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Abstract. P roblems requiring inferencing with Boolean logic have
been implemented in percept rons or feedforward networks, and some
attempts have been made to implement fuzzy logic based inferencing in
similar networks. In this pap er, we present producti ve networks , which
are art ificial neur al networks, meant for fuzzy logic based inferencing.
The nod es in t hese networks collect an offset product of the inputs,
further offset by a bias. A meaning can be assigned to each node in
such a network , since the offsets must be eit her -1 , 0, or l.

Earlier , it was shown that fuzzy logic inferencing could be per­
formed in productive networks by manu ally setting t he offsets. Thi s
procedure, however , encountered crit icism, since t here is a feeling t hat
neural networks should involve tr aining. We describe an algorit hm for
training pro duct ive networks from a set of training inst ances. Unlike
feedforward neur al networks with sigmoida l neurons , these networks
can be tra ined wit h a small number of t ra ining instances.

T he three main logical operations that form the basis of inferenc­
ing- NOT, OR , and AND-can be implemented easily in productive
networks. T he network s derive their nam e from t he way the offset
product of inpu ts forms the act ivation of a node.

1. Introduction

Problem s requir ing inferen cing with Boolean logic have been implemented
in perceptrons or feedforward network s [1], and some attem pts have been
made to implement fuzzy logic based inferencing in similar netwo rk s [2] .
However , feedforward neural networks with sigmo idal activation fun ct ions
cannot accurately evaluate fuzzy logic express ions using the T-norm (see
sec t ion 2.1). Therefor e, a neural netwo rk architecture was proposed [3] in
wh ich the elem entary fuzzy logic op erations could be performed acc ura te ly.
(For a good overview of fuzz y logic, see [4, 5].) A neural network ar chit ecture
was desired for which t he te d ious task of t raining could be avoided, and
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in which each node carried a specific meaning. Productive networks, as
then defined, offered many advantages (as described in [3]). It was shown
that fuzzy logic inferencing could be performed in productive networks by
manually set t ing t he offsets. This pro cedure, however , encountered crit icism,
since there is a feeling that neural networks should involved training.

With minor modificat ion- namely, the addit ion of the disconnecting
offset- it is now poss ible to begin with a network of a size as large or larger
than required, and train it with a few training instances. Because of the
nature of productive networks, a small numb er of t raining instances suffices
to train a network wit h many more parameters. The parameters must take
the values -1, 0, or l.

These modified productive networks retain most of the useful features
of t he previous design . It is st ill possible to manually set the offsets for
well-defined problems of fuzzy logic. Each node st ill carr ies a meaning in
the same manner as before. The networks are very similar to feedforward
neural net works in st ructure. However , extra connect ions are permissible,
which was not the case previously. A price has been paid for this increased
flexibility, in the form of a more complicated calculat ion of t he net input to
a node.

2. The basic fuzzy logical operations

T here is increasing interest in the use of fuzzy logic and fuzzy sets, for various
applicat ions. Fuzzy logic makes it possible to have shades of grey between t he
truth values of °(false) and 1 (t rue). Statements such as "the temp erature
is high" need not have crisp t ruth values, and this flexibili ty has permitted
the development of a wide range of applications, from consumer products to
the control of heavy machinery. Fuzzy expert systems are expert syst ems
that use fuzzy logic based inferencing.

Almost all logical operat ions can be represented as combinat ions of NOT
(rv), OR (V), and AND (1\) operations . If the truth value of A is represent ed
as t (A ), then we shall assume that

t( rvA) = 1 - t (A )

t(A V B ) = t( A) + t (B ) - t (A ) t(B)

t(A 1\ B ) = t (A ) t( B )

The OR equation shown above can be modified to a more suitable form
as follows:

A V B = rv(rvA 1\ rvB )

t(A V B) = 1 - (1- t(A) )(l - t( B ))

which is equivalent to the equation shown above, but is in a more useful
form . Similarly, for three operands, one can write

t (A 1\ B 1\ C ) = t(A)t(B)t(C)

t (A V B V C) = 1 - (1 - t( A))( l - t(B ))( l - t (C ))
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Since Boolean logic is a special case of fuzzy logic (in which truth values are
either 0 or 1), product ive networks can be used for Boolean logic as well.

2.1 U nfit ness of the sigmoid

We have yet to explain why fuzzy logic cannot be implemented in feedforward
networks with sigmoidal activat ion func t ions. Such networks have a smooth
transit ion from the "yes" to the "no" st ate , and are said to have a graceful
degrad at ion.

