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Abstr act. This pap er considers the effect of sto chas t icity on the qua l­
ity of convergence of gene tic algorit hms (GAs). In many pr oblems, the
var iance of building-bl ock fitness, or so-called collateral noise, is the
major sourc e of vari ance, and a population-sizing equation is derived
to ensure t hat average signal-to -colla teral-noise rati os are favorable
to the discrimination of th e best bu ild ing blocks required to solve a
problem of bounded difficulty. The sizing relati on is modified to per­
mit the inclusion of ot her sources of stochas t icity, such as the noise of
selection , the noise of genetic ope rators , and the explicit noise or non­
determini sm of the ob ject ive function . In a test suite of five fun ctions,
t he sizing relati on proves to be a conse rva tive predict or of average cor­
rect convergence, as long as all maj or sources of noise are considered in
the sizing calculation . These resul ts suggest how the sizing equa tion
may be viewed as a coa rse delineation of a boundar y between two dis­
t inct ty pes of GA behavior. At small population sizes the GA makes
many err ors of decision , and the quality of convergence is largely left
to chance or to the serial fix-u p of flawed resu lt s t hro ugh muta tion or
ot her serial injection of diversity. At large popula tion sizes, GAs can
reliabl y discr iminate between good and bad bu ilding blocks, and par­
allel processing and recombination of bui lding blocks lead to th e quick
solut ion of even difficult deceptive problems. Additionally, th e paper
outl ines a number of exte nsions, including the development of more
refined models of the rela tion between generat iona l average erro r and
ult imate convergence quality, t he development of online methods for
sizing populations via the est imat ion of population-sizing param et ers,
and the investiga tion of population sizing in the context of niching and
other schemes designed for use in pr oblems with high-cardin ali ty solu­
t ion sets. The pap er also discusses how these resul ts may one day lead
to rigoro us proofs of convergence for recombinative GAs opera ting on
problems of bounded difficulty.
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1. Introduction

An educat ion in genetic algorit hms (GAs) begins tamely enough with an
initiation to the rites of st rings, schemata, select ion , genet ic ope ra tors, and
other GA par aphernalia . The first applicat ions to some probl em of interest
follow in short ord er , with enough success to justify fur ther experimentation .
In the back of the user 's mind , however, many detailed doubts and questions
linger. How long does it t ake for GAs to converge, an d to what quality
answer? What classes of pr oblems can GAs be expected to solve to global
optimum? What mix of operators and par ameter settings is required to
permit such a desirable happenst an ce? When posed jointly in t his fashion,
the questi ons facing the GA community appear daunti ngly int errelat ed an d
difficult ; but start ing with Holland 's efforts of almost two decad es past , and
continuing with the renewed int erest in GA theory over the last five years,
the questions are being divided and conquered through that comb ination of
theory and experimentat ion appro priate to t ackling such complex systems as
genetic algorithms.

In this paper we carryon in that spirit of opt imist ic reducti onism, and
consider a single question that has puzzled both novice and expe rienced GA
users alike: how can populations be sized to promote the selecti on of correct
(global) building blocks? The answer comes from statistical decision theory
and requires that we examine building-block signal differences in relation to
popul ation noise. It is somewhat surprising that noise must be considered
even when GAs tackle deterministic decision problems, until one recognizes
that building-block or colla teral noise is the cost of parallel subproblem solu­
tion within a select ive-recombinat ive GA.

We consider populati on sizing in the pr esence of noise by first reviewing
six essent ial elements to GA success . This leads to a brief historical review of
past efforts connected with building-blo ck decision making and population
sizing . A simple population-sizing equat ion is then deri ved , and is used to
calculate population sizes for a sequence of test functions displ aying vary­
ing degrees of nonlinearity, nondeterminism , and nonuniform scaling. This
simple sizing equat ion is shown to be a conserva t ive yet rational mean s of
est imating population size. Extension s of these calculat ions are also sug­
gested, with the possibil ity that these methods may be used to develop fully
rigorous convergence pro ofs for recombi native GAs operat ing on pro blems of
bounded difficulty.

2. A bird's-eye view of GA essentials

When one is mir ed in a GA run, it is often difficult to discern why things
do or do not work . Since Holland's identifi cation of schemata as the unit of
selection [30, 31] and spec ificat ion of a bound on their expected growth [33],
a much clearer picture has emerged regarding the condit ions necessary for
successful discovery. Despite supposed challenges to GA theory that "turn
Holland on his head ," all known GA results can be explained in purely
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mechani stic term s using variat ions or extensions of Holland 's argument ; and
elsewhere the six condit ions for GA success have been itemized [18]:

1. Know what the GA is processing: building blocks.

2. Ensure an adequate supply of building blocks either initially or tempo­
rally.

3. Ensure the growth of necessary building blocks.

4. Ensure the mixing of necessar y building blocks.

5. Solve problems that are building-block tractab le; recode those that are
not.

6. Decide well among competi ng buildin g blocks.

In the remainder of this sect ion , we will briefly review the first five of
these building-block condit ions , and mor e comprehensively consider the last .

2.1 Building blocks-the first five essentials

The first three essent ials in our list ar e familiar to most readers of thi s pap er
and are not considered fur ther , except to note that the attemp ts to dr ess
schemata in mor e elegant mathemat ical vestment [36, 42] may be consid­
ered as spec ial cases of Holland 's original (an d largely ignored) formulation
of schemata as similarity subsets of int eracting and hierar chically int ercon­
nected finit e-st at e machines [30, 31].

The fourth essential- the issue of mixing-has been little explored , and
even in Holland's original monograph it receives only passing mention. Never­
theless, it is certainly the point at which the recent challenges [3, 8, 40, 41]
to Holland 's call for low-disruption crossover operators will ultimat ely fall
or st and. In this pap er we continue to ignore this imp ortant issue, except
to say that our choice of low-disruption crossover operators an d utili zation
of tight linkage (when necessary) was guided by the recognition that mixing
behavior is important to GA success . While the aut hors just cited have
shown that disruption can be redu ced sufficient ly to permit building-block
growth, no convincing evidence of high-order mixin g success- empirical or
otherwise-has yet been offered. The Second Law of Geneti c Algorithms (if
one exists) is most certainly a mixing law, bu t it s form has only been hint ed
at [21,33]. Further theoreti cal and empirical st udy of mixing is underway at
Illinoi s and results from that st udy will be reported at a lat er dat e; whatever
the answers to the mixing question are , they will most certainly come from
proper applicati on of schema thinking.

Thought along building-blo ck lines has led to the discovery of pr oblems
that in an average sense are maximally misleading [7, 11, 13, 14, 16, 34, 43].
Mit chell and Forrest [35] have pointed out that these ideas are not yet fully
mature, but the exploration of average-sense deception has led to more chal­
lenging test function design. Their fuller exploration is likely to lead us to
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better mental models of what makes a problem easy or hard for a GA. The
fact that some of these st ick-figure models are not fully pr edicti ve [27] should
not deter us. The give an d take of hypothesis form ation, experimentat ion,
and hyp othesis refinement that is science is leading to a better , mor e me­
chanical underst anding of GA dynami cs. In a more pr actical vein, it is st ill
an ope n question whether problems of bounded difficulty can be overcome by
obtaining ti ght linkage on the fly [19], or whether other mor e sophist ica ted
and effect ive re-repr esentation op erators can be developed to make deceptive
pr oblems more amenable to selecto-recombinatio n [34].

