Complex Systems 6 (1992) 363-389

Strategic Application
of Feedforward Neural Networks
to Large-Scale Classification

Sung-Bae Cho*
Jin H. Kim
Center for Artificial Intelligence Research
and
Computer Science Department,
Korea Advanced Institute of Science and Technology,
373-1, Koosung-dong, Yoosung-ku, Taejeon 305-701, Republic of Korea

Abstract. Feedforward neural networks have been successfully ap-
plied to a variety of classification problems, but the number of classes
used for experiments was too small to apply the results directly to
large-scale problems. This paper presents several strategies for apply-
ing feedforward neural networks to large-scale, complex classification
problems: a two-stage classification scheme, a rapid learning method,
a training schedule called selective reinforcement learning, a train-
ing scheme including systematic noise, and a weight matrix reduction
scheme. These strategies have been applied to the design of a printed
Hangul (Korean script) recognition system. Experiments with the 990
most frequently used printed Hangul syllables confirm the usefulness
of the presented strategies.

1. Introduction

A neural network is a parallel computational paradigm that solves problems
by means of massive interconnections of simple processors. Several models
of such networks have been proposed for use in a variety of difficult prob-
lems, especially classification problems [1]. Traditional classifiers test com-
peting hypotheses sequentially, whereas neural network classifiers test them
in parallel (thus providing high computational rates). The feedforward neu-
ral network classifiers in particular have been applied successfully to many

*Electronic mail address: sbcho@gorai.kaist.ac.kr.

364 Sung-Bae Cho and Jin H. Kim

problems, such as discriminating between underwater sonar returns [2] and
forming text-to-phoneme rules [3].

Although there have been reports that feedforward neural network clas-
sifiers are adequate for tough pattern-recognition problems, the number of
classes used for experiments was too small to apply the results directly to
large-set classification problems. Larger neétworks require greater amounts of
training time and patterns, and the computational complexity of the learning
process can quickly reach unmanageable proportions [4]. Actually, a simple
neural network approach often fails in many real world problems.

To cope with this difficulty, various temporary remedies have been pro-
posed in the literature. In this paper we combine many of these techniques
into a systematic framework of strategies for applying feedforward neural
networks to large-scale, complex classification problems. Our strategies are
devised for resolving problems primarily in three areas: architecture, learn-
ing, and generalization. For architecture we present a two-stage classification
scheme; for learning, a rapid learning method and a training schedule called
selective reinforcement learning; and for generalization, a training scheme
that includes systematic noise and a weight matrix reduction scheme.

The two-stage classification scheme leads to a kind of modular architec-
ture, thereby simplifying the decision-making process for classification. The
rapid learning method accelerates learning speed by applying Aitken’s AZ
process, which was originally developed for efficiently solving nonlinear op-
timization problems. Since a neural network tends to waste a great deal of
time learning a few hard patterns, selective reinforcement learning focuses
its attention on the hard patterns. The noise-included training scheme adds
noises systematically to given training patterns. This has the same effect as
expanding the number of training patterns, and therefore improves the gen-
eralization capability of the scheme. A large number of link weights do not
contribute to decision making because of their small magnitude. The weight
matrix reduction scheme cuts off insignificant links to improve recognition
speed and generalization capability.

In order to investigate the behavior of a neural network with the above-
described strategies, we designed and implemented neural networks for
printed Hangul syllable recognition, using input data obtained from an opti-
cal scanner. Even for printed syllables, building a useful Hangul recognition
system is not simple—such a system must be able to classify a large set of
syllables that are very similar to each other.

The rest of this paper is organized as follows. In section 2, we introduce
feedforward neural networks as classifiers. We describe several strategies for
applying feedforward neural networks to large-scale classification problems
in section 3. In section 4 we explain the printed Hangul syllable recognition
system, based on the two-stage classification scheme. Experimental results
with the 990 most frequently used printed Hangul syllables are presented in
section 5. Finally, conclusions are discussed in section 6.

Strategic Application of Neural Networks 365

OUTPUT

c Output Layer

(O2d+1 Hidden Layer

d Input Layer

INPUT

Figure 1: A two-layer neural network architecture. In this network, d
is the number of features, ¢ is the number of classes, and 2d + 1 is an
appropriately selected number.

2. Feedforward neural network classifiers

A neural network can be considered a mapping device between input and
output sets. Mathematically speaking, a neural network represents a function
F that maps [into O; F : I — O, or y = F(x) where y € O and x € I.
Since a classification problem is a mapping from a feature space to some set of
output classes, we can formalize the neural network—especially the two-layer
feedforward neural network trained with the backpropagation algorithm—as
a classifier.

Figure 1 shows a two-layer feedforward neural network classifier with d
neurons in the input layer, 2d + 1 neurons in the hidden layer, and ¢ neurons
in the output layer. Here, d is the number of features, ¢ is the number
of classes, and 2d + 1 is an appropriately selected number (this number is
determined by Kolmogorov’s theorem [5]). The network is fully connected
between adjacent layers. The operation of the feedforward neural network
classifier for this network is as follows.

Let z = {z1,29,...,24} be the feature set. Then each neuron z in the
hidden layer calculates its output through

d
j=1

where w;’,‘j is a weight between the kth input neuron and the jth hidden
neuron, and f is a sigmoid function such as f(z) = 1/(1 + e™*). After this

366 Sung-Bae Cho and Jin H. Kim

process, each neuron y; in the output layer calculates its output in a similar
fashion:

2d+1
yj=f(zw;;%;), 1<j<a @
=1

where w{™ is a weight from the jth hidden neuron to the ¢th class output.
Let = {wy,ws,...,w.} be the class set. Then the decision rule deter-
mines wj» if

j*=argmaxy;, 1<j<ec (3)
J

In other words, the neural network selects the largest output as the correct
class.