A /\ B can be performed in a feedforward neur al network by cr (t (A ) +
t (B) - 1.5), where a is the sigmoid funct ion from 0 to 1. This procedure has
two major limitations. The t ruth value of A /\ B is a function of the sum of
their individual truth values, which is far from t he result of equations given
above. T his truth value is almost zero until their sum appr oaches 1.5, and
after that it is almost one. The width of th is transit ion can be adjust ed , but
the character of the funct ion remains the same. If t (A ) = 1 and t( B ) = 0,
t( A /\ B ) is not exact ly zero.

Another objection to t he use of the sigmoid is more serious. Using
cr (t (A ) + t(B ) - 1.5) to calculate t(A /\ B ) yields the following result :

t((A /\ B ) /\ C) # t (A /\ (B /\ C ))

3. P roductive n etworks

A product ive network, as defined here, no longer imposes a limit on the num­
ber of connect ions, as do feedforward networks. The ext raneous connect ions
do not mat ter since t heir weights can be set to zero. Each node plays a
meaningful role in these networks. It collects an offset product of inputs,
further offset by a bias. For example, the act ivat ion of the node shown in
figure 1 can be written as

when the offsets are 0 or 1. If an offset is - 1, it effectively disconnects the
link. In general,

a = Wo -IIpWj-Xj ) [ 1+ ~Wj (l -Wj ) 1 1

T hus, if an offset is - 1, it only mult iplies the product by 1. The output of
the node is the absolute value of the act ivat ion, a.

y = lal

T he nond ifferentiability of the activat ion func tion is not a problem. ev­
ertheless, if desired , the act ivat ion function can be mad e cont inuous by
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Figure 1: A node in a productive neural network.
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Figure 2: Inver ting an input in a producti ve network

replacing it with a product of the argument and the -1 to 1 sigmoid, with a
large gain , (3:

y = a ( -1 + 2-1-+-ex-~---;-(-- (3----=-a---:-) )

The offset , Wj, shifts t he value of the input by some amount , usually 0 or
1. The input remains unaffected when the offset is 0, and a logical inverse
(negation) is t aken when the offset is 1. In addit ion to the offset inputs, there
is a bias, Wo , which further offset s the product of the offset input s.

The productive network has several nodes with one or more inputs (see
figures 6 and 8). The inputs should be positive numb ers j; 1. Each of the
nodes has a bias, alternat ively called th e offset of the node. A bias of 0 or
-1 has the same effect-a node offset of zero is the same as not I having a
node offset . The output is a positive numb er :::; 1. Producti ve networks are
so named because of the multiplication of inputs at each node.

4. Implementation of the basic fuzzy logical operations

To show that one can repr esent any complicated fuzzy logic operat ion in
product ive networks, it suffices to show that t he three basic operations can
be implemented in this framework.

The simplest operation, NOT, requires an offset only, which can be pro­
vided by the input link (as shown in figure 2). Alternati vely, t his offset can
be provided by th e bias instead of the link, with the same result .
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Figure 3: Applying AND to three inputs in a productive network
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Figure 4: Applying OR to three inputs in a product ive network
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AND is also implemented in a facile manner in this framework. It needs
only the product of the truth values of its arguments; hence, neither the links
nor the bias have offsets (as shown in figure 3, for three inpu ts).

On the other hand, OR needs offsets on all t he inpu t links, as well as on
t he bias (see figure 4). The offsets for OR and AND indicate that they are
two extremes of an operat ion, which would have offset s between 0 and 1. In
other words, one can perform a 0.75 AND and a 0.25 OR of two operand s A
and B by set ting Wo = 0.25, W I = 0.25, and W 2 = 0.25.

Figure 5 shows how ~A V B can be imp lement ed. This is equivalent to
A implies B (A * B ).

If the funct ions clar ity (A) and fuzziness(A) are defined as

clari ty(A) = 1 - fuzziness(A )

fuzziness(A) = 4 x t(A 1\ ~A),

t hey can then be calcu lated in this framework.

Figure 5: ~XI V X2
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5. I llustrations of the manual setting of offsets

Applying AND and OR operations over several inpu ts can be performed by a
single node. If some of th e inpu ts must be inverted, t his can be accomplished
by changing the offset of the part icular link. T hus, not only can a single node
perform A I\E I\ C and A v E V C, but also A I\ E I\ ~C (which would requi re
Wo = 0, W I = 0, Wz = 0, and W 3 = 1.) However , operations that require
br ackets for expression- for example, (A V E) 1\ C-require more t han one
node.