2.2 Deciding well

As we be tter understand the workings of GAs- as we better underst and the
existence, growth , mixing, and assembly of partial solut ions-we are at som e
point led to consider the accur acy of the decision-making pro cess of selec­
tion, as partial solutio ns are forced to compete with one anot her. Viewed
in this way, choosing between competing building blocks becomes a fairl y
well-p osed problem in stat ist ical decision theory, as was first recognized by
Holland [32, 33]. His cruc ial insight was that implicit par allelism breaks the
combinatorially insufferable search for st rings into many smaller and more
tract abl e sear ches for building blocks. Though this divi sion is advantageous
in terms of search-set cardinality, it is not purchased without cost . This cost
can be demonstrat ed most dr am atically if we compare, in the case of a det er­
ministic sear ch probl em , the discrimination between better st rings with the
discrimination between bet ter building blocks. The problem of det ermining
the better of two strings can be solved with complete confidence through a
single pairwise test. At the level of building blocks, despite the determin­
ism of the problem, discrimination becomes an exercise in stat ist ical decision
making. This is du e to the variation of other building blocks; that is, the
simultaneous experimentation with many combinat ions is a source of noise to
any particular building block of int erest . It is important , therefore, to control
the error in each of the relevant building-block pr oblems that are being played
out in a GA if we are ever to have any hop e of obtaining a good solut ion at the
end of a run with high probability. If this can be accomplished- and if the
other essent ial condit ions of building-block pro cessing can be maint ained­
then there is hope t hat convergence guarantees can be determined for simple
GAs for which op erator probabilities are properly chosen and populations
are pr operly sized .

To make his point ab out stat ist ical decision making , Holland chose to
idealize the process within a GA as a clust er of parallel and interconnected
2k-armed bandit pr oblems [32, 33]. In attempting to allocate trials to compet­
ing alternat ives in a sensible manner , Holland viewed the sequenti al decision
pr ocess that is played out in realizable GAs in stylized block form assuming
perfect foresight, and he calculated an equat ion relating minimal-expected­
loss block size and total number of trials. One may obj ect that realizable
GAs are population-wise sequent ial algorithms , not block algorithms, and
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that no realizable GA can know outcomes before they happen- but Hollan d
was aware that his calculation was no more than an optimist ic bound on the
mathematical form of tri al allocat ion in realizab le GAs [32]. Holland was
also aware that in realizable GAs many partit ions are sampled simultane­
ously and that the sampling becomes nonun iform afte r select ive reallocation ;
such awareness did not pr event recent crit icism of the bandit idealiza tion [28J
on those gro unds. Holland 's model has been bo lstered by recent work that
sugges ts that , because they have higher root-mean-squared (RMS) signal­
to-noise ratio values than the lower partit ions they subsume, GAs play the
highest-order partit ions that are well sampled in a given populat ion [24].

Bu ilding on Holland 's work, De l ong [4] pr esented equat ions for the
two-armed-bandit block-allocati on process t hat removed Hollan d 's assump­
ti on of foresight , and these equat ions have been solved in closed form fairly
recent ly [12]. De l ong also explicit ly recognized the role of signal-to-noise
ratio by sugges ting that population sizes of order

I(J 2 + (J 2

> V 1 2 (1)
n - 111 - 12 I'

where 11 and 12 are t he mean fitn ess values , and (Ji and (J~ are the variance
valu es of the two arm-payoffs, respect ively, might be useful to reduce stati s­
tical decision error. Unfort unat ely, these calculat ions were not used to guide
the sizing of populations in the largely empirical remainder of De l ong's
dissertation.

Elsewhere, the performan ce of genet ic algorithms on noisy functions was
st udied in the context of image registrat ion [29, 9J. Though largely empirical
in nature, this work did recognize the importance of noise in the decision
pro cess. However , as the study focused on problems with inherently noisy
obj ect ive fun ctions, the role of colla te ral or building-block noise was not
considered, and this pr ecluded a more basic understan ding of the relat ionship
between noise, resam pling, convergence, and population sizing . Nonet heless,
the work is one of the few st ud ies since 1975 that has explicit ly recognized
the ro le of noise in GA convergence.

One of the motivations for int roducing so-called m essy geneti c algorithms
or mG As [21, 22] was to redu ce the building-block noise initi ally encoun­
tered during select ion and recomb ination wit hin a simp le GA. The earlier
of the mGA papers calculated some est imates of fitn ess var ian ce in typical
test funct ions, and the author s were surprised by the large popu lati on sizes
that would be required to overcome th e colla te ra l noise faced in the typi­
cally rand omly generated popula tion . More recent work has delved into the
relati onship between fitn ess functions and fitness variance using Walsh func­
ti ons [24, 37], and the thinking found there has led to the development of a
populat ion-sizing relation based on signal-to-noise ratio, as well as a sugges­
tio n for calculat ing a variance-adjust ed schema t heorem . The present st udy
may be viewed as a cont inuation of that work.

Although not directly related to the present work, several other stud­
ies deserve brief mention. Holland 's O(n3

) estimat e of useful building-block
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Figure 1: Overlapping distr ibut ions of competing schemata permit
the possibility of making errors in decisions, especially when only one
sample of each schema is taken.

processing is somet imes misconstrue d to suggest that building blocks ar e bet ­
ter pr ocessed in larger popu lations. This notion was debunked [10], and an
alt ernative calculation of the est imate was made available by Fi tzpatrick and
Grefenstette [9]. Elsewhere [15], popu lation sizing- performed in the con­
text of comparing serial with parallel computations on the basis of schema
turnove r rate- is applied too lit erally. That pap er coarsely sugges ts that
high schema turnover is pr omot ed wit h small populations in serial computa­
tions and large populations in parallel computat ions . T hat result does not
cont radict the present study, but rat her pr esents an alte rnative view of the
population-sizing questi on under a different set of ass umpt ions. Here we are
concerned primarily wit h controlling errors in building-block decision making
through the use of a large-enough populat ion size-regardless of the type of
processor used , and regardless of the real-t ime rate of schema processing.

3. Population s iz ing in the pr esence of noise

Holland [32J set the GA community 's sails on a voyage of stochas tic decision
making among compet ing bu ilding blocks. We cont inue along this voyage,
ironically making progress by t acking back t o a simpler point of dep arture.
Instead of worr yin g about the form of the optimal allocat ion of trials over all
function evaluat ions as did Holland [32] and De Jong [4], we simply require
that the error in building-block decision making be below some specified level
in the first and all subsequent generations. In t his way, we expect the GA to
make accurate progress with high pr obabili ty through the normal mechanics
of selection and recombination.

3.1 Some basics of stat ist ical decision theory

We start by considering two competing building blocks, call them H 1 (wit h
mean fitness f H1 and fitness var iance ()1-IJ and Hz (wit h mean fitness f H2 and
fitness varian ce ()1-I

2
) . We care little how the fitn ess values are distributed ,

because given enough sa mples, the mean fitness ap proaches a normal distri­
bu tio n as guaranteed by the central limit theorem. P ictorially, the sit uation
we face wit h a single samp le of each of two nor mally dist ribu ted schemata is
displayed in figure 1. Clearly schema H 1 is the better of the two , and assum­
ing that the problem is not deceptive (or that we are considering a sufficient ly
high-order schema that deception is no longer an issue), we hope to choose
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F igur e 2: With 25 trials for each schema , the overlap of the dist rib u­
tions of the schema averages is greatly diminish ed , thereby drastica lly
decreas ing the probab ility of err or.
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st rings that represent H I more often than those that represent H 2 . With a
single sample in the pictured event, this is not a highly probable situat ion- as
indicated by the overlap in the distributions. In fact , in a single head-to-head
comparison of normally dist ribu ted HI and H 2 , we can calculate the prob­
ab ility that t he worse schema of the two is better than a particular fitness
value 1', by finding the area of the shaded region . The overall probab ility
that the sample fitness of the second-bes t schemata is higher than the sample
fitne ss of the best schemata may be calculated by accumulating the above
probability for all possible values of 1'. This comp utat ion is called the con­
volution of the two distributions, and conveniently the convolution of two
normal dist ribut ions is itself normal: the mean of the convolut ion is calcu­
lated as the difference in the mean s of the two individual dist ribut ions and
the variance of the convolution is simply the sum of the ind ividu al variances.
Thus, defining the signal difference d = is. - f H 2 and calculating the mean
variance of the two building blocks as 0'1t- = (O'k

1
+O'k

2
) /2 , the probability of

making an err or on a single trial of each schema may be calculated by finding
the pr obability a such that z2(a ) = d2/ (20'1t-) , where z (a ) is the ordinate of
a uni t , one-sided, normal deviat e. Henceforth , we will drop the a and simply
recognize z as the tail deviat e value at a spec ified error probability .

