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Abstract. A fluid-dynamic description for the collective movement of
pedestrians is developed on the basis of a Boltzmann-like gas-kinetic
model. The differences between these pedestrian-specific equations
and those for ordinary fluids are worked out; they concern, for exam-
ple, the mechanism of relaxation to equilibrium, the role of “pressure,”
the special influence of internal friction, and the origin of “tempera-
ture.” Some interesting results are derived that can be compared to
real situations—for example, the development of walking lanes and of
pedestrian jams, the propagation of waves, and behavior on a dance
floor. Possible applications of the model to town- and traffic-planning
are outlined.

1. Introduction

Previous publications on the behavior of pedestrians have been predomi-
nantly empirical (often in the sense of regression analyses), and were intended
to facilitate planning of efficient traffic [16, 24, 34]. While there also exist
theoretical approaches to pedestrian movement [2, 3, 7, 9, 12, 29, 32, 33],
most theoretical work has been done in the related topic of automobile traf-
fic (see, for example, [1, 6, 8, 26, 27, 28]). In particular, some Boltzmann-like
(gas-kinetic) approaches have been developed [1, 26, 27].

The author has observed that footprints of pedestrian crowds in the snow
and quick-motion pictures of pedestrians resemble fluid streamlines. It is
the object of this paper to give a suitable explanation of the fluid-dynamic
properties of pedestrian crowds. Henderson was the first to apply gas-kinetic
and fluid-dynamic models to empirical data of pedestrian crowds [12, 13, 14,
15]. His work, however, began with the conventional theory for ordinary
fluids, and assumed a conservation of momentum and energy. In contrast to
Henderson’s approach, this article develops a special theory for pedestrians—
without making use of unrealistic conservation assumptions.

Our procedure is described as follows. Pedestrians will be distinguished
into groups of different types p of motion, normally representing different
intended directions of walking. At a time ¢ the pedestrians of each type p of
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motion can be characterized by several quantities, such as their place Z, their
velocity %, and their intended velocity 173 (in other words, the velocity they
wish to walk with). So, we find in a given area A a density p,(Z, 7, 17,9, t) of
pedestrians having a special type of motion u, and showing approximately
the quantities &, 7j,, and 173 at time ¢. For the densities j,(Z, U, 173, t) equa-
tions of motion can be established (section 2). From these equations we shall
derive coupled differential equations for the spatial density (p,) of pedes-
trians, their mean velocity (v,), and velocity variance ((6v,;)?) (section 3).
The resulting equations show many similarities to the equations for ordinary
fluids, but they contain additional terms that take into account pedestrian
intentions and interactions (sections 3.1, 4.1, 5.1, and 6). In section 4 we
shall treat equilibrium situations and the propagation of density waves. In
nonequilibrium situations, however, the final adaptation time to local equi-
librium gives rise to internal friction (viscosity) and other additional terms
(section 5). Effects of interactions (that is, of avoidance maneuvers) between
pedestrians will be discussed in section 6. These effects will lead to some
conclusions applicable to town- and traffic-planning (section 7).

Readers who are not interested in the mathematical aspects may skip the
formulas in the following. However, the mathematical results are important
for analytical, computational or empirical evaluations.

2. Gas-kinetic equations

Pedestrians can be distinguished into different types p of motion, for example,
by their different intended directions &, := @ /[|5;)|| of motion (normally two
opposite directions; at crossings, four directions). More precisely, a pedes-
trian shall belong to a type p of motion if he wants to walk with an intended
velocity

7° € N,
where
Nu = {17;?}

is one of several disjoint and complementary sets. A type p of motion still
contains pedestrians with a variety of intended velocities 17:3, but the ad-
vantage resulting from a suitable choice of the sets A, is the ability to get
approximately unimodal densities f,(Z, Uy, 172 ,t), and therefore to obtain ap-
propriate mean value equations (see section 3). p,(Z,%, Uy, t) describes the
number N, of pedestrians of type p, within an area A = A(Z) around place
Z, having the approximate intended velocity 17;?, but the approximate actual
velocity 7). Specifically, p, is defined by

A . s 3 NL(U(T) x V(Uy),t
pﬂ(z,vu,vf,t)zpu(m,u”,t) = il (LV( ) ), (1)
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where N, is the number of pedestrians of type u that are, at time ¢, in a
state

(&',4,) e U(Z) x V(1)
belonging to the neighborhood U(Z) x V() of Z and

State (Z,4,) is an abbreviation for the property
(f’ ﬁ#) = (fa 17#>17;?)a

that an individual is at place & and wants to walk with the intended velocity
72, but in fact walks with velocity 7.

