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Abstract. A classification of cellular automata (CAs) complementary
to that of Wolfram was recently proposed by Binder. This classifica-
tion is motivated by the limiting behavior seen in automata with fixed
boundaries. In what follows, we show that for a number of elemen-
tary CA rules it is possible to obtain complete solutions for the periods
and numbers of all limit cycles, plus, in some cases, information on
the structure of the cycles themselves. In particular, we are able to
confirm the existence of globally attractive limit cycles of fixed period
for several CA rules.

1. Introduction

Cellular automata (CAs) [1-6] are mathematical models in which space, time,
and state variables are discrete. A CA consists of a regular lattice of sites,
with a discrete variable at each site. These variables change according to a
single local rule, which may be either deterministic or probabilistic.
Elementary CAs are the simplest realizations of this concept. They con-
sist of a chain of sites, where each site variable can take one of two values
(0 or 1), and the local rule is a function of three variables, the value of a
site and those of its nearest neighbors. Despite this apparent simplicity, ele-
mentary CAs display a wide range of behavior. The behavior of periodic (or
cylindrical) elementary CAs has been classified by Wolfram [7]. The present
paper was motivated by a recent numerical study and classification of ele-
mentary CAs (with both fixed and periodic boundary conditions) performed
by Binder [8], which, in particular, considered all 88 elementary rules, all
possible fixed boundary conditions, and all initial states. Rules were classi-
fied according to their limiting behavior. A deterministic system with a finite
number of states must eventually enter a limit cycle, where it will remain.
Techniques exist for both cylindrical [9] and non-cylindrical [10] CAs that
give the number of such limit cycles of any given period for a particular rule.
The aim of this paper is to demonstrate analytic techniques that give the pe-
riods of all limit cycles for all fixed boundaries for a selection of elementary
rules; in fact, we present results for 46 of the 88 nonequivalent elementary
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rules. (The only other such studies of which we are aware are an analysis of
rule 3 by Binder [11], a study of rule 232 [12], and work on rule 150 [13].) We
note that all results given here have been checked against, and agree with,
the extensive simulations performed by Binder.

1.1 Notation

We will consider a chain of L sites, each of which can take the value 0 or 1.
At the left and right ends of the chain, in positions 0 and L + 1, will be the
fixed boundary sites, with values ag and ar.;. a! denotes the value of the
ith site at time ¢. The value of this site is determined by the values of itself
and its immediate neighbors at the previous time step, as follows:

aﬁ = f(ag:%va:_l7a§;%) (1)

The action of the global function f on the eight possible triplets defines the
rule. We will follow the conventional numbering system for the rules [3].

2. The shift Rules
Consider the set of rules of the form:
a:“ = f(ag—lv a‘ﬁv (L1t'+1) = ang(a:_l,aﬁ) (2)

or

t4+1
i

a; = ai—lg(agv a§+1) (3)

There are fifteen nonequivalent rules of this form. Of these, numbers 128
and 170 are straightforward, not requiring any sophisticated analysis (for
example, 170 acts as a pure translation), and numbers 15 and 34 will be
considered in the next section. In this section, we will outline techniques
that enable us to obtain solutions to the numbers and periods of all limit
cycles for the eleven remaining rules (numbers 2, 8, 10, 32, 40, 42, 130, 138,
160, 162, and 168), plus three additional rules (numbers 24, 46, and 152)
that are one bit away from being a rule in this class and can be analyzed
using similar techniques.

We present the analysis of rule 24 as an example. The case qp = ap+1 =1
has been considered previously [14]. We give here a full and more rigorous
analysis which illustrates the techniques used to analyze all the above rules.
Details of results for the other rules can be found in Appendix A.

2.1 Rule 24
The definition of rule 24 is
f(x10) = f(00%) = f(x01) = f(11%) =0
f(011) = f(100) =1

where * indicates an irrelevant bit.
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Theorem 2.1. If ay = 0, then all limit cycles are fixed points.