If one sample of each bu ilding block were all we were permit ted , it would
be difficult to discriminate between any but the most widely disparate bu ild­
ing blocks. Fort unately, in population-base d appro aches such as genet ic al­
gorit hms, we are ab le to simultaneously sample multiple representat ives of
building blocks of interest . As we take more samp les, the standard deviat ion
of the mean difference becomes t ight er and t ighte r , meani ng that we can
become more confident in our ab ility to choose bet ter building blocks as the
popula tion size increases. This is shown in figur e 2, where 25 tr ials have been
assumed for each schema, and the fivefold reduction in standard deviation
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resu lts in a much smaller overlap between the two distributions than in our
pr evious example.

3.2 D eriving a population-sizi ng equation

To put this into pr acti ce for par ti cular compet itors in a par ti tion of given
card inality, we recognize that the vari ance of the population mean goes as
the var iance of a single t rial divid ed by the number of samples. Since the
likely number of samples in a uniforml y ran dom population of size n is simply
the population size divided by the number of compet ing schemata I', in the
parti tion to which the two schemata belong, the correspo nding relationship
necessar y to obtain discrimination with an error rate a may be written as

d2

Z 2 = -- (2)
2!7Jvr In"

where n' = ni l', . Ca lling Z 2 the coefficient c (also a funct ion of a ) and
rearranging, we obtain a fairly general population-sizing relation as follows:

17
2

n = 2cK, d~' (3)

T hus, for a given pairwise compet it ion of schemata, the population size vari es
inversely with the square of the signal difference that must be det ected , and
proporti onally to the product of t he number of compet itors in the compet i­
t ion par t ition , the total building-block error , and a constant that increases
wit h decreasing permissible error. The mechani cs of a GA , however , involves
pair wise compe tition of a number of bu ilding blocks. Thus, to use this equa­
t ion conservatively, we must size the popu lation for t hose schemata that may
be decepti ve and that have the highest value of signal-to-noise-ratio, K,!7Jvr I d2

Subsequentl y, we will generalize this equation to include source s of sto­
chas t ic var iation ot her than building-block or collateral noise, and will spe­
cialize the equation somewhat to get a rough idea of how the population size
must change as the deception increases or the prob lem size grows . At this
point we are cur ious to discover how the coefficient c increases with decreasing
error tolerance. Of course, c is nothing mor e than the square of a one-sided
normal deviate. Figure 3 graphs c as a function of error on a logarithmic axis;
at low error values, the graph becomes almost linear-as should be expected
afte r straightforward computations involving the usual approximation for the
t ail of a normal distribution : a = exp(- z2 / 2)/ (zV'h ).

3 .3 Other sources of noise

The equat ion derived above is fairly general; however , we have assumed that
all the noise faced by the schemata comes from the var iance of fitn ess within
the populat ion . Although this is largely true in many problems, GAs may
nevertheless face noise from a vari ety of sour ces, including inherent ly noisy
pr oblems, noisy select ion algorithms, and the vari anc e of other genet ic opera­
to rs. The sizing equat ion will remain valid , even in cases where these sources
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F igur e 3: A gr aph of c as a logarithmic function of err or a becomes
almost linear a t low error rates.

are significant wit h resp ect to the collateral noise, if we adjust t he variance
by including a mult iplier for each of the addit ional sour ces of stochast icity.
For the ith source of noise (ca ll it ni) wit h magni tude CI~i ' we can define the
relat ive, noise coefficient

(4)

T hereafter , t he total additional relative noise coefficient may be calculated :

2 "" 2Pr = 6 Pni' (5)

assuming statist ical independ ence of all sourc es of sto chast icity, and t he mod­
ified po pulation-sizing relation may be obtained:

(6)

where '"(2 = CI'f...t jd2
, the mean squared inverse overall signal-t o-noise ra tio.

When we examine our initial simulat ion results , we will demonstrate an
appropriate adjust ment of the pop ulation-sizing equation for Mont e-C arlo
select ion to account for the noise of the rou lette wheel. Next, we specialize
the general population-sizing equat ion to funct ions over x-ary strings.

3 .4 Specializing the sizing equat ion

The general relationship derived above is widely applicable-perhaps too
widely applicab le, if one of our aims is to see how the err or-limit ing popula­
tion size var ies with the difficulty or length of the problem. To understand
these factors better we specia lize the equat ion somewhat . Consider strings
of length eover alp hab et s of cardinality X, and ass ume that the fun ct ion
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is of bo unded deception in that bu ilding blocks of some order k « £ con­
taining the global optimum are supe rior to their compet itors. Focusing on
the highest order partit ions is conservative , and each one contains r: = Xk

compe ti tors. It is convenient (but not necessar y) to view the fitness function
as t he sum of m independent subfunct ions j;, each of the same size k , of the
most deceptive par tition , thus giving m = £I k . The overall vari ance of the
function o} (in ot her words, the variance of the most general schema) may
be calculated then as the sum of the m variance values:

m

2 '" 2OJ = 6 (J fi'
; = 1

(7)

and we can calculate the root-mean-squared (RMS) subfunction variance as
follows:

(8)

We then est imate the vari an ce of the average order-k schema by multiplyin g
the RMS value by m - 1:

(9)

Using m - 1 recog nizes that the fixed positions of a schema do not cont ribute
to variance , alt hough the conservative nat ure of the bound would not be
upset by using m. Substi tutin g this value, toge ther wit h the cardinality of
the par ti tion , into the sizing equat ion yields

(10)

where m' = m - 1 and f3 2 = (J;msl d2, the squared RMS subfunct ion inverse
signal-to-noise rati o.

Assuming fixed c, f3 , and PT, we note that the sizing equat ion is O(mx k
) .

If the pro blems we wish to solve are of bounded and fixed deception (fixed
k for given alphabet cardinality regard less of st ring length) , we note that
population sizes are O(m ); and recallin g that m = £Ik , we concluded that
n = 0 (£) . Elsewhere it has been shown that the typ ical scaled or ranked
select ion schemes used in GAs converge in O (logn) generations [20], and that
un sealed pr oporti onate schemes converge in O(n log n) t ime. For the faster
of the schemes this suggests that GAs can converge in 0 (flog £) functi on
evaluations, even when populations are sized to cont rol err or. Moreover ,
even if we use the slower of the schemes (imagining that the m building
blocks converge one afte r another in a serial fashion , and requiring Q to
decrease as m - 1 ) , GA convergence should be no worse than an 0 (£2log3 £)
affair. We will examine the rap id and accurate convergence that results from
appropria te population sizing in a moment . First , we need to get a feel for
the size of the fitness variance in a typ ical subproblem.
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Variance of fitness can be calculated dir ectly or thro ugh appeal to orthogonal
fun ctions [24J, bu t it is useful to have some feelin g for the range of fitness
variance values we should exp ect to see in real prob lems . In a function f
of bounded range with spec ified max imum f max and minimum f m in , we can
calcula te the max imum variance of fit ness by recognizing that this occurs
when half of the strings have the minimum fitness value , fmin, and the other
half have the maximum fitness value , f max. St raigh tforward computation
yields

(11)

Wi th no better idea of t he actual var iance, using t his value as a conservat ive
bound on o-;ms in equa t ion 10 is a sensible way to pro ceed .

If , on the other hand, the fun ction values are nearl y un iformly distributed
between specified minimum and maximum , a cont inuous uniform distributi on
is a goo d model , yielding a variance of fit ness as follows:

(12)

Not e that the variance of the worst case is only three times greater than that
of the uniformly dist ributed model.

Taking the argument to the ot her extreme, suppose we have a function
of bounded ran ge, and want to know what the minimum variance can be .
This situation occurs in an order-k problem when one of the values is at f min,
one of the values is at fmax , and the ot her Xk

- 2 values are at the mean.
St raight forward comput ation yields

(13)

Of course , t his approaches zero as X or k increases. It is interesti ng to note
that a pur e needle-in-a-h ayst ack funct ion with one point at fmax and the
remaind er at f min only has a vari ance of

which is only a factor of two greater than the minimum vari an ce at high k
or X.