An exclusive OR appl ied two var iables-A XOR E - can also be written
as (A VE ) 1\ ~(A 1\ E ). Each of the bracketed expressions requires one node,
with one more nod e required to perform AND between th em (see figure 6). (A
XOR E ) can also be written as (A v E) I\ (~AV~E) , or (A I\~E) V(~A I\ E) ,

each of which could result in different configurations.
A program, SNE, was developed to evaluate the outputs of a productive

network ; an output for this XOR problem is shown in App endix A. Feed­
forward neur al network st udies often begin with t his prob lem, fit tin g four
points with nine weights by backpropagation. (P roduct ive networks also re­
quire nine parameters, but fit the ent ire range of truth values between 0
and 1.) Figure 7 shows the XOR values for fuzzy arguments. t (A ) increases
from left to right , t(E) increases from top to bottom, and the values in the
figure are ten times th e rounded value of t(A XOR E ).

In [1], a small set of rules was prese nted, designed to govern the select ion
of the type and mode of operation of a chemical reactor carrying out a single
homogeneous reaction. As defined, there are regions in the state space (for
examp le, between rO/rl = 1.25 and 1.6) where none of the rules may appl y.
In fact , thes e were meant to be fuzzy regions, to be filled in a subsequent
work such as this one. T he set of rules has th erefore been slight ly modified ,
and is given below. There are two choices for the type of reactor , st irred-tank
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or tubular; and two choices for the mode of operation, cont inuous or batch.
In the following rules these choices are assumed to be mutually exclusive;
that is, the sum of their truth values is 1.

1. If the reaction is highly exothermic or highly endothermic-say 15
kCaljgm mol (else we call it athermal)-select a stirred-t ank reactor .

2. If the reaction mass is highly viscous (say 50 cent ipoise or more) , select
a st irre d-tank reacto r.

3. If the reactor type is tubular, the mode of operation is cont inuous.

4. If rO frl < 1.6, prefer a cont inuous st irred tank reactor.

5. If rO frl > 1.6, the reacti on mass is not very viscous, and t he reaction
is quite athermal, prefer a tubular reactor.

6. If rOfrl > 1.6, the react ion mass is not very viscous, bu t the react ion
is not atherrnal, pr efer a st irre d-tank reactor operated in batch mode.

7. If rO frl > 1.6, the react ion mass is quit e viscous, and the react ion is
atherrn al, prefer a st irred-tank reactor operated in batch mode.

8. If the production rate is very high compared to the rate of reaction
r l (say 12 m3 or more), and rO frl > 5, prefer a st irred-tank reactor
operated in batch mode.
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9. If the product ion rate is very high compared to t he rate of react ion
r l (say 12 m3 or more) , and rO/r l < 5, pr efer a st irred-tank reactor
operat ed in cont inuous mod e.

10. If r O/rl ~ 1.6, the reaction mass is quit e viscous, and t he react ion is
not athermal, prefer a st irre d-tank reactor operated in batch mode.

ro is t he rate of reaction under inlet conditions, and rl is t he rate of reaction
under exit condit ions. If t heir rati o is large, a plug-flow (tubular) reactor
requires significantly less volume t han a st irred-t ank reacto r operated con­
tinuously. A st irred-tank reactor operated in batch mode is similar to a
plug-flow reactor when the length coordinate of the tubular reactor resem­
bles time in a batch reactor. The aim of [1] was to invest igate the feasibility of
implementi ng a fuzzy selection expert system in a productive neur al network;
hence, t he heurist ics enumerated above are typical. They are not necessarily
t he best set of ru les for select ing reactors for single homogeneous react ions;
neither are they complete .

Figure 8 shows the implementation of t hese heuristics in a productive net­
work. It is much simpler t han a feedforward neur al network; it requires no
training, and does not have too many connect ions (weights) . T he offset s are
either 0 or 1, un like the weights (which can have any value between - 00 and
(0). Of course, it also calculates the fuzzy truth values for the select ion of
type and mode of operation of a chemical reactor. It is a litt le more reliable
since the function of each of the nodes in the network is known an d under­
st ood , and there is no quest ion of the sufficiency of t he number of t ra ining
instances. It may not be possible to represent every expression in two layers.
Having severa l layers, however, is not problematic for pro duct ive networks,

J
t hough it does cause difficulty in training feedforward neur al networks.