Lemma 2.1. Ifa} = 0 for all t > ty, where 0 < i < L — 2, then al,, = 0 for
all t > 1o+ 2.

Proof. If a/f, = 0, then a}%}" = f(00%) = 0. Hence at,; = 0 for all ¢ > t,.
If aX%, = 1 and a%%' = 0, then af51' = f(010) = 0. Hence at,; = 0 for all
t>to+1. Ifa%; =al%, =1, then

alt! = f(011) =1

agh = f(11%) = (®)
ai1* = £(010) =0

Hence af,; = f(00x) =0 for all t >t + 2. B

Lemma 2.2. Ifa} ;=0 for all t > ty and az+; = 0, then a} = 0 for all
>4 1.

Proof. If a% = 0, then ' = £(000) = 0. Hence a;, = f(00%) = 0 for all
t >ty If atL" = 1, then at"Jrl = f(010) = 0. Hence a}, = f(00x) = 0 for all
t >t H

Lemma 2.3. Ifa;_, =0 for allt >ty and a1 = 1, then either a} = 0 for
allt > tg, or at, =1 for all t > t,.

Proof. If ¢! = 0, then a®*' = £(001) = 0. Therefore, at = 0 for all ¢ > .
If a¥ = 1, then a®®*! = f(011) = 1. Therefore, a; = 1 for all t > t,. B

Consider now the boundary condition qy = 0. By repeated application of
Lemma 2.1, we can see that all sites for i = 1 to i = L — 1 eventually become
fixed at zero. Using either Lemma 2.2 or 2.3, the last site also becomes
fixed. If ap = ary1 = 0, there is a global fixed point 0. If ay = 0 and
ar+1 = 1, there are two fixed points, 0% and 0*~11. This completes the proof
of Theorem 2.1.

We now consider the case ag = 1.

Theorem 2.2. If ay = 1 then all limit cycles are of period three.

Lemma 2.4. Ifat =1 where2<1<L—1andt>1thendal_,=al,=0.
Hence, if at —0wherel<z<L—2andt>1 then at] = 0.

Proof. If al = 1 then either
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hence a_; = f(*01) = 0 and af,, = f(11%) = 0. If a! = 0, then (using
the above result) ait{ = f(000), f(001), or f(010). Hence a!f; = 0. This
completes the proof. B

From this lemma, we can deduce that, for sites that are not adjacent to a
boundary, updating proceeds as for rule 16 (which, by reflection, is equivalent
to rule 2.)

The periodic behavior of a limit cycle depends on the periodic behavior
of the limiting temporal sequences of which it is composed. A temporal
sequence W; is defined as follows:

W;=[al:t>0] (8)

The sequences Wy and Wiy, are thus the fixed boundaries. The se-
quences W; to Wy, correspond to the evolving columns of the system. Since
we are interested only in the limiting behavior of such sequences, we will
label sequences according to this behavior. We define the following limiting
sequences.

WY = [ai™ = af™! =0, a}™* =1; 3m > to]

W-l — [a?m+1 — a§m+2 — 07 a?‘m - 1, 3m Z tO] (9)

K3

Wi =™ =a™P =0, e =1; Im >

K

where W; = W} if the appropriate condition holds for all 3m > t;, for some
value of tg.

Lemma 2.5. Ifag = 1, then Wy = W}* and Wy = W™, where n =0, 1, or
2, and the addition is performed modulo 3.

Proof. Consider the system at some time ¢ > 1. Then, by Lemma 2.4,
at = ab =1 is not possible. If af =1 and @} = 0, then a,t+1 = f(110) =0
and a5™ = f(10%) = 0 or 1. If &t = 0 and a} = 1, then (by Lemma 2.4)
a3 = 0, hence a{™ = f(101) = 0 and a5 = f(OlO) =0. Ifa =0 and
ab = 0, then at+1 = f(100) = 1 and at“L1 = f(00%) = 0. By Lemma 24,

ai™ = 0. Hence,
gt = F110)=0
att? = f(100) = 1
ait? = f(00%) =0 (10)

gt = FI01) =0
att® = £(010) =0

So af and a3, whatever their values, must both eventually become zero. Once
this has occurred, they then cycle. This completes the proof of the lemma. B

