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Abstract. A fluid-dynamic description for the collective movement of
pedestrians is developed on the basis of a Boltzmann-like gas-kinetic
model. The differences between these pedestr ian-specific equat ions
and those for ordinary fluids are worked out ; they concern, for exam­
ple, the mechanism of relaxat ion to equilibrium, the role of "pressure,"
the special influence of internal friction, and the origin of "tempera­
tur e." Some interesting results are derived that can be compared to
real situat ions-for example, the development of walking lanes and of
pedestri an jams, the propagation of waves, and behavior on a dance
floor. Possible applications ofthe model to town- and traffic-planning
are outl ined.

1. Introduct ion

Previous publications on the behavior of pedestrians have been predomi­
nantly empirical (often in the sense of regression analyses) , and were int end ed
to facilitat e planning of efficient t raffic [16, 24, 34J . While there also exist
theoretical approaches to pedestrian movement [2, 3, 7, 9, 12, 29, 32, 33],
most t heoret ical work has been done in the related to pic of aut omobile traf­
fic (see, for example, [1,6,8,26, 27, 28]). In particular , some Boltzmann-like
(gas-kineti c) approaches have been developed [1, 26, 27].

The author has observed that footprints of pedestrian crowds in the snow
and quick-motion pict ures of pedest rians resemble fluid streamlines. It is
the object of this paper to give a suitable explanat ion of the fluid-dynamic
properties of pedest rian crowds. Henderson was the first to apply gas-kinetic
and fluid-dynamic models to empirical data of pedestrian crowds [12, 13, 14,
15J. His work , however , began with t he conventional theory for ordinary
fluids , and assumed a conservation of mome ntum and energy. In cont rast to
Hend erson's approach, this ar ticle develops a special theory for pedestrians­
without makin g use of unrealistic conservati on assumptions.

Our pr ocedure is describ ed as follows. Pedestrians will be distinguished
into groups of different typ es f1 of motion , nor mally represent ing different
intended directions of walking . At a time t the pedest rians of each typ e f1 of
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motion can be characterized by severa l quantit ies, such as t heir place X, their
velocity vI" and their intended velocity v~ (in other words, t he velocity they
wish to walk with). So, we find in a given area A a density PI'(x ,vI" v~ , t) of
pedestrians having a special typ e of motion /-l , and showing approximate ly
the quantities X, vI" and v~ at t ime t. For the densities PI'(x,VI',V~ ,t) equa­
t ions of motion can be established (sect ion 2). From these equations we shall
derive coupled differenti al equations for t he spatial density (PI') of pedes­
t rians , their mean velocity (VI'), and velocity variance ((b"VI',i?) (sect ion 3).
The result ing equations show many similar it ies' to the equations for ordinary
fluids, but they contain addit ional terms that take into account pedestrian
intenti ons and interactions (sections 3.1, 4.1, 5.1, and 6). In sect ion 4 we
shall t reat equilibrium situations and the propagation of density waves. In
nonequilibrium situat ions, however , the final adaptation t ime to local equi­
libr ium gives rise to internal friction (viscosity) and other additional terms
(sect ion 5). Effects of interactions (that is, of avoidance maneuvers) between
pedestrians will be discussed in sect ion 6. These effects will lead to some
conclusions applicable to town- and traffic-planning (sect ion 7).

Readers who are not int erested in the mathematical aspects may skip the
formul as in the following. However , t he mathematical results are import ant
for analytical, computational or empirical evaluations.

2. Gas-kinetic equations

Pedestrians can be distinguished into different types /-l of motion, for example,
by their different intended directions e;.. := v~ /li voll of motion (normally two
opp osit e directions; at crossings, four directions). More precisely, a pedes­
t rian shall belong to a type /-l of motion if he wants to walk with an intended
velocity

where

is one of several disjoint and complementary sets . A type /-l of motion st ill
contains pedestri ans with a variety of intended velocit ies v:;, but the ad­
vantage resultin g from a suitable choice of t he sets~ is t he ability to get
approximate ly unimodal densities PI'(x ,vI" v~, t), and therefore to obtain ap­
pr opri at e mean value equations (see sect ion 3). A,(x,vI" v~, t) describ es the
numb er NI' of pedestrians of type u, wit hin an area A = A(x) aro und place
X, having the approx imate in tended velocity V:;, but t he approximate actual
velocity vI'" Specifically, PI' is defined by

(1)
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where NJl is the numb er of pedestrians of typ e J-l t hat are, at t ime t , in a
state

(x' ,u~) E U(x) x V(uJl )

belonging to the neighborhood U(X) x V(uJl ) of x and

State (x, uJl ) is an abbreviat ion for the property

t hat an individual is at place xand wants to walk with the intended velocity
v~, but in fact walks with velocity Vw

U(x) := {x* EM: Ilx* - x III ~ r} (2)

is a neighborhood around the place x, and belongs to the domain M , which
repr esents all accessible (or public) places x . A = A(x) denotes the area of
U(X). Similarly,