This can be thought of as a nonlinear decision-making process. Given an
unknown input, each output neuron estimates the possibility y; of belonging
to this class by

2d+1 d ,
s B (S

and then the neuron having maximum value is selected as the corresponding
class. The key consideration is how to determine the weight values w;" and
w]’?c’

The process of weight tuning for optimal classification is called learn-
ing. The backpropagation algorithm adjusts the weights between the layers

according to the following equation [6]:
Awji = b5 yi, ()

where p is a learning rate, §; is the difference between the desired ouput and
the actual output of neuron j, and y; is the output of neuron 7. §; can be
rewritten as follows according to the layer in which the sigmoid function is
used:

e when neuron j is at the output layer:
6 = (dj —y)y;(1 —) (6)

e when neuron j is at the hidden layer:
8 =y;(1 = y5) X 6wy (7)
k

In both cases d; is a desired output of neuron j, and wy; is the weight between
neuron k and neuron j. The term y;(1 — y;) is a result to differentiate the
sigmoid function.

Strategic Application of Neural Networks 367

¢

& £ First stage
2 (coarse)

<P ¢

- Second stage
0 p (fine)

Figure 2: Two-stage classification scheme. The coarse partition of the
total class is {£1,&a, ..., &k}, and the fine partition is {w1,ws, .. .,w}.

By
f

3. Application to large-scale classification
3.1 Two-stage classification

In the conventional neural network approach, once one fixes the structure of
the network (i.e., chooses the number of hidden layers and the number of
nodes in each hidden layer), the network adjusts its weights via the learn-
ing rule until the optimum weights are obtained. The corresponding weights
along with the structure of the network create the decision boundaries in
the feature space. In many practical pattern-recognition problems, a con-
ventional neural network classifier as just described tends not to converge
to the solution state. If the network does converge, the time required for
convergence may be prohibitive for practical purposes. The following section
presents a method of neural network architecture design based on a “divide
and conquer” approach.

According to the previous formalization of neural networks as classifiers,
a neural network having d binary input neurons and ¢ output neurons can
be considered as a classifier to assign a given sample with d features to
one of ¢ predefined categories. The two-stage neural network decomposes
the classification problem into several more manageable ones. The design
of a two-stage scheme for efficient classification entails some methodological
considerations. The first step might be to find the partition {&,&s,...,&}
by using a clustering technique such as the k-means algorithm, or using some
a priori knowledge about problem structure (as shown in figure 2). As the
result, we are given the coarse partition of the total class Q, {&,&, ..., &},
and the fine partition of Q, {wy,ws, ..., w.}.

Our two-stage classifier is shown in figure 3. The coarse network in the
figure performs the mapping NN, which is a switch for selecting one of the

368 Sung-Bae Cho and Jin H. Kim

TEA Tiz
NN

NN{'

Tﬁk
NN{

—_o O—_
E.»:{éw B5 s oo Bl

NN¢

Figure 3: The two-stage classifier composed of several feedforward
neural networks. The coarse network performs the mapping NN,
which is a switch for selecting one of the k classifiers in the fine stage.

k classifiers in the fine stage. The networks in the second stage are realiza-
tions of the mappings N N}. This approach, where the desired mappings are
accomplished with several smaller neural networks, typically will require less
training time than an approach that utilizes a single large network to carry
out the mappings.

The following demonstration will illustrate the degree to which complex-
ity is reduced in a two-stage neural network classification scheme. In order
to appreciate the difficulty of training a neural network with a large num-
ber of connections, let us first consider a single-layer network using linear
discriminant functions.

Suppose there are n sample points in d dimensions, and each point is
labeled either w; or wy;. Of the 2™ possible dichotomies of n points in d
dimensions, a certain fraction f(n, d) are said to be linear dichotomies. These
are the labelings for which there exists a hyperplane separating the points
labeled w; from the points labeled wy. It can be shown [7] that this fraction
is given by the following:

1 fn<d+1
fn,d)=3 2 & n-1 . (8)
o Z ; otherwise

=0

This means there may not exist a hyperplane to classify sample points if n is
not less than d + 1. However, if we think of a single-layer neural network as
a linear pattern classifier, the number of connections becomes the number of
degrees of freedom for the discriminant function, and the number of samples
can be several times as large as the number of connections.

Multi-layer neural networks can act as nonlinear discriminants, there-
fore the above results cannot be used directly to analyze multi-layer neural
network classifiers. Nevertheless, the basic idea of the neural network is to

Strategic Application of Neural Networks 369

automatically generate the mapping rule between given data pairs of input
and output, and the complexity of a multi-layer classifier can be measured
by the number of possible mappings that should be considered.

Since we are given a neural network with d binary input neurons and ¢
classes, the number of possible instances described by all these d features is
2¢. and the number of possible mappings considered by the neural network
classifier is

CHZd = Czd. (9)

On the other hand, if we decompose the c classes into k subclasses
C1,C2,...,Cr SO that we can implement the classifier with a coarse network
and k subnetworks, then the total number of possible mappings required by
these networks becomes

k k
s + 3 ollpe = K% + 5 &2 (10)

=1 =1

However, the actual number of possible mappings required to classify a given
sample point in subclass ¢; is

;llaa + o Tlpa = k¥ + &&°. (11)

Therefore, the load on the neural network classifier is greatly reduced. (For
further explanation of the mathematical analysis, see [8].)

3.2 Rapid learning method

The learning of neural networks consists of the systematic adjustment of
connection weights in order to approximate the desired output. In recent
years, the backpropagation algorithm appeared to be one of the most suc-
cessful learning procedures for multi-layer neural networks. This algorithm,
however, is too slow to apply to the real world problems. (It solves problems
by means of the gradient descent search method, which modifies iteratively
the values of weights in the direction in which the error function E decreases
most rapidly.)