Lemma 2. 6 If W; = WP, where 2 < i < L — 4, then Wiy, = W2 and
Wie = VV, 5, wheren = O 1, or 2, and the add1t1on is performed modulo 3.
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Proof. Consider the case W; = W} at a time t = 3m Then a =1, hence

K3
(using Lemma 2.4) a7, = 0. Consider first the case ;7 = 0. Usmg the rule

plus Lemma 2.4, we have the following.
a7+ = £(100) = 1
ayy™ = f(00%) =0

e = (11)
ol =1

@i = f(100) = 1

Hence, by Lemma 2.4, a}7y™ = a7 = 0, and a cycle has been entered.
If afjf’z =1 then:
affi™ = f(101) =0 »
a3'm+1 =0 ( )
it2 =

Thus, by Lemma 2.4, ¢} = o275 = 0 and 3753 = a7 = 0. The first
half of the proof now applies. Hence W} is always followed by W2 %1 and
W2, WO W' and W? are equivalent under a shift in ¢, hence the proof is
complete. B

Using Lemmas 2.5 and 2.6, we can now see that all temporal sequences
for i = 1 to ¢ = L — 2 have period-3 limiting behavior. It now remains to
consider the last two columns.

Lemma 2.7. If W;,_, = WP, and ary; = 0, then Wy_; = Wit and
Wi = Wt
Proof. Let Wi_o = W}_,, and consider a time ¢ = 3m. By Lemma 2.4,
a3, = 0. If a¥™ = 0, then
3m+1 f(].OO) =1
a‘z’"“ = f(00%) =0
adm? = £(010) = 0

af™ = 7(100) = o
ad™ 3 = £(00%) =0
a3+ = £(010) = 0
Hence a}_, and af, have entered a cycle. If ai™ = 1, then
al™= f(101) =D
3Lm+1 = f(010) =0
ai"® = f{00x) =10 (14)

3m+3 = f(00%x) =0
3m+3

£
3m+2 (00*) =0

(

H

00%) = 0
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Hence the first section of the proof now applies. We can thus conclude that
if Wy—p = W}_,, then Wy = W?_, and W = W?. A shift in ¢ then
completes the proof. B

Using Lemmas 2.5 and 2.6, we can see that in the case ¢y = 1 and
ar+1 = 0 there is a global period-3 attractor. It now remains to consider the
case ap =1 and ar.; = 1.

Lemma 2.8. Ifary; =1 and Wi,y = W}, then either Wi_; = WL and
at =0 for all t > t, for some ty, or a,_, = 0 and at, = 1 for all t > to for
some .

Proof. Let Wy_y = W} _,. Then, as before, 3™, = 0. If a3™ = 1, then
at_; = f(x01)=0

15
ai = f(Oll) = ( )
for all t > 3m. If a3™ = 0, then
af™! = £(100) =
ed™ = Fl00%) =0
gl % = FI010) =0
mi? = 7(010) = ”

3m+2 _ f(101) =0
3m+3 f(OO*) =0
aim” — f(00%) =0

hence a} = 0 for all ¢t > 3m and W_; = W?_,. As before, a shift in ¢
completes the proof. B

We can now see that for the case ar,; = 1, either @, or a}_; eventually
becomes fixed at zero. Hence the system exhibits two period-3 cycles. This
now completes the proof of theorem 2.2.