V(uJl ) := {u; = (v: ' ~* ) : lIu; - uJl1I1~ s,v~ E NJl}

is a neighborhood of uJl := (v;.. ,v~), with a volume V = V (uJl).
We shall now est ablish a set of continuity equations, which are similar to

the const ruction of Alberti and Belli [1]:

(3)

These equations can be interpreted as gas-kinetic equations (see chapters 2.4
and 2.7 of [18], and §3 of [19]). mJl denotes t he average mass of pedestrians
belonging to type p: Apart from special situations it will not depend on u ;
in other words, mJl ;:::: m v . The forces t; := m) jJl can often be neglected .
However, t hey may be locally varying functions, dep ending on the at t rac tion
of the places x. If a pedestrian does not change his type (direction) J-l , the
temporal change jj~ of t he int ended velocity v:: is normally a small quantity

(jj~ ;:::: 0), although v~ can in principal be a functi on of place x and time t.
According to (3) , t he change of the density fiJl over t ime is given by four

effects .

• First , by the tendency of the pedestrians to reach their int ended velocity
v:: [1, 9]. T his causes PJl to approach

(4)
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(the equilibrium density in the absence of dist urbances), with a relax­
ation tim e

T = ml"
1"-

'I"
(see [9]). P~ is t he density of pedestrians wit h intended velocity V;; but
arbit ra ry act ual velocity vI"' The Dirac delta function is denoted by
8(.) , which is different from zero only when its argument (.) vanishes .

• Second, by the interaction of pedestrians, which can be mod eled by
a Boltzmann-like stosszahlansatz [10, 18, 19]: If we take into account
that the interactions are of short range (in comparison with r , see (2)) ,
we have

SA ]JJ A (-. - . - - - t) A ( - - . t) A ( - -. t) d4 - d4 - . e«:I"V = al"v uI",uv;uI"'UV;X' PI" X'UI" ' p; x,uv' u; uI" Uv

- JJJG-I"v(c; a;u;, u:; e, t) PI" (x ,uI"' t) pv(x,a; t )d4uv d4u; d4u: .

(5)

This term describes pair int eracti ons between pedest rians of types p,
and 1/ , occuring with a tot al rate proportional to t he densities PI" and
Pv of both interacting types of motion. T he relative rate for pedes­
t rians of types p, and 1/ to change their states from (x, uI")' (x, uv) to
(x ,u; ), (x ,u:), due to interact ions, is given by G-I"v(uI"' a.; u; ,u:;i, t).
Assuming that only the act ua l velocities vI" ' Vv and not the intended
velocities v~, v~ are affected by interactions, we obtain

A (-1 - 1 - 2 - 2 - t)al"v UI",UV ;UI"' UV; X' =
a (VI vI. v 2 v 2)8(vo,2 _ v O,I)8(v O,2 _ VO,I)

J..W J.L' v' J.L) v J.L J.L v v'

This results in

SI"v(x, vI" ' t)

JSA (- - -0 t)d 2 - O
:= I"V X,VI"'VI"' vI"

]J (-. -. - -) (- -. t ) ( - - . t)d 2 - d2 - . d2 - .= al"v VI"' VV;VI"'VV PI" X'VI"' p; x, vv' o; VI" Vv

]J (- - -. -.) (- - t) ( - - t)d 2 - d2 - . e«:- aI"V VI" ' vv;VI"' Vv PI" x,vI"' Pv X,vv, o; VI" Vv

= JJa;v(v; ,V: ;~)PI"(x, v;,,t) pAx, V:, t) d2v; d2v:

- JJa; v(VI"'e;V; )PI"(x ,VI"' t)pv(x,VV,t) d2vvd2v; ,

with

(6)

(7)

a; ve , ·;· ):= Jal"A·,·; ·,v)d2v. (8)

Equat ion (6) is similar to (5) , and can be interpreted analogously. The
explicit form of a; v will be based on a microscopic model for the inter­
act ions, and is discussed in sect ion 6.
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• Third, by pedestri ans changing their type fJ, to ano ther type [I , for
example when turning to the right or left at a crossing, or when turn ing
back (change of intended direction). T his can be modeled by

C" (- - t) - J" " 1' ( - . - . - t ) " ( - - t)d4-
l'"x ,ul" - {71' u" ,ul"x, p" x , u" , U"

-JCJ~" (UI' ;U" ; x,t)PI' (x,UI' ,t)d4U,, ,

with a transit ion ra te proportional to the density of the cha nging typ e
of moti on .

