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Abstract. Feedforward neural networks have been successfully ap­
plied to a variety of classification problems, but th e number of classes
used for experiments was too small to app ly the results directly to
large-scale problems. This pap er presents several st rategies for apply­
ing feedforward neur al networks to large-scale, complex classificat ion
problems: a two-stage classification scheme, a rapid learn ing met hod,
a t raining schedul e called select ive reinforcement learning, a t rain­
ing scheme including syst ematic noise, and a weight matrix redu ction
scheme. These st rategies have been applied to the design of a printed
Hangul (Korean script) recognition system. Exp erim ent s with the 990
most frequently used pri nt ed Hangul syllables confirm the usefulness
of th e present ed str at egies.

1. Introduction

A neural network is a parallel computat ional paradigm tha t solves problems
by means of m assive inter con nections of simple processors . Several mo dels
of su ch ne tworks have been proposed for use in a variety of difficult prob­
lems, especially classification pro blems [1]. Tradition al classifiers test com­
peting hypotheses seque ntially, whereas neural net work classifiers test them
in parall el (thus providing high computat ional ra t es) . The feedforward neu­
ral network classifiers in particular have been applied successfully t o many
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problems, such as discriminating between underwat er sonar returns [2] and
forming text-to-phoneme rul es [3].

Although there have been rep orts that feedforward neural network clas­
sifiers are adequate for tough pattern-recognition problems , the number of
classes used for exp eriment s was too small to apply the results direct ly to
large-set classification problems. Larger networks require greater amounts of
training t ime and patterns, and the computat ional complexity of the learning
process can quickly reach unmanageabl e proportions [4]. Actually, a simple
neural network approach oft en fails in many real world problems.

To cope with t his difficulty, various temporar y remedies have been pro­
posed in the lit erature. In this pap er we combine many of these techniques
into a systematic fram ework of strate gies for applying feedforward neural
networks to large-scale, complex classification problems. Our strategies are
devised for resolving problems primarily in three areas : architecture, learn­
ing, and generalizat ion . For architec ture we pr esent a two-st age classification
scheme; for learning, a rapid learn ing method and a training schedule called
select ive reinforcement learning; and for generaliza t ion, a training scheme
that includes systematic noise and a weight matrix reduction scheme.

The two-st age classification scheme leads to a kind of modular architec­
ture , thereby simp lifying the decision-m aking pro cess for classification. The
rapid learning method accelerates learning spee d by applying Aitken's /:::,2

process, which was originally develop ed for efficiently solving non linear op­
timization probl ems. Since a neural network tends to waste a great deal of
time learning a few hard patterns, select ive reinforcement learning focuses
it s attent ion on the hard patterns . The noise-included training scheme adds
noises systemat ically to given training patterns. This has the sam e effect as
expanding the number of t raining patterns, and therefore improves the gen­
eralization capability of the scheme. A large number of link weights do not
cont ribute to decision making becau se of their small magnitude. The weight
matrix reduction scheme cuts off insignificant link s to improve recognition
speed and generalizat ion capability.

In order to investigat e the behavior of a neural network with the above­
describe d st rategies, we designed and imp lemented neural networks for
printed Hangul syllable recognition , using input data obtain ed from an opt i­
cal sca nner. Even for printed syllables, building a useful Hangul recognition
system is not simple-such a system must be able to classify a large set of
syllabl es that are very similar to each other.

The rest of this pap er is organized as follows. In sect ion 2, we introduce
feedforward neur al networks as classifiers. We describe severa l st rateg ies for
applying feedforward neural networks to large-scale classification problems
in sect ion 3. In sect ion 4 we explain the printed Hangul syllable recognition
system, based on the two-st age classification scheme. Experimental results
with the 990 most frequently used printed Han gul syllables are pr esented in
sect ion 5. Finally, conclus ions are discussed in section 6.
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Figure 1: A two-layer neural network architect ure. In this network, d
is t he number of fea tures, c is the number of classes , and 2d + 1 is an
appropriately selected nu mb er .

2. Feedforward neural ne tw ork cl ass ifiers

A neur al network can be considered a mapping device between input and
output sets . Mathematically speaking, a neur al network repres ents a function
F that maps I into 0 ; F : I --t 0, or y = F (x) where y E O and x E I .
Since a classificat ion problem is a mapping from a feature space to some set of
output classes, we can form alize the neural network- especially the two-layer
feedforward neur al network trained wit h the backpropagation algorit hm-as
a classifier.

Figure 1 shows a two-layer feedforward neur al network classifier wit h d
neur ons in the input layer , 2d + 1 neuron s in the hidden layer , and c neur ons
in the output layer. Here, d is the number of features, c is the number
of classes, and 2d + 1 is an appropr iate ly selected number (this number is
det ermined by Kolmogorov's theorem [5]) . T he network is fully connected
between adjacent layers. T he operation of the feedforward neur al network
classifier for this network is as follows.