Researchers have used several different approaches in attempting to speed
up the convergence of backpropagation learning. Some have used more elab-
orate search methods. (Most of these are variations of Newton’s method,
and require the computation, or approximation, of second partial derivatives
(9, 10, 11].) Others have attempted a systematic, empirical study of learning
speed in the backpropagation algorithm, finding the heuristics for achiev-
ing faster rate of convergence [12, 13, 14]. Many algorithms that have been
proposed for rapid learning use the approximated high-order derivative of
the error function, which provides more information about the shape of the
weight space, with the result that the rate of convergence is dramatically
increased.

370 Sung-Bae Cho and Jin H. Kim

Let wo be the initial weight and {w,}> the sequence generated by the
learning algorithm of a neural network—backpropagation, for example. Then
the weight-updating formula is usually as follows:

oF
Wpi1 = Wy + e (12)

where E is the error of the network and p is the learning rate. Since the rapid
learning method is simply considered as an iterative scheme performed by the
network itself in order to solve nonlinear optimization [15, 16], Aitken’s AZ
process is used to accelerate the learning speed. Equation (13) illustrates the
definition of this process. The purpose of Aitken’s A2 process is to obtain a
sequence that converges more rapidly to a solution than the original sequence:

* _ (wn+1 bl wn)z

W =Wy (13)
Wn42 — 2'u-)n-e—l + w,

The value w}, is a better approximation of the solution than w, or w,41. (A
more detailed exposition of Aitken’s A% process appears in Appendix A.)

We now present a rapid learning method that applies this technique to
the weight updating formula in order to achieve a faster rate of convergence.
The learning process itself consists of two stages: acceleration and attention.
In the earlier acceleration stage, a search process moves the network quickly
across the solution space by means of equation (13). In the later attention
stage, the search direction focuses slowly and accurately toward a minimum.
The algorithm of this rapid learning method is as follows.

Algorithm 1: Rapid learning method with Aitken’s A? process
Start learning with wy;
while Original sequence converges linearly do

/* Step I : acceleration process */

OF
Wnt1 = Wn + Mg,

_ o .
Wnt2 = Wnt1 T Mg,

(Wny1—wn)? .

* i
Wy, = Wn Wn4+2—2Wn+1+wWn ’
Wy, =W}
end_while

while Learning does not finish do
/* Step II : attention process */
Wpt1 = Wy + ,u'aaTEn7

end_while

This rapid learning method not only accelerates the rate of convergence,
but also induces convergence in some cases where the iteration diverges.
Experimental results with the XOR problem confirm the superiority of the
method presented here [17].

Strategic Application of Neural Networks 371

Errors 4

T

t t 1 t t t t ——>

Pi P2 Ps Ps Ps Ps P7 =« Pn Patterns
Figure 4: The intermediate state of the selective reinforcement learn-
ing process with respect to training patterns. After equally train-
ing all training patterns until the error of each is less than €, the
proposed learning scheme selectively trains unclassified patterns, for
example ps.

3.3 Selective reinforcement learning

A natural procedure for the design of classifiers is to construct a measure
of the performance of the classifier on the training set, and subsequently
to adjust the variables of the classifier such that this measure is optimized
[7]. In supervised learning, each pattern that has to be learned is propagated
through the network. Then the output is compared with the expected output,
and the connection weights adjusted to minimize the observed error. (This
process is repeated for all the patterns of the training set.) With a large
problem, however, the learning process is likely to consume a great deal of
time trying to learn a few unclassified patterns, while most of the other
patterns already yield a correct result. Several learning schedules, such as
overlearning [18] and rapid incremental learning [19], have been proposed to
improve learning capability. Mori and Yokosawa [20] investigate the behavior
of learning with various kinds of data presentation, and propose two learning
schedules: the review method for reinforcing weak points of learning, and
the preparation method for preventing networks from overtraining.

In selective reinforcement learning attention is focused on the hard pat-
terns, since a great deal of time is required for a neural network to learn a
few hard patterns. Selective reinforcement learning consists of two stages. In
the first half, weights are updated according to the sum of the errors of all
training data in order to make the network grasp the outline of the training
patterns. When the total sum of the errors (TSE) becomes smaller than a
predefined tolerance €;, the training data for which the errors of output units
exceed tolerance €, are selectively presented. Figure 4 shows an intermedi-
ate state of the learning process according to each pattern, and the overall

algorithm is as follows.

372 Sung-Bae Cho and Jin H. Kim

Figure 5: A four-class example of incorrect decision boundaries. Solid
lines represent the correct decision boundaries; dashed lines repre-
sent the incorrect boundaries caused by inadequate training data
(marked x).

Algorithm 2 : Selective reinforcement learning

Start learning with parameters €7, €;

while TSE > ¢; do
/* It trains all the learning data */
Training (ALL_DATA);

end_while

while TSE is not close to zero do
/* Tt trains hard patterns more frequently */
Train_data = Select_hard_patterns (ALL_DATA, ¢,);
Training (Train_data);
Training (ALL_DATA);

end_while

The second stage of selective reinforcement learning interlaces the total
patterns with the hard patterns. After training the network using all pat-
terns until approximately 50% of them are trained, the hard patterns are
determined and the network trained once more. This automatic schedule of
pattern presentation reduces training time and results in a more generalized
network capable of achieving higher recognition performance.

3.4 Noise-included learning

Error tolerance is one of the most valuable properties of neural networks, yet
simple neural networks are not likely to absorb the input noises of a large-
scale problem. In large-scale classification problems the underlying training
set contains only a small number of instances, and is not sufficiently repre-
sentative for the underlying distributions of the classes. Classifiers trained
with such sets will perform poorly; an example of incorrect decision bound-
aries resulting from inadequate training data is shown in figure 5. Since an
inadequate set of training data is the cause of bad generalization, it is the
major obstacle to achieve a higher recognition performance.