If we assume that for the moment of change both the intended veloc­
ity v~ and the act ual velocity ~ remain the same (but of course not
th ereafter) we have

T his results in

CI''' := J61'''(x,a; t)d2v;]
- "I' (- - t) (- - t ) 1''' ( - - t ) ( - - t )- {71' X'VI" P" X' VI" -(71' X'VI" PI' X' VI'"

where

and

(9)

(10)

• Four th, by the density gain if!; (x,vI" v~ , t) or density loss ii;(x,vI" v~ , t)
per time unit. This gain or loss is caused by pedestrians who enter or
leave the system M at a marginal place xE 8M (for example, a house),
with t he intended velocity v~ := VO E NI' and the actua l velocity vI':

(11)

3 . Macroscopic equations

For fur ther discussion we need the following notations:
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(12)

(13)

(14)

(15)

(16)

Here, 'l/JIJ- (~' v~ ) is an arbitrary functi on of e; and v~ .
As far as pedestrians of type f.L are concerned, we are most ly interested

in their density (PIJ-) ' t heir mean velocity (vlJ-) ' and the vari ance ((OVIJ-,i?) of
their velocity components VIJ-,i (at a given place if and time t) . Since it is
formally equivalent and more easily comparable to fluid dynamics, we shall
instead search equations for t he mass density

the mean momentum density

and t he mean energy density (in direct ion i)

By mult iplicat ion of (3) by 'l/J1J- (vlJ- ) = mj.l.' mlJ-vj.I. or mlJ-v; )2, and int egrati on
over uj.I. ' one can obtain the following equat ions (keeping in mind that the
Gaussian surface int egrals vanish; see chapter 2.10 of [18]):

(17a)

(17b)



A Fluid-Dynamic Model for the Movement of Pedestrians

for the mass density,

397

a ((0J1.) (vJ1. ,(3) )
at

= -~ ((0J1. )(vJ1. ,a)(vJ1. ,(3) + PJ1. ,a(3) + (0J1. / J1. ,(3 + QJ1. (vJ1. ,(3 ) (18a)
uXJ1. ,a mJ1.

+ (0J1.)~ ((vZ,(3 ) - (VJ1. ,(3) ) (18b)
TJ1.

+ 2:.(0J1.) (01') _1 [XJ1.v(v;, (3) - XJ1.v(VJ1. ,(3) ] (18c)
v mv

+ 2:. [mJ1. ( (}v)x~J1. (vv,(3 ) - (OJ1.)x~v (VJ1. ,(3 )] (18d)
v mv

for the momentum density, and

a(EJ1. ,i)
at

= -~ ((VJ1. ,a)(EJ1.,i) + PJ1. ,ai (VJ1. ,i) + jJ1. ,a,i)+ (OJ1.)(VJ1. ,i/ J1. ,i + QJ1. ( V2~'i)
uX""a m J1.

(19a)

(19b)

(19c)

(19d)

(1ge)

for t he energy density. We have used the Einsteinian summation convention
to sum over terms in which the Greek indices a , {3 , or 'Y occur twice.

3.1 Interpretation

Equations (17a) , (18a), and (19a) are the well-known hydrodynam ic equa­
tions (see chapters 2.4 and 2.10 of [18]). Equ at ions (18c) and (19d) describe
the effects of interact ions between two individuals of typ e j..t and 1/ (for det ails
see sect ion 6). T hese terms do not vanish, as they would if conservat ion of
momentum and energy were fulfilled in a strict sense (see chapter 2.10 of
[18]). However , since the individuals try to approach the intended velocity
V:; , there is a tendency to restore momentum and energy that is described
by (18b), (19b) , and (19c).

Equations (17b), (18d) , and (1ge) are addit iona l terms due to individuals
who change their type of mot ion. In the following we will assume the special
case that these te rms (as well as t he te rms Q/l('IjJ/l(v/l) /m/l) ' due to individu als
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entering or leaving the system M) vanish, by comp ensation of inflow int o
and outflow from M. For concrete sit ua t ions the quanti ties X~ and Q/-'( .) must
be obtained empirically.

In th ermodynami cs, P/-"a!3 is termed th e t ensor of pressure, and i: is
called the heat flow. For pedestrians i: describ es the te ndency of the velocity
variance ((8V/-"i j2) to equalize over time (see (31)) . The variance

e/-" i := ((8V/-"i )2) == kBT/-' ,;/m/-'

is the thermodynamic equivalent to the absolute temperature T /-" i in dir ec­
tion i . P/-" a!3n!3 repr esent s the force used by indi viduals of typ e Mto change
their movement when crossing a line of unit length l (or, mor e precisely,
the component of this force in the dir ection ii perpendicular to the line) .
Approximate expressions for P/-" a!3 and L,i are derived in sect ions 4 and 5.

3.2 Problems of small densities

The densiti es P/-, of pedestrian crowds are usually very small. As a conse­
quen ce, equat ion (3) will not be fulfilled very well, and a discrete formul a­
tion would be more appealing (see [11]). However , we can begin wit h the
continuity equation (20), which holds better since th e densiti es P/-, are only
moderat ely small. The macroscopic equat ions will st ill be better fulfilled ,
because they are equat ions for the mean values (Q/-,) , (v/-,), and (c/-" i); they
could also be set up by plausibility considera t ions .

In order to have small fluctuations of the variables (Q/-,) , (v/-,) , and (C/-"i)
over t ime, P/-, in equa tion (1) must be averaged over a finite area A and a
finite volume V , which should be sufficient ly large. If T denotes the t ime
scale (apart from fluctuations) for the temporal change of (Q/-,), (v/-,), and
(c/-"i) , these vari ables can also be averaged over time int ervals ,6,t « T , as
follows:

t+[",t/2

(Q/-' (x , t) )(1j;/-, (x , t) ) := ~t J (Q/-, (x , t') )(1j;p, (x, t') ) dt'.
t- [", t/2

Then , equ ations (17) through (19) will be proper approximations for the
movement of pedestrians.