We will use these bounds in the next sect ion , where we apply a simple
GA to a sequence of test functions designed to tes t the efficacy of the popu­
lation sizing in linear and nonlinear problems, with uniform and nonuniform
subfunction scaling, and the presence or absence of explicit function noise.
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4. Testing t he population-sizing equation

In this secti on, we test the hypothesis that the populat ion-sizing equat ion
derived in the previous sect ion is a conservative aid to reducing errors in
build ing-b lock select ion . We begin by draw ing a somewhat t ight er connec­
tion bet ween average generational decision erro r and building-b lock conver­
gence. We then discuss the design of a suite of prob lems that test the
population-sizing relation across a range of pr oblems that are linear or nonlin­
ear , deterministic or nondetermini st ic, or uniformly or nonun iform ly scaled ,
and
outline some methodological decisions that were mad e to both broad en the
applicability of our results and simp lify the testing . Exp erimental results for
each of the five test funct ions are then presented , and these support the im­
mediate adoption of the populat ion-sizing relation as a mean s of controlling
convergence erro r.

4 .1 Con nection b e t ween gener ational er r or and ultimat e
convergence

Earlier we took a generational viewp oint of decision making, and calculated
a population size to cont rol the err or of decision for a pair of competing
building blocks. We have to find our way from this generational perspect ive
to the viewpo int at the end of a run . Calling S the event in which we succeed
in converging to the right compe ti ng building block at the end of a run, M
t he event in which we make a mistake in decision maki ng during the init ial
generat ion , and C t he event in which we choose correct ly dur ing the initi al
generation, we can calcula te the success prob abi lity as follows:

P (S) = P (S IM)P(M) + P (S IC)P(C) . (14)

By choos ing correc t ly (or incorrectl y), we mean that we give mor e (or fewer )
copies to schemata that are actually bet ter (or worse) than some ot her schema
of interest. T he int eraction between ultimat e success and initi ally correct or
incorrect decision making is fairly complex, but we can reason simply as
follows. If we choose correctly init ially, the probability that we converge
correctly is nearly one , because when we make a ste p in the right direct ion
it is usually a sizable one , and subsequent erro rs tend to be less frequent
than the initi al ones and are of smaller magnitude than the correct ste p
taken init ially. On t he ot her han d , the greates t chance for making a mistake
comes afte r an initi al error, becau se we have ste pped in the wrong direc­
tion . Although it is possible (and somet imes even fairl y pr obab le) to recover
from such initi al mistakes, we conservatively ignore such recovery, and get a
straight forward boun d on ultimate success probability. Set ting P (S IM) = 0
and P (S IC ) = 1, and recognizing that P (C) is at least as large as 1 - a ,
we obtain

P (S) = 1 - a . (15)
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We define the confidence factor ( = 1 - a and plot various convergence
measur es (usually proporti on of building blocks corr ect ) against ( . Since
the chan ces of getting better than P (S) = ( convergence is substantial, t he
measur e of whether the population sizing is conservative will simp ly be t hat
empirical data fall somewhere above the 45 degree line. In what follows, we
call the P(S) = ( line the expecte d lower bo und (or expected LB), but we
recognize here that it is fairly coarse.

4.2 Test suite design and m ethodological considerations

To test the population-sizing equat ion , we consider a simple GA run using
various populat ion sizes on a test suite of five real-valued fun ctions (F l to F5)
over bit strings wit h vario us levels of stochast icity, nonlinearity, and fitn ess
sca ling". F l is a linear fun ct ion (£ = 20,5 0,200) wit h uniform scaling. F2 is
a linear function (£ = 50) with nonuniform fitness scaling . F3 is a uniformly
scaled , linear function (£ = 50) with the addit ion of zero-mean Gau ssian
noise. F4 is an order-four deceptive pr oblem (£ = 40) with uniform sca ling
of the deceptive bui lding blocks, and F5 is an order-four deceptive problem
(£ = 40) with nonuniform scaling of the bui lding blocks. More detailed
definitions of each function are given in subsequent subsect ions.

T he test suite considers a range of difficulti es, and we choose our simple
GA carefully to bound th e results expec ted in a range of GA s used in pr act ice.
To examine whether the type of select ion significant ly affect s the quality of
convergence, we try a number of schemes to begin with, including many
of those in wide use. In subsequent tests we rest rict our experiments to
to urnament selection as a good compromise between quality and speed of
convergence. In all runs, simple, one-p oint crossover has been adopted . In
linear problems this adoption makes life more difficult for the GA , becau se
of well-known problems with hitchhiking [38]. In nonlinear pr oblems, we
have ass umed the existence of sufficient ly t ight linkage to permit bu ilding­
block growth . As mentioned previously, it is an unan swered quest ion how
this may be obtained without pr ior knowledge, but we did not wan t to open
that Pandora 's box, nor the one associated wit h the adopt ion of un iform
or other highly disruptive crosses. In any event, we are not advocating the
use of spec ific crossover op erator here. We simply want to show the effect
of choos ing well in the pr esence of collatera l or ot her noise. In all runs no
mut ation (Pm = 0) was used to ensure that init ial diversity provided the only
means of solving a problem . All runs are termina ted when the population
converges completely, and all simulat ions have been performed ten times,
each start ing with different ran dom-number-generator seeding.

In the remainder of this sect ion , we consider the result s of expe riments
usin g the popu lation-sizing equation in each of the pr oblems.

IT he term fitness scaling refers to th e relat ive contribut ion of building blocks in th e
fitness funct ion.
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4 .3 Test function Fl: A u nifor m ly scaled, linea r p roblem

Linear problems ar e supposed to be easy for GAs , but most genet ic algorith­
mists have obtained poor convergence in supposedly easy problems at some
t ime when the amount of collatera l noise has overwhelmed the signal avail­
able. Of course, mutation usually can fix earlier convergence errors in a linear
or bitwise opt imizable problem , but here we have denied that possibility in
an effort to isolate and identify the early decision errors. The init ial function
chosen to test the popu lat ion-sizing relat ion is the uniform linear problem:

l

I l (X) = I>i
i= l

where X i E {O, I} . This is, of course , the so-called one-max function, and its
solut ion is the st ring with all ones.

Since the prob lem is linear , the critical building block is of order one
(k = 1); t he signal we wish to detect has magnitude 1 - a = 1, and the
vari ance of the order-1 building block is simply (1 - 0)2/4 = 0.25, using the
var iance est imates of a pr evious sect ion. Thus (32 = 0.25/1 = 0.25, and
the overall sizing relation becomes n = c(f - 1).

To give th e GA a good workout , we have test ed F1 with a range of st ring-
lengt h values (f = 20, 50, 200), and a vari ety of select ion operators:

1. roulet te-wheel select ion (roulet te) ;

2. roulet te-wheel select ion with ranking (ranking) ;

3. stochas t ic universal select ion (SUS);

4. bin ary tournament select ion without replacement (tournament).

Roulette-wheel select ion is the usual Mont e-Carlo scheme with replacement ,
where the select ion probability Pi = Iii I:j Ij. Scaled select ion scheme uses
linear (zero to two) ranking'' [l J and Monte-Carlo select ion, and the SUS
scheme uses the low-noise scheme describ ed elsewhere [2J . Tournament selec­
tion is performed without replacement as describ ed elsewhere [20], in an effort
to keep the select ion noise as low as possible.

Figures 4, 5, and 6 show convergence versus confidence factor (and popu­
lation size) for f = 20,5 0, and 200, respectively. Over the range of values, the
roulet te results are nonconservative (below the expected lower bound), and
we will say more about this result in a moment . For the other schemes, the
results are barely above th e expected lower bound at low confidence values,
a not unexpected result because all sources of stochast icity other than collat ­
era l noise have been ignor ed. For the quiet schemes (SUS and tournament ) ,
the results become increasingly conservative with increasing n . This increas­
ing conservatism of the sizing relation with increased n is not unexp ected .
The lower bound relating confidence and ultimate convergence ignores all

2T he popu lat ion is linear ly ranked according to the fit ness of strings so that t he best
st ring is assigned two copies and the worst string is assigned zero copies.
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Figure 4: Simulation results for F1 with I! = 20, presented on a graph
of convergence as measured by the average number of correct alleles
versus confidence and population size. For ( values greater than 0.7,
in all but unranked roulet te wheel selection, the grap h shows that
the sizing equation is conservat ive even when no addit ional sources of
stochast icity are considered.

po ssibi lity of corr ect ing for an init ial err or. As n increases, drift t ime for
poorly discriminated building blocks increases [25], thereby increasing the
pr obab ilit y that a correct ion can be obtained . A more det ailed computa­
ti on for t hat mechanism should be sought, but it is beyond the scope of this
study. The ranked roulet t e resul t s st ay about even wit h the expec ted lower
bound for R. = 20 and 50, bu t have improved margin above the expec ted
lower bound at R. = 200 . The pr evious drift- time mechan ism can explain
this, wit h the poor resul t s at lower R. values explained by the high inh erent
noise of roulette-wheel select ion it self.

