure models are not fully predictive [27] should
not deter us. The give and take of hypothesis formation, experimentation,
and hypothesis refinement that is science is leading to a better, more me-
chanical understanding of GA dynamics. In a more practical vein, it is still
an open question whether problems of bounded difficulty can be overcome by
obtaining tight linkage on the fly [19], or whether other more sophisticated
and effective re-representation operators can be developed to make deceptive
problems more amenable to selecto-recombination [34].

2.2 Deciding well

As we better understand the workings of GAs—as we better understand the
existence, growth, mixing, and assembly of partial solutions—we are at some
point led to consider the accuracy of the decision-making process of selec-
tion, as partial solutions are forced to compete with one another. Viewed
in this way, choosing between competing building blocks becomes a fairly
well-posed problem in statistical decision theory, as was first recognized by
Holland [32, 33]. His crucial insight was that implicit parallelism breaks the
combinatorially insufferable search for strings into many smaller and more
tractable searches for building blocks. Though this division is advantageous
in terms of search-set cardinality, it is not purchased without cost. This cost
can be demonstrated most dramatically if we compare, in the case of a deter-
ministic search problem, the discrimination between better strings with the
discrimination between better building blocks. The problem of determining
the better of two strings can be solved with complete confidence through a
single pairwise test. At the level of building blocks, despite the determin-
ism of the problem, discrimination becomes an exercise in statistical decision
making. This is due to the variation of other building blocks; that is, the
simultaneous experimentation with many combinations is a source of noise to
any particular building block of interest. It is important, therefore, to control
the error in each of the relevant building-block problems that are being played
out in a GA if we are ever to have any hope of obtaining a good solution at the
end of a run with high probability. If this can be accomplished—and if the
other essential conditions of building-block processing can be maintained—
then there is hope that convergence guarantees can be determined for simple
GAs for which operator probabilities are properly chosen and populations
are properly sized.

To make his point about statistical decision making, Holland chose to
idealize the process within a GA as a cluster of parallel and interconnected
2%_armed bandit problems [32, 33]. In attempting to allocate trials to compet-
ing alternatives in a sensible manner, Holland viewed the sequential decision
process that is played out in realizable GAs in stylized block form assuming
perfect foresight, and he calculated an equation relating minimal-expected-
loss block size and total number of trials. One may object that realizable
GAs are population-wise sequential algorithms, not block algorithms, and
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that no realizable GA can know outcomes before they happen—but Holland
was aware that his calculation was no more than an optimistic bound on the
mathematical form of trial allocation in realizable GAs [32]. Holland was
also aware that in realizable GAs many partitions are sampled simultane-
ously and that the sampling becomes nonuniform after selective reallocation;
such awareness did not prevent recent criticism of the bandit idealization [28]
on those grounds. Holland’s model has been bolstered by recent work that
suggests that, because they have higher root-mean-squared (RMS) signal-
to-noise ratio values than the lower partitions they subsume, GAs play the
highest-order partitions that are well sampled in a given population [24].

Building on Holland’s work, De Jong [4] presented equations for the
two-armed-bandit block-allocation process that removed Holland’s assump-
tion of foresight, and these equations have been solved in closed form fairly
recently [12]. De Jong also explicitly recognized the role of signal-to-noise
ratio by suggesting that population sizes of order

o2+ a2
n>Y—2> (1)

| h=Fl
where f; and f, are the mean fitness values, and ¢? and o2 are the variance
values of the two arm-payoffs, respectively, might be useful to reduce statis-
tical decision error. Unfortunately, these calculations were not used to guide
the sizing of populations in the largely empirical remainder of De Jong’s
dissertation.

Elsewhere, the performance of genetic algorithms on noisy functions was
studied in the context of image registration [29, 9]. Though largely empirical
in nature, this work did recognize the importance of noise in the decision
process. However, as the study focused on problems with inherently noisy
objective functions, the role of collateral or building-block noise was not
considered, and this precluded a more basic understanding of the relationship
between noise, resampling, convergence, and population sizing. Nonetheless,
the work is one of the few studies since 1975 that has explicitly recognized
the role of noise in GA convergence.

One of the motivations for introducing so-called messy genetic algorithms
or mGAs [21, 22] was to reduce the building-block noise initially encoun-
tered during selection and recombination within a simple GA. The earlier
of the mGA papers calculated some estimates of fitness variance in typical
test functions, and the authors were surprised by the large population sizes
that would be required to overcome the collateral noise faced in the typi-
cally randomly generated population. More recent work has delved into the
relationship between fitness functions and fitness variance using Walsh func-
tions [24, 37], and the thinking found there has led to the development of a
population-sizing relation based on signal-to-noise ratio, as well as a sugges-
tion for calculating a variance-adjusted schema theorem. The present study
may be viewed as a continuation of that work.

Although not directly related to the present work, several other stud-
ies deserve brief mention. Holland’s O(n?) estimate of useful building-block
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Figure 1: Overlapping distributions of competing schemata permit
the possibility of making errors in decisions, especially when only one
sample of each schema is taken.

processing is sometimes misconstrued to suggest that building blocks are bet-
ter processed in larger populations. This notion was debunked [10], and an
alternative calculation of the estimate was made available by Fitzpatrick and
Grefenstette [9]. Elsewhere [15], population sizing—performed in the con-
text of comparing serial with parallel computations on the basis of schema
turnover rate—is applied too literally. That paper coarsely suggests that
high schema turnover is promoted with small populations in serial computa-
tions and large populations in parallel computations. That result does not
contradict the present study, but rather presents an alternative view of the
population-sizing question under a different set of assumptions. Here we are
concerned primarily with controlling errors in building-block decision making
through the use of a large-enough population size—regardless of the type of
processor used, and regardless of the real-time rate of schema processing.