Another complic ation associated with low densiti es is that Knudsen cor­
rections [12] must be taken into account . According to th ese corrections the
"temperature" ep" i and the tang enti al velocity (vp" II) change discontinuously
at a boundary 8M , which seems, therefore, to be shifted by a small dist ance
~ that is compara ble to the mean int eraction-free path (see §14 of [19]).

4. Pedestrians in equilibrium

In order to calcul ate Pp" a!3 , L,i, and Xp,v, we need th e explicit form of PP, (see
and (12) through (15)) . PP, is th e density of indi viduals of type Mat place
x and time t having the actual velocity vp, but arbit rary intend ed velocity
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(20)

iJ~ (see (10)). It is directly measur able in pedestrian crowds. By integration
of (3) over iJ~ we obtain th e following theoret ical dependence (compare to
[27, 26]) :

dpi-' _ BpI-' ( ~ ) ( I:)dt = 7ft + 'Vx Pl-'vi-' + 'Vil" PI-' ml-'

P~ - PI-' " 3 " C= - - - + LJ I-'v + LJ I-'v + ql-'
TI-' v v

The tempora l development of the density PI-' is given by a tendency to walk
with the intended velocity iJ~ (see (4)) , by the effects 31-'v of pair interactions
(see (7)) , by the effects CI-'V of pedestrians changing their type of motion (see
(9)), and by th e effect ql-' of pedestrians entering or leaving the system M
(see (11) and (16)) . The last two effects shall be be neglected in the following
discussion (see the comment in sect ion 3.1) .

Equation (20) can be solved in a suitable approximat ion by the recursive
method of Chapman and Enskog [4, 5]. The lowest order approximation
presupp oses th e condit ion dp~/dt = 0 of local equilibrium , which is approxi­
mately fulfilled by the Gaussian distribution

pe (x iJ t ) = (p ) . 1 e- [(v" ,n- (v" ,n))2/ (20" ,n)+(v" ,.L - (v" ,.Ll? / (20",JJJ
I-' ' 1-" I-' 27rbi il-',1I

(21)

according to empirical dat a [13, 14, 23]. The quant ity

(bl-')2 := BI-',.l :::; 1
BI-',II

describ es the fact t hat t he velocity variance BI-' ,i perpendi cular (l..) to the
mean intended direction of movement (v;l) is normally less than that parallel
(II ) to it [23].

For each type j.t of motion let us perform a particular transformation, as
follows:

x ---> X I-' := ( XI-' ,II )
x l-',.l / bl-'

i ---> i: '- ( 11-',11 )
JI-' I-' .- f .l I b1-', I-'
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f~ == (E~ ,Q{3 ) := ( ~ b~ )'
This transform ation stretches the direction perpendicular to (i{!) by the fac­
tor l /b~ , and simp lifies (17) through (19) to isotropic equat ions (equations
with local rotational symmet ry). With

()~ := ( (dV~,Q ?) = ()~, II

we get

P:,Q{3 = ( (}~) ()~ 8Q{3 = : P:8Q{3

for the pressure, and

J: ,Q,i = 0

(22)

(23)

(25)

(24)

(26)

for the "heat flow" (see chapter 2.10 of [18]) . In add ition, for F~ = 0 the
equations

a ((}~ ) + (V: ) a ((}~ ) = _ ( )a(V~,Q )
at ~,Q aX (}~ aX

il Ia M,a

a(V~,{3) + (V: ) a(V~,{3) = _ _1_ aP: + k1 ((v:e ) _ (v: ))
at ~,Q aX (n ) aX T ~,{3 ~ ,{3

~ ,Q Of~ ~,{3 u:

a()~ + (V ) a()~ = _ P: a(V~,Q ) + k~ W _ () )
at ~,Q aX~,Q ( (}~) aX~,Q T~ ~ ~

can be derived approximately from (17) through (19), (22), and (23) (see
chapter 16.2 of [31]). Obviously, (~,{3) will vary around (V; ,{3 ) aft er some
time. Therefore, we transform t he above equat ions to moving coordinates
X~ (t ) := X~ - (i/;)t. After some st eps one obtains:

d ((}~ ) := a((}~) + (V: ) a ((}~ ) = _ ( ) a(V~,Q )
dt at ~,Q aX (}~ aX

J1,Q J1 ,Q

d(V~,{3 ) := a(V~,{3 ) + (V~ Q) a(V~,{3 ) = __1_ aP: _ k1 (V~ {3)
dt at ' aX~,Q ( (}~) aX~,{3 T~ ,

d()~ ._ a()~ + (V ) a()~ _ _ P: a(V~,u) + k~ W _ () )
dt .- at ~,u aX~,u - ((}~ ) aX~,Q T~ ~ u:

Equ ations (24) through (26) agree with the Euler equations if the last terms
of (25) and (26) are negligible, which shall be assumed in the following. The
quantit ies (V; ,u) == (V; ,u)( ( (}~)) and e: == o;(((}~)) are the st ationary and
homogeneous solut ions of (18) and (19), for which the tempora l and spati al
derivatives vanish.
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Figure 1: Behavior on a dance floor. Dancing individuals (filled cir­
cles) show a lower density than individuals standing around (empty
circles), since they intend to move with a greater velocity variance.