UEZE) ={Z" e M: " - Z| <r} (2)

is a neighborhood around the place Z, and belongs to the domain M, which
represents all accessible (or public) places Z. A = A(Z) denotes the area of
U(Z). Similarly,

V(i) = {a; = 0,5 : |14 — Gl < 5,7, € Nu}

is a neighborhood of @, := (7,,77), with a volume V = V().
We shall now establish a set of continuity equations, which are similar to
the construction of Alberti and Belli [1]:

dﬁu — 6/3;1 ~ fu ~0
F S E—i-vf(p“v,,)-i-v +V~0( #)

AO ~
ZM+ZSHV+ZC#V+QM' (3)
Tll v v
These equations can be interpreted as gas-kinetic equations (see chapters 2.4
and 2.7 of [18], and §3 of [19]). m, denotes the average mass of pedestrians
belonging to type p. Apart from special situations it will not depend on y;
in other words, m, ~ m,. The forces fu := my¥, can often be neglected.
However, they may be locally varying functions, depending on the attraction
of the places Z. If a pedestrian does not change his type (direction) u, the
temporal change v, 570 of the intended velocity 17 is normally a small quantity
("0 = 0) although 'u# can in principal be a functlon of place ¥ and time t.
According to (3), the change of the density g, over time is given by four
effects.

e First, by the tendency of the pedestrians to reach their intended velocity
@2 [1, 9]. This causes p, to approach

,[32(2_7‘, 17#7770 t) &= 6(17# - 17,?)!’2(@ _"?,t) (4)
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(the equilibrium density in the absence of disturbances), with a relax-
ation time

My

T

(see [9]). pf is the density of pedestrians with intended velocity 7 but

arbitrary actual velocity 7,. The Dirac delta function is denoted by
6(.), which is different from zero only when its argument (.) vanishes.

Ty =

Second, by the interaction of pedestrians, which can be modeled by
a Boltzmann-like stosszahlansatz [10, 18, 19]: If we take into account
that the interactions are of short range (in comparison with r, see (2)),
we have

S = ///au,,(u#, Uy 5 Uy, Uy T, 1) 0u(Z, Uy, 1) P (T, Uy t)d4uud4"* d*ia;
- / / / Gy T T2 T35 8, )P (B, Wy )P (7, Ty, V)T, T AP

(5)

This term describes pair interactions between pedestrians of types u
and v, occuring with a total rate proportional to the densities g, and
P, of both interacting types of motion. The relative rate for pedes-
trians of types p and v to change their states from (Z,4,), (Z,4,) to
(Z,4y), (%,4;), due to interactions, is given by 6y, (i, @y; 4, U); 7, t).
Assuming that only the actual velocities 7,7, and not the intended

velocities ¥/ Uw 79 are affected by interactions, we obtain

~ =] =1, =2 =2 = .
O (1, uu,uu,u VI E) =

0w (T, )5 02, 52)8(T° — GoN)6(T0% — T)1).
This results in
Sy (T, Uy 1)
_ / Sy (&, T, 52, )02 g
- //UHV U/_u y:vlia’l}y)pll(xavﬂat)pu(wa u’t)dz’ul/d2 d217:
— [[ 0l 85,5004 @, B D02, B, 0, 2T, 5 (6)
= [[ 0@, 5580, T, D03, 0PT; P
_//U/u/(vpdvu;U,u,)pﬂ'(xvvﬂvt)p'/(xavuat)dzﬁl’dgﬁii (7)
with
0% (52) ;=/a“,(.,.;.,a)d2a. 8)

Equation (6) is similar to (5), and can be interpreted analogously. The
explicit form of o7, will be based on a microscopic model for the inter-
actions, and is discussed in section 6.
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3.

e Third, by pedestrians changing their type p to another type v, for

example when turning to the right or left at a crossing, or when turning
back (change of intended direction). This can be modeled by

O, By t) = [ 61083 0 3, OPuAE, T, 1),
— [ 6 @503 8,007, T, ),

with a transition rate proportional to the density of the changing type
of motion.

If we assume that for the moment of change both the intended veloc-
ity 70 and the actual velocity 7, remain the same (but of course not
thereafter) we have

&2 (U y; T, t) = 6,2 (V) U5 &, £)6(T2 — T1).
This results in
O = / Clu (@, 11, 1) T
=0, (Z Uy 1) pu (T, Ty, B) _‘7 “(F, Ty 1) pu(®, Tn 1), 9)

where

B = A1,2/=0. 40, = p1(Z, Ty, 07, ) 250 270
(&, 0,1 :=// Uy U &y t) — 2 4?5 d*T
# ( & ) T (@13 % ) (T, qut)

and
(&,7,,1) i= [ Pu(Z, 5,70, t)d2T?° (10)
:0[1 xavua s p;t TV Yo 7
Fourth, by the density gain g; (7, qu v ,t) or density loss g, (Z, ¥, vo, t)
per time unit. This gain or loss is caused by pedestrians who enter or
leave the system M at a marginal place ¥ € M (for example, a house),
with the intended velocity 7} := ¢° € N, and the actual velocity 7,:

GulZ, 0., 85, 8) = G (& 0, ThH) = G E T 550 (11)

Macroscopic equations

For further discussion we need the following notations:

(o) == / pu(E, 5, £)d25, = / Pu(@, By, 70, )d25, 4250
0
Ui t) o o
(0370 = [, 7P E T o, o
(Pu)

86U, =T, — (v#)

679 = 52 — (7°)
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Qu(f: 6m t) = mupu(fa "7;;7 t) (12)
P = (0u) (6Vu,abV,8) = /511#,0,(51)#,59,‘(:2', {;‘#,t)d%'/'u (13)

;u,i = (ou) <517u (6v§’i)2>
- / 53,

X#V 1/’#('0)) _// d’u(v uu(vuaﬁll: —':)p/‘(x UI“ )pU(f;'iu’t)

z, U, t)d*0, (14)

(Pu)

x d*@, d*3, d2 oM (15)

1,2 PL(Z, Uy t)

Xu (¢# 1)) —/1/);4(”#)‘7 (%, v, 1) (o1) d”v,

- = pl(faﬁl)t) 2 —

= (2, Ty, 1) ——d?7

A
Qu(&, U, t) /q,, (Z,0,,7),t)d* 5, d*) (16)

Qu <¢M ’Uu)> /% 'Uu muQu( ,t)dzﬁu

Here, 1,(0),,7?) is an arbitrary function of 4, and 7).

As far as pedestrians of type p are concerned, we are mostly interested
in their density (p,), their mean velocity (#,), and the variance ((6v,,;)?) of
their velocity components v,; (at a given place Z and time ¢). Since it is
formally equivalent and more easily comparable to fluid dynamics, we shall
instead search equations for the mass density

<Qu> = mu(ﬁu)y
the mean momentum density
(Pu) (mu"_fu> = (Qu) ('D’#),

and the mean energy density (in direction %)

(i) o= (o) (22 02} = o 28 1 (g (8213,

By multiplication of (3) by 9,(,) = my, m,T, or m,v? /2, and integration
over i,, one can obtain the following equations (keeping in mind that the
Gaussian surface integrals vanish; see chapter 2.10 of [18]):

2] (0 o)+ Qul) (172)

+ X, {Z—:’@»XZ“(I) — (o)X’ (1) (17b)

v
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for the mass density,

8 ((0) (1))
ot
= o () ) 1) + ) + (@22 + Qults)  (180)
+ <gﬂ>i (<v2,ﬁ> ) (18b)
+ Xlen e [xw< Vs ) = X (V)] (18¢)
+ 3 [T 0 (tms) — (@u)” ()] (184)
for the momentum density, and
Oepi)
ot \
= = () + i) + )+ 0 2+ 0 (2
(19a)
4 <gu>% (2.2 = (v,0)?) (19b)
" <gp>i” (822 — ((u)®) (19¢)
+ Z @)(.Qu) [x,w (%) = Xpw <U;)J (194d)
+ 3 2o (%) - o (%) (190)

for the energy density. We have used the Einsteinian summation convention
to sum over terms in which the Greek indices «, 3, or 7 occur twice.

3.1 Interpretation

Equations (17a), (18a), and (19a) are the well-known hydrodynamic equa-
tions (see chapters 2.4 and 2.10 of [18]). Equations (18c) and (19d) describe
the effects of interactions between two individuals of type  and v (for details
see section 6). These terms do not vanish, as they would if conservation of
momentum and energy were fulfilled in a strict sense (see chapter 2.10 of
[18]). However, since the individuals try to approach the intended velocity
79, there is a tendency to restore momentum and energy that is described
by (18b), (19b), and (19c).

Equations (17b), (18d), and (19e) are additional terms due to individuals
who change their type of motion. In the following we will assume the special
case that these terms (as well as the terms Q,(1,(7,)/m,,), due to individuals
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entering or leaving the system M) vanish, by compensation of inflow into
and outflow from . For concrete situations the quantities x;, and @, (.) must
be obtained empirically.

In thermodynamics, p, s is termed the tensor of pressure, and j_;“ is
called the heat flow. For pedestrians jw describes the tendency of the velocity
variance ((6v,;)?) to equalize over time (see (31)). The variance

By 1= <(5'U/.L,i)2> = kpTpa/my

is the thermodynamic equivalent to the absolute temperature T,; in direc-
tion i. pyapnp represents the force used by individuals of type p to change
their movement when crossing a line of unit length [ (or, more precisely,
the component of this force in the direction 7@ perpendicular to the line).
Approximate expressions for p, 4 and j,; are derived in sections 4 and 5.