3. Population sizing in the presence of noise

Holland [32] set the GA community’s sails on a voyage of stochastic decision
making among competing building blocks. We continue along this voyage,
ironically making progress by tacking back to a simpler point of departure.
Instead of worrying about the form of the optimal allocation of trials over all
function evaluations as did Holland [32] and De Jong [4], we simply require
that the error in building-block decision making be below some specified level
in the first and all subsequent generations. In this way, we expect the GA to
make accurate progress with high probability through the normal mechanics
of selection and recombination.

3.1 Some basics of statistical decision theory

We start by considering two competing building blocks, call them H; (with
mean fitness fy, and fitness variance 0% ) and H, (with mean fitness fp, and
fitness variance o%;,). We care little how the fitness values are distributed,
because given enough samples, the mean fitness approaches a normal distri-
bution as guaranteed by the central limit theorem. Pictorially, the situation
we face with a single sample of each of two normally distributed schemata is
displayed in figure 1. Clearly schema H; is the better of the two, and assum-
ing that the problem is not deceptive (or that we are considering a sufficiently
high-order schema that deception is no longer an issue), we hope to choose
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Figure 2: With 25 trials for each schema, the overlap of the distribu-
tions of the schema averages is greatly diminished, thereby drastically
decreasing the probability of error.

strings that represent H; more often than those that represent H,. With a
single sample in the pictured event, this is not a highly probable situation—as
indicated by the overlap in the distributions. In fact, in a single head-to-head
comparison of normally distributed H; and H,, we can calculate the prob-
ability that the worse schema of the two is better than a particular fitness
value f’, by finding the area of the shaded region. The overall probability
that the sample fitness of the second-best schemata is higher than the sample
fitness of the best schemata may be calculated by accumulating the above
probability for all possible values of f’. This computation is called the con-
volution of the two distributions, and conveniently the convolution of two
normal distributions is itself normal: the mean of the convolution is calcu-
lated as the difference in the means of the two individual distributions and
the variance of the convolution is simply the sum of the individual variances.
Thus, defining the signal difference d = fy, — fn, and calculating the mean
variance of the two building blocks as a3, = (0%, +0%,)/2, the probability of
making an error on a single trial of each schema may be calculated by finding
the probability « such that 2%(a) = d?/(20%,), where z(«) is the ordinate of
a unit, one-sided, normal deviate. Henceforth, we will drop the o and simply
recognize z as the tail deviate value at a specified error probability.

If one sample of each building block were all we were permitted, it would
be difficult to discriminate between any but the most widely disparate build-
ing blocks. Fortunately, in population-based approaches such as genetic al-
gorithms, we are able to simultaneously sample multiple representatives of
building blocks of interest. As we take more samples, the standard deviation
of the mean difference becomes tighter and tighter, meaning that we can
become more confident in our ability to choose better building blocks as the
population size increases. This is shown in figure 2, where 25 trials have been
assumed for each schema, and the fivefold reduction in standard deviation
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results in a much smaller overlap between the two distributions than in our
previous example.

3.2 Deriving a population-sizing equation

To put this into practice for particular competitors in a partition of given
cardinality, we recognize that the variance of the population mean goes as
the variance of a single trial divided by the number of samples. Since the
likely number of samples in a uniformly random population of size n is simply
the population size divided by the number of competing schemata  in the
partition to which the two schemata belong, the corresponding relationship
necessary to obtain discrimination with an error rate @ may be written as

5 d?
T (i 2
& 20%,/n"’ (2)
where n' = n/k. Calling 2> the coefficient ¢ (also a function of a) and

rearranging, we obtain a fairly general population-sizing relation as follows:

2
n= 20&%. (3)
Thus, for a given pairwise competition of schemata, the population size varies
inversely with the square of the signal difference that must be detected, and
proportionally to the product of the number of competitors in the competi-
tion partition, the total building-block error, and a constant that increases
with decreasing permissible error. The mechanics of a GA, however, involves
pairwise competition of a number of building blocks. Thus, to use this equa-
tion conservatively, we must size the population for those schemata that may
be deceptive and that have the highest value of signal-to-noise-ratio, ko%,/d>.
Subsequently, we will generalize this equation to include sources of sto-
chastic variation other than building-block or collateral noise, and will spe-
cialize the equation somewhat to get a rough idea of how the population size
must change as the deception increases or the problem size grows. At this
point we are curious to discover how the coefficient ¢ increases with decreasing
error tolerance. Of course, ¢ is nothing more than the square of a one-sided
normal deviate. Figure 3 graphs c as a function of error on a logarithmic axis;
at low error values, the graph becomes almost linear—as should be expected
after straightforward computations involving the usual approximation for the
tail of a normal distribution: o = exp(—22/2)/(zv/27).