4.1 Behavior on a dance floor

401

On a dance floor like that of a discotheque, two types of motion can be
observed: typ e 1 describing dancing indi viduals , and type 2 describing indi­
viduals standing aro und and looking on. We can assume an isotropic case,
which implies bli- = 1 and 0li-.II = 0li-,.l ' According to (19c), the var iance
((8v~.Y) of t he intended velocit ies V~.i is causal for the temperature 0li-,i , in
ot her words, for the var iance ((8VIi-.i) 2) of t he act ual velocit ies VIi-.i . T hus, for
the t emp eratures 01 and O2 of individuals dancing and individu als st anding
around,

since the dancing individuals intend to move with higher variance ((8Ji Y) >
((8vt )2). (T his is so even in the case of equilibrium, since we mus t t ake
int o ~ccount t he effect of the Knudsen correct ions; see sect ion 3.2.) T he
equilibrium condit ion of equal pressure

Pf = P{

now leads to

(see (22)). Therefore, th e dancing indi viduals will exhibit a lower density
t han the indi viduals standing around (see figur e 1). This effect can readily
be observed.



402 Dirk Helbing

4.2 Propagation of density waves

In the case of very large T!-, we have (V!-' ) ~ (V;)( (e!-') ), and equat ion (24)
can be put into the form

8(e!-')fit + Cf.L( (ef.L)) 'VX I" (ef.L) = O.

This equation describ es nonlinear density waves propagating with velocity

and has been discussed by Whitham in detail (see [20] and chapter 2.1 of [35]).
We shall inst ead study the case of small Tf.L ' were the Euler equat ions are

app licable. In a nearly homogenuous ped estrian crowd with small density
variations one can assume

(27)

(Vf.L ) . 'VX (ef.L) ~ 0, (Vf.L) 'VX (Vf.L) ~ 0, (Vf.L )'Vx Bf.L ~ O.
I" I" I"

From the Euler equat ions (24) through (26) t he equation

8
2

(ef.L ) _ 6,. - P: = 0
8t2 X I" f.L

can then be derived (see ,chapte r 16.2 of [31]). Sub tracting (ef.L)/Bf.L x (26)
from (24), and making use of (22), t he adiabatic law

p e
(eJ2= constant

can be shown , which leads to the linear wave equation

82

(ef.L )K;~8t2(ef.L) - 6,.x I" (ef.L ) = 0

with the adiabatic compressibility

s 1 (8P:) ~ (e!-') 1
K;f.L := (ef.L) 8(e!-') s 2 P: 2(e!-') Bf.L

(see chapter 16.2 of [31]). Equation (27) describ es the propagation of density
waves with velocity

(28)
1

cf.L = J(ef.L ) K;~

relative to X~(t) = Xf.L - (V;) t . On the other hand, the velocity of propaga­

tion is given by the mean distance df.L = 1/ J (pf.L ) of a succeeding individual,
divided by its mean reaction time (f.L> as follows:



A Fluid-Dyn amic Model for the Movement of Pedestrians 403

Insert ing this result into (28) , it follows tha t for small densiti es (PJ.L) t he
adiaba tic compressibility grows wit h t he mean reaction time ~ of indiv iduals
according to

5. N on equilibrium equat ions

In cases of deviations

(29)

from local equilibrium P~ CXJ.L ' 1IJ.L ' t) := p~((PJ.L) ' (1IJ.L )' eJ.L) ' we must find a
higher order approximation of equa tion (20) t han in section 4. If the de­
viations 8pJ.L remain small compared to PJ.L ' we can linearize equa tion (20)
around P~ and get

dp~ ~ dp~ + d8pJ.L = dpJ.L ~ _ 8pJ.L + :L 8pv
dt dt dt dt TJ.L v TJ.Lv

(see chapt er 15 of [17]). Here , TJ.Lv is the mean interaction-free t ime between
an individual of type f-L and individuals of type v (see (35), and chapte r 16.2
of [31]). From (21), (22), and (24) through (26), one finds the following (see
[31]):

If

denotes t he inverse matri x of

the relation

(30)
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leads (because of P/1- = P~ + 0P/1- ) to t he corrected tensor of pressure

P/1-,O:{3 = P; oO:{3 - TI/1-A /1- ,O:{3 - L TI/1-VAv,o:{3
v

(see (13)), and the corrected heat flow

08/1- " eo;
J/1- ,o: = - "'/1- ax - L. "'/1-Vax

1J. ,Ot v v ,a

(see (14)) . Here,

A .= ( a (V/1- ,o: ) a(V/1-,{3 ) _ a(V/1-,o: )0 )
/1- ,0:{3 . ax + ax ax 0:{3/1-,{3 /1- ,0: /1- ,0:

is the tensor of strain ,

(31)

and

are coefficient s of the shear viscosity, and

and

are coefficients of the therm al conductivi ty.
Note that t he main effect of restoring the local equilibrium dist ribution