Researchers have tried several different approaches to overcome the geo-
metrical variations of input data. Fukushima [21] introduces complex cell

Strategic Application of Neural Networks 373

planes to his model, Neocognitron. Though it may be appropriate for the
biological point of view, the complex cell method requires too much storage
and recognition time to be practical for large-scale problems. Reber [22] and
Khotanzad and Lu [23] use preprocessing mechanisms (involving several tech-
niques such as polar, log, and discrete Fourier transformation) for extracting
the geometrically invariant features. Widrow and Winter [24] manage the
deformation of input patterns by using the invariance net at the front end,
and Waibel et al. [25] use Time Delay Neural Network (TDNN) for deal-
ing with temporal deformation in speech recognition problems. (For speech
recognition problems, it has been reported that recognition performance is
improved by introducing random or temporal distortions into the training
data [26, 27].)

We present a distortion method to generate new training data. From
a given training sample, this method automatically generates additional in-
stances of its class by shifting the sample in a predetermined set of directions
(such as up, down, left, and right). This method expands the number of
training patterns in each class, and its artificial expansion can be performed
optimally according to the problem. Networks trained via this method can
respond in a more flexible way to unforeseen variations in future data. The
critical question is how much noise can legitimately be added with the new
data still belonging to the same class as the noiseless parent data. Though
the answer depends primarily on the problem, the shifting method we have
proposed performs well in many practical problems.

3.5 Weight matrix reduction

While the functionality of neural networks has been researched extensively,
their structure has been studied relatively little. Most are fully connected
layered networks, which operate well in simple problems having one or two
hundred units, but which require much computation in large-scale problems.
In order to remedy this shortcoming, Somani and Penla [28] designed two
specially structured networks, the Compact Neural Network (CNN) and the
Reduced Interconnections Neural Network (RINN), both of which use gen-
eral network topologies such as hyper cube, rectangular grid, ring, and so on.
Lehar and Weaver [29] proposed a developmental design scheme that con-
structs the network structure randomly, and modifies it by repeated mutation
and selection in order to develop toward a desired functionality.

There are other methods of finding the smallest network that will perform
a particular task that are based on pruning a solution network. A network
which is too small may never solve a given problem, while a larger network
may be inefficient, particularly on a conventional von Neumann computer
[30]. Mozer and Smolensky [31] devised a technique for pruning some units
from the solution network via relevance measure, but it requires a mod-
ification of the cost function and the examination of all units under the
presentation of the entire training data. Karnin [32] proposed a method of
cutting weights instead of units by estimating the sensitivity of the global

374 Sung-Bae Cho and Jin H. Kim

error function with the inclusion/exclusion of each weight link in the neural
network. Though Karnin suggests that this method would incur negligible
computational overhead, it is easy to devise a simpler weight-cutting method
(with little computational overhead) by carefully observing the behavior of
the large-scale network. In this section, we present a simple method of reduc-
ing the number of links after training. The result is a small, efficient network
that performs as well as, or better than, the original; that is, it improves the
noise resistance of the network and reduces the processing time required to
give a solution.
Let S;; be the sensitivity with respect to connection w;;,

Sij = E(wy; = 0) — E(wy; = wy;), (14)

where F is the global error of the network and w; is the solution value of the
connection. S;; represents the increase of the error E with the elimination of
the connection between unit j and unit 7. The sensitivity S;; can be rewritten
as follows:
E(w;; =w;) — E(w;; =0
Sij e (t) 1_7) (J)w,.g‘ (15)

* ()
wy; — 0

_ E(wy; = wj) — E(wy; = wj;)

wy (16)

230

Q

* 7

where wzj is the initial weight. Then, as derived in [32], the estimated sensi-
tivity to the removal of connection w;; can be evaluated as

N-1 *
OF w;;
0 %) Ly

8’(1)1']‘

where N is the number of training epochs. Karnin’s approach is to calcu-
late the sensitivity of each weight by equation (17) during backpropagation
learning, then prune the low-sensitivity connections. (If wj; is very close to
zero, the sensitivity of equation (17) becomes zero, and the connection is
very likely to be pruned.) A large-scale problem tends to result in a sparse
network that has many links for which the solution values are close to zero.
The weight matrix reduction scheme uses this fact in finding the proper size
for a network, without incurring any computational overhead in the process
of learning.

Since a unit used in neural networks sums N weighted inputs and passes
the result through a nonlinearity [33], inputs of weight near zero may not
be necessary for calculating output. The weight matrix reduction scheme
eliminates these insignificant links, improving recognition speed and gener-
alization capability. Figure 6 shows an example of unnecessary links. In
this figure, the output remains the same even if only two links (a and d) are
used in the calculation of the activation value. There is a trade-off between
the acceleration of the recognition process and the degradation of its perfor-
mance, and the determination of the optimal reduction is essential not only

Strategic Application of Neural Networks 375

Transfer Yj= 0.557

(d) o. Yj=f(ZiWiXi'9i)

Figure 6: An example of link cuttings. The output remains the same
even if only two links (a and d) are used for the calculation of the
activation value.

to the acceleration of recognition but to the improvement of generalization
performance as well. Le Cun [34] also confirms the fact that minimizing the
number of free parameters in a network enhances generalization.

4. An application to Hangul recognition

The foregoing strategies have been applied to the design of a printed Hangul
recognition system. The system is composed of a type classification network
and six recognition networks. The former roughly classifies input syllable
images irito one of six types by their overall structure, and the latter further
classifies them by character code. This two-stage architecture reduces net-
work complexity, and faster training time and higher recognition performance
naturally follow.

4.1 Structure of Hangul characters

The Korean script system Hangul consists of 24 characters each of which
represents a phoneme. Ten of these are vowels and the rest are consonants.
Characters are grouped together to form syllables. A syllable may consist
of two to six characters. More than 11,000 syllables exist, but about 3,000
suffice for ordinary use. A word consists of a sequence of syllables.