3.3 Other sources of noise

The equation derived above is fairly general; however, we have assumed that
all the noise faced by the schemata comes from the variance of fitness within
the population. Although this is largely true in many problems, GAs may
nevertheless face noise from a variety of sources, including inherently noisy
problems, noisy selection algorithms, and the variance of other genetic opera-
tors. The sizing equation will remain valid, even in cases where these sources
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Figure 3: A graph of ¢ as a logarithmic function of error o becomes
almost linear at low error rates.

are significant with respect to the collateral noise, if we adjust the variance
by including a multiplier for each of the additional sources of stochasticity.
For the ith source of noise (call it n;) with magnitude o2 , we can define the
relative noise coefficient
2
2 ani
P =2 (4)

Thereafter, the total additional relative noise coefficient may be calculated:
PT =2 Fn (5)

assuming statistical independence of all sources of stochasticity, and the mod-
ified population-sizing relation may be obtained:

n = 2¢(1 + pg)K7?, (6)

where v2 = 0%,/d?, the mean squared inverse overall signal-to-noise ratio.
When we examine our initial simulation results, we will demonstrate an
appropriate adjustment of the population-sizing equation for Monte-Carlo
selection to account for the noise of the roulette wheel. Next, we specialize
the general population-sizing equation to functions over y-ary strings.

3.4 Specializing the sizing equation

The general relationship derived above is widely applicable—perhaps too
widely applicable, if one of our aims is to see how the error-limiting popula-
tion size varies with the difficulty or length of the problem. To understand
these factors better we specialize the equation somewhat. Consider strings
of length £ over alphabets of cardinality y, and assume that the function
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is of bounded deception in that building blocks of some order £ < £ con-
taining the global optimum are superior to their competitors. Focusing on
the highest order partitions is conservative, and each one contains & = *
competitors. It is convenient (but not necessary) to view the fitness function
as the sum of m independent subfunctions f;, each of the same size k, of the
most deceptive partition, thus giving m = ¢/k. The overall variance of the
function ¢ (in other words, the variance of the most general schema) may
be calculated then as the sum of the m variance values:

012‘ = ZJ?"’ (7)
i=1

and we can calculate the root-mean-squared (RMS) subfunction variance as
follows:
Opms = 0F /M. (8)

We then estimate the variance of the average order-k schema by multiplying
the RMS value by m — 1:

oa = (m—1)o2.. (9)

Using m — 1 recognizes that the fixed positions of a schema do not contribute
to variance, although the conservative nature of the bound would not be
upset by using m. Substituting this value, together with the cardinality of
the partition, into the sizing equation yields

n = 2c%(1 + p2)m'x*, (10)
where m’ = m — 1 and 8% = 02 /d?, the squared RMS subfunction inverse
signal-to-noise ratio.

Assuming fixed ¢, 8, and pr, we note that the sizing equation is O(my*).
If the problems we wish to solve are of bounded and fixed deception (fixed
k for given alphabet cardinality regardless of string length), we note that
population sizes are O(m); and recalling that m = ¢/k, we concluded that
n = O({). Elsewhere it has been shown that the typical scaled or ranked
selection schemes used in GAs converge in O(logn) generations [20], and that
unscaled proportionate schemes converge in O(nlogn) time. For the faster
of the schemes this suggests that GAs can converge in O(¢log?) function
evaluations, even when populations are sized to control error. Moreover,
even if we use the slower of the schemes (imagining that the m building
blocks converge one after another in a serial fashion, and requiring o to
decrease as m™'), GA convergence should be no worse than an O(£?log® £)
affair. We will examine the rapid and accurate convergence that results from
appropriate population sizing in a moment. First, we need to get a feel for
the size of the fitness variance in a typical subproblem.
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3.5 Bounds on subfunction variance

Variance of fitness can be calculated directly or through appeal to orthogonal
functions [24], but it is useful to have some feeling for the range of fitness
variance values we should expect to see in real problems. In a function f
of bounded range with specified maximum fy., and minimum fi;,, we can
calculate the maximum variance of fitness by recognizing that this occurs
when half of the strings have the minimum fitness value, fin, and the other
half have the maximum fitness value, fpax. Straightforward computation
yields

(fmax - fmin)2 )

1 (11)

2 _
07 =

With no better idea of the actual variance, using this value as a conservative
bound on ¢2 . in equation 10 is a sensible way to proceed.

If, on the other hand, the function values are nearly uniformly distributed
between specified minimum and maximum, a continuous uniform distribution
is a good model, yielding a variance of fitness as follows:

2 (fmax - fmin)2
o= % : (12)
Note that the variance of the worst case is only three times greater than that
of the uniformly distributed model.

Taking the argument to the other extreme, suppose we have a function
of bounded range, and want to know what the minimum variance can be.
This situation occurs in an order-k problem when one of the values is at fin,
one of the values is at fuax, and the other x* — 2 values are at the mean.
Straightforward computation yields

> (fmax - fmin)2
Of course, this approaches zero as x or k increases. It is interesting to note
that a pure needle-in-a-haystack function with one point at fi,.x and the
remainder at fu;, only has a variance of

X_k(]- - X_k)(fmax - fmin)2 ~ X_k(fmax - fmin)21

which is only a factor of two greater than the minimum variance at high k
or x.