3.2 Problems of small densities

The densities p, of pedestrian crowds are usually very small. As a conse-
quence, equation (3) will not be fulfilled very well, and a discrete formula-
tion would be more appealing (see [11]). However, we can begin with the
continuity equation (20), which holds better since the densities p, are only
moderately small. The macroscopic equations will still be better fulfilled,
because they are equations for the mean values (g.), (U,), and (e,;); they
could also be set up by plausibility considerations.

In order to have small fluctuations of the variables (g,), (¥,), and (e,;)
over time, p, in equation (1) must be averaged over a finite area A and a
finite volume V', which should be sufficiently large. If T denotes the time
scale (apart from fluctuations) for the temporal change of (g,), (U.), and
(€u4), these variables can also be averaged over time intervals At < T, as
follows:

t+At/2

GGG =1 [ {e@ ) W@ ) dv.

t—At/2

Then, equations (17) through (19) will be proper approximations for the
movement of pedestrians.

Another complication associated with low densities is that Knudsen cor-
rections [12] must be taken into account. According to these corrections the
“temperature” §,,; and the tangential velocity (v, ) change discontinuously
at a boundary OM, which seems, therefore, to be shifted by a small distance
¢ that is comparable to the mean interaction-free path (see §14 of [19]).

4. Pedestrians in equilibrium

In order to calculate p, o, j'w, and ., we need the explicit form of p, (see
and (12) through (15)). p, is the density of individuals of type u at place
Z and time ¢ having the actual velocity ¢, but arbitrary intended velocity
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173 (see (10)). It is directly measurable in pedestrian crowds. By integration

of (3) over 17,? we obtain the following theoretical dependence (compare to
(27, 26]):
dpu _ Opu 2 f/;
i - ot + Vz (pﬂvu) + Vs, p"m#
P = Pu
=”T—+ZSNV+ZCﬂ”+q# (20)
B v v

The temporal development of the density p, is given by a tendency to walk
with the intended velocity 7)) (see (4)), by the effects S, of pair interactions
(see (7)), by the effects C,,,, of pedestrians changing their type of motion (see
(9)), and by the effect g, of pedestrians entering or leaving the system M
(see (11) and (16)). The last two effects shall be be neglected in the following
discussion (see the comment in section 3.1).

Equation (20) can be solved in a suitable approximation by the recursive
method of Chapman and Enskog [4, 5]. The lowest order approximation
presupposes the condition dpf,/dt = 0 of local equilibrium, which is approxi-
mately fulfilled by the Gaussian distribution

L 1 [~ 2/(20, 1)+ (v — )2/(26,,,1)
pi(x7vﬂ,t) == (pu> . 2750 e 1@ =, 1)/ (26,0, 1)+ (W, L = (v, 1))*/ (20, 1))

sl
(21)
according to empirical data [13, 14, 23]. The quantity
0
(bu)2 = 51
Ol

describes the fact that the velocity variance 6,; perpendicular (L) to the
mean intended direction of movement (D’,?) is normally less than that parallel
(I to it [23].

For each type u of motion let us perform a particular transformation, as
follows:

I||+AI||/2

(@) =5 [ (@ddra) — buleua(X,)
LT T
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Pusap = €poryPuys — Puop

Jpoi = €uapdupi — Juei
with

= (enat) = § 3 )

This transformation stretches the direction perpendicular to (v ) by the fac-
tor 1/b,, and simplifies (17) through (19) to isotropic equatlons (equations
with local rotational symmetry). With

B = {{dV,n)®) = B

we get

P:,aﬁ = <9u>0u50ﬂ = P:‘Saﬂ (22)
for the pressure, and

Jpei=0 (23)

for the “heat flow” (see chapter 2.10 of [18]). In addition, for F, = 0 the
equations

o{ou) o) _ , \O{Via)

ot T Vealgx = led 5y
6<Vu,ﬁ> 3<Vu,ﬂ> _ _L (9P§ k_;li e \ _

o ) xS R, e (Vi) — (Vo)
9, 96, P o ua> R

gt T Vealgx = 0y 9X,. T, Ok )

can be derived approximately from (17) through (19), (22), and (23) (see
chapter 16.2 of [31]). Obviously, (V) will vary around (V) after some
time. Therefore, we transform the above equations to movmg coordinates
X! (1) =X, (Ve)t After some steps one obtains:

d(0u) L 9{ou) 8(9#) O(Vpe) .
& = ot i (Vua) =—( u) 80X, (24)
d(Vig) . 9{Vis) ( u,ﬁ) _ 1 9P K
i ot + (Vi) 0X 10 = - (Qp) X, . <Vu 8) (25)
49 ._ 99, 8,  P: oW, ) k2

R AL PS> S L O
Equations (24) through (26) agree with the Euler equations if the last terms
of (25) and (26) are negligible, which shall be assumed in the following. The
quantities (V,) = (Vi¢,)((gu)) and 05, = 05({0,)) are the stationary and
homogeneous solutions of (18) and (19), for which the temporal and spatial
derivatives vanish.
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Figure 1: Behavior on a dance floor. Dancing individuals (filled cir-
cles) show a lower density than individuals standing around (empty
circles), since they intend to move with a greater velocity variance.