3. The two-neighbor rules

Two-neighbor rules are defined such that either

t+l f(au a;_ 1) (17)

or

a;t! = f(af, aipy) (18)
Of the sixteen such elementary rules, there are nine nonequivalent rules (0, 3,
12, 15, 34, 51, 60, 136, and 204). Of these, rules 0, 15, 51, and 204 are trivial,
being members of the subclass of rules that are a function of only one of the
variables af, al_;, or at, ,, or, in the case of rule 0, of none. Of the five remain-
ing, the limiting behavior of rule 3 has been studied previously by Binder
[11]. We will present an analysis of rule 136 as an example; all but one of
the other rules can be analyzed in a similar manner. Rule 60, which requires
a more sophisticated technique, which will be detailed in Appendix B.
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Rule no. | (ap,az4+1) |p=1|p=2 Definitions

12 (0,0) v 0 Yn = Yn—1 + Un—2
0,1) YL 0 |y =2andy, =3.
(1,0) Yr—1 0
(1,1) Yr—1 0

34 (0,0) 1 0
(0,1) 0 1
(1,0) 1 0
(1,1) 0 1

Table 1: Numbers and periods of all limit cycles for rules 12 and 34,
as a function of system size and boundary conditions.

3.1 Rule 136

The definition of rule 136 is as follows:

F(x11) =1
F(x00, %01, %10) = 0

where * indicates an irrelevant bit.
Theorem 3.1. All limit cycles are fixed points.

Lemma 3.1. Ifaf = 0 for all t > t,, where i > 2, then af_; = 0 for all
t>to+ 1.

Proof. If o, = 1, then %' = f(x10) = 0. If !X, = 0 for some t; > to,
then, since f(x¥00) = 0, a!_; = 0 for all t > t;. Since either a!; = 0 or

aﬁ‘f{l = 0, the lemma is proved. B

Lemma 3.2. Ifal = 1 for all t > t, then either ai_; = 0 for all t > t, or
at_, =1 for all t > ty.

Proof. f(x01) = 0 and f(+11) = 1. Hence, whatever the value of d°,, it
remains fixed for all subsequent time. B

From these lemmas, we can see that if a single row is fixed, all rows to the
left of it must also become fixed. Since we always have such a row (namely,
the right boundary), the theorem is proved. Moreover, we also can deduce
the structure of the fixed points. If az.; = 0, there is a single fixed point 0.
If az.1 = 1, there are L + 1 fixed points of the form 0"15~", where n can
take any value between 0 and L. The results for rules 12 and 34 are given in
table 1.
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4. Rules related to the two-neighbor rules

We consider now those rules that differ from a two-neighbor rule by one or
two bits. For example, rule 7 differs from rule 3 and rule 170 by one bit, and
is defined by
f(00%) = f(010) =0
f(lxx) = f(011) =1
where * represents an irrelevant bit. We have found that for many such rules
an analysis of the limit cycles is possible, such analysis proceeding in terms
of columns or sets of columns. Of those rules that are one bit away and that
do not fall into either of the previously considered classes, we have obtained
proofs of the numbers and periods of all limits cycles with all fixed boundary
conditions for rules 1, 4, 7, 11, 13, 14, 19, 28, 38, 44, 50, 62, 140, and 200. We
have obtained similar results for some rules that are two bits away (numbers
5, 23, 29, 30, 33, 36, 72, 76, 78, 108, 132, 156, and 178) and also for rule
104, which is three bits away. The results for the numbers of fixed points
and period-2 cycles for rules 7, 23, 29, and 30 have been published [10].
However, the methods detailed below can prove that these are the only limit
cycles occurring for these particular rules, and also yield the structure of
these cycles. We will now demonstrate these points in the analysis of rule 11.

(20)

4.1 Rule 11
The definition of rule 11 is
1 = f(010) =0
J(1%) = f(010) o5

F(00%) = f£(011) = 1

where * represents an irrelevant bit.

Theorem 4.1. With fixed boundaries, all limit cycles are of period 3, pro-
vided that the system is sufficiently large.