Let x= {Xl ,X2 , ' " ,Xd } be the feature set . Then each neur on x; in the
hidden layer calculates its output through

1 :S k :S 2d + 1, (1)

where wji: is a weight between the kth input neur on an d the jth hidden
neur on , and f is a sigmoid function such as f (x ) = 1/ (1 + e- X

) . After this
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pr ocess, each neuron Yj in the output layer calculates its output in a similar
fashion:

(

2d+1 )
Yj = f ~ wfr x; ,

t= l

1 < j < c, (2)

where wir is a weight from the jth hidden neuron to the ith class output .
Let n = {WI , W2 , . . . , We } be the class set . T hen the decision rul e det er­

mines Wj " if

j * = arg max Yj,
J

1 ::; j ::; c. (3)

In other words, the neur al network selects the largest output as the corre ct
class.

This can be thought of as a nonlinear decision-making pr ocess. Given an
unknown input , each output neuron est imates the possibility Yj of belonging
to this class by

(4)

and then the neuron having maximum valu e is selected as the corresponding
class. The key considerat ion is how to determine the weight values wir and

mi
W j k'

T he pro cess of weight tuning for optimal classification is called learn­
ing. The backpropagation algorithm adjust s the weight s between the layers
according to the following equation [6] :

(5)

where jj is a learning rate, OJ is the difference between the desired ouput and
the actual output of neuron j , and Yi is the output of neuron i . OJ can be
rewritten as follows according to the layer in which the sigmoid function is
used :

• when neuron j is at the output layer :

• when neuron j is at the hidden layer :

8j = Y j(1- Y j )~ OkWkj
k

(6)

(7)

In both cases dj is a desired output of neuron j, and W kj is the weight between
neuron k and neuron j . The term Y j (1 - Yj) is a result to differentiate the
sigmoid function.
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Fi gure 2: Two- stage classificati on scheme . The coa rse partition of the
total class is {6,6 , ... ,~d , and the fine partition is {WI ,Wz, .. . ,We }.

3. Application to large-scale classification

3.1 Two-stage classification

In the convent ional neural network approach, once one fixes t he struct ure of
the network (i.e. , chooses the number of hidden layers and the number of
nodes in each hidden layer) , the network adjusts its weights via the learn­
ing rule until the optimum weights are obtained . The corres po nding weights
along with the struct ure of the network create the decision boundari es in
the feature space . In many pr actical pattern- recognition probl ems, a con­
ventional neural network classifier as just describ ed tends not to converge
to the solut ion state . If the network does converge, the time required for
convergence may be prohibitive for pr acti cal purposes. The following sect ion
pr esents a method of neural network architec ture design based on a "divide
and conquer" approach.

According to the pr evious formaliza t ion of neural networks as classifiers,
a neural network having d bin ar y input neuron s and c output neurons can
be considered as a classifier to assign a given sample wit h d features to
one of c pr edefined catego ries. The two-stage neur al network decomposes
the classification problem int o severa l mor e man ageabl e ones . The design
of a two-st age scheme for efficient classification entails some methodological
considerations . The first step might be to find the par tition {6 ,6 , . . . ,~d
by using a clustering technique such as the k-m eans algorithm , or using some
a priori knowledge about pr oblem structure (as shown in figure 2). As the
result , we are given the coarse partition of the to tal class Sl, {6 ,6 , . .. ,~d ,

and the fine partition of Sl, {WI, Wz, ... ,we }.
Our two-stage classifier is shown in figure 3. The coarse network in the

figure performs th e mapping NNe' which is a switch for selecting one of th e
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Figure 3: The two-stage classifier composed of several feedforward
neural networks. Th e coarse network performs the mapping N N c ,

which is a switch for selecting one of th e k classifiers in the fine stage.

k classifiers in the fine st age . The networks in the second stage are realiza­
tions of the mappings N N j. This approach , where the desired mappings are
accomplished with several smaller neural networks, typically will require less
training time than an approach that utilizes a single large network to carry
out the mappings.

The following demonstration will illust rat e the degree to which complex­
ity is reduced in a two-st age neur al network classification scheme. In order
to appreciate the difficulty of training a neural network with a large num­
ber of connect ions, let us first consider a single-layer network using linear
discr iminan t functions.

Suppose there are n sample points in d dimensions, and each point is
labeled either WI or W2' Of the 2n possib le dichotomies of n points in d
dimension s, a certain fraction f(n ,d) are said to be linear dichotomies. These
are the lab elings for which there exists a hyp erp lan e separa t ing the points
labeled WI from the points labeled W2. It can be shown [7] that this fraction
is given by the following:

ifn ::=;d + l

otherwise
(8)

This mean s there may not exist a hyp erplane to classify sample points if n is
not less than d + 1. However, if we think of a single-layer neural network as
a linear pattern classifier , the number of connect ions becomes the number of
degrees of freedom for the discriminant fun ction, and the number of samples
can be severa l times as large as the number of connections.