4.1 Behavior on a dance floor

On a dance floor like that of a discotheque, two types of motion can be
observed: type 1 describing dancing individuals, and type 2 describing indi-
viduals standing around and looking on. We can assume an isotropic case,
which implies b, = 1 and 6, = 6,,.. According to (19c), the variance
((6v);)?) of the 1ntended velocities v ; is causal for the temperature 6, ;, in
other words, for the variance ((6vp )2) of the actual velocities v, ;. Thus, for
the temperatures 6; and 6, of individuals dancing and individuals standing
around,

01 > 6,

since the dancing individuals intend to move with higher variance ((61;)%) >
((6v9,)®). (This is so even in the case of equilibrium, since we must take
into account the effect of the Knudsen corrections; see section 3.2.) The
equilibrium condition of equal pressure

P =F;
now leads to
o
(e1) = 9—2(92> < (e2)
1
(see (22)). Therefore, the dancing individuals will exhibit a lower density

than the individuals standing around (see figure 1). This effect can readily
be observed.
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4.2 Propagation of density waves

In the case of very large 7, we have (V) ~ (Vi) ({ou)), and equation (24)
can be put into the form

K 1 (o) Vi, o) =0

This equation describes nonlinear density waves propagating with velocity

Cullen) = (<V,f> +od g ) ,

and has been discussed by Whitham in detail (see [20] and chapter 2.1 of [35]).

We shall instead study the case of small 7, were the Euler equations are
applicable. In a nearly homogenuous pedestrian crowd with small density
variations one can assume

(V) - Vg, (0a) =0, (V)Vg, (V) =0, (V)Vg6,=~0.
From the Euler equations (24) through (26) the equation
32<9u>

ot?

can then be derived (see chapter 16.2 of [31]). Subtracting (g.)/6,.%(26)
from (24), and making use of (22), the adiabatic law

€
o

(ou)?

can be shown, which leads to the linear wave equation

~Ag Pi=0

= constant

(oS 5 (00) — A, (04) = 0 (27)

with the adiabatic compressibility

K,S:=L<apﬁ> =l<g">= 1
o (ow) \Oew) /s 2 2(0,)0u

(see chapter 16.2 of [31]). Equation (27) describes the propagation of density
waves with velocity

1

{ou)rii

Cu = (28)
relative to X L) = X = (I_/;f)t On the other hand, the velocity of propaga-

tion is given by the mean distance d, = 1/4/(p,) of a succeeding individual,
divided by its mean reaction time (,, as follows:

1

Cpi= 7\/@),1—)@ .
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Inserting this result into (28), it follows that for small densities (p,) the
adiabatic compressibility grows with the mean reaction time ¢, of individuals
according to

o _ LGP

I—L:_

my

5. Nonequilibrium equations

In cases of deviations
5/7;1()?;“ Vu: t) = p,u(X:/.n Vp: t) — PE(X#, Vﬂa t) (29)

from local equilibrium pft()_('u,vﬂ,t) = pf‘((pu),(‘_/‘#),é‘#), we must find a
higher order approximation of equation (20) than in section 4. If the de-
viations ép, remain small compared to p,, we can linearize equation (20)
around pf, and get

dpy Py dbpu _ dpu _%JFZ%
dt dt dt dt Ti 7 Tiiy

(see chapter 15 of [17]). Here, 7,, is the mean interaction-free time between
an individual of type u and individuals of type v (see (35), and chapter 16.2
of [31]). From (21), (22), and (24) through (26), one finds the following (see
[31]):

Ui _ O dlen) (g ) W) | O

at  0p,) dt WaPu) " "ar T 58, dt

57, (67,2
0, qug“( 2, -

. b (V,.5) (V)2 .
£d” [Z <5Vu,a 3 Xii Vs = Vx,(Va)

e
i

If
(Tubpuw + Tuw)

denotes the inverse matrix of

1 1
(_6‘“/ - —> ’
Tii Tow

the relation

dp;, _ dp,
bpu = —Tud—: - ZT#VE (30)
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leads (because of p, = P+ 8p,) to the corrected tensor of pressure
P;L,aﬂ = Pﬁéaﬂ 77# wef — E 77;w v,a