P~ results from the tendency to approach the int ended velocity distribution

p~CX/1- ' V/1- ' t) with a t ime constant T/1- ' but not , as usual, from interaction
processes (see chapte r 13.3 of [30]). Therefore, in cont rast to ordina ry fluids,
t he viscosity TI/1- is dependent on the density (P/1-) (see pages 323 and 327 in
[31]). For vanishing densities (Pv ) ----> 0 t he inte raction rates l /T/1-v become
negligible (see (35)), and T/1-v , TllJ.v, and "'/1-V vanish in comparison with T/1- '
TI/1- ' and "'/1- ' respect ively. Accordi ng to (30), the deviation oPIJ. from t he local
equilibrium distribution p~ , and, therefore, t he viscosity and the thermal
conduct ivity, are all consequences of finit e relaxat ion t imes TIJ. and T/1-v.

5.1 Effect of viscosity

Where pedestri ans are concerne d, the effect of viscosity is not compensated
for by a gradient of pressure as in ordina ry fluids, but instead by t he te ndency
of pedestrians to reach their intended velocity described by (18b) . In the case
of a st at ionary flow in one direction (that is, of one type of motion ) parallel
to the boundar ies aM, we have essent ially the equation

(32)

(33)

if TlIJ. » TlIJ.IJ. (see (18a) and (18b)). For a lane of effect ive width 2W (with
t he origin X/1-,J. = 0 in the middle), equation (32) has t he hyperbolic solut ion

(v: ) - (V O ) [1 _ cosh(XIJ.,J./ DIJ. )]
IJ.,II - /1-,11 cosh(W/ DIJ. )
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x.:

" \ ,
/

/

o

(V!-',II )
Figure 2: Effect of viscosity (inte rnal friction). Ordinary fluids show
a parabolic velocity profile (broken line). In cont rast to this, a hy­
perboli c velocity profile is expected for pedestrian crowds (solid line).
Wh ereas in ordin ary fluids the internal friction is compensated for by
a pressure gradient , in pedestri an crowds this role is played by the
accelerating effect of the intended velocity. Due to the Knudsen cor­
rect ions the fluid slips at the boundary (in other words, the effective
widt h is greate r than the actua.l width).

wit h a boundary layer of wid th

D!-, = J~;:) = T!-,~'
In comparison to this, a pressure gradient

8P: ,nn ._ f::lP:
8X!-',II'-T

generating the driving for ce, would lead instead to the parabolic solut ion

(34)f::lP: 2 2
(V!-',II ) = T/!-,L (W - X !-" l. ),

and t he me an tangential velocit y (V!-',II) would depend on t he lengt h L of
t he lane (see chapter 3.3 of [21]) . Both t he hyperbolic solution (33) and t he
parabo lic solution (34) are dep icted in figure 2.

6. Effects of interactions

T he scattering rates a;1/ of interacti ons (see (7) and (8)) are proportional
to the relative velocity Ilv/L - vI/II of the interacting pedestrians and to the
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o 2 3 5 6

Figur e 3: T he mean relati ve velocity (II vl' - vv ll), depend ent upon
II(v!') - (vv) ll, for the special case (J1',i = 1 = (Jv,i.

scattering cross section 11'1' (which is a length of t he order of a pedestrian 's
stride) [18]:

The mean rat e of interactions of an individu al of type JL with individuals of
type lJ is

~ := -(1) fjpl'(X' a, t) pv(x,VI', t )ll'vllvl' - vvlld2Vl' d2vv
Tl'v PI'

= (Pv) ll'v(llvl' - vvll) (35)

where Tl'v is the corresponding mean interaction- free t ime [18]. For the mean
relative velocity (IIVI' - vvl l) (see figure 3), the following limits can be calcu­
lat ed by making use of (21) and (29), and neglecting terms of order O(8pl'):
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Let us int roduce

T; v = T; v((vj1.) , (vv), (} j1. ' (}v) := Tj1.V(f}V) = Tj1.Vmv(pv),

and the total rate oj interac tions

T hen ,
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(37)

(38)

(39)

is the probabili ty of having the opportunity to pass an ind ividual on the right
or left , if this requires an interaction-free t ime of at least t::..tj1. (see chapter
12.1 of [30]).

P ( ~ ~ ~ ' ) " p k (~ ~ ~')j1.V vj1. ' Vv;vj1. = LJ j1.Vvj1. ' Vv;vj1.
k

is t he pro bability that two ind ividuals of ty pes fJ- and v have velocit ies vj1.
and Vv before their interact ion , and the individual of type fJ- has the velocity
v; thereafter. We shall distinguish three ty pes k of interaction, as follows.