We will use these bounds in the next section, where we apply a simple
GA to a sequence of test functions designed to test the efficacy of the popu-
lation sizing in linear and nonlinear problems, with uniform and nonuniform
subfunction scaling, and the presence or absence of explicit function noise.
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4. Testing the population-sizing equation

In this section, we test the hypothesis that the population-sizing equation
derived in the previous section is a conservative aid to reducing errors in
building-block selection. We begin by drawing a somewhat tighter connec-
tion between average generational decision error and building-block conver-
gence. We then discuss the design of a suite of problems that test the
population-sizing relation across a range of problems that are linear or nonlin-
ear, deterministic or nondeterministic, or uniformly or nonuniformly scaled,
and

outline some methodological decisions that were made to both broaden the
applicability of our results and simplify the testing. Experimental results for
each of the five test functions are then presented, and these support the im-
mediate adoption of the population-sizing relation as a means of controlling
convergence error.

4.1 Connection between generational error and ultimate
convergence

Earlier we took a generational viewpoint of decision making, and calculated
a population size to control the error of decision for a pair of competing
building blocks. We have to find our way from this generational perspective
to the viewpoint at the end of a run. Calling S the event in which we succeed
in converging to the right competing building block at the end of a run, M
the event in which we make a mistake in decision making during the initial
generation, and C' the event in which we choose correctly during the initial
generation, we can calculate the success probability as follows:

P(S) = P(S | M)P(M) + P(S | C)P(C). (14)

By choosing correctly (or incorrectly), we mean that we give more (or fewer)
copies to schemata that are actually better (or worse) than some other schema
of interest. The interaction between ultimate success and initially correct or
incorrect decision making is fairly complex, but we can reason simply as
follows. If we choose correctly initially, the probability that we converge
correctly is nearly one, because when we make a step in the right direction
it is usually a sizable one, and subsequent errors tend to be less frequent
than the initial ones and are of smaller magnitude than the correct step
taken initially. On the other hand, the greatest chance for making a mistake
comes after an initial error, because we have stepped in the wrong direc-
tion. Although it is possible (and sometimes even fairly probable) to recover
from such initial mistakes, we conservatively ignore such recovery, and get a
straightforward bound on ultimate success probability. Setting P(S | M) =0
and P(S | C) =1, and recognizing that P(C) is at least as large as 1 — a,
we obtain

P(S)=1-oa. (15)
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We define the confidence factor ( = 1 — « and plot various convergence
measures (usually proportion of building blocks correct) against (. Since
the chances of getting better than P(S) = ¢ convergence is substantial, the
measure of whether the population sizing is conservative will simply be that
empirical data fall somewhere above the 45 degree line. In what follows, we
call the P(S) = (¢ line the expected lower bound (or expected LB), but we
recognize here that it is fairly coarse.

4.2 Test suite design and methodological considerations

To test the population-sizing equation, we consider a simple GA run using
various population sizes on a test suite of five real-valued functions (F1 to F5)
over bit strings with various levels of stochasticity, nonlinearity, and fitness
scaling!. F1 is a linear function (£ = 20,50,200) with uniform scaling. F2 is
a linear function (¢ = 50) with nonuniform fitness scaling. F3 is a uniformly
scaled, linear function (¢ = 50) with the addition of zero-mean Gaussian
noise. F4 is an order-four deceptive problem (¢ = 40) with uniform scaling
of the deceptive building blocks, and F5 is an order-four deceptive problem
(¢ = 40) with nonuniform scaling of the building blocks. More detailed
definitions of each function are given in subsequent subsections.

The test suite considers a range of difficulties, and we choose our simple
GA carefully to bound the results expected in a range of GAs used in practice.
To examine whether the type of selection significantly affects the quality of
convergence, we try a number of schemes to begin with, including many
of those in wide use. In subsequent tests we restrict our experiments to
tournament selection as a good compromise between quality and speed of
convergence. In all runs, simple, one-point crossover has been adopted. In
linear problems this adoption makes life more difficult for the GA, because
of well-known problems with hitchhiking [38]. In nonlinear problems, we
have assumed the existence of sufficiently tight linkage to permit building-
block growth. As mentioned previously, it is an unanswered question how
this may be obtained without prior knowledge, but we did not want to open
that Pandora’s box, nor the one associated with the adoption of uniform
or other highly disruptive crosses. In any event, we are not advocating the
use of specific crossover operator here. We simply want to show the effect
of choosing well in the presence of collateral or other noise. In all runs no
mutation (p,, = 0) was used to ensure that initial diversity provided the only
means of solving a problem. All runs are terminated when the population
converges completely, and all simulations have been performed ten times,
each starting with different random-number-generator seeding.

In the remainder of this section, we consider the results of experiments
using the population-sizing equation in each of the problems.

1The term fitness scaling refers to the relative contribution of building blocks in the
fitness function.
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4.3 Test function F1: A uniformly scaled, linear problem

Linear problems are supposed to be easy for GAs, but most genetic algorith-
mists have obtained poor convergence in supposedly easy problems at some
time when the amount of collateral noise has overwhelmed the signal avail-
able. Of course, mutation usually can fix earlier convergence errors in a linear
or bitwise optimizable problem, but here we have denied that possibility in
an effort to isolate and identify the early decision errors. The initial function
chosen to test the population-sizing relation is the uniform linear problem:

¢
filx) = Zz, (16)

where z; € {0,1}. This is, of course, the so-called one-max function, and its
solution is the string with all ones.

Since the problem is linear, the critical building block is of order one
(k = 1); the signal we wish to detect has magnitude 1 — 0 = 1, and the
variance of the order-1 building block is simply (1 — 0)?/4 = 0.25, using the
variance estimates of a previous section. Thus % = 0.25/1 = 0.25, and
the overall sizing relation becomes n = ¢(¢ — 1).