(see (13)), and the corrected heat flow

06, 00,
0X e Z,,: W IX, o

Jpo = —Ky

(see (14)). Here,

o (OVio) | OVis) (Vi)
Awap = ( 0Ky T DX | BX,g 0o

is the tensor of strain,

N = Tubpu(0u) and Nuw = T (0v)
are coefficients of the shear viscosity, and

Ky = 27,0, (0L) and K = 270, (0v)

are coeflicients of the thermal conductivity.
Note that the main effect of restoring the local equilibrium distribution
pj, results from the tendency to approach the intended velocity distribution

pg()?,,,V,,,t) with a time constant 7,, but not, as usual, from interaction
processes (see chapter 13.3 of [30]). Therefore, in contrast to ordinary fluids,
the viscosity 7, is dependent on the density (p,) (see pages 323 and 327 in
[31]). For vanishing densities (p,) — 0 the interaction rates 1/7,, become
negligible (see (35)), and T, My, and kg, vanish in comparison with 7,
7Ny, and k,, respectively. According to (30), the deviation ¢p, from the local
equilibrium distribution pf, and, therefore, the viscosity and the thermal
conductivity, are all consequences of finite relaxation times 7, and 7,,.

5.1 Effect of viscosity

Where pedestrians are concerned, the effect of viscosity is not compensated
for by a gradient of pressure as in ordinary fluids, but instead by the tendency
of pedestrians to reach their intended velocity described by (18b). In the case
of a stationary flow in one direction (that is, of one type of motion) parallel
to the boundaries M, we have essentially the equation

0= 6<gﬂ(>9§Vu,||> = nua;z;l Vi) + <Qu>% (Vo) = (V) 152)

if 7, > ny, (see (18a) and (18b)). For a lane of effective width 2W (with
the origin X, | = 0 in the middle), equation (32) has the hyperbolic solution

Vi) = (V) %ﬁ%ﬂ v
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Xu,J-

(Vi)

Figure 2: Effect of viscosity (internal friction). Ordinary fluids show
a parabolic velocity profile (broken line). In contrast to this, a hy-
perbolic velocity profile is expected for pedestrian crowds (solid line).
Whereas in ordinary fluids the internal friction is compensated for by
a pressure gradient, in pedestrian crowds this role is played by the
accelerating effect of the intended velocity. Due to the Knudsen cor-
rections the fluid slips at the boundary (in other words, the effective
width is greater than the actual width).

with a boundary layer of width

NuTp
D, =,/ =7u/0,.
i (9#) E¥ER

In comparison to this, a pressure gradient

8Plinn — AP}
0X, L
generating the driving force, would lead instead to the parabolic solution
AP¢
Var) = —F (W = X3 1), (34)
nuL

and the mean tangential velocity (V) would depend on the length L of
the lane (see chapter 3.3 of [21]). Both the hyperbolic solution (33) and the
parabolic solution (34) are depicted in figure 2.

6. Effects of interactions

The scattering rates oy, of interactions (see (7) and (8)) are proportional
to the relative velocity ||, — @,|| of the interacting pedestrians and to the
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(15, = @)

Figure 3: The mean relative velocity {||%, — ¥,||), dependent upon
[I{u) — ()|, for the special case 6,; =1 =6,;.

scattering cross section I, (which is a length of the order of a pedestrian’s
stride) [18]:
U;u(ﬁu: Uy ﬁ:) = lut/”ﬁu - ﬁu”PW(ﬁmﬁu% 17;)

The mean rate of interactions of an individual of type p with individuals of
type v is

1 1 = = - o2 2
== —//pu(x,v#,t)p,,(:v,v,,,t)lu,,lfvu —0,||d*v, d*v,

(Pu)

= (P )18 — ) (35)

where 7, is the corresponding mean interaction-free time [18]. For the mean
relative velocity (||g, — U,||) (see figure 3), the following limits can be calcu-
lated by making use of (21) and (29), and neglecting terms of order O(6p,):

0, if (t,) = (), 0, = 0,

(36)
1T) = @ 3 [[(T) = (@) > 6, s

(7. — al)) = {
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Let us introduce

Tow = T (T (O0), O, 0) = T (00) = T (), (37)
and the total rate of interactions
Then,

1y = ¢ Atelf (39)

is the probability of having the opportunity to pass an individual on the right
or left, if this requires an interaction-free time of at least At, (see chapter
12.1 of [30]).

P, B 02) = 32 P (3, 53 T2)
k

is the probability that two individuals of types 1 and v have velocities 7,
and 7, before their interaction, and the individual of type u has the velocity
¥, thereafter. We shall distinguish three types k of interaction, as follows.

If an individual of type p is hindered by another individual of type v, he
tries to pass the other to the right with probability p,,, or to the left with
probability 1 — p,,:

Py (3,8 52) =y [Pw8(F; — S, ) + (1 — pw)(@; — S5L7)] -

U, = Sg,,U, describes a rotation of velocity v, to the right side by an angle
Buv, in order to avoid the hindering pedestrian; 7; = §E:y17’“ describes the
inverse rotation to the left side.