Multi-layer neural networks can act as nonlinear discriminan ts , there­
fore the above results cannot be used dir ectly to analyze multi-layer neural
network class ifiers. Nevertheless , the basic idea of the neural network is to
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automat ically generate the mapping rul e be tween given dat a pairs of input
and output, and t he complexity of a mul t i-layer classifier can be measured
by the number of possible mapp ings that should be considered .

Since we are given a neural network wit h d binary input neur ons and c
classes, the number of possible instan ces described by all t hese d features is
2d

, an d the number of possible mappings considered by the neural network
classifier is

(9)

On the other hand , if we decompose t he c classes into k subclasses
Cl , C2 , ... ,Ck so that we can implement the classifier wit h a coarse network
and k subnetworks, then the total number of possible mappings required by
these networks becomes

(10)

However , the actua l num ber of possible mappings required to classify a given
sample point in subclass c, is

(11)

Therefore, the load on the neural network classifier is great ly reduced. (For
further explanation of the mathematical ana lysis, see [8J .)

3.2 R apid learning method

The learning of neur al networks consists of the systematic adjustment of
connect ion weights in order to approximate the desired output . In recent
years, the backpropagation algorit hm appeared to be one of the most suc­
cessful learn ing pro cedures for multi-layer neur al networks. This algorit hm,
however , is too slow to ap ply to the real world problems. (It solves problems
by means of the gradient descent search method, which modifies iteratively
the values of weight s in the direction in which the erro r fun ction E decreases
most rapidly.)

Researchers have used several different approaches in atte mpt ing to speed
up the convergence of backpr opagation learni ng. Some have used mor e elab­
orate search methods. (Most of these are var iations of Newton 's method,
and require the computat ion, or app roximat ion, of second partial derivat ives
[9, 10, 11J.) Others have at tempted a systemat ic, emp irical st udy of learn ing
speed in the backpr opagation algorit hm, finding the heuri stics for achiev­
ing faster rate of convergence [12, 13, 14J. Many algori thms that have been
prop osed for rapid learning use the app roximated high-ord er derivat ive of
the error function, which provides more informat ion about the sha pe of the
weight space, with the resul t that the rate of convergence is dr amatically
increased.
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Let Wo be the initial weight and {wn}OO t he sequence generated by the
learning algor it hm of a neural network-backpropagation , for example. T hen
the weight -updating formula is usually as follows:

BE
W n +1 = W n + J1. c;-­

o ui;
(12)

where E is the error of the network and J1. is t he learning rate. Since the rapid
learning method is simply considered as an it erative scheme performed by the
network its elf in order to solve nonlinear optimizat ion [15, 16], Aitken 's ~ 2

pro cess is used to accelerate the learni ng speed . Equation (13) illustrates the
defini tion of this pro cess. The purpose of Aitken 's ~2 pr ocess is to obtain a
sequence that converges more rapidly to a solu tion than the original seque nce:

(13)

T he value w~ is a better approximat ion of the solut ion than ui; or W n +1 . (A
more detailed exposit ion of Aitken's ~2 pro cess appears in Appendix A.)

We now pr esent a rap id learn ing method that applies this technique to
the weight updating formula in order to achieve a faster rate of convergence.
The learning process itself consists of two stages: acceleration and attent ion.
In the earlier accelerat ion stage, a search pro cess moves the network quickly
across the solution space by mean s of equation (13). In the later at tent ion
stage, the search direction focuses slowly and accurate ly toward a mini mum.
The algorit hm of this rapid learning met hod is as follows.

Algorithm 1: Rap id learning method with Aitken 's ~2 process
Start learning with Wo;
w h ile Original sequence converges linearly d o

/* Step I : acceleration pr ocess */
W n +1 = W n + J1.:~ ;

_ n 8 E .
W n + 2 - Wn+ l + J1. 8wn+l '

W· = W _ (Wn+l - Wn)2 .
n n W n+2 - 2wn+ l + W n '

W n == w~ ;

end.wh ile
while Learning does not finish do

/* Step II : attention process */
W n+l = W n + J1. :::.. ;

en d .wh ile

This rapid learning method not only accelerates the rate of convergence ,
but also induces convergence in some cases where the it eration diverges.
Experimental result s with the XOR problem confirm the superiority of the
method present ed here [17] .
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Figur e 4: The inter media te state of the selective reinforcement learn ­
ing process with resp ect to tr aining patterns. Aft er equally tr ain­
ing all training patterns until the err or of each is less than El , the
prop osed learni ng scheme selecti vely trains unclassified patterns , for
example P2.