To give the GA a good workout, we have tested F1 with a range of string-
length values (¢ = 20, 50, 200), and a variety of selection operators:

1. roulette-wheel selection (roulette);

2. roulette-wheel selection with ranking (ranking);

3. stochastic universal selection (SUS);

4. binary tournament selection without replacement (tournament).

Roulette-wheel selection is the usual Monte-Carlo scheme with replacement,
where the selection probability p; = fi/ ¥, f;. Scaled selection scheme uses
linear (zero to two) ranking? [1] and Monte-Carlo selection, and the SUS
scheme uses the low-noise scheme described elsewhere [2]. Tournament selec-
tion is performed without replacement as described elsewhere [20], in an effort
to keep the selection noise as low as possible.

Figures 4, 5, and 6 show convergence versus confidence factor (and popu-
lation size) for £ = 20, 50, and 200, respectively. Over the range of values, the
roulette results are nonconservative (below the expected lower bound), and
we will say more about this result in a moment. For the other schemes, the
results are barely above the expected lower bound at low confidence values,
a not unexpected result because all sources of stochasticity other than collat-
eral noise have been ignored. For the quiet schemes (SUS and tournament),
the results become increasingly conservative with increasing n. This increas-
ing conservatism of the sizing relation with increased n is not unexpected.
The lower bound relating confidence and ultimate convergence ignores all

2The population is linearly ranked according to the fitness of strings so that the best
string is assigned two copies and the worst string is assigned zero copies.
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Figure 4: Simulation results for F1 with £ = 20, presented on a graph
of convergence as measured by the average number of correct alleles
versus confidence and population size. For ( values greater than 0.7,
in all but unranked roulette wheel selection, the graph shows that
the sizing equation is conservative even when no additional sources of
stochasticity are considered.

possibility of correcting for an initial error. As n increases, drift time for
poorly discriminated building blocks increases [25], thereby increasing the
probability that a correction can be obtained. A more detailed computa-
tion for that mechanism should be sought, but it is beyond the scope of this
study. The ranked roulette results stay about even with the expected lower
bound for £ = 20 and 50, but have improved margin above the expected
lower bound at ¢ = 200. The previous drift-time mechanism can explain
this, with the poor results at lower ¢ values explained by the high inherent
noise of roulette-wheel selection itself.

Perhaps the most striking feature of these results is that the roulette-
wheel (unranked) traces fall below the expected lower bound. This can be
explained by noting that the sizing relation without pr adjustment makes no
additional allowance for the noise of selection, and that Monte-Carlo selec-
tion with replacement most certainly is a noisy scheme. To quantify this
somewhat, let us recognize that n repeated Bernoulli trials are binomially
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Figure 5: Simulation results for F1 with £ = 50, presented on a graph
of convergence as measured by the average number of correct alleles
versus confidence and population size. The SUS results at £ = 50
display increasing margin above the expected lower bound when com-
pared with the results at £ = 20.

distributed. Thus, for the ith string, we calculate a mean and variance in
the number of trials as np; and np;(1 — p;), respectively. Recognizing that
p; < 1, and summing over all strings, we get a variance Y np;/n = 1. Thus,
the variance in number of trials due to the noise of the wheel is simply one in
units of squared individuals. To put this in fitness terms we recognize that
an individual must change by an amount equal to the population average
fitness to increase or decrease his numbers by one. Thus, the variance due to
the roulette wheel in fitness terms is the product of the variance in number
times the square of the average fitness (or simply f2). Thus p2 = f2/0%,.
Letting f = 0.5( fmin + fumax)?, and taking the appropriate variance estimate,
£(frnax — fmin)?/4, we conclude that

2
2 fma.x+fmin>
ph= gl Jain)
+ <fmax_fmin

and in the present case fmax = 1, fmin = 0, and thus p2 = £. Using this
adjustment, we replot the F1 results for the roulette in figure 7, where the
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Figure 6: Simulation results for F1 with £ = 200, presented on a graph
of convergence as measured by the average number of correct alleles
versus confidence (population size). The results are consistent with
the £ = 20 and ¢ = 50 simulations, and the SUS and ranking results
show more pronounced margins above the expected lower bound than
the runs at lower £ values.

existing results have been graphed again using an adjusted o from the rela-
tion c(a/) = ¢(@)/(1 + £). The sizing relation is restored to conservatism.
The second most striking feature of the F1 results is the high performance
of the two quiet selection schemes, SUS and tournament. This is not unex-
pected, but the reason for superiority of SUS in most of the cases is unclear
without further investigation. Figure 8 shows the total number of function
evaluations versus confidence for all schemes and all £ values. Clearly, the
superiority of SUS is bought at high computational cost. It is well known
that purely proportionate schemes tend to slow as average fitness rises [20],
but this has a beneficial effect on the quality of convergence, since less pres-
sure is applied to force bad decisions. On the other hand, this tendency
increases substantially the total number of function evaluations, and in the
remainder of this study we will concentrate on tournament selection as a
good compromise between quality and speed of convergence. Looking at the
F1 results more closely, we see that for the two pushy schemes (ranking and
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Figure 7: The previous F1 roulette-wheel results have been replotted
using a confidence factor calculated after appropriate adjustment for
the noise of the roulette wheel. The results are now at or above the
expected lower bound.

tournament), the number of function evaluations grows as £*7, and for the
two purely proportionate schemes (SUS and roulette), the number of func-
tion evaluations grows roughly as [%3. Recall that ranked and tournament
schemes tend to converge in something like O(logn) generations and that
purely proportionate schemes tend to converge in O(nlogn) time [20]; over-
all, therefore, we should expect a total number of function evaluations of
O(£log?) to O(£Llog®¢) for the pushy schemes, which is consistent with the
observed £7, and we should expect convergence of O(£2log¢) to O(¢2 log® £)
for the two proportionate schemes, which is consistent with the observed £%3.
The consistency of these results gives us some hope that these suggestions
about convergence and its time complexity can be taken to theoremhood—a
matter to be discussed somewhat later in this study. At this juncture, we
consider another linear function in which not all bits are created equal.