It may be recalled t hat the inputs to product ive networks are t ruth values
between 0 and 1. The five inpu ts to t he network shown in figure 8 are

A t(rO / rl < 1.6)

B t (p, < 50)

C t ( I~Hrxn l < 15)
D t (rO/ rl < 5)

E t(F/ rl < 12)

These truth values can be calculated (using a ramp or a sigmoid) based on
criteria for t he width of fuzziness. (For example, for A, t( rO/ r l < 1.2) = 1
and t(rO/rl > 2.0) = 0, with a linear int erpolat ion in between.) Appendix B
shows results of this system with clear inputs (t rut h values of 0 or 1). For
confirmation, these results were fed into an inductive learning program. This
program was able to elicit the heuristics for select ing a st irr ed-t an k for con­
t inuous operation-A V evB V evCV E) and (A V (B 1\ C) V (D 1\ E ). T his,
in effect, was th e same as (A V (evA 1\ B 1\ C) V (D 1\ E )), implemented in
the network directly from the heurist ics. It was also confirmed th at the im­
plausible select ion of a tubular reactor operated in batch mode never too k
place.
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A B c D B

Figure 8: Fuzzy-select ion expert system in a productive network

6. Limitations of productive net works lacking the disconnecting
offset

If the inputs and outputs of a fuzzy logical operation are given, and if one
wants a product ive network to learn t he corre lat ion, it is almost impossible
wit hout the disconnecting offset . A pr oduct ive network without the discon­
nect ing offset (- 1) cannot be easily trained. There is no way to swit ch off
an outpu t from a node that is connect ed . One must decide t he connectiv ity
beforehand-which can be, at best, good guesswork.

The produ ctive network is intended primar ily for representing fuzzy log­
ical operations, and can of course do Boolean logic. That , however, is its
limit. It has hardly any other application.

7. Illustrations of t ra in ing productive networks

T he training of neural network s is intended to reduce the sum of th e squares
of errors (SSQ) to a minimum , where the errors are th e differences between
the desired and t he actua l neural network out put s. In feedforward neur al
networks, it is sufficient to minimize th e SSQ; in pro ductive networks , how­
ever , it should be reduced to zero when the training inst ances are known to
be accur ate.

There are a finite number of possibilit ies for t he weight vector. This is
presumably an NP-complete problem. For a network with N weights , there
are 3N possibilities. It is therefore clear that searching the ent ire space is not
feasible when N exceeds 7 or 8. To solve this problem we present a simple
algorit hm in the next subsection. Training is performed by mod ifying the
offsets in a discret e manner (varying among -1, 0, and 1). The essence of
this algorithm is similar to th e Hooke and Jeeves method [6].
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Since there is a disconnect ing offset (-1) , it is permissible to have more
nodes than necessary. T here is no over-parametrization in these networks;
but an over-evaluat ion of fuzzy expressions is possible when there are ext ra
nodes, and t his can result in wrong outputs. The exac t number of nodes
can be determined if a complete set of t raining instances (all '2fVin cases) is
available; bu t t his requires t he approach of the previous work , which has been
st rongly crit icized. Despit e the fact that many respectable people in the field
of neural networks think that training is necessary, or t hat "a network is a
neur al network only if it can be t rained," we maintain t hat t his is not the
right way to const ruct productive networks.

7.1 T he training algorithm

Hooke and Jeeves [6] proposed a zero-order optimization method , which looks
for the direction in which the obj ect ive funct ion improves by varying one
parameter at a t ime. Derivatives are not required. When no improvement is
possible, t he step size is reduced. In the problem under considerat ion here,
each parameter (offset ) must t ake one of only three values. Hence, when
a parameter is being considered for its effect on the object ive function, the
three cases are compared , and the one with the lowest SSQ is chosen.

Parameters to be considered for their effect on the SSQ can be chosen
sequent ially or randomly. Wi th a sequent ial consideration of parameters, the
search process often falls into cycles that are difficult to identi fy, stopping
only at t he limit of the maximum number of iterations. With a random
consideration of parameters, t he algorithm takes on a stochastic nat ure and
is very slow, but does not fall into such cycles. Nevertheless, the sequen­
ti al considerat ion is found to be preferable for the kinds of problems to be
considered in sect ions 7.2 and 7.3.

Typical out puts of a program (SNT) implementing t his algorithm are
present ed in App endices C and D. The algorithm is fast and reliable. It
runs into local mini ma at t imes (like any optimizat ion algorithm would on a
problem with several minima), but since it is relatively fast , it is easy to t ry
different init ial guesses . Because of the network architecture , it is possible
to interpret int ermediate results , even, presumably, at every iterat ion. The
algorithm worked quite well with the problems considered in t his pap er.