3 .3 Selective reinforcement learning

A natural procedure for the design of classifiers is to construct a measure
of the performance of the classifier on the training set, and subsequent ly
to adjust the variables of the classifier such that this measur e is opt imized
[7]. In superv ised learni ng, each pattern that has to be learn ed is pr opagated
t hrough the network. Then the output is compared with the expec ted output,
and the connect ion weights adjust ed to minimize the observed error . (T his
pro cess is repeated for all the patterns of the tr aining set .) With a large
problem , however , the learning pr ocess is likely to consume a great deal of
time trying to learn a few unclassified patterns, while most of the ot her
patterns already yield a corre ct resul t . Several learn ing schedules, such as
overlearning [18] and rapid incremental learning [19], have been proposed to
improve learn ing cap ability. Mori and Yokosawa [20] investigate the behavior
of learni ng wit h various kinds of data presentat ion , and propose two learni ng
schedu les: the review m ethod for reinforcing weak po int s of learni ng, and
t he preparation m eth od for prevent ing networks from overtraining.

In select ive reinforcement learni ng atte nt ion is focused on the hard pat­
te rns , since a great deal of t ime is required for a neural networ k to learn a
few har d pattern s. Selecti ve reinforcement learn ing consists of two stages. In
the first half, weights are updated according to the sum of the erro rs of all
t raining data in order to make the network grasp the outline of the training
patterns. When the total sum of the erro rs (T SE) becomes smaller than a
predefined to lerance C1, the t raining data for which the erro rs of output units
exceed to lerance C2 are select ively presented . F igur e 4 shows an intermedi­
ate state of the learning process according to each pattern, and the overall
algorithm is as follows.
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Figure 5: A four-class example of incorr ect decision boundari es. Solid
lines represent t he corr ect decision boundaries; dashed lines repre­
sent t he incorrect boundar ies caused by inad equa te training data
(marked x).

Algo rithm 2 : Select ive reinforcement learn ing
St art learning with para meters t1 , t2;

while TSE > t1 do
/* It tr ains all the learn ing dat a */
Training (ALL_DATA);

en d . wh ile
w hile TS E is not close to zero do

/* It t ra ins hard pat terns more frequently */
Train . data = Select .berd .peitem s (ALL-DATA, t 2) ;

Training (Train.data);
Training (ALL_DATA);

end.wh ile

The second stage of selective reinforcement learn ing interlaces the to tal
patterns with the har d patterns. After train ing the network using all pat ­
terns until approximately 50% of them are t rained, the hard patterns are
determined and the network t rained once more. This automat ic schedule of
pattern presentation redu ces training t ime and result s in a more genera lized
network capable of achieving higher recognit ion performance.

3 .4 N oise-in clu ded lear n ing

Error tolerance is one of the most valuable properties of neural networ ks, yet
simp le neur al networks are not likely to absorb the input noises of a large­
scale problem. In lar ge-scale classificat ion problems the underlying training
set contains only a small numb er of inst ances, and is not sufficient ly repre­
sent at ive for the und erlying distributions of the classes. Classifiers t rained
with such sets will perform poorly; an example of incorr ect decision bound­
aries resulting from inadequate training data is shown in figure 5. Since an
inadequate set of t raining data is the cause of bad generalizat ion, it is the
maj or obstacle to achieve a higher recognition performance.

Resear chers have t ried severa l different approaches to overcome the geo­
metrical var iations of input dat a. Fuku shima [21] introduces complex cell
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planes to his model, Neocognitron . Though it may be appropria te for the
biological point of view, the complex cell method requir es too much st orage
and recognition t ime to be practical for large-scale problems. Reber [22] and
Khot anzad and Lu [23] use preprocessing mechanisms (involving severa l tech­
niques such as polar , log, and discrete Fourier transform ation) for ext ract ing
th e geomet rically invar iant features. Widrow and Winter [24] man age the
deformation of input patterns by using the invariance net at th e front end ,
and Waib el et al. [25] use Time Delay Neural Network (TDNN) for deal­
ing with temporal deformation in speech recognition problems. (For speech
recognit ion problems, it has been reported th at recogni tion performance is
improved by int roducing random or temporal distor tions into the training
data [26, 27].)

We present a distortion method to generate new training data . From
a given t raining sample, this method automa t ically genera tes additional in­
stances of it s class by shift ing th e sample in a predetermined set of directions
(SUCh as up , down , left , and right) . This method expands the numb er of
t raining patterns in each class, and its art ificial expansion can be performed
opt imally according to the problem. Networks t rained via this meth od can
respond in a more flexible way to unforeseen variations in future data. The
crit ical quest ion is how much noise can legitimately be added with the new
data st ill belonging to the same class as the noiseless parent data . Though
the answer depends pr imarily on the problem, the shift ing met hod we have
proposed performs well in many practical problems.

3.5 W eight m atr ix red uction

While the funct ionality of neural networks has been researched extensively,
th eir st ructure has been studied relatively little. Most are fully connected
layered networks, which operate well in simple problems having one or two
hundred uni ts, bu t which require much computat ion in large-scale pro blems.
In order to remedy this shortcoming , Somani and Penla [28] designed two
specially struct ured networks, the Compact Neural Network (CNN) and the
R educed Interconnections Neural Network (RINN), bot h of which use gen­
era l network topologies such as hyp er cube , rectangular grid , ring, and so on.
Lehar and Weaver [29] proposed a developm ent al design scheme that con­
structs the network struct ure randomly, and modifies it by repeated mutation
and select ion in order to develop toward a desired functionality.