As in section 2.1, we will consider temporal sequences, and label them by

their limiting behavior. For example, the definition of W* is
Wi = Wy (22)

if af = 0 for all ¢ > ¢y, for some t5. It will be convenient to define the
following limiting temporal sequences:
WE=[al=1:121)
= (™ = 0, ™ = R =11 B 2 4]
=g =11 B 2 by
W= [l = 0,6 =™ =11 3m 2 &)
WD = [g¥H — 1 62" =¥ =0 : 3m > &) (23)
WP =[P =1,¢" =al™ =0:3m > )
WP = [af™ =1,ad™"! = ad™? = 0: 3m > ¢

i

F 3
&
I
—

3m+1 __ 3m
; =0,a;
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Obviously, W~O° Wcl, and WC"’ describe the same periodic structure, but
shifted with respect to phase; similarly for W2°, W', and W2, In the
lemmas that follow, unless specifically stated, ¢ < L — 2.

Lemma 4.1. If W; = W2, then W;,; = WA.

Proof. By definition, af = 1 for all ¢ > ¢, for some ty. From the definition
of the rule, f(1 % x) = 0, therefore af,; = 0 for all ¢ > t, + 1. Hence
Win = W/{il- B

Lemma 4.2. If W; = W2, then either Wy, = VVg_'i or Wip1 = VVi?L’i, where
n=20,1,or2

Lemma 4.3. If W; = W, then either
i=L—1, Wy =W, and W1 = Wi,

or

i=L—1, Wy, =WP", and Wy, = W2,
or

Wipr = Wit and Wia = W5
or

D, Dp—1
Wiy = W_}fi and Wi+2 VVH_EL

i
where n = 0, 1, or 2, and all subtraction is performed modulo 3.
Lemma 4.4. If W; = WP" then either
Cnv— n—

Wi1 = Wiii™ and Wiyp = W35~
or

1=L—1, WL—-WD" and Wiy = +1_
or

Wirs = Wi and Wig = Wi
where n = 0,1 or 2 and the subtraction is performed modulo 3.

In all cases, the proofs follow by considering W; as a boundary, and con-
sidering all possible initial values for the next three or four bits.

From these four lemmas, it can be seen that whatever the values of the
fixed boundaries (that is, Wo = Wg! or WP, and Wy = WA, or WE,)), all
the columns W; to W, must exhibit the limiting behavior of W or W/,
where n = 0, 1, or 2. All these have period three, hence the theorem is
proved. Furthermore, these lemmas also yield the allowed sequences. This
enables us to derive expressions for the numbers of limit cycles, for all fixed
boundary conditions, and for L sufficiently large. These results are given in
table 2. Similar techniques can be applied to all other rules given above. The
results are presented in Appendix A.
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(ap,ar+1) | p= Definitions
(07 O) Tr41 | Tn = %[’I’l —1- fn]
Q1 | 1| =g+ (D)
(1,0) xyr
(1,1) 1

Table 2: Numbers of limit cycles for rule 11 as a function of system
size and boundary conditions.

5. Discussion

Thus far we have considered only constant boundary conditions. But there
are other possibilities: ay and ar.; could vary with time. Consider first
the case where the boundaries are initially set to one of the four constant
boundary conditions, but then noise is gradually introduced. In this case,
will there be definite limit cycles? For the case of rule 140, the answer is yes.
This rule possesses multiple fixed points for each of the constant boundary
conditions. Moreover, there is a set of configurations that are fixed points
for any of the four. It is possible to show that, with the introduction of
noise, this set of configurations becomes the limiting set. Hence, the general
behavior (that is, multiple fixed points) is preserved.

However, for other rules, we can see that when noise is introduced there
will not be a stable set of limiting configurations. Consider the case of rule 38
with noise. At some point in an infinite run, each of the four fixed boundary
conditions will occur for a length of time sufficient for the zero-noise cycles
to appear. So, for example, a period-8 cycle may appear for some length of
time, while later a period-4 will arise. Thus, there will be times when the
automata passes through all of the cycles seen in the case of constant fixed
boundaries. However, since there is no cycle that is common to all constant
boundary conditions, the system will never enter a stable cycle. Instead, we
will see portions of each of the possible cycles.

We will not consider here the other case, that of temporally periodic fixed
boundaries. It would be interesting to see the effect such a boundary had on
the periods of limit cycles, and whether the general type of limiting behavior
was sensitive to such a change.