7.2 The XOR problem

The XOR problem essent ially consists of the t raining of a pro ductive network
to perform fuzzy XOR operation on two inpu ts. With eight t raining instances
it was possible to train (2, 2,1) and (2, 3,1) network s easily, while (2,1 ) and
(2,1 , 1) networks could not learn t he operat ion. Appendix C presents the
results of t raining a (2,3 , 1) network.

It is easy to interpret the results of training t hese networks. T he (2, 1)
network learned A A E from the eight t ra ining instances. The SSQ was
1.038. The (2, 1, 1) network learned ~A A E , result ing in t he same SSQ,
1.038. These results are dependent on t he initial guesses (to t he extent t hat
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a different logical expression may result from a different initial guess), but
(2, 1) and (2, 1, 1) would not have an SSQ of less than 1.038. The (2,2, 1)
network learned it perfectl y, as (A V B) 1\ ("-'A V ,,-,B) . The (2, 3, 1) network
once ran into a local minimum , with SSQ = 1.038, expressing (,,-,B) 1\ ("-'A 1\

"-'B ) 1\ ("-'B ). As shown in App endix C, this network can also learn (A V
B) 1\ ("-'A V ,,-,B) , ignor ing one of the nodes in t he hidden layer, which was
"-'(A 1\ B ).

With four t raining instances (all clear inp uts and outp ut s) , the same
networks were again trained by th e algorithm described above. Unfortu­
nately, there is no way to prevent th e networ k from learning (A V B) as
(A 1\ ,,-,B) V ("-'A 1\ B ) V (A 1\ B) V B. A is equivalent to as A V A or A 1\ A
in Boolean logic, bu t not in fuzzy logic, given t he way we have calculated
conjunctions and disjunctions. T herefore, if one starts with clear t raining
instances (no fuzzy inpu ts or output s) , the network may learn one of th e
expressio ns that is equivalent in Boolean logic. Fort unately, however , t here
was a tendency to leave hidden nodes unused . T he (2,2 , 1) network learned
the XOR function as ,,-,(A V ,,-,B) V (A 1\ ,,-,B) . The (2, 5, 1) network also
learned it correc t ly as ("-'A 1\ B ) V "-'("-'A V B ) without adding ext raneous
features from the hidden layar (leaving 3 nodes unused) .

7.3 The chem ical reactor selection pr oblem

The chemical reactor select ion heur istics listed in sect ion 5 can also be taught
to product ive networks from the 32 clear training inst an ces (see App endix B).
The (5,5 ,2) , (5,6 ,2) , (5, 8, 2) , and (5, 10,2) networks were able to learn the
correct expressions, with an SSQ of 0.00. The number of iterations required
was between 200 and 3000, but each iterati on took very little time. The
typical run t imes on a microVax II were between 1 and 10 minutes.

The (5,5 , 2) network used only four hidden nodes, the minimum required .
T he (5,8,2) and (5,10,2) network s used seven and eight nodes, respect ively.
T hey typically had one or two nodes simply duplicat ing the inpu t (or its
negation). The results obtained with the (5,8 ,2) network are shown in Ap­
pendix D.

7.4 Limitations of the t raining approach

In Boolean logic, (A V B) can also be written as (A 1\ ,,-,B) V ("-'A 1\ B)V (A 1\

B ) v B . A is equivalent to as A V A or A 1\ A in Boolean logic, but not in
fuzzy logic, given the way we have calculated conjunctions and disjuncti ons.
Therefore, if one star ts with clear trai ning inst ances (no fuzzy inpu ts or
outputs) , the network may learn one of the expressions t hat is equivalent in
Boolean logic.

It is not easy to obtain training instances with fuzzy outputs. It is always
possible to set the offsets manu ally, once the logical expression is known.
Training is apparent ly an NP- complete problem. Networks cannot be t ra ined
sequent ially like, as in backpropagation.
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8. Conclusions

Product ive networks, intended for fuzzy logic based inferencing, have fuzzy
truth values as inputs. The nodes collect an offset produ ct of the inpu ts,
further offset by a bias . A meaning can be assigned to each node, and thus
one can determine the number of nodes required to perform a part icular t ask.
Training is not required for problems of fuzzy logic, but the offsets are fixed
using t he pr oblem statement .