There are ot her methods of findin g the smallest network that will perform
a particular task th at are based on pruning a solution network. A network
which is too small may never solve a given problem , while a larger network
may be inefficient , par ticularly on a convent ional von Neumann computer
[30]. Mozer and Smolensky [31] devised a technique for pruning some uni ts
from the solut ion network via relevance measure, but it requires a mod­
ification of th e cost function and the examina t ion of all units un der the
present ation of th e ent ire tra ining data. Kamin [32] proposed a method of
cutting weights inst ead of units by est imat ing th e sensit ivity of the global
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error funct ion with the inclusion / exclusion of each weight link in the neur al
network. Though Kam in suggests that this met hod would incur negligib le
computational overhead , it is easy to devise a simpler weight- cut t ing method
(with little computational overhead ) by carefully observing the behavior of
the large-scale network. In this sect ion, we pr esent a simp le met hod of reduc­
ing the number of links after training . The result is a small, efficient network
that performs as well as, or bet ter than , the original; that is, it improves the
noise resist an ce of the network and redu ces the processing t ime required to
give a solution .

Let S i j be the sensit ivity wit h respect to connect ion Wij ,

(14)

where E is the global erro r of the network and w7j is the solution value of the
connect ion. S ij represent s the increase of the erro r E with the eliminat ion of
the connect ion between uni t j and unit i . The sensit ivity S i j can be rewritten
as follows:

(15)

(16)

where wIj is the initial weight. T hen , as derived in [32], the est imated sensi­
t ivity to the removal of connection W ij can be evaluated as

N - l 8E w~ .

S · = - '" -(n) !::>.w ·(n) 'J.' J 6 <l 'J * ,o U W i j W i j - w i j

(17)

where N is t he nu mb er of t raining epochs. Kamin 's approach is to calcu­
late the sensitivity of each weight by equat ion (17) during backpropagat ion
learn ing, t hen pr une the low-sensitivity connec t ions . (If w7j is very close to
zero , the sens itivity of equation (17) becomes zero, and the connect ion is
very likely to be pru ned .) A large-scale problem tends to result in a sparse
network that has many links for which the solution values are close to zero .
The weight matrix reduct ion scheme uses this fact in finding the proper size
for a network, without incurring any computational overhead in the process
of learning.

Since a uni t used in neural networks sums N weight ed inpu ts and passes
the result through a nonlineari ty [33], inputs of weight near zero may not
be necessar y for calculat ing output . The weight matrix reduct ion scheme
eliminates these insignifican t links, improving recognit ion spee d and gener­
aliza t ion capability. Figure 6 shows an example of unnecessar y links. In
this figur e, the output remain s the same even if only two links (a and d) are
used in the calculation of the activat ion value. There is a trad e-off between
the acceleration of the recognit ion pro cess and the degradation of its perfor­
man ce, and the det erminat ion of the optimal reduct ion is essent ial not only
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(a) 0.4

(b) 0.1

(c) 0.3

(d) 0.2

Figure 6: An example of link cuttings. The output remains the same
even if only two links (a and d) are used for the calculation of the
activation value.

to the acceleration of recognit ion but to th e improvement of generalization
performance as well. Le Cun [34] also confirms the fact tha t minimizing the
number of free paramet ers in a network enhances generaliza tion.

4 . An a p p licat ion t o H angul r ecognition

The foregoing st rategies have been applied to the design of a pr inted Hangul
recognition system. The system is composed of a typ e classificat ion network
and six recognit ion networks. The former roughly classifies input syllable
images into one of six typ es by th eir overall structure, and the lat ter further
classifies them by character code. This two-st age architecture reduces net ­
work complexity, and faster training time and higher recogni tion perform an ce
naturally follow.

4 .1 Structure of H angul characters

The Kor ean script system Hangul consist s of 24 cha racters each of which
represents a phoneme. Ten of these are vowels and the rest are consonants.
Char acters are grouped together to form syllables. A syllable may consist
of two to six characte rs. More than 11,000 syllables exist, but about 3,000
suffice for ordina ry use. A word consists of a sequence of syllab les.

The rules of cha racte r combination for making a syllable at first seem
complicate d bu t logical. The Korean vowels are shap ed either vert ically or
horizontally elongated . The vert ical vowels have their accompanying conso­
nants on their left and th e horizontal vowels have their accompany ing con­
sona nt s on their top . If a syllable has a consonant afte r a vowel, it is always
written below the main vowel. Depending on its position and accompanying
cha racter , the sha pe of a character varies.