4.4 Test function F2: A nonuniformly scaled, linear problem

The second test function is also a linear function:
50
fo(x) =) cm, (17)
i=1

where z; € {0,1}, ¢; = 6 for ¢ € I, and ¢; = 1 otherwise. Our strategy is
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Figure 8: The total number of function evaluations for each selection
scheme, graphed versus £ value on log-log axes at ( = 0.9 for function
F1. The total number of function evaluations varies approximately
as 17 in the pushy (ranking and tournament) selection schemes and
£23 in the purely proportionate (SUS and roulette) schemes.

to scale some of the bits badly and observe whether the sizing equation can
pick up the small signal amidst the large collateral noise. Among the fifty
bits of the problem, only five bad bits are chosen to keep the collateral noise
relatively high, and the choice of the set I = {5,15,25, 35,45} maximizes the
possibility of undesired hitchhiking under single-point crossover.

The sizing of the population is determined as before except that the sig-
nal we wish to detect is d = §. Thus, the population-sizing equation becomes
n = c(f—1)/6%. As was mentioned, the general success of the sizing formula
has encouraged us to continue examination of a single selection scheme, tour-
nament selection. Using tournament selection with all other GA parameters
and operators as previously discussed, blocks of simulations have been run
for 6 = 0.4, 0.6, and 0.8, and the convergence is shown versus confidence
factor in figure 9. Here the convergence measure has been changed to the
average proportion of correct alleles among the poorly scaled bits alone. The
good bits are well above the noise level, and are extremely unlikely to have
any mistakes; including them in the convergence measure gives too rosy a
picture. Looking at the figure, the equation proves to be a conservative
population-sizing tool in this case as well. In fact, the F2 results are increas-
ingly conservative with decreased 6, a fact that is not surprising due to the
extremely conservative nature of the bounding relation we have assumed be-
tween generational confidence and ultimate convergence. As n increases, the
drift time to incorrect convergence increases linearly, thereby significantly

increasing the probability of recovering from initial decision-making errors.
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Figure 9: F2 results with £ = 50 show the convergence as measured
by the percentage of poorly scaled alleles correct versus confidence
at different levels of scaling 6. The sizing relation proves to be a
conservative tool in all cases.

4.5 Test function F3: A uniformly scaled, linear function with
noise added

For the third test function, we consider another linear function, except this
time we add zero-mean Gaussian noise:

£33 = Yo+ 9(03), (18)

where z; € {0,1} and g(o2) is a generator of zero-mean Gaussian noise of
specified variance o?2.

The sizing relation is the same as in F1, except that a factor p% must
be used to account for the noise. Four different levels of noise o2 = 12.25,
24.5, 49.0, and 98.0 were added, and these correspond to p2 values of 1, 2,
4, and 8.

Convergence (over all bits) versus confidence ¢ is shown in in figure 10,
for blocks of ten simulations on each o2-p2 case. The sizing relation is con-
servative in all four cases; as before, increasing conservatism is observed with
increasing n.
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Figure 10: F3 convergence as measured by the average number of ones
versus confidence factor, showing that the population-sizing equation
adequately handles noisy problems when adjustment is made for the
additional stochasticity.

Test function F4: A uniformly scaled, nonlinear function

353

In order to study variance-based population sizing in nonlinear problems, a

40-bit, order-four deceptive problem—function F4—has been designed:

f4(x) = 2: f45($1i)7

(19)

where each of the subfunctions fy5 is the function shown in figure 11, and
the sequence of index sets is the ten sets containing four consecutive inte-
gers each: I = {1,2,3,4}, and [;;; = I; + 4. Function F4 is a function
of unitation (a function of the number of ones in the substring argument),
and elsewhere it has been shown that this function is fully deceptive in
the usual average sense [7]. The variance of the subfunction may be cal-
culated directly and is found to be 1.215. Recognizing that there are ten
subfunctions (m = 10), that each binary subfunction is of order four (x = 2,
k = 4), and that the fitness difference between the best and the second best
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Figure 11: This subfunction is used in functions F4 and F5. Here u
is the unitation or the number of ones in the subfunction’s substring.

substring is one (d =1), the population-sizing equation reduces to n =
2¢(1.215)(10 — 1)2%/(12) = 350c.

To eliminate building-block disruption as a concern, each subfunction is
coded tightly, and tournament selection is used with all other GA operators
and parameters set as in previous runs. Figure 12 shows convergence mea-
sured by the average number of correct building blocks versus the confidence.
Once again the sizing equation conservatively bounds final convergence.

4.7 Test function F5: A nonuniformly scaled, nonlinear problem

To test whether the sizing equation bounds the convergence of a poorly scaled
deceptive problem, function F5 has been defined as follows:

fs(x) =Y cifas(z1), (20)

=1

where the subfunction and index sets are defined as in F4, but where the
weighting coefficients are no longer uniform. In particular, all the ¢; = 1
except cs = 0.25.