The rules of character combination for making a syllable at first seem
complicated but logical. The Korean vowels are shaped either vertically or
horizontally elongated. The vertical vowels have their accompanying conso-
nants on their left and the horizontal vowels have their accompanying con-
sonants on their top. If a syllable has a consonant after a vowel, it is always
written below the main vowel. Depending on its position and accompanying
character, the shape of a character varies.

The general structure of Hangul syllables is presented in figure 7, where
V1 indicates a vertically shaped vowel, V2 a horizontally shaped vowel, C1
a head consonant, and C2 a bottom consonant. According to the shape of
the vowel included in the syllable and the presence or absence of a bottom
consonant, Hangul syllables can be divided into six categories, as shown in
figure 8.

376

Figure 7: General structure of Hangul syllables. V1 signifies a verti-
cally shaped vowel, V2 a horizontally shaped vowel, C1 a head con-

C1

V2

V1

Cc2

sonant, and C2 a bottom consonant.

Sung-Bae Cho and Jin H. Kim

C1 C1
C1 VA Vi
V2 V2
Type 1 Type 2 Type 3
C1
C1 Vi & VA
V2 V2
C2 Cc2 c2
Type 4 Type 5 Type 6

Figure 8: Six types of Hangul syllables. They are based on the shape
of the vowel included in the syllable, and on the presence or absence
of a bottom consonant.

4.2 Overall structure of recognition networks

At the beginning of our experiment, we implemented a simple neural network
using backpropagation, with a single hidden layer that has 1,600 (40 X 40) in-
put neurons, 40 hidden neurons and 10 output neurons. The output neurons
distributively encode Hangul syllables. This network, however, did not con-
verge when the number of classes of training samples exceeded approximately
one hundred syllables.

We overcame this obstacle by utilizing the fact that a Hangul syllable is
constructed by a combination of two to six characters. Syllables are grouped
into six classes according to the types of character combination. As a re-
sult, the overall system is composed of a global type classification network
and six recognition networks, one for each global type. Figures 9 and 10
show the algorithmic overview of the proposed classification scheme and the
overall structure of the classifier, respectively. Two-stage neural classifiers
have several advantages over single-layer backpropagation networks. Higher
recognition performance is obtained with fewer training data, and the train-
ing time is shortened. These advantages result from the modular design.

Strategic Application of Neural Networks 377

Input Image

Type Classifier

Learning Recognition
Typed Image

Data Expander

Recognition Network

Output Code

Figure 9: Overview of the Hangul character recognition system.

Recognition Network

Type Classifer Type 1 Type 2 Type 3 Type 4 Type 5 Type 6
b 4 L 4 4 . 4 4

Figure 10: Overall neural network structure for Hangul character
recognition. The system is composed of a type classification network
and six recognition networks. The former roughly classifies input syl-
lable images into one of six types by their overall structure, and the
latter further classify them by character code.

4.3 The type classification network

Since Hangul syllables can be grouped into six global types, the recognition
system is greatly simplified if the type of input image is known a priori.
Therefore, the system determines the type of input syllable image and ac-
tivates the corresponding network for syllable recognition. Figure 11 shows
the structure of a type classification network.

The type classifier is a partially connected feedforward network that has
1,600 input neurons, 17 hidden neurons, and 6 output neurons. Each neuron

of the hidden layer is connected to a specific input area, in which specific

378 Sung-Bae Cho and Jin H. Kim

Figure 11: A type classification neural network. The type classifier is a
partially connected feedforward network that has 1,600 input neurons,
17 hidden neurons, and 6 output neurons. Each neuron of the hidden
layer is connected to a specific input area.

types of characters can appear. The first neuron, for example, is connected
to the consonant area of type 1, the second neuron to the vowel area of type 1,
and so on. Each hidden neuron arrives at a local decision, and output neurons
summarize the local decisions and make the final decision of type determina-
tion. This structure can be justified by the observation that the position of
the character in each syllable is an important consideration for classifying the
type. According to this design, the number of interconnections is 5,915, while
a fully connected network would require 27,302 [(40 x 40 x 17) + (17 x 6)].

4.4 The recognition networks

The recognition networks activated by the type classification network classify
an input syllable image as a set of characters within a customized receptive
field. The idea of a customized receptive field for each recognition network is
based on the observation that every syllable of the same type has a structural
similarity.

Each recognition network is structured for recognizing its character, and
has a single hidden layer of 40 neurons. Figure 12 shows the structure of a
recognition network for syllables of the first type, where the first network rec-
ognizes the head consonant and the second recognizes the vertically shaped
vowel. As shown in this figure, the characters in a syllable image may touch
each other. Recognition networks are capable of correctly recognizing char-
acters despite the noise due to adjacent characters. It has been proven that

Strategic Application of Neural Networks 379

Figure 12: Neural network for typed character recognition (a case of
type 1). In this figure, the characters in the syllable image may touch
each other. Recognition networks are capable of correctly recognizing
characters despite the noise due to adjacent characters.

a multi-layer perceptron with at most two hidden layers can form any arbi-
trarily complex decision regions in a feature space, which is the ultimate goal
of any classifier [33].

5. Experimental results
5.1 Environments for experiments

Experiments were conducted with the 990 most frequently used printed
Hangul syllables on a Cray 2 supercomputer. We produced laser printer
output using the Microtek MSF300C scanner at 300 DPI (dots per inch) res-
olution. After analyzing the horizontal and vertical projections, a maximum
40 x 40 binary image of each syllable can be extracted from the scanned
document. Figure 13 shows a practical example of scanned syllables. Each
recognition network with 40 hidden units was trained by the backpropaga-
tion algorithm, with a learning rate of 0.1, a momentum term of 0.9, and
each weight randomly initialized between —0.1 and 0.1. The training was
terminated when the total sum of squared errors became less than 0.04.