In cases where it is impossible to avoid an individual of type v having a
velocity v, the individual of type u tries to walk with velocity ¥ = @, if
¥, has a positive component 7, - €, > 0 in the intended direction of motion

& =T/ 151
P2(3,,3,;77) = (1 —1,)8(5; — 3,)0(5, - €, > 0).

This corresponds to situations in which one moves for a short time within
a gap behind a pedestrian who is in the way (or sometimes, for different
directions €, # €,, in front of him). The decision function © is defined by

1 if z is fulfilled
O(z) := { 0 otherwise.

If ¥, - €, < 0 (the case of a negative component of the hindering pedestrian’s
velocity 7, with respect to the intended direction €, of movement), it is better
for an individual to stop (¢j; = 0):

P (G, T3 52) = (1 = 1,,)58(5; — 0)O(7, - &, < 0).
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This results in

(e [ () — X )]

TulPu(Sp,, ) + (1 —pu,,)(_S_[;:”’l_f,L) — ()] k=1
~ 818 3 e - (@] k=2
# ) ©u ) k=3

and

~—(e)e) [xfw (%) X (%ﬂ

TulPu (S, 00)7) + (1 — P ) (S5, 0)7) — (U}.)]

~ lauden) | k=1
Tiw (1 =7 (Ow)(v) — (V)] k=2
_(1 - Tu)(l - <®uu>)<vi’i> k=3

(40a)
(40Db)
(40c)

(41a)

which explicitly allows the calculation of (18c) and (19d). We have used the

abbreviation

(@uu> = (9;“/) (Ens (1,),6,) == (O(7, - €y > 0))
{ 1— fevin/ @00 4 e [1 — @ ()] ify,, >0

Levi/0n) _ Wl [1 g (luel)] if 4, < 0

V2n6, V26,

(see figure 4), with

and the Gaussian error function
D(z2) : / ——e"dr.
(1 —7,)(1 = (B,)) is the relative frequency of stopping processes.

6.1 Interpretation

(a) Development of lanes

According to (40a), an asymmetrical avoidance probability p,, # 1—p.. (see
[9]) leads to a momentum density that tends to the right (for p,, > 1/2) or to
the left (for p,, < 1/2). This momentum density vanishes when the products
(0u)(0y) of the densities (g,) and (o,) have become zero, causing a separation
of different types p # v of motion into several lanes (see figure 5). This effect
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(Ow)

-4 -3 -2 -1 0 1 2 3
|ym/|

Figure 4: The function (6,,), dependent upon |y, | = () - €y, for
the special case 8,; = 1.

can be observed, at least for high densities (g,) and (0,) [9, 23, 24, 25|, and
has the advantage of reducing the total rate 1/7, of interactions.

The width of the lanes of two opposing directions 1 and 2 can be calculated
from the equilibrium condition of equal pressure:

Ple = P; =4 <Q1>91 = (,92)92.

For a lane of width W, and length L consisting of N, individuals the relation

N
(0u) = mu<pu> = m#W_:L

holds for the mass density (g,); therefore, we get
N B

Ny By
if mi6; ~ mob,. Consequently, the lane width B, will be proportional to
the number N, of individuals (see [23], taking into account the Knudsen

corrections described in section 3.2).
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@
(] @ \
8, e © @ Pvp \. (1= pu)

Figure 5: (a) Opposite directions of motion normally use separate
lanes. Avoidance maneuvers are indicated by arrows. (b) For pedes-
trians with opposite directions of motion it is advantageous if both
prefer either the right-hand side or the left-hand side when attempt-
ing to pass each other. Otherwise, they will have to stop in order
to avoid a collision. The probability p,, for choosing the right-hand
side is usually different from the probability (1 —p,,) for choosing the
left-hand side.

(b) Crossings

If the direction u of motion is crossed by the direction v of motion, it suffers
a change in momentum density of magnitude (40b), which causes the indi-
viduals of type u to be “pushed” partly in direction (7,) of type v. (For the
delay effect of crossings see [22].)

(c) Pedestrian jams
In order to investigate the consequences of (40c) (stopping processes), we can
consider the equation

Ao — o (T — ()~ Tlen) )b (5 (2)

which describes the tendency to walk with the intended velocity 1');?, as well
as stopping processes (see (18b) and (18¢c)). Here, the quantity
1—r
wa = —_’_Tﬂ(l —(Ow))
pv
has been introduced for brevity. The stationary solution of equation (42) is
given by

S\ 1/7y 70 — k (7°
() = VS SRTRT {.) =t ku(v,)
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(compare with [25]). According to (35) through (39), we find

and, using the abbreviation (6v,,) := (||U, — ¥, |),

3
0s,,

O{(bvw)

>0,  s&,({buw) =0)=0. (43)

According to (43), a development of pedestrian jams (k, < 1) is caused by
the variation 60, := U, — U, of the velocities. This is the case even for a lane
consisting of individuals of one type u only (where (g,) = 0 for v # p, see
(a)), since s3 , is growing with the velocity variance ,:

g
0s’
>0, 8 (0,=0)=0.
8, s

(d) Decrease of variance

Equation (41c), describes a loss of variance (a loss of “temperature”) by
stopping processes.