Perhaps the most st riking feature of these result s is that the roulette­
wheel (unranked) t races fall below the expected lower bound. This can be
explained by noting t hat the sizing relation without or adjustment makes no
additional al lowan ce for the noise of selection , and tha t Monte-Carlo selec­
tion with repl acement most certainly is a noisy scheme. To quantify this
somewhat , let us recognize that n repeated Bernoulli tr ials are binomially
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Figure 5: Simulation results for F1 with f. = 50, presented on a graph
of convergence as measured by the average number of correct alleles
versus confidence and population size. Th e SUS results at R. = 50
display increasing margin above the expected lower bound when com­
pared with the results at f. = 20.

distributed . Thus, for the i t h string, we calculate a mean and variance in
the num ber of trials as tip, and npi(1 - Pi), resp ectively. Recognizing that
Pi « 1, and summing over all st rings, we get a vari an ce ,£np;/n = 1. Thus,
t he variance in number of trials du e to the noise of the wheel is simply one in
uni t s of squared individuals. To put this in fitness terms we recogni ze that
an individu al must change by an amount equal to the population average
fitness to increase or decrease his numbers by one. Thus, the vari an ce due to
the roulette wh eel in fitn ess terms is the pr od uct of the vari an ce in number
t imes the square of the average fitness (or simply P) · Thus p} = P/o}.,f.
Let t ing f = 0.5(Jmin + fmax)£' and tak ing the appropriate vari an ce est imate ,
£(Jmax - f min)2/4 , we concl ud e that

p~ = e( fmax + fmin )
2

,
f max - froin

and in the pr esent case fmax = 1, fmin = 0, and thus p} = £. Using this
adjustment , we replot the F1 results for the roulette in figur e 7, where the
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Fi gure 6: Simulation results for F1 with g = 200, pr esented on a graph
of converge nce as measured by the average num be r of corr ect alleles
versus confidence (population size). The results are consiste nt with
t he g = 20 and g = 50 simulati ons , and the SUS and ranking resu lts
show more pronounced margins above the expec te d lower bound than
the runs a t lower g values.

exist ing results have been graphed again using an adjusted a' from the rela­
tion c(a' ) = c(a)j( l + f ). The sizing relation is restored to conserva t ism.

The second most st riking feature of the Fl results is the high perform anc e
of the two quiet select ion schemes, SUS and tournament . This is not unex­
pected , but the reason for superiority of SUS in most of the cases is uncl ear
without further investigation . Figur e 8 shows the total number of function
evaluations versus confidence for all schemes and all f values. Clearly, the
superiority of SUS is bought at high computat ional cost . It is well known
that purely proportionate schemes tend to slow as average fitness rises [20],
but this has a beneficial effect on the quality of convergence , since less pr es­
sure is applied to force bad decisions. On the other hand , this tend ency
increases substant ially the total number of functi on evaluations , and in the
remainder of this st udy we will concent rate on to urnament select ion as a
good compromise between quality and speed of convergence . Looki ng at the
F l resu lts mor e closely, we see that for the two pushy schemes (ranking and
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Figure 7: The previous Fl roulet te-wheel results have been replotted
using a confidence factor calculated after appropriate adjustment for
the noise of the roulette wheel. The result s are now at or above the
expect ed lower bound.

to urnament), t he number of function evaluations grows as I!1.7 , and for the
two purely proportionate schemes (SUS and roulet t e), t he number of func ­
ti on evaluations grows roughly as /2.3. Recall that ranked and to urnament
schemes te nd to converge in something like 0 (log n) gen erations and that
pur ely proportionate schemes tend to converge in O(n log n) ti me [20]; over­
all, t herefore, we should expect a total number of fun ction evaluations of
O(nog I!) to O(nog2 1!) for the pushy schemes, which is consistent with the
observed 1!1.7 , and we should expect convergence of O (1!2log l!) to O (1!2log31!)
for t he two proportionate schemes , which is consistent wit h the obs erved £2.3 .
The cons istency of these resul t s gives us some hope that these suggestions
abo ut convergence an d its ti me complexity can be taken to theoremhood-e-a
matter to be discussed somewhat later in this st udy. At this juncture, we
consider another linear fun ct ion in which not all bits are created equal.

4.4 Test function F2: A nonuniformly scaled, linear problem

T he second test function is also a linear fun ction :

50

Jz (x ) = L CiXi ,

i=l

(17)

where Xi E {O, I} , c; = fj for i E I , and Ci = 1 otherwise . Our strategy is
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Figure 8: The total number of function evaluat ions for each selection
scheme, graphed versus f value on log-log axes at ( = 0.9 for function
Fl. The total number of function evaluat ions varies approximate ly
as £1.7 in the pushy (ranking and tournament) selection schemes and
£2 .3 in the purely proportionate (SUS and roulette) schemes.

to scale some of the bits badly and observe whether the sizing equation can
pick up the small signal ami dst the large collate ral noise. Among the fifty
bits of the problem, only five bad bits are chosen to keep the collateral noise
relatively high , and the choice of the set I = {5, 15, 25, 35, 45} maximizes the
possibili ty of undesired hitchhiking under single-point crossover.

T he sizing of the population is determined as before except that the sig­
nal we wish to det ect is d = 8. Thus, the populati on-sizing equat ion become s
n = c(t - 1)/ 82

. As was mentioned , the general success of the sizing formula
has encouraged us to conti nue examinatio n of a single select ion scheme, to ur­
nam ent select ion . Using tournament select ion with all ot her GA param eters
and opera tors as previously discussed , blocks of simulations have been run
for 8 = 0.4 , 0.6, and 0.8, and the convergence is shown versus confidence
factor in figure 9. Here the convergence measure has been changed to the
average proportion of correc t alleles among the poorly scaled bits alone. The
good bits are well above the noise level, and are ext remely unli kely to have
any mistakes; including them in the convergence measur e gives too rosy a
picture. Looking at the figur e, the equation proves to be a conservat ive
population-sizing tool in this case as well. In fact , t he F 2 results ar e increas­
ingly conservat ive with decreased 8, a fact that is not surprising due to the
extremely conservative nature of the bo unding relation we have ass umed be­
tween generational confidence and ultimate convergence. As n increases, the
drift t ime to incorr ect convergence increases linearly, thereby sign ificantly
increasing the probability of recovering from initial decision-making errors.
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Figure 9: F2 res ults with R. = 50 show t he conve rge nce as measured
by t he pe rcentage of poorly scaled alleles correct versus confidence
at different levels of sca ling 5. T he sizing re lation proves to be a
conservative tool in all cases .

4 .5 Test function F3: A uniformly scaled, linear function with
noise added

For the third test function , we consider ano ther linear funct ion, except t his
t ime we ad d zero-mean Gaussian noise:

50

h(x) = L X i + g((}~),
i= l

(18)

where Xi E {O, I } and g((};;) is a generator of zero-mean Gaussian noise of
spec ified var iance (};;.

T he sizing relation is the same as in Fl , excep t that a factor p~ must
be used to account for the noise. Four different levels of noise ();; = 12.25,
24.5, 49.0, and 98.0 were added, and these correspond to p~ values of 1, 2,
4, and 8.

Convergence (over all bits) versus confidence ( is shown in in figur e 10,
for blocks of te n simulations on each (};; -P~ case . The sizing relat ion is con­
servative in all four cases; as before, increasing conservatism is observed wit h
increasing n .
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F igure 10: F 3 convergen ce as measur ed by t he average number of ones
versus confidence factor , showing that the populati on-sizing equa tion
adequa tely handles noisy problem s when ad justment is made for the
ad ditional stochasticity.