Ignoring the minor change in RMS subfunction noise, the sizing of the
previous problem may be used as long as it is modified to include the smallest
signal. Since the smallest signal that needs to be detected is a quarter of the
one of the previous problem, the population size increases by a factor of 16,
yielding n = 5600c from the sizing relation.

Binary tournament selection is used as before, and convergence is mea-
sured by the average number of correct building blocks, considering only the
poorly scaled building block. Starting with ¢ = 0.7, in all runs at each value
of ¢, the GA converges to the correct (all-ones) string.



Genetic Algorithms, Noise, and the Sizing of Populations 355

Convergence
1 T < N4 <@ N

0.95 -

0.85 -

0.8

0.75 - Simulation <

Expected LB —

0.7 1 | ! ! ! ! 1]

0.7 0.75 0.8 0.85 0.9 0.95 0.99
Confidence factor, ¢

95 160 253 377 573 947 1900
Population size, n

Figure 12: F4 convergence as measured by the average number of cor-
rect building blocks versus the confidence factor shows that the sizing
equation conservatively bounds the actual convergence in a fairly dif-
ficult, albeit uniformly scaled, deceptive problem.

4.8 Summary of results

A population-sizing equation constructed from straightforward statistical de-
cision theory has been used in a number of test problems both linear and
nonlinear, from deterministic to inherently stochastic, and with uniform or
nonuniform scaling among subfunctions. When additional sources of stochas-
ticity are properly accounted for, the equation appears to be a conservative
tool for sizing populations in simple GAs. The population-sizing equation
roughly describes the boundary of a transition, at which GAs exhibit a stark
change in behavior from noisy and unpredictable convergence to repeatable
and reliable results. Moreover, these experimental and theoretical results
suggest that if GA convergence can be proved, it is likely to exhibit time
complexity that is no worse than quadratic or cubic, depending on the selec-
tion scheme used.

These results are useful, and encourage us to seek straightforward proofs
of recombinative-GA convergence. There may be objections that the theory
is too simple, perhaps suggesting that GAs don’t work exactly as the theory
idealizes. No model, however, can be placed in one-to-one correspondence, in
all respects and in all details, with its modeled object; once this is recognized,
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the act of modeling becomes the process of focusing on those aspects of the
modeled object relevant to the model’s application. Viewed in this way,
the sizing relation suggested here captures much of what interests us with no
more than a back-of-an-envelope computation. As engineers interested in the
design of better GAs, we believe that this kind of modeling should be more
widely used. Having said so, we nevertheless do not recommend resting on
these laurels, and in the next section we suggest.extensions and continuations
of this work that will lead to an even deeper understanding of the complex
interactions that remain locked away in the population trajectories of even
the simplest of GAs.

5. Extensions

The simple population-sizing equation presented in this paper has proven to
be a usefully conservative estimate of the population size required to make
a controllably small number of building-block errors at the end of a run.
Several courses of application and extension readily suggest themselves:

1. Investigate the use of the population-sizing equation on non-binary
alphabets, permutation problems, and other codings.

2. Consider the construction of online population-sizing techniques based
on these principles.

3. Develop a more fundamental relationship between generational error
and ultimate convergence.

4. Investigate in more detail the noise generated by nondeterministic ob-
jective functions, selection operators, and other genetic operators.

5. Investigate the interaction of niching and variance-based population
sizing in objective functions with multiple global solutions.

6. Investigate other means of forestalling convergence in low-fitness par-
titions.

7. Use these results to construct computational-learning-theory-like proofs
of recombinative GA convergence in problems of bounded deception.

We will briefly examine each of these in somewhat more detail.

The sizing equation deserves immediate testing on other-than-binary cod-
ings, although the assumptions used in its derivation are so straightforward
that the success demonstrated in this paper could be expected to carry over
to other structures without modification. At Illinois we have started to use
the sizing relation in problems with permutation operators; our initial expe-
rience has been positive.

The sizing relation requires some (albeit minimal) knowledge about the
problem being solved, and it may be possible to get online estimates of the
necessary values through online population measurements. Specifically, the
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sizing relation requires information about the problem size, population vari-
ance, minimum signal, and order of deception. Variance may be measured
directly and used straightaway. Minimum desired signal can be established
beforehand, or by keeping track of the change of fitness after a sequence
of one-position mutations, an adequate estimate of minimum signal can be
given. Order of difficulty is more difficult to measure. Again, a prior limit
on the order of maximum deception to be uncovered can be established, or
it may be possible to get some estimate of difficulty by doing recursive up-
dates of schema averages or Walsh coefficients as more samples are taken.
The schema averages or Walsh coefficients may then be used to see whether
there is any evidence of deception in past populations. Once these data are
available, the population size may be adjusted in an attempt to control the
error of decision, yet keep no more copies than is necessary.

The relation adopted herein between specified error and ultimate conver-
gence is conservative, but it should be possible to develop a more fundamental
relation between the two. One thing that aids convergence is that variance in
the first generation is something of a worst case. As positions converge, less
fitness variance is felt by the remaining competitors, and the environment of
decision is much less noisy. Also, as population sizes are increased, conver-
gence is aided, because drift times increase linearly with size [25], and those
building blocks in the noise soup—those with relatively unfavorable signal-
to-noise ratios—have a longer time to drift around before converging to one
value or another at random. It should be possible to construct asymptotic
models that more closely relate these effects without resorting to full Markov
equations.