7. Applications
7.1 Optimal motion

From sections 5.1 and 6.1 we can conclude that the motion of pedestrians
can be optimized by

e avoiding crossings of different directions p of motion—for example, by
bridges or roundabout traffic;

e separation of opposite directions of movement—for example, by differ-
ent lanes for each direction (the right lane being preferred [23, 24, 25]),
or walking through a narrow passage by turns;

e avoiding great velocity variances 6,—for example, by walking in for-
mation (as done by the military) [23];

e avoidance of obstacles, narrow passages, and great densities.

These rules are applicable to town- and traffic-planning.

7.2 Maximal diversity of perceptions

In a museum or supermarket, for instance, individuals will perceive more
details (and probably buy more goods) if they walk slowly. So, the opposite
of the rules in 7.1 could be applied to planning museums, markets, and so
forth.
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7.3 Critical situations

In critical situations pedestrians may panic. If the mean total interaction-
free time 7, (see (38)) is less than the mean reaction time (,, the danger of
falling and getting injured is great.

Tu > Cu
gives a condition for the critical density (p,)™* of pedestrians that should
not be exceeded (see (35) through (38)).

8. Conclusions

Starting from the microscopic view of explicit gas-kinetic equations, we have
derived some fluid-dynamic equations for the movement of pedestrians. These
equations are anisotropic (that is, without local rotational symmetry). They
resemble equations for ordinary fluids, but they are coupled equations for
several fluids (that is, for several types of motion u), each consisting of in-
dividuals having approximately the same intended velocity 17;? They also
contain additional terms that are characteristic for pedestrian fluids. These
terms arise from the tendency of pedestrians to walk with an intended veloc-
ity and to change their type (direction) u of motion, and from interactions
between pedestrians (avoidance maneuvers).

For high densities (p,) the interactions between pedestrians are very im-
portant. As a consequence, the development of pedestrian jams and of sep-
arate lanes for different directions of motion can be expected. Pedestrian
jams can be understood as a deceleration effect due to avoidance maneuvers,
which worsen as velocity variance increases. Separation into several lanes is
caused by asymmetrical probabilities for avoiding a pedestrian to the right
or to the left. This asymmetry creates the advantageous effect of reducing
the number of situations in which hindering avoidance behavior is necessary.

For pedestrian crowds the mechanism of approaching equilibrium is es-
sentially given by the tendency to walk with the intended velocity, not by
interaction processes (as in ordinary fluids). As a consequence, the viscosity
7, (the coefficient of internal friction) grows with the pedestrian density. In
addition, we have seen that variations within pedestrian density will show
wave-like propagation, with a velocity ¢, that depends on the mean reaction
time.

Finally, quantities such as “temperature” and “pressure” play a different
role than in ordinary fluids. It can be shown that the “temperature” (the
velocity variance) 6, is produced by the variance of the intended velocities.
As a consequence, two contacting groups of individuals belonging to different
types of motion can show different “temperatures.” This is the case, for
example, on a dance floor. On the other hand, whereas a pressure gradient
compensates for the effect of internal friction in ordinary fluids, for pedestrian
crowds this role is played by the accelerating effect of the intended velocity.
Therefore, a hyperbolic stationary velocity profile is found, rather than a
parabolic one.
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9. Outlook

Current investigations of pedestrian movement are concerned with the prob-
lem of specifying the forces ﬁ and the rates x;, of pedestrians changing their
type of motion. This problem calls for a detailed model of the intentions of
pedestrians.

Pedestrian intentions can be modeled according to stochastic laws. They
are functions of

e a pedestrian’s demand for certain commodities;

e the city center entry points (parking lots, metro stations, bus stops,
and so forth);

e the location of stores offering the required commodities;
e expenditures (for example, prices and time); and

e unexpected attractions (shop windows, entertainment, and so forth).

Models of this kind have been developed and empirically tested by Borgers
and Timmermans [2, 3]. A model that takes into account pedestrian inten-
tions as well as gas-kinetic aspects is presented in [11]. This model can be
formulated in such a way that it is also suitable for Monte Carlo simulations
of pedestrian dynamics by computer. Computer simulations of this kind are
an ideal tool for town- and traffic-planning. Their results can be directly
compared with films of pedestrian crowds.
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