If an individu al of ty pe fJ- is hindered by another ind ividual of type u, he
tries to pass t he other to t he right with pro bability Pj1.V, or to t he left with
prob abili ty 1 - Pj1.v :

p~v (Vj1. ' vv; v;) = rj1. [pj1.V8(v; - ;2/3"v~) + (1 - pj1.v)8(v; - ;21i:vVj1. )] .

v; = ;2/3"vvj1. describ es a rotation of velocity 'Up. to the right side by an ang le
(3j1.V, in ord er to avoid the hindering pedestrian ; v; = ;21i:vVj1. describ es the
inverse rot at ion to the left side .

In cases where it is imp ossible to avoid an indi vidual of type u having a
velocity vv, the indi vidual of type fJ- t ries to walk with velocity v; = vv, if
Vv has a positive component Vv . e; > 0 in the intended direct ion of mot ion
e; := v~/ lIv~ll:

p;'v(Vj1. ' vv; v;) = (1 - rj1.)8(v; - vv)8(v,, ·~ > 0).

T his corres ponds to situations in which one moves for a short t ime within
a gap behin d a pedestrian who is in th e way (or sometimes, for different
directio ns ~ i= e;" in front of him). The decision junction 8 is defined by

8 (x ) := {I if x is fulfilled
o otherwise.

If vv'~ < 0 (the case of a negative component of the hindering pedest rian 's
velocity Vl/ with respect to the intend ed direct ion e;, of movement ), it is better
for an indi vidu al to stop (v; = 0):

P:v (~ , vv;v;) = (1 - rj1.)8(v; - 0)8(vv .~ < 0).
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This results in
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and

k = l

k=2
k =3

(40a)

(40b)

(40c)

(41a)

(41b)

(41c)

which explicit ly allows the calculat ion of (18c) and (19d). We have used the
abbreviat ion

if YJ.<v :::: 0

if YJ.<v < 0

(see figure 4) , with

YJ.<v := (vv) .~

and the Gaussian error functi on

<p(z ) := j Jrre- X 2 dx.
o

(1 - rJ.< )(l- (8 J.<v)) is the relative frequency of stopping processes.

6.1 Interpret ation

(a) Development of lanes

According to (40a), an asymmetr ical avoidance prob ability PJ.<v i- 1- PJ.<v (see
[9]) leads to a momentum density that tends to th e right (for PJ.<v > 1/ 2) or to
the left (for PJ.<v < 1/ 2). This momentum density vanishes when the products
({!J.< )({!v) of the densit ies ({!J.<) and ({!v) have become zero, causing a separation
of different types J1, i- 1/ of motion into several lanes (see figure 5). T his effect
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Figur e 4: The function (8" v), dependent upon IY"vl = I(vv) . €,, /, for
the special case Bv,i = 1.

can be observed , at least for high densiti es ({],,) and ((]v) [9, 23, 24, 25], and
has t he advantage of reducing t he total rat e l/f" of interactions.

The width of t he lanes of two opposing direct ions 1 and 2 can be calculated
from t he equilibrium condition of equal pressure:

For a lane of widt h W" and length L consist ing of N" individuals the relation

(f2,,) = m,,(p,,) = m,,:;"L

"
holds for the mass densit y (f2,,); therefore, we get

NI ~ B I

N
2
~ B

2
'

if m l (J1 ;:::: m 2(J2. Consequently, the lane widt h B" will be proportional to
the number N" of individuals (see [23], taking into account the Knud sen
corrections describ ed in sect ion 3.2).



410

(a)
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(b)

(42)

Figur e 5: (a) Opposite directi ons of mot ion norm ally use separate
lanes. Avoidance maneuvers are indic ated by arrows. (b) For pedes­
t rians with opposite directio ns of motion it is advant ageous if both
prefer eit her the right-hand side or the left-h and side when attempt­
ing to pass each ot her. Otherwise, t hey will have to stop in order
to avoid a collision. T he probability Pp.v for choos ing the right-hand
side is usually different from t he probabi lity (1 - Pp.v) for choosing the
left-hand side .

(b) Crossings

If t he direction J-l of motion is crossed by the direct ion u of mot ion, it suffers
a change in moment um density of magnitude (40b) , which causes the indi­
vidua ls of type J-l to be "pushed" partly in direction (vv) of type t/ , (For the
delay effect of crossings see [22].)

(c) P ed est r ia n jams

In order to invest igate the consequences of (40c) (stopping processes) , we can
consider the equat ion

8 ({}p. ) (iJp. ) 1 ( )((- 0) «,» "'( )( )3 «:!:It = - {}p. v p. - vp. - L {}p. {}v Sp.v v p. ,
U Tp. v

which describes the tendency to walk with the int ended velocity v:;, as well
as stopping processes (see (18b) and (18c)). Here, th e quantity

3 l - r p. ( ( ))Sp.v := - .- 1 - G p.v
Tp.v

has been introduced for brevity. T he st ationary solut ion of equat ion (42) is
given by

( - ) = I / Tp. (- 0) = ' k (- 0)v; '" v p. ' p. v p.
I / Tp. + L v ( {}v) S~v
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(com pare with [25]). According to (35) through (39) , we find

OS~I/
O(PI/) > 0

and, using the abbreviat ion (8vl'l/) := (11vl' - VI/ II ),

411

(43)

Accordin g to (43) , a development of pedestrian jams (kl' < 1) is caused by
the variation 8vl'I/ := vI' - VI/ of the velocities. This is the case even for a lane
consisting of ind ividuals of one type I.t only (where ((21/ ) = 0 for v f- u, see
(a)), since s~1' is growing with the velocity variance BI':

os~1'7fB > 0,
I'

(d) D ecrease of variance

Equation (41c) , describes a loss of variance (a loss of "tempera ture" ) by
stopping processes.