The general struct ure of Hangul syllab les is presented in figure 7, where
VI ind icates a verti cally sha ped vowel, V2 a horizontally shaped vowel, CI
a head consonant , and C2 a bottom consonant . According to the shape of
the vowel included in the syllab le and the presence or absence of a bottom
consonant , Han gul syllab les can be divided into six categories, as shown in
figure 8.
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V2

C1

======:;ID
C2_I

F igure 7: General st ructure of Han gul syllables. VI signifies a vert i­
cally shaped vowel, V2 a horizontally shaped vowel, CI a head con­
sonant , and C2 a bottom consonant .

-: EB1 BIJ1C1 V1 V1

V2 V2

Type 1 Type 2 Type 3

l±j~1 ~1C1 V1 V1
V2 V2

C2 C2 C2

Type 4 Type 5 Type 6

Fig ure 8: Six ty pes of Hangul syllables. They are based on the sha pe
of the vowel included in the syllab le, and on the presence or ab sence
of a bottom consona nt.

4 .2 Overal l st ructure of recognition networks

At the beginning of our experiment , we imp lemented a simple neural network
using backpropagation, with a single hidden layer that has 1,600 (40 x 40) in­
put neurons, 40 hidd en neurons an d 10 output neurons. T he output neurons
dist rib utively encode Hangul syllables. This network, however , did not con­
verge when the number of classes of training samples exceeded ap proximately
one hundred syllables.

We overcam e this obst acle by ut ilizing the fact t hat a Han gul syllable is
const ructed by a combination of two to six charac te rs. Syllab les are groupe d
int o six classes according to the types of char acter combinat ion . As a re­
sult, t he overall system is composed of a global type classification network
and six recogni tion networks, one for each global type. Figures 9 and 10
show the algorit hmic overv iew of the proposed classification scheme and the
overall st ructure of the classifier , respectively. T wo-stage neur al classifiers
have several advantages over single-layer backpropagat ion networks. Higher
recogni tion performan ce is obtained with fewer t raining dat a , and the train­
ing t ime is shortened . These advant ages resul t from the modular design.
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F igure 9: Overview of the Hangul cha ra cter recognition system.

Type Classiler Type 1 Type 2 Type 3 Type 4 TypeS Type 6

Figure 10: Overall neural network st ru ct ure for Hangul character
recognition . T he sys te m is com posed of a type classificat ion network
an d six recogni tion networks. The form er roughly classifies input syl­
labl e images into one of six ty pes by their overall structure , and the
lat t er further classify t hem by cha racte r code .

4.3 The type classification n etwork

Since Hangul syllables can be grouped into six global types , the recognition
syste m is great ly simplified if the type of input image is known a pr ior i.
Therefore, the system determines the type of input syllab le image and ac­
t ivates the corres ponding network for syllable recognition . Figure 11 shows
the stru ct ure of a type classificat ion network.

T he type classifier is a part ially connect ed feedforward network that has
1,600 input neuro ns, 17 hidden neurons, and 6 output neurons. Each neuron
of the hidden layer is connected to a specific input area, in which specific
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2 3 4 5 6

Figure 11: A typ e classification neural network. The type classifier is a
part ially connected feedforward network that has 1,600 inpu t neurons,
17 hidden neurons, and 6 outp ut neurons. Each neuron of the hidden
layer is connected to a specific input area.

types of characters can appear . The first neuro n, for example, is connected
to the consonant area of type 1, the second neuron to the vowel area of typ e 1,
and so on . Each hidden neuron arrives at a local decision , and output neurons
summarize the local decisions and make the final decision of type determina­
tion . T his st ructure can be just ified by the observatio n that the position of
the character in each syllable is an important considerat ion for classifyin g the
type . According to this design , the number of interconnections is 5,915, while
a fully connected network would require 27,302 [(40 x 40 x 17) + (17 x 6)J.

4.4 The recognition networks

The recognition networks act ivated by the type classificat ion network classify
an input syllable image as a set of characte rs wit hin a customized receptive
field . The idea of a custo mized receptive field for each recogni tion network is
based on the observation that every syllable of the same type has a st ruc tural
similarity.

Each recognition network is st ruct ured for recognizing its character , and
has a single hidden layer of 40 neurons. Figur e 12 shows the st ruct ure of a
recogniti on network for syllables of the first typ e, where the first network rec­
ognizes the head consonant and the second recognizes the ver tically shape d
vowel. As shown in this figure, the charac te rs in a syllable image may touch
each other. Recogni ti on networks are capable of correct ly recognizing char­
acters despi te the noise du e to adjacent characte rs. It has been proven that
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Figure 12: Neural network for typ ed character recogni tion (a case of
ty pe 1). In t his figure, t he characters in the syllable image may touch
each ot he r. Recogni tion networks are capable of correct ly recogni zing
characters despi te the noise due to adjacent characters.
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a multi-layer percept ron with at most two hidden layers can form any arbi­
t rarily comp lex decision regions in a feature space, which is the ult imate goal
of any classifier [33].