5.2 Analysis of results

The base system is a two-stage neural network trained with the rapid learning
method. Figure 14 shows the decreasing rate of errors as the network learns,
and confirms the improvement of learning speed resulting from the selective
reinforcement learning scheme. This result does not, however, support a

380 Sung-Bae Cho and Jin H. Kim

=R PR
SRl S LSRN
= e [o sl Tl)
SRS AR
S Rl T el
TRl R T A
S P S e T [k
AP R FHEE R A
A IS =

Figure 13: A practical example of scanned syllables.

Comparison of Learning Speed

3000

= Conventional
-o- Selective

N
o
o
(=]

No. of Total Errors

1000

0

T L] L] T
0 20000 40000 60000 80000 100000
Epoch * Data

Figure 14: Fast learning by selective reinforcement. With selective
reinforcement learning, the total number of training patterns is 79,349,
while conventional learning requires 180,250.

Strategic Application of Neural Networks 381

group character
group identification recognition rate overall

rate in each group
id [#char | #error | %correct | #error | %correct | #error | %correct
i 114 0 100.00 0 100.00 0 100.00
2 68 3 95.59 2 97.06 5 92.65
3 42 0 100.00 6 85.71 6 85.71
4 480 1 99.79 16 96.67 16 96.67
5 251 0 100.00 15 94.02 15 94.02
6 35 3 91.43 0 100.00 3 91.43

[overall | 990 7] 9929 39 | 96.06 | 45 | 95.45 |

Table 1: Recognition rate of the conventional learning method.

group character
group identification recognition rate overall

rate in each group
id [#char | #error | %correct | #error | %correct | #error | %correct
1 114 0 100.00 0 100.00 0 100.00
2 68 3 95.59 0 100.00 3 95.59
3 42 0 100.00 2 95.24 2 95.24
4 480 1 99.79 7 98.54 7 98.54
5 251 0 100.00 2 99.20 2 99.20
6 35 3 91.43 0 100.00 3 91.43

[overall [990] 7 | 9929] 11 [9889 17 | 9828]

Table 2: Recognition rate of the noise-included learning method.

conjecture that the selective training of hard patterns makes the network
learn better.

In order to compare recognition rates, the results with the conventional
backpropagation learning are shown first in table 1. The data used for testing
are different, of course, from the training data. Since the majority of patterns
belong to types 4 or 5, the recognition rates of the two-stage networks show
large variances according to type. The overall rate is 95.45%. The recognition
rate of the noise-included learning method, shown in table 2, improves to
98.28%. Figure 15 compares both of these recognition rates according to type.
The weakest point of the trained networks is type 6, due to the complexity
of the shape and the small amount of training data.

The next experiment addresses weight-matrix reduction. The first issue is
how pruning affects the performance of the network. The weight distribution
of trained neural networks, shown in figure 16, seems to be normal with the
exception of those less than —0.25 and those greater than 0.25. 63.56% of
the links are between —0.15 and 0.15. Figure 17 shows the recognition rates

when links in some intervals are pruned. The network continues producing

382 Sung-Bae Cho and Jin H. Kim

100
bt
©
(=x
]
2
=
c 904
o
o
(]
(=]
<+ Conventional Learning
-o- Noise Included Leaming
80 T T L) LK T L
1 2 3 4 5 6
Subnetwork

Figure 15: Comparison of conventional vs. noise-included learning.
Conventional learning uses the original data. Noise-included learning
uses 5 pairs of data, consisting of the original data and additionally
modified patterns created by shifting them over a predetermined set
of directions, such as up, down, left, and right.

40000
(2]

S 30000
2
e
©
@
=
=

S 4

O 20000
N
S
)
z

10000 4

0-

- 025 - 015 0 015 0.25
Range

Figure 16: Weight distribution of a trained neural network. The
weights seem to be normally distributed, with the exception of those
less than —0.25 and greater than 0.25. Most of the weights—63.56%—
are bétween —0.15 and 0.15.

Strategic Application of Neural Networks 383

100 = =

= Trained Data
- TestData

98 1

96 +

94

Recognition Rate

1.-0.05 ~ 0.05 (25.80 %).
929 2..0.10 ~ 0.10 (48.17 %)
3.-0.15 ~ 0.15 (63.56 %)
904 4.-0.20 ~ 0.20 (73.40 %)
5.-0.25 ~ 0.25 (80.22 %)
88 T T T T - T - T
1 2 3 4 5

Remove Range

Figure 17: Recognition rates of the weight-matrix reduction. The
network continues producing acceptable results until more than half
of the links are pruned.

acceptable results until more than half of the links are pruned. Notice the
improvement of the recognition rate with test data when pruning 48.17% of
the links in the range —0.10 ~ 0.10. This means that redundant links actively
detract from the network’s ability to recognize distorted inputs. However,
because further pruning degrades the network’s performance, the proper limit
of reduction is important.

To show the superiority of the neural network approach compared with
conventional methods, some extra experiments were conducted. Figure 18
shows a comparison with a tree classifier, which is an efficient implementation
of the nearest-neighbor rule [7]. In this figure, TC(:) represents the tree
classifier constructed with one set of training data when ¢ is 1, five sets
when 4 is 2, and ten sets when 7 is 3; NN(z) represents the two-stage neural-
network classifier trained with simple backpropagation when 7 is 1, and the
noise-included training when 7 is 2. This comparison proves that multi-layer
perceptron classifiers trained with backpropagation can perform as well as,
or better than, conventional classifiers [35].

To generalize the capability of the proposed neural networks, we tried
to recognize all 2,350 syllables using the system trained with 990 syllables.
Table 3 shows the recognition results, which seem to be acceptable.