4 .6 Test function F4: A unifo rmly scaled, n onlinear function

In order to study var iance-based population sizing in nonlinear problems, a
40-bit , order- four deceptive problem- funct ion F4-has been designed:

10

f4(X) = :L f45(XI;),
i= l

(19)

where each of the subfunct ions f 45 is the function shown in figur e 11, and
the sequence of index sets is the ten sets containing four consecut ive int e­
gers each: 11 = {1, 2, 3, 4}, and Ii+1 = Ii + 4. Functi on F4 is a funct ion
of unitation (a funct ion of the number of ones in the substring argument ),
and elsewhere it has been shown that t his function is fully deceptive in
the usual average sense [7] . The variance of the subfunct ion may be cal­
culated directly and is found to be 1.215. Recognizing that there are te n
subfunct ions (m = 10), that each binary sub funct ion is of order four (X = 2,
k = 4), and that the fitn ess difference between the best and the second best
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Figure 11: This subfuncti on is used in functions F4 and F5. Here u
is the unitation or the number of ones in the subfunction' s substring.

substring is one (d = 1), the population-s izing equat ion reduces to n =
2c(1.215)(10 - 1)24/(12

) = 350c.
To eliminate building-block disruption as a concern , each subfunction is

coded tightly, and to urnament select ion is used with all other GA operators
and parameters set as in previous runs. Figure 12 show s convergence mea­
sure d by the average number of correct building blocks versus the confidence .
Once again the sizing equat ion conservatively bounds final convergence.

4. 7 Test function F5: A nonuniformly sca led, nonlinea r problem

To test whether the sizing equation bounds the convergence of a poorly scaled
decepti ve pr oblem , function F 5 has been defined as follows:

10

fs(x ) = L Cd4S (xIJ ,
i = l

(20)

where the subfun ction and index sets are defined as in F4, but where the
weighting coefficients are no longer uniform. In particular , all the c; = 1
except Cs = 0.25 .

Ignoring the minor change in RMS subfunct ion noise , t he sizing of the
pr evious problem may be used as long as it is modified to incl ud e the smallest
sign al. Since the smallest signal that needs to be detected is a quarter of the
one of the pr evious problem , the population size increases by a factor of 16,
yielding n = 5600c from the sizing relation .

Binary tournament selection is used as before, and converge nce is mea­
sured by the average number of correc t building blocks, considering only the
po orly scaled building block. St arting with ( = 0.7, in all runs at each value
of (, t he GA converges to the correct (all-ones) st ring.
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Figure 12: F4 conve rge nce as measure d by the average num ber of cor­
rect building blocks versus the confide nce fact or shows that t he sizing
equat ion conse rvat ively bo unds the actual convergence in a fairly dif­
ficult, albeit uniformly sca led, decept ive problem.

4.8 Summary of results

355

A population-sizing equation const ructed from straightforward statist ical de­
cision theory has been used in a number of test problems both linear and
nonlinear , from deterministic to inherently stochastic, and with uniform or
nonuniform scaling among subfunctions . When addit ional sourc es of stochas­
ti city are pr op erly accounte d for , the equatio n appears to be a conservative
tool for sizing populations in simp le GAs. The population-sizing equat ion
rou ghly describ es the boundary of a transition, at which GAs exhibit a stark
change in behavior from noisy and unpredict abl e convergence to repeatabl e
and reliab le results. Moreover , these experimental and theoretical results
suggest that if GA convergence can be proved , it is likely to exhibit time
complexity that is no worse than quadratic or cubic, depending on the selec­
tion scheme used.

These results are useful , and encourage us to seek st ra ightfo rward proofs
of recombinat ive-GA convergence . There may be object ions that the theory
is too simple, perhaps sugges t ing that GAs don 't work exact ly as the theory
idealizes. No model, however , can be placed in one-to-one correspondence, in
all respects and in all details, with it s modeled obj ect ; once this is recognized ,
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t he act of modeling becomes the process of focusing on those aspects of the
modeled objec t relevant to the model' s applica t ion . Viewed in this way,
the sizing relati on suggested here captur es much of what interests us with no
more than a back-of-an-envelope computation . As engineers interested in the
design of better GAs, we believe that this kind of modeling should be more
widely used . Having said so, we nevertheless do not recommend resting on
these laurels, and in the next sect ion we suggest.extens ions and cont inuat ions
of this work that will lead to an even deeper und erst anding of the complex
interactions that remain locked away in the population trajectories of even
the simplest of GAs.

5 . Extensions

T he simple populat ion-sizing equat ion present ed in this paper has proven to
be a usefully conservat ive est imate of the population size required to make
a cont rollably small number of building-block errors at the end of a run.
Several course s of applicat ion and extension readi ly suggest themselves:

1. Investiga te the use of the popu lation-sizing equation on non-binar y
alphabets , permutation pr oblems, and ot her codings .

2. Consider the const ruc tion of online populat ion-sizing techn iques based
on these principles.

3. Develop a mor e fund am ental relationship between generational error
and ult imate convergence.

4. Investigate in more det ail the noise generated by nondeterminist ic ob­
ject ive fun ct ions, select ion op erators, an d other genet ic operato rs.

5. Investigate the interacti on of niching and varian ce-based populati on
sizing in objective funct ions with multiple global solutions .

6. Investigate ot her means of forestalling convergence in low-fitness par­
t it ions.

7. Use these result s to const ruct computat ional-learn ing-theory-like proofs
of recombinative GA convergence in pro blems of bounded deception .

We will briefly examine each of these in somewhat mor e det ail.
The sizing equat ion deserves immediat e test ing on other-than-binar y cod­

ings, although the assumpt ions used in it s derivation ar e so st raight forward
that the success demonstrated in thi s pap er could be expec ted to carry over
to ot her structure s without modificat ion . At Illinois we have started to use
the sizing rela t ion in problems wit h permutat ion operato rs ; our ini ti al expe­
rience has been positive.

T he sizing relat ion requires some (albeit minimal) knowledge about the
problem being solved, and it may be possible to get online estimates of the
necessar y values through online populati on measurement s. Specifically, the
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sizing relation requires information about the problem size, popu lation vari­
ance, minimum signal, and order of deception . Vari an ce may be measured
direct ly and used st ra ightaway. Minimum desired signal can be established
beforehand, or by keeping track of the change of fitness after a sequence
of one-pos it ion mutations, an adequate est imate of minimum signa l can be
given. Order of difficulty is more difficult to measur e. Again , a pri or limit
on the order of maximum deception to be un covered can be established , or
it may be possible to get some est imate of difficulty by doing recur sive up­
dates of schema averages or Walsh coefficients as more samples are taken.
T he schema averages or Walsh coefficients may then be used to see whet her
there is any evidence of deception in past populations. Once these data are
availab le, the population size may be adjusted in an at tempt to cont rol the
erro r of decision, yet keep no more copies than is necessary.

T he relat ion adopted herein between spec ified error and ult imat e conver­
gence is conservat ive, bu t it should be possible to develop a more fundamental
relat ion between the two. One thing that aids convergen ce is that vari ance in
the first generation is something of a worst case. As positi ons converge, less
fitn ess var ian ce is felt by the remainin g compe t itors, and the environment of
decision is much less noisy. Also, as population sizes are increased , conver­
gence is aided , because drift tim es increase linearly with size [25], and tho se
building blocks in the noise soup-those wit h relatively unfavorabl e signal­
to-noise ratios-have a longer time to drift around before converging to one
value or another at random . It should be possib le to construct asymptot ic
models that mor e closely relate these effects without resor ting to full Markov
equations.