5. Experimental r esults

5.1 E nvironments for exper iments

Exp eriments were conducted wit h the 990 most frequently used printed
Hangul syllab les on a Cray 2 supercomp uter. We produced laser printer
output using the Microtek MSF300C scanner at 300 DPI (dots per inch) res­
olut ion . Aft er analyzing the horizontal and vertical projections , a maximum
40 x 40 bin ary image of each syllable can be ext rac ted from the scanned
doc ument. Figure 13 shows a pr acti cal example of scanned syllables. Each
recognit ion network with 40 hid den un it s was t rained by t he backpropaga­
ti on algorithm, with a learni ng rate of 0.1, a momentum term of 0.9, and
each weight randomly initialized between -0.1 and 0.1. The training was
terminated when the tot al sum of squared erro rs becam e less than 0.04.

5.2 Analysis of r esults

The base system is a two-stage neural network trained wit h the rapid learning
method. Figur e 14 shows the decreasing rate of errors as the network learn s,
and confirms the improvement of learn ing spee d resulting from the select ive
reinforcement learning scheme. This result does not , however, support a
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F igure 13: A pr act ical example of scanned syllables.

Comparison of Learning Speed
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Figure 14: Fast learn ing by select ive reinforcement. Wi th selective
reinforcement learni ng, t he total number of training pat tern s is 79,349,
while convent ional learni ng requires 180,250.
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group character
group identification recognit ion rate overall

rate in each group
id # char # enor %conect #en or %con ect # error %con ect

1 114 0 100.00 0 100.00 0 100.00
2 68 3 95.59 2 97 .06 5 92.65
3 42 0 100.00 6 85.71 6 85.71
4 480 1 99.79 16 96.67 16 96.67
5 251 0 100.00 15 94.02 15 94.02
6 35 3 91.43 0 100.00 3 91.43

95.45 I96.06 1 4599.29 I 397990 1_ _I overall I

Table 1: Recognit ion rate of th e conventional learn ing method.

group character
group ident ification recognition rate overall

rate in each qroup
id #char # error %con ect # enor %conect # enor %correct

1 114 0 100.00 0 100.00 0 100.00
2 68 3 95.59 0 100.00 3 95.59
3 42 0 100.00 2 95.24 2 95.24
4 480 1 99.79 7 98.54 7 98.54
5 251 0 100 .00 2 99.20 2 99.20
6 35 3 91.43 0 100.00 3 91.43

I overall I 990 I 7 99.29 I 11 98.89 1 17 98.28 I

Table 2: Recognition rate of the noise-included learning method.

conjecture that the select ive training of hard patterns makes the network
learn better.

In order to compare recogn it ion rates, the result s with the convent ional
backpropagation learning are shown first in table 1. T he data used for testing
are different , of course, from the training data. Since t he maj ori ty of patterns
belong to ty pes 4 or 5, t he recogn it ion rates of t he two-stage netwo rks show
lar ge var iances acco rding to type. T he overall rat e is 95 .45%. T he recognit ion
rate of the noise-included learning met hod, shown in table 2, improves to
98.28%. Figure 15 compar es both of t hese recognit ion rates according to type.
T he weakest po int of the trained networks is type 6, due to the complexity
of the shap e and t he small amount of train ing data .

The next experiment addresses weight-matrix reduction . T he first issue is
how pruning affects t he performance of the network. The weight distribution
of trained neural networks, shown in figure 16, seems to be normal with t he
except ion of those less than -0.25 and t hose greater than 0.25. 63.56% of
t he links are between - 0.15 and 0.15. Figure 17 shows the recognition rates

when links in some intervals are pruned. The network continues producing
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Figure 15: Comparison of conventional vs. noise-included learning.
Conventional learning uses the or iginal data . Noise-included learning
uses 5 pairs of data , cons ist ing of the original data and addit ionally
modified patterns created by shifting them over a predet ermined set
of d irections , such as up , down, left , and right .
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Figure 16: Weight distribution of a t rained neural network. The
weights seem to be normally distributed , with t he exception of those
less than -0.25 and greater than 0.25 . Most of the weights-63.56%­
are be tween -0.15 and 0.15.
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F igure 17: Recogni tion rates of t he weight-matrix red uct ion. T he
network cont inues producing acceptable resul ts until more than half
of t he link s are pruned .

acceptable resul ts until mor e than half of the links are pru ned. Not ice the
improvement of the recognit ion rate wit h test data when pruning 48.17% of
the links in the range - 0.10 rv 0.10. This means that redu ndant links act ively
detract from the network 's ab ility to recognize distorted inputs. However ,
because furt her pruning degrades the network's performan ce, the proper limit
of reduction is important.