6. Concluding remarks

In this paper, we presented several strategies that are useful for applying
feedforward neural networks to large-scale classification problems and ap-
plied them to the recognition of large character sets. Experiments with the

384 Sung-Bae Cho and Jin H. Kim
100
3
<
(-
=
L
=
o
o
o
s
(=4
TC() TC(@ TC@B) NN(1) NN(@)
Methods
Figure 18: Comparison of the neural network with a statistical
method. TC(7) represents the tree classifier constructed with one set
of training data when 7 is 1, five sets when 7 is 2, and ten sets when ¢
is 3; NN(%) represents the two-stage neural-network classifier trained
with simple backpropagation when ¢ is 1, and the noise-included train-
ing when 17 is 2.
group character
group wdentification recognition rate overall
rate in each group
id | #tchar | #error | Y%correct | #terror I Y%correct | #ferror] Y%correct
1 149 4 97.32 4 97.32 8 94.63
2 90 2 97.78 5 94.44 T 92.22
3 109 14 87.16 48 55.96 52 52.29
4 1069 4 99.63 | 104 90.27 | 106 90.08
5 586 3 99.49 46 92.15 47 91.98
6 347 | 164 52.74 | 211 39.19 | 256 26.22
overall | 2350 [191 | 91.87] 418 | 8221 476 | 79.74|

Table 3: Generalization capability. Recognition rate of 2,350 syllables
using a neural network trained with 990 syllables.

Strategic Application of Neural Networks 385

990 most frequently used Hangul syllables were conducted to show the useful-
ness of these strategies. With selective reinforcement learning, the network
learned twice as fast as conventional learning. For noise-included training,
the recognition rate was 98.28%, which is superior to conventional methods.
The network continued producing acceptable results until more than half of
the links were pruned.

The fast learning method accelerated the learning speed using selective-
reinforcement learning after the number of training patterns was increased by
systematically adding the meaningful noises. In subsequent work, small com-
puters may be used to solve large-scale problems by removing unnecessary
weights from the trained ones.

Appendix A. Accelerated learning with Aitken’s A? process

Let {w,}* be a linearly convergent sequence of values converging to some
point p; that is, for e, = w, — p,

5 Ien—{»ll
lim ——— =u < 1. 18
n—oo0 Ie'nl = ()
To investigate the construction of a sequence {w,, }*°, which converges more
rapidly to p, suppose that the iteration w, = g(wn,—1), n = 1,2,3,..., con-
verges linearly, so it satisfies

Wnt1 — P = p(Wn — p) (19)
and

Wnyz — P = U(Wnt1 — P). (20)
Solving equations (19) and (20) for p while eliminating u leads to

2
_ WpWaia — Woyy

Wn+2 — 2U)'n.--i—l + Wn,

. 2
= w, — (wn+l wn) — g s AZ(wn) (21)
Wnt2 — 2'wn+1 # Wy,

In general, the original assumption (19) will not be true; nevertheless, it
is expected that the sequence {w, }*°, defined by

2
(wn+1 - wn)
)
Wn42 — 2u)'n+1 + wn,

w, = W, — (22)
converges more rapidly to p than the original sequence {w, }*. The point w*
is a better approximation of p than is w, or w,+;. Graphically, the solution
of w = g(w) amounts to the problem of finding the point of intersection of the
curves y = w and y = g(w), and w* is the solution of the linear interpolant
to g(w) at wy, wyyy (see figure 19). If g(w) is approximately a straight line
between w, and p, then the secant s(w) is a very good approximation of

386 Sung-Bae Cho and Jin H. Kim

y 4
y=w
(“‘n»l ’ \¥l+2)
\ s(w)
(W, Wor)
: y=g(w)
Wait1 p w W2 Wa -

Figure 19: Graphical representation of repeated substitution. The
solution of w = g(w) amounts to the problem of finding the point of
intersection of the curves y = w and y = g(w), and w* is the solution
of the linear interpolant to g(w) at wy, Wpy1.

g(w) in that interval; hence the fixed point w* of the secant is a very good
approximation of the solution p. In this way, the better approximation is
found in each iteration.

This process, called Aitken’s A? process, accelerates the convergence of
any sequence that is linearly convergent, and gives quadratic convergence
without evaluating a derivative. Moreover, Aitken’s A% process not only
accelerates convergence but also converts divergence into convergence in some
cases. It is easy to verify that if

Wp=14+p+---+p", (23)

then

1
A (w,) = ——. 24
() = 1 (24)
Therefore, Aitken’s A% process immediately gives the limit of this particular
sequence when it converges, and assigns a meaningful value even when it
does not converge.

Acknowledgments

This work was supported in part by a grant from the Korea Science and
Engineering Foundation (KOSEF), and by a grant from the Korea Advanced
Institute of Science and Technology.

Strategic Application of Neural Networks 387

References

(1]

2]

8]

4l

(5]

(8]

[9]

[10]

1]

12]

(13]

R. Hecht-Nielsen, “Neurocomputer Applications,” NATO ASI Series F: Com-
puter and Systems Sciences, 41 (1988) 445-453.

R. P. Gorman and T. J. Sejnowski, “Analysis of Hidden Units in a Layered
Network Trained to Classify Sonar Targets,” Neural Networks, 1 (1988) 75—
89.

T. J. Sejnowski and C. M. Rosenberg, “Parallel Networks that Learn to Pro-
nounce English Text,” Complex Systems, 1 (1987) 145-168.

A. Waibel, “Connectionist Glue: Modular Design of Neural Speech Systems,”
pages 417-425 in Proceedings of the 1988 Connectionist Models Summer
School (1988).

A. N. Kolmogorov, “On the Representation of Continuous Functions of Many
Variables by Superposition of Continuous Functions of One Variable and Ad-
dition,” Doklady Akademii Nauk SSSR, 144 (1957) 679-681; American Math-
ematical Society Translation, 28 (1963) 55-59.

D. E. Rumelhart and J. L. McClelland, Parallel Distributed Processing: Ex-
plorations in the Microstructure of Cognition (Cambridge, MIT Press, 1986).

R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis (New
York, Wiley, 1973).

S.-B. Cho and J. H. Kim, “A Two-stage Classification Scheme with Backprop-
agation Neural Network Classifiers,” Pattern Recognition Letters, 13 (1992)
309-313.