This paper has no more than scratched the surface of an investigation
of sources of noise other than collateral or building-block noise. Beyond the
additive Gaussian noise herein considered lie other noisy objective functions,
and representatives of these should be examined to see if the simple variance
adjustment is sufficient. The prior expectation is that the adjustment should
work, because the central limit theorem works, but the question deserves
closer inquiry. Also, the noise generated by various selection schemes should
be investigated, as should the noise generated by other genetic operators. We
found that the noise of the roulette wheel easily exceeded that of the fitness
variance, and this alone accounts for much of the advantage of stochastic re-
mainder selection, stochastic universal selection, and other quieter selection
schemes. The variance in operation of the other genetic operators does not
affect the sizing as directly as does selection, but it, too, should be investi-
gated. A crossover operator that disrupts a short schema more than expected
can be deleterious to convergence and cause errors of decision as well. Simi-
larly, a mutation operator that hits a low-order schema more often than the
average can be a problem. These effects should be studied more carefully, and
ultimately incorporated into a variance-adjusted schema theorem (a matter
discussed as part of the last item).

We have used test functions with singleton solution sets for simplicity. In
many problems of interest, the solution has cardinality much greater than
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one, and in these problems care should be taken to use niching methods
[5, 6, 23] or other techniques [17] that permit the stable coexistence of multi-
ple solutions in a population. Such techniques should be used more often, as
unbridled competition between species (or corporations) results ultimately in
monopoly. This paper also suggests that the same kinds of population-sizing
considerations adopted herein should be used for subpopulation sizing within
the various niches. Determination of the number of niches is related to the
cardinality of the solution set and the ability of the niching criterion or cri-
teria to discriminate between different members of a niche, and, depending
on the niching scheme used, some care should be exercised to calculate the
fixed-point proportion of members of a given niche properly. If these con-
cerns are addressed, it should be possible to size populations rationally for
problems with multiple solutions in a manner not much more difficult than
the one used here.

Niching stably preserves diversity across a population, but one of the ways
to promote better decision-making in a time-varying environment is through
dominance [26, 39] or other abeyance schemes. This is particularly useful in
the present context for building blocks that fall below the initial signal dif-
ference d. Without other protection, selection at these positions is likely to
be random affair because of drift; however, if currently out-of-favor building
blocks can be protected against cyclical or random runs of bad luck, there is
greater hope that when convergence is achieved at a high proportion of posi-
tions, these smaller signals can be detected accurately. Dominance-diploidy
should be tested to see if low-fitness building blocks can be protected for
subsequent competition when the signal-to-noise ratio is favorable. Another
possible aid to convergence of low-fitness building blocks is the addition of
fitness noise of a scheduled level. This counterintuitive suggestion relates to
the observation above that large population sizes prolong drift time for those
building blocks that are currently in the noise soup. The injection of noise
into a population would insure that low-fitness building blocks would drift
and not undergo selective pressure, and large-enough population sizes would
insure that those blocks did not drift to absorption. After the first phase of
convergence of the highly fit building blocks the noise level could be lowered,
thereby exposing the second tier to competitive selection.

Finally, by correcting the decision making in GAs, we feel we have opened
the door to straightforward, yet rigorous, convergence proofs of recombinative
GAs. It has been pointed out that the schema theorem could be made a
rigorous lower bound on schema growth if the various terms were adjusted
conservatively for variance effects [24]. We stand by that claim here, and
suggest that such results can be pushed further to obtain proofs of polynomial
convergence within an epsilon of probability one in problems of bounded
difficulty. The actual proofs will resemble those of computational learning
theory, and there are a number of technical details that appear fairly tricky,
but correct decision making (in a probabilistic sense) is a critical piece of this
important puzzle.
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6. Conclusions

This paper has developed and tested a population-sizing equation to per-
mit accurate statistical decision making among competing building blocks in
population-oriented search schemes such as genetic algorithms. In a suite of
five test functions, the population-sizing relation has bounded conservatively
the actual accuracy of GA convergence when necessary sources of stochastic-
ity are properly considered and the worst-case signal-to-noise ratio is used in
sizing. These results recommend the immediate adoption of variance-based
population sizing in practical applications of genetic algorithms as well as
more foundational investigations.

The paper has also examined the total number of function evaluations
required to solve problems accurately. Convergence appears to be no worse
than a quadratic or cubic function of the number of building blocks in the
problem (depending on whether purely proportionate selection or more pushy
schemes such as ranking and tournament selection have been used). These
results are consistent with previous theoretical predictions of GA time com-
plexity, and should open the door to formal proofs of polynomial GA con-
vergence in problems of bounded difficulty, using the basic approach of this
paper together with methods not much different from those established in
computational learning theory.

Put in somewhat different terms, this paper firmly establishes the role of
population size in delineating a boundary between two vastly different types
of simple genetic algorithm behavior. At low population sizes we see GAs,
converging only through the good graces of random changes that are lucky
enough to survive to a time when they may be properly judged. At high
population sizes we see GAs that promote only the best among competing
building blocks, and when and if these are global, we can expect with high
probability convergence to global solutions after sufficient recombination. To
understand these two regimes is useful; to have a quantitative yardstick to
distinguish high from low population size is important; and to lead these
ideas to their logical conclusion is the task ahead.
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