To show the sup eriority of the neur al network approac h compared with
convent ional methods, some extra experiments were conducted . Figur e 18
shows a comparison wit h a tree classifier , which is an efficient imp lementation
of the nearest-neighb or rule [7]. In this figure, T C(i ) represent s the tree
classifier constructed wit h one set of training data when i is 1, five sets
when i is 2, and ten sets when i is 3; NN (i) represents the two-st age neural­
network classifier train ed with simple backpropagation when i is 1, and the
noise-included t ra ining when i is 2. This comparison proves that mult i-layer
perceptron classifiers trained with backpropagation can perform as well as ,
or better than, conventional classifiers [35].

To generalize the capability of the proposed neur al networks, we tried
to recognize all 2,350 syllables using the system trained with 990 syllables.
Table 3 shows the recognit ion resul ts, which seem to be acceptable.

6. Concluding remarks

In this paper , we presented several strategies that are useful for applying
feedforwar d neural networks to large-scale classification problems and ap­
plied them to the recogni tion of large character set s. Experiment s wit h the
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Figure 18: Comparison of the neur al network with a statist ical
method . TC (i ) represent s th e tree classifier const ructed with one set
of tr aining da ta when i is 1, five sets when i is 2, and ten sets when i
is 3; NN(i) represents the two-st age neural-network classifier t rained
wit h simple backpropagation when i is 1, and the noise-included tr ain­
ing when i is 2.

group character
group identification recognition rate overall

rate in each group
id # char # err or %correc t # error %correct # error %correct

1 149 4 97.32 4 97.32 8 94 .63
2 90 2 97.78 5 94.44 7 92 .22
3 109 14 87.16 48 55 .96 52 52 .29
4 1069 4 99. 63 104 90.27 106 90 .08
5 586 3 99.49 46 92 .15 47 91.98
6 347 164 52.74 211 39 .19 256 26 .22

79.74 I91.87 I 418Ioverall I 2350 1_1_9_1 --"- '--_--'-__8_2_.2_1I 476

Tab le 3: Generalization capa bility. Recognition rat e of 2,350 syllables
using a neur al network trained with 990 syllables.
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990 most frequently used Hangul syllab les were conducted to show the useful­
ness of these st rategies. With select ive reinforcement learning, th e network
learned twice as fast as convent iona l learning. For noise-included tr aining,
the recognit ion rat e was 98.28%, which is superior to convent iona l met hods .
The network cont inued producing acceptable results until more t han half of
the links were pruned.

The fast learn ing method accelerated the learning speed using select ive­
reinforcement learni ng after the numb er of tra ining pat terns was increased by
systematically adding th e mean ingful noises. In subsequent work, small com­
puters may be used to solve large-scale problems by removing unnecessary
weights from the t ra ined ones.

Appendix A . Accelerated learning with Aitken 's 6 2 process

Let {wn}OO be a linearly convergent sequence of values converging to some
point p; that is, for en = W n - p,

r len+ll - < 1
n~~ [e I - jj - .

n
(18)

To invest igate the const ruction of a sequence {l lLn} OO , which converges more
rapidly to p , suppose that the iteration Wn = g(Wn- l ), n = 1, 2, 3, ... , con­
verges linearly, so it sat isfies

Wn+l - P = jj(wn - p)

and

Wn+2 - P = jj(wn+l - p).

Solving equations (19) and (20) for p while eliminating jj leads to

(19)

(20)

(21)

(22)

In genera l, the original assumption (19) will not be t rue; nevertheless, it
is expected that th e sequence {1Qn} OO , defined by

(Wn+ l - Wn)2
1Qn = W n - ,

Wn+2 - 2wn+l + Wn

converges more rapidly to p than the original sequence {wn}oo . The point w'
is a bet ter approximation of p th an is Wn or Wn+l' Graphically, the solut ion
of W = g(w) amounts to th e problem of findin g the point of intersection of the
curves y = wand y = g(w ), and ui" is the solution of the linear interpolant
to g(w ) at Wn, wnH (see figure 19). If g(w) is approxima tely a straight line
between W n and p , then the secant s(w) is a very good approximat ion of
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y

w' "f,+2

y=w

ry=g(w)

Figure 19: Graphical representation of repeat ed substitution. The
solution of w = g(w) amounts to the problem of finding the point of
intersection of the curves y = w and y = g(w) , and w· is the solution
of the linear interpolant to g(w) at wn , W n +1 .

g(w) in that interval ; hence the fixed point ur" of the secant is a very good
approx imation of the solution p . In this way, the bet ter approx imat ion is
foun d in each iterati on .

This process, called Aitken 's ,6.2 pr ocess, acce lerates t he convergence of
any sequence that is linearl y convergent , and gives quad ratic convergence
without evaluating a derivative. Moreover , Aitken 's ,6.2 process not only
acce lerates convergence but also converts divergence into convergence in some
cases . It is easy to verify that if

t hen

wn = 1 +P + ...+ pn , (23)

(24)

Therefore, Aitken's ,6.2 process immediately gives the limit of this particular
sequence when it converges, and ass igns a meaningful valu e even when it
does no t converge .
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