S. Becker and Y. le Cun, “Improving the Convergence of Back-Propagation
Learning with Second Order Methods,” pages 29-37 in Proceedings of the
1988 Connectionist Models Summer School (1988).

D. B. Parker, “A Comparison of Algorithms for Neuron-like Cells,” pages
327-332 in Neural Networks for Computing, edited by J. S. Denker (New
York, American Institute of Physics, 1986).

D. B. Parker, “Optimal Algorithms for Adaptive Networks: Second Order
Backpropagation, Second Order Direct Propagation, and Second Order Heb-
bian Learning,” pages 593-600 in Proceedings of the IEEFE International Con-
ference on Neural Networks II (1987).

S. E. Fahlman, “An Empirical Study of Learning Speed in Back-Propagation
Networks,” Technical Report CMU-CS-88-162 (Carnegie-Mellon University,
June 1988).

P. Haffner, A. Waibel, H. Sawai, and K. Shikano, “Fast Back-Propagation
Learning Methods for Large Phonemic Neural Networks,” Technical Report
TR-1-0058 (ATR Interpreting Telephony Research Laboratory, 1988).

388 Sung-Bae Cho and Jin H. Kim

[14] R. A. Jacobs, “Increased Rates of Convergence through Learning Rate Adap-
tation,” Neural Networks, 1 (1988) 295-307.

[15] J. E. Angus, “On the Connection between Neural Network Learning and
Multivariate Nonlinear Least Squares Estimation,” International Journal of
Neural Networks: Research & Applications, 1 (1989) 42-47.

[16] R. L. Watrous, “Learning Algorithms for Connectionist Networks: Applied
Gradient Methods of Nonlinear Optimization,” pages 619-627 in Proceedings
of the IEEE International Conference on Neural Networks II (1987).

[17] S.-B. Cho and J. H. Kim, “An Accelerated Learning Method with Back-
propagation,” pages 605-608 in Proceedings of the IEEE International Joint
Conference on Neural Networks (1990).

[18] M. Kam, R. Cheng, and A. Guez, “On the Design of a Content-Addressable
Memory via Binary Neural Networks,” pages 513-522 in Proceedings of the
IEEE International Conference on Neural Networks II (1987).

[19] D. D. Nguyen and J. S. J. Lee, “A New LMS-Based Algorithm for Rapid
Adaptive Classification in Dynamic Environments,” Neural Networks, 2
(1989) 215-228.

[20] Y. Mori and K. Yokosawa, “Neural Networks that Learn to Discriminate
Similar Kanji Characters,” pages 332-347 in Advances in Neural Informa-
tion Processing Systems I, edited by D. S. Touretzky (San Mateo, Morgan
Kaufmann, 1989).

[21] K. Fukushima, “A Neural Network for Visual Pattern Recognition,” IEEE
Computer, 21(3) (1988) 65-74.

[22] W. L. Reber, “An Artificial Neural System Design for Rotation and Scale
Invariant Pattern Recognition,” pages 277-283 in Proceedings of the IEEE
International Conference on Neural Networks IV (1987).

[23] A. Khotanzad and J. H. Lu, “Distortion Invariant Character Recognition
by a Multi-Layer Perceptron and Backpropagation Learning,” pages 635-632
in Proceedings of the IEEE International Conference on Neural Networks I
(1988).

[24] B. Widrow and R. G. Winter, “Neural Nets for Adaptive Filtering and Adap-
tive Pattern Recognition,” IEEE Computer, 21(3) (1988) 25-39.

[25] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang, “Phoneme
Recognition Using Time-Delay Neural Networks,” IEEE Transactions on
ASSP, 37 (1989) 328-339.

[26] R. K. Bernhard and A. K. Wolfgang, “Design of Hierarchical Perceptron
Structures and their Application to the Task of Isolated-Word Recognition,”
pages 243-249 in Proceedings of the IEEE International Joint Conference on
Neural Networks I (1989).

Strategic Application of Neural Networks 389

(27]

[28]

29]

(30]

[31]

(32]

(33]

(34]

(35]

T. Matsuoka, H. Hamada, and R. Nakatsu, “Syllable Recognition Using In-
tegrated Neural Networks,” pages 251-258 in Proceedings of the IEEE Inter-
national Joint Conference on Neural Networks I (1989).

A. K. Somani and N. Penla, “Compact Neural Network,” pages 191-198 in
Proceedings of the IEEE International Conference on Neural Networks IIT
(1987).

S. Lehar and J. Weaver, “A Developmental Approach to Neural Network
Design,” pages 97-104 in Proceedings of the IEEE International Conference
on Neural Networks II (1987).

J. Sietsma and R. J. F. Dow, “Neural Net Pruning: Why and How,” pages
325-332 in Proceedings of the IEEE International Conference on Neural Net-
works I (1988).

M. C. Mozer and P. Smolensky, “Skeletonization: A Technique for Trimming
the Fat from a Network via Relevance Assessment,” pages 107-115 in Ad-
vances in Neural Information Processing Systems I, edited by D. S. Touretzky
(San Mateo, Morgan Kaufmann, 1989).

E. D. Karnin, “A Simple Procedure for Pruning Back-Propagation Trained
Neural Networks,” IEEE Transactios on Neural Networks, 1 (1990) 239-242.

R. O. Lippmann, “An Introduction to Computing with Neural Nets,” IEEE
ASSP Magazine, (April 1987) 4-22.

Y. le Cun, “Generalization and Network Design Strategies,” pages 143-155
in Connectionism in Perspective, edited by R. Pfeifer et al. (Netherlands,
North-Holland, 1989).

W. Y. Huang and R. P. Lippmann, “Comparisons between Neural Net and
Conventional Classifiers,” pages 485-493 in Proceedings of the IEEE Interna-
tional Conference on Neural Networks IV (1987).