6. Conclusions

In this paper, we have demonstrated techniques that yield the periods of all
limit cycles on arbitrarily large lattices for 46 of the 88 elementary rules. We
have been able to confirm the behavior seen by Binder [11] for these rules,
and verify that it does indeed hold for all system sizes. We note here that the
general approach used, that of an analysis in terms of the limiting behavior of
temporal sequences, is possible because we already know two such sequences
(that is, the boundaries).



Non-cylindrical Elementary Cellular Automata 427

It is clear that subsets of rules that possess some simplifying factor should
admit an analysis. The techniques developed here were originally applied
solely to the two-neighbor rules. The fact that their use could be extended
was fortuitous. The problems of extending the method can be seen in the
analysis of rule 11, where, in the proofs of Lemmas 4.2-4.4, we were required
to consider the next three or four columns. If we attempt to apply these
techniques to arbitrary rules, we will certainly encounter cases in which we
need to consider more than four columns. In fact, there will be cases in
which we will be forced to consider the whole system. In such cases, the
application of these techniques is inappropriate, as is the case for rules that
possess variable or large cycle lengths. In short, these techniques are useful
for a large number of rules, but the selection of appropriate rules is largely
nonsystematic.
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Appendix A: Tables of results

C. J. Twining

(a0, ar+1)

28 p=1 p=2 Definitions
00 | B | 143[(SElu) - 5] | =i+
(0,1) L+1 3 [(Zi:l(!]L—n o+ fL+1—n)) = L] In = Gn—2 + 29n-3
(1,0) fr Lgr+2 — fi] go=1,91=0,g2=1
(1,1) 1 g + 941 - 1]

30 p= p=2 p=4
(07 0) 2 _fL fL 0
(0,1) 1 = f fr
(1,0) fr 1= fr, 0
(L,1) 1 fr 1=Tx

33 p=2 p=4 Definitions
(0, 0) br, 0 by =bp—1+bp—2
(0,1) 0 br_o by =1, bg = 2.
(1,0) 0 br—2
(1,1) 1 2b1,_4

38 p=1 p=4 p=2_8
(0,0) 2 0 0
(0,1) 0 1-fL fr
(1,0) 1 0 0
1,1) 0 1 0

62 p=1 p= Definitions
(0,0) 1 Oty T CLimg €y = Cp—1 + €n—3 + Cp—4
(0,1) 0 Cri—a ca=1,¢c=1,
(1,0) 0 C—4+crs 3 =2, ¢4 =4.
(1, 1) 0 CL—-3

104 p=1 p=2 Definitions
(0,0) dr 0 dy=dn1+dn4
(0,1) er 0 én =€n_1+€n—y
(1,0) eL 0 do=1,dy =1,
(1,1) erL—2+er—3 I ds =2,d3 =3.

e1=2,e =2,

es=2,e3=3.

The table above gives the complete results for number and periods of all limit
cycles for a selection of rules. Note that the results do not necessarily apply
to the smallest lattices. The numbers of fixed points and period-2 cycles were
checked using matrix methods [10]. For the remainder of the rules, we will
give only the allowed periods of limit cycles for each choice of fixed boundary
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conditions. The exact numbers of such cycles can be obtained by using either
the methods in the text, or matrix techniques [10].

Rule no. Allowed periods Rule no. Allowed periods

(0,0) [ (0,1) | (1,0) | (1,1) (0,0) [ (0,1) [ (1,0) | (1.1)
1 2 2 2 2 46 1 3 1 3
2 1 3 1 3 50 1,2 2 2 2
4 1 1 I 1 2 1 1 1 1
5 L2 | 1,2 | 1,2 | 1,2 76 1 1 1 1
] 1,2 1,2 1,2 1,2 78 1 1 1 1
8 1 1 1 1 108 1,2 1,2 1,2 1;2
10 1 4 1 4 130 1 3 1 1,3
13 1 1 ik 1 132 1 i 1 1
14 1 1 il 1 138 1 1 1 1
19 2 2 2 2 140 1 1 1 1
23 1,2 1,2 1,2 1,2 152 1 1 3 1,2,3
29 1,2 1,2 1,2 1.2 156 1,2 1:2 1,2 1,2
32 1 1 1 1,2 160 1 1 1 1,2
36 1 1 1 1 162 1 2 1 12
40 i} i K 8 i 168 1 1 1 1
42 1 3 1 3 178 1,2 2 2 152
44 1 1,2 1 1,2 200 1 1 1 1