This paper has no more than scratched the surface of an investigation
of sources of noise other tha n collateral or building-block noise. Beyond the
addit ive Gaussian noise herein considered lie other noisy objective fun ct ions,
and representatives of these should be examined to see if the simple vari an ce
adjustment is sufficient . The pri or expectation is that the adjustment should
work , because the cent ral limit theorem works, bu t the question deserves
closer inquiry. Also, the noise generated by var ious select ion schemes shou ld
be invest igat ed , as should the noise generated by other genet ic operato rs . We
found that the noise of the roulet te wheel easily exceeded that of the fitness
varian ce, and this alone accounts for much of the advantage of stoc has tic re­
main der select ion , stochastic universal select ion , and other quieter select ion
schemes. The variance in operat ion of the other genetic operat ors does not
affect t he sizing as directl y as does select ion, but it , to o, should be. investi­
gated . A crossover operator that disrupts a short schema more tha n expected
can be deleterious to convergence and cause errors of decision as well. Simi­
larly, a mut ation operator that hit s a low-order schema mor e ofte n tha n the
average can be a prob lem. These effects should be st udied more carefully, and
ult imately incorporat ed into a varian ce-adjust ed schema theorem (a matter
discussed as part of the last item).

We have used test functions wit h singleton solut ion sets for simplicity. In
many problems of interest , the solut ion has cardinality much greater than
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one, and in these problems care should be taken to use nic hing methods
[5, 6, 23] or ot her techniques [17] that permi t the stable coex iste nce of multi­
ple solutions in a population . Such techniques should be used more often , as
unbr idled competit ion between spec ies (or corpo rations) results ultimately in
monopoly. This pap er also sugges ts that the same kinds of populat ion-sizing
considerat ions adopted herein should be used for subpo pulat ion sizing wit hin
the various niches. Det ermination of the number of niches is relat ed to the
cardinality of the solution set and the ability of the niching crite rion or cri­
te ria to discriminate between different members of a niche, and, depend ing
on the niching scheme used , some care should be exercised to calculate the
fixed-point pr opor tion of memb ers of a given niche prop erly. If t hese con­
cerns are addressed , it should be possible to size populations rationally for
problems with mult iple solut ions in a manner not much more difficult than
the one used here.

Niching stably pr eserves diversity across a population , bu t one of the ways
to pro mote better decision-m aking in a time-varying environment is through
dominance [26, 39] or ot her abeyance schemes. T his is par ti cularl y useful in
the present context for building blocks t hat fall below t he initi al signal dif­
ference d. Wi thout ot her protect ion , select ion at these posit ions is likely to
be random affair because of dr ift ; however , if cur rent ly out-of-favor build ing
blocks can be pro tected against cyclical or random runs of bad luck, there is
greater hope that when convergence is achieved at a high proportion of posi­
t ions , these smaller signals can be detected accurately. Dominan ce-diploidy
should be tested to see if low-fitness building blocks can be protected for
subsequent compe tit ion when the signal-to-no ise ratio is favorab le. Another
possible aid to convergence of low-fitness building blocks is the addit ion of
fitn ess noise of a scheduled level. T his counte rintuit ive sugges t ion relates to
the observation above that large population sizes pro long drift t ime for those
building blocks that are curre nt ly in the noise soup . The injecti on of noise
into a populat ion would insure t hat low-fitness bui lding blocks would drift
and not undergo select ive pressure, and large-enough populat ion sizes would
insur e that those blocks did not dr ift to absorption. After the first phase of
convergence of the highly fit building blocks the noise level could be lowered ,
there by expos ing the second tier to compe titive select ion.

Finally, by correcting the decision making in GAs, we feel we have ope ned
the door to st raightforward , yet rigorous , convergence proofs of recombinative
GAs. It has been po int ed out that the schema theorem could be mad e a
rigorous lower bound on schema growth if the various terms were adjusted
conservat ively for variance effects [24]. We stand by that claim here, and
suggest that such results can be pu shed fur ther to obtain proofs of polynomial
convergence within an epsilon of probab ility one in pr oblems of bounded
difficulty. T he actual proofs will resemble those of computat ional learning
theory, and there are a number of technical det ails t hat appear fairly tricky,
but correct decision making (in a prob abilisti c sense) is a crit ical piece of this
import ant puzzle.
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6. Conclusions

This pap er has developed and test ed a po pulat ion-sizing equation to per­
mit accurate statist ical decision makin g among compet ing building blocks in
population-oriented search schemes such as genetic algorit hms. In a suite of
five test fun cti ons, the population-sizing relation has bounded conservatively
t he actual accur acy of GA convergence when necessary sour ces of stochastic­
ity are properly considered and t he worst-case signal-to-noise ra tio is used in
sizing. These result s recommend t he immedi ate adoption of variance-based
population sizing in practical applications of genet ic algorit hms as well as
more foundation al invest igat ions.

T he paper has also examined t he total number of fun ction eva luations
requ ired to solve problems acc urate ly. Convergence appea rs to be no worse
than a qu adrat ic or cubic fun ction of t he number of bui lding blocks in t he
problem (dep ending on whether pur ely propo rt ionate select ion or more pushy
schemes such as ranking and to urn ament selecti on have been used ). T hese
resul ts are consist ent with previous theoretical predict ions of GA t ime com­
plexity, and should op en the door to formal proofs of polyn om ial GA con­
vergence in problems of bounded difficu lty, using the basic ap proach of t his
paper together with met hods not mu ch di fferent from t hose established in
computational learning theory.

Put in some what different terms, this pap er firmly establishes t he role of
populati on size in delineating a boundary between two vas tly different types
of simple genet ic algorit hm behavior. At low population sizes we see GAs,
converging only t hrough t he good graces of random changes t hat are lucky
enoug h to sur vive to a t ime when they may be properly judged. At high
populati on sizes we see GA s t hat promot e only the best among compet ing
building blocks, and when and if t hese are global, we can expect wit h high
probability convergence to global solut ions afte r sufficient recombinati on . To
un derst and these two regimes is useful; to have a qu anti ta tive yards t ick to
distingui sh high from low population size is impor tant ; and to lead these
ideas to their logical concl usion is the task ahe ad .

Acknowledgments

T he aut hors acknowledge the support provided by the US Army under Con­
t ract DASG60-90-C-01 53 and by t he Nation al Science Found ation under
Grant EC S-9022007.

References

[1] J. E. Baker, "Adaptive Select ion Methods for Genetic Algorit hms," pages
101- 111 in Proceedings of the First In tern ational Conference on Genetic AL­
gorithms and Th eir Applications , edited by J . J . Grefenstet te (Hillsdale, NJ ,
Lawrence Erlbaum, 1985).

[2] J . E. Baker, "Reducing Bias and Inefficiency in the Select ion Algorithm,"
pages 14- 21 in Proceedings of the Second International Conference on Genetic

Algorithms (1987).



360 David E. Goldberg, Kalyanm oy Deb, and James H. Clark

[3] L. Davis, Handbook of Genetic Algorithm s (New York , Van Nostrand Rein­
hold , 1991).

[4] K. A. De Jong, "An Analysis of the Behavior of a Class of Geneti c Ad ap­
t ive Syst ems" (Doct oral dissertat ion , Un iversity of Michigan ), Dissertation
A bstracts International, 36(10) (1975) 5140B (University Microfilms No. 76­
9381).

[5] K. Deb, "Genetic Algor ithms in Mult imodal Function Opt imization" (MS
Thesis, Uni versity of Alab am a) , T CGA Report No . 89002, The Clearinghouse
for Genetic Algorithms, University of Alab ama, Tus caloosa (1989) .

[6] K. Deb and D. E . Goldberg, "An Investi ga tion of Niche and Species Formation
in Genetic Function Op timization ," pages 42-50 in Proceedings of the Third
International Conference on Genetic Algorithm s, edite d by J . D . Schafer (San
Mateo, CA, Morgan Kau fman, 1989).

[7] K. Deb and D. E. Goldberg, "Analyzing Deception in Trap Fun ct ions," Illi­
GA L Report No. 91009, Illinois Genet ic Algori thms Laboratory, University
of Illinois a t Urbana-Ch amp aign (1991).

[8] L. J . Eshelman , "T he CHC Ad ap tive Search Algorithm: How to Have Safe
Sear ch When Engaging in Nontradit ional Genetic Recombination ," pages
265- 283 in Foundations of Genetic A lgori thms, edited by G. Rawlins (San
Mateo, CA , Morgan Kaufman, 1991).

[9] J . M. Fitzpat rick and J . J . Grefenstette, "Genet ic Algorithms in Noisy Envi­
ronments ," pages 101- 120 in Machine Learning, Volum e 3 (San Mateo, CA ,
Morgan Kaufman, 1988) .