7 . Ap p lications

7.1 Optimal motion

From sect ions 5.1 and 6.1 we can conclude that the motion of pedestrians
can be optimized by

• avoiding crossings of different directions I.t of motion-for example, by
bridges or roundab out traffic;

• separation of oppo site direct ions of movement- for example, by differ­
ent lanes for each direction (t he right lane being preferred [23, 24, 25]),
or walking through a narrow passage by turns ;

• avoiding great velocity variances BI'- for example, by walking in for­
mation (as done by t he military) [23];

• avoidance of obstacles, narrow passages, and great densities.

These rules are applicable to town- and traffic-plan ning.

7.2 M aximal d iversity of perceptions

In a museum or superm arket , for instan ce, individuals will perceive more
details (and probably buy more goods) if they walk slowly. So, t he opposite
of the rules in 7.1 could be applied to plann ing museums, markets, and so
fort h.
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7.3 Critical sit ua t ions

In critical sit uat ions pedestrians may panic. If t he mean total interaction­
free time T,.,. (see (38)) is less than the mean reaction time ~, the danger of
falling and getting injured is great .

T,.,. > (,.,.

gives a condit ion for the crit ical density {p,.,. )crit of pedestri ans that should
not be exceeded (see (35) through (38)) .

8. Conclusions

Star t ing from the microscopic view of explicit gas-kinetic equations, we have
derived some fluid-dynamic equa tions for the movement of pedest rians. These
equations are anisotropic (that is, without local rotational symmetry). They
resemble equations for ordinary fluids, but they are coupled equat ions for
several fluids (that is, for several types of motion J-l ), each consist ing of in­
dividuals having approximat ely the same intended velocity v:l . They also
contain addit ional te rms that are characte rist ic for pedestrian fluids . These
terms arise from the tendency of pedestrians to walk with an intended veloc­
ity and to change t heir type (direct ion) p. of mot ion, and from interactions
between pedestrians (avoidance maneuvers) .

For high densities (p,.,.) the interactions between pedestr ians are very im­
portant. As a consequence, t he development of pedestrian jams and of sep­
arate lanes for different directions of motion can be expected. Pedestr ian
jams can be und erstood as a decelerati on effect due to avoidance maneuvers,
which worsen as velocity variance increases. Separat ion into several lanes is
caused by asymmet rical probabilit ies for avoiding a pedestri an to the right
or to the left . This asymmetry creates t he advantageous effect of reducing
t he number of situations in which hindering avoidance behavior is necessary.

For pedestr ian crowds the mechanism of approaching equilibrium is es­
sentially given by the tendency to walk with the int ended velocity, not by
interaction processes (as in ordinary fluids). As a consequence, the viscosity
'TJ,.,. (the coefficient of internal friction) grows with the pedestri an density. In
addit ion, we have seen t hat variations wit hin pedestri an density will show
wave-like prop agat ion, with a velocity c,.,. that depends on t he mean reaction
time.

Finally, quantities such as "temperature" and "pressure" play a different
role t han in ordinary fluids. It can be shown that the "tem perature" (t he
velocity variance) B,.,. is produced by the var iance of the int ended velocit ies.
As a consequence, two contact ing groups of individuals belonging to different
types of motion can show different "temperat ures." Th is is the case, for
example, on a dance floor. On the other hand, whereas a pressure gradient
compensates for the effect of intern al friction in ordinary fluids, for pedestrian
crowds this role is played by t he accelerating effect of t he intended velocity.
Therefore, a hyperbolic stationary velocity profile is found, rather than a
parabolic one.
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9. Out look
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Current investigations of pedestri an movement are concerned with th e prob­
lem of specifying the forces f: and the rates X~ of pedestri ans changing t heir
type of motion. This problem calls for a det ailed model of the intent ions of
pedestrians.

Ped estrian intent ions can be modeled according to stochas t ic laws. They
are functi ons of

• a pedestri an 's demand for certain commodit ies;

• the city cente r ent ry point s (park ing lots, metro stat ions , bus stops,
and so forth);

• the location of st ores offering t he required commodit ies;

• exp enditures (for examp le, prices and t ime) ; and

• unexp ected attractions (shop windows, entertainment , and so forth ).

Models of thi s kind have been developed and empirically tested by Borgers
and Timmermans [2, 3]. A mod el that takes into account pedest rian int en­
tions as well as gas-kinetic aspects is present ed in [11]. This mod el can be
formulated in such a way that it is also suitable for Monte Carlo simulations
of pedestrian dynami cs by computer. Computer simulations of this kind are
an ideal too l for town- and traffic-planning. Their results can be direct ly
compared with films of pedestrian crowds.
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