Appendix B: Rule 60
Rule 60 is defined as
F(00%) = f(11x) =0
f(01x) = f(10%) =1
This can also be expressed in the additive form

ot =l
where the addition is performed modulo 2. This rule can be generalized
to the case where the addition is performed modulo k, corresponding to a
radius-1 k-state additive rule. We will perform the analysis for £ = 2, but
the same methods can be applied to arbitrary k. Note that in the periodic
case the evolution of states is linear, but is not always so in the case of fixed
boundaries.

Following Martin et al. [15]. we define the generating function for a state
as

Two polynomials are equivalent if they describe the same state. Therefore

A(z) ~ B(z)
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if
A(z) = B(z) + O(z"™)

The action of the rule on a state can be expressed in terms of operations
on polynomials, as

A(z) = (1 + z)AY(z) + apz

where the polynomial coefficients are defined modulo 2, and qq is the value
of the left boundary. Applying this repeatedly gives the result

At(z) = (1 + 2)tA%x) + ao[(1 + )t — 1]

where A%(z) represents the initial state. If A(z) lies in a limit cycle, then
the following must hold for some value of ¢ > 1:

A(z) =~ (14 z)*A(z) + ao[(1 + 2)" — 1]
Hence, we have the limit cycle equation
[(1+2)" = 1][A(z) + ag] ~ 0

The smallest value of ¢ for which this equation holds is the period of the limit
cycle. The enumeration of limit cycles then corresponds to solving the above
relation for ¢ and the polynomial coefficients of A(z).

We note that the above equation always possesses a solution, valid for all
ap and A(z), given by

(1+2z)-1=0

Hence, we can define the maximum cycle length ¢ = pax = 27, where 261 <
L < 2. Since this is a solution that is independent of A(x), we can deduce
that all states lie in limit cycles, the periods of which must be divisors of the
maximum cycle length pn.x. This is in contrast to the periodic case, where
certain states (for example, all states composed of a single one) do not lie in
any limit cycle.

The non-linear case: a, = 1

In this case, the limit cycle equation reduces to
[(1+2) — [A() + 1] ~ 0

The only solutions to this are solutions of the form
[(1+a)—1~0

Hence all states lie in cycles of period pyax as defined above.
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The linear case: a, = o

In this case, we have to solve
Alz)[(1+2) -1 =~0

Let m be an odd positive integer, and a be a positive integer. Then, either
t = m, or t = m2% In the first case, the equation reduces to the m-
independent form

[z+--]A(z) = 0

which has only two solutions. These are the fixed points A(z) ~ 0 and
A(z) ~ 2 (t = 1), which correspond to the states 0 and 0¢~1.
In the second case, the equation reduces to
[2®* + - ]A(z) = 0

and is again independent of m. There are two classes of solutions to this
equation. If 2* > L, then all A(x) satisfy this equation. If 2* < L, there are
some solutions A(z), namely those corresponding to all states with leading
zeros, the number of such being at least (L — 2%), and less than (L — 2°71).

To summarize, for a system of size L, where 2* < L < 2%*! phase space
is partitioned as follows.

There are two fixed points A(z) ~ 0 and A(z) ~ z*.

For m =1 to «, there exist N(m) cycles of period p = 2™ where
1 P
N(m) = -2 - 28]
p
The remaining states lie in cycles of period p = 2**!, which is either

Dmax OF Pmax/2, depending on L.

It is obvious that all these periods are divisors of pyax, as required.
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