[10] D. E . Goldberg, "Opt imal Initi al Population Size for Binary-coded Genet ic
Algor ithms," T CGA Repor t No. 85001, T he Clearinghouse for Genet ic Algo­
ri th ms, Un iversity of Alab ama , Tuscaloosa (1985).

[11] D. E . Goldberg, "Simple Genetic Algorit hms and the Minimal Deceptive
Problem ," pages 74- 88 in Genetic Algorithms and Simulated Annealing,
edit ed by L. Davis (Los Altos, CA , Mor gan Kaufman, 1987).

[12] D. E . Goldberg, Genetic Algorith ms in Search, Optimization, and Machin e
Learning (Reading, MA, Addison-Wesley, 1989).

[13] D. E . Goldb erg, "Genetic Algor it hm s and Walsh Funct ions: Par t I, A Gentle
In t rodu ction ," Complex Systems , 3 (1989) 129- 152.

[14] D. E . Goldberg, "Genetic Algorithms and Walsh Functions: Par t II , Decep­
tion and It s Analysis," Complex Syst ems, 3 (1989) 153-171.

[15] D. E . Goldb erg, "Sizing Populat ions for Serial and Parallel Genetic Algo­
rithms," pages 70- 79 in Proceedings of the Th ird International Conference
on Gene tic Algorithm s, edited by J . D . Schafer (San Mateo, CA , Morgan
Kaufman, 1989).



Genetic A lgorithms, Noise, and th e Sizing of Popu lat ions 36 1

[16] D. E. Goldberg, "Construction of High-order Deceptive Functions Using Low­
order Walsh Coefficients," IlliGAL Report No. 90002 , Illinois Genetic Algo­
rithms Labora tory, Un ivers ity of Illinois a t Urbana-Champaign (1990).

[17] D. E . Goldb erg, "A Note on Bolt zmann Tournament Selection for Genet ic Al­
gorithms and Population-or ient ed Simulated Annealing, " Complex Systems ,
4 (1990) 445-460.

[18] D. E . Goldb erg , "Six Steps to GA Happiness, " pr esented at the Oregon Grad­
uate Institute, Beaverton, OR (1991).

[19] D. E. Goldberg and C. L. Bridges , "An Ana lysis of a Reordering Operator on
a GA-hard P roblem," Biological Cybernetics, 62 (1990) 397-405.

[20] D. E . Goldb erg and K. Deb, "A Comparative Analysis of Select ion Schemes
Used in Genet ic Algor it hms," pages 69-93 in Foundations of Genetic Algo­
rit hms , edited by G. Rawlins (San Mateo, CA , Morgan Kaufman, 1991) .

[21] D. E. Goldb erg, K. Deb, and B. Korb , "Messy Genet ic Algor ithms Revisited:
Studies in Mixed Size and Scale," Comp lex Systems, 4 (1990) 415-444.

[22] D. E. Goldberg, B . Korb , and K. Deb, "Messy Genetic Algorit hms: Mot iva­
tion, Analysis, and Fi rst Resu lts ," Complex Systems, 3 (1989) 493-530.

[23] D. E . Goldberg and J . Richardson, "Genet ic Algorithms wit h Sharing for
Multimodal Function Optimizat ion ," pages 41-49 in Proceedings of the Second
International Conference on Genetic Algorithms (1987).

[24] D. E .Goldberg and M. Ru dnick, "Genetic Algor it hms and the Variance of
F itness ," Comp lex Systems, 5 (1991) 265- 278.

[25] D. E. Goldberg and P. Segrest , "F inite Markov Chain An alysis of Genetic
Algorithms," pages 1-8 in Proceedings of the Second International Conference
on Genetic Algorithms (1987) .

[26] D. E. Goldb erg and R. E. Smith, "Nonsta t ionary Function Optimization
Using Genetic Algor it hms wit h Dominance and Diploidy," pages 59-68 in
Proceedings of the Second International Conference on Gen etic Algorithms
(1987).

[27] J. J . Grefe nstette, "Building Block Hypothesis Considered Harmful ," Gene tic
Algorithms Digest, 5 (19) (1991); available via elect ronic mail.

[28] J . J. Grefenstette and J . E . Baker, "How Genetic Algori thms Work: A Crit­
ical Look at Implicit Parallelism," pages 20-27 in Proceedings of the Third
Intern ational Conference on Genetic Algorithms, edite d by J . D. Schafer (Sa n
Mateo, CA , Morgan Kaufman, 1989) .

[29] J . J. Grefenstette and J . M. Fitzpatrick, "Genetic Sea rch with Approximate
Function Evaluations," pages 160- 168 in Proceedings of the First Int erna­
tional Conference on Gene tic Algorithms and Their Applications, edited by
J . J . Grefenstette (Hillsdale, NJ , Lawrence Erlbaum, 1985).



362 David E. Goldb erg, Kalyanmoy Deb , and James H. Clark

[30] J . H. Holland, "Hierarchical Descriptions of Universal Space and Adaptive
Syst ems," Technical Report ORA Projects 01252 and 08226 (Ann Arbor , Uni­
versit y of Michigan Department of Computer and Communication Sciences,
1968).

[31] J . H. Holland , "Hierarchica l Descriptions of Universal Spaces and Adaptive
Syst ems," pages 320-353 in Essays on Cellular Automata, edited by A. W .
Burks (Urban a , University of Illinois Press, 1970).

[32] J. H. Holland, "Geneti c Algorithms and the Optimal Allocations of Trials,"
SIAM Journal of Computing, 2(2) (1973) 88-105.

[33] J. H. Holland, Adaptation in Natural and Artificial Systems (Ann Arbor,
University of Michigan Press , 1975).

[34] G. E . Liepins and M. D. Vose, "Represent at iona l Issues in Genetic Optimiza­
t ion," Journal of Experimental and Th eoretical Artificial Intelligence, 2(2)
(1990) 4- 30.

[35] M. Mitchell and S. Forrest , "W ha t is Deception Anyway? And What Does It
Have to Do with GAs? Some Concerns Inspired by the Tanese Functions,"
unpublished manuscript (1991) .

[36] N. J. Radcliffe, "Forma Analysis and Random Respectful Recombination ,"
pages 222-229 in Proceedings of the Fourth In ternational Conference on Ge­
ne tic Algorithms (1991) .

[37] M. Rudnick and D. E . Goldberg, "Signal, Noise, and Genetic Algori thms,"
IlliGAL Report No. 91005 , Illinois Geneti c Algorithms Laboratory, University
of Illinoi s at Urbana-Champaign (1991) .

[38] J. D . Schaffer , L. J. Eshelm an , and D. Offutt , "Spur ious Correlations and
Premature Convergen ce in Geneti c Algorithms," pages 102-112 in Founda­
tion s of Geneti c Algorithms, edited by G. Rawlins (San Mateo, CA , Morg an
Kaufman, 1991) .

[39] R. E. Smi th, "An Investigation of Diploid Genetic Algorithms for Adap­
t ive Search of Nonstationary Functions" (MS thesis , University of Alabama),
TCGA Report No. 88001 , The Clearinghouse for Geneti c Algorithms, Uni­
versity of Alab am a , Tuscaloosa (1988).

[40] W . M. Spear s and K. A. De Jong, "An An alysis of Multi-point Crossover ,"
pages 301- 315 in Foundations of Genetic Algorithms, edite d by G. Rawlins
(San Mateo, CA , Mor gan Kaufman , 1991) .

[41] W. M. Spe ars and K. A. De Jong, "On the Virtues of Param et erized Uniform
Cros sover ," pages 230-236 in Proceedings of the Fourth International Confer­
ence on Gen etic Algorithms (San Mateo, CA , Morgan Kaufman , 1991).

[42] M. D. Vose, "Generalizing the Notion of Schema in Geneti c Algorithms,"
Artificial Intelligence, in pr ess.

[43] L. D. Whitley, "Fundamental Principles of Deception in Geneti c Search,"
pages 221-241 in Foundations of Genetic Algorithms, edite d by G. Rawlins
(San Mateo, CA , Morgan Kaufman, 1991).