The three pr imary logical opera t ions (NOT , OR, and AND), which form
the basis of inferencing , can be implemented easily in productive networks.
The offset s are either 0 or 1, and the nodes do not have complete connect ivity
across adjacent layers (as do feedforward neural networks).

Product ive networks are much simpler when compared to feedforward
neural networks. T hey require no t ra ining , and do not have too many con­
nect ions (weights) . T heir offsets are either 0 or 1 (unlike the weights , which
can have any value between - 00 and (0). They are a lit tle more reliab le,
since the function of each of the nodes in the network is known and under­
stood. Having several layers is not problematic for productive networks. A
disconnect ing offset of - 1 permits t ra ining, which can be accomplished with
very few inst ances. One need not know the number of nodes required.

Due to t he significant advantages of productive networks over feedforward
networks, they could find more widespread use in problems involving fuzzy
logic.

Appendix A. A typical output from SNE

Number of input and output nodes :
Number of hidden layers : 1
Number of nodes in each hidden layer
Number of offsets : 9
Print option 0/1/2 1
Offsets taken from fi le xor . i n

0 . 5000 0 . 5000 0.5625

layer 2 0 .5625
layer 1 0 .7500 0.2500
layer 0 0 .5000 0 .5000

0.7500 0 .2500 0.6602

layer 2 0 .6602
layer 1 0 .81 25 0 .1875
layer 0 0 .7500 0 .2500

0 .2500 0 .7500 0 .6602

2

2 1
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layer 2 0 .6602
layer 1 0 .8125 0 . 1875
layer 0 0 .2500 0 .7500

0.3333 0 .3333 0 .4938

layer 2 0 .4938
layer 1 0 .5556 0 .1111
layer 0 0 .3333 0.3333

Appendix B. Results of reactor selection with clear inputs

Number of input and output nodes : 5 2
Number of hidden layers : 1
Number of nodes in each hidden layer 4
Number of offsets : 20
Print option 0/1/2 : 0
Offsets taken from file SEL. I N

0 0 0 0 0 1 0
0 0 0 0 1 1 0
0 0 0 1 0 1 0
0 0 0 1 1 1 1
0 0 1 0 0 1 0
0 0 1 0 1 1 0
0 0 1 1 0 1 0
0 0 1 1 1 1 1
0 1 0 0 0 1 0
0 1 0 0 1 1 0
0 1 0 1 0 1 0
0 1 0 1 1 1 1
0 1 1 0 0 0 1
0 1 1 0 1 1 1
0 1 1 1 0 0 1
0 1 1 1 1 1 1
1 0 0 0 0 1 1
1 0 0 0 1 1 1
1 0 0 1 0 1 1
1 0 0 1 1 1 1
1 0 1 0 0 1 1
1 0 1 0 1 1 1
1 0 1 1 0 1 1
1 0 1 1 1 1 1
1 1 0 0 0 1 1
1 1 0 0 1 1 1
1 1 0 1 0 1 1

455



456

1
1
1
1
1

1
1
1
1
1

o
1
1
1
1

1
o
o
1
1

1
o
1

o
1

1
1
1
1
1

1
1
1
1
1

A bhay Bulsari

Appendix C. A typical output from SNT

Thi s i s the output from SNT .

Number of i nput and output nodes 2 1
Number of hidden l ayer s : 1
Number of nodes in each hidden layer 3
Number of offsets : 13
Print option 0/1/2 1
The offsets taken from WTS .IN
-1 - 1 -1 -1 -1 - 1 - 1 -1 - 1 - 1 -1 - 1 -1

Number of i terat ions : 500

Number of patterns in t he input file 8
The offsets W » > 1 to 13

1 0 0 1 1 1 0 0 0 0 -1 0 1

The residuals F >>> 1 to 8 :
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
O.OOOOOE+OO
0 .43750E-04
0 .43750E-04
O.OOOOOE+OO

SSQ: 0 .38281E-08

Appendix D. An output from SNT for the chemical reactor
selection heuristics

Thi s i s t he output from SNT .

Number of input and output nodes
Number of hidden l ayer s: 1
Number of nodes in each hidden l ayer
Number of offsets : 66
Print option 0/ 1/ 2 : 0
Seed f or random number generation

8

10201

5 2
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Number of iterations : 1000

Number of patterns in the input fil e 32
The of f sets W» > 1 t o 66

1 1 0 0 -1 -1 0 1 0 -1 -1 0 1 0 0 -1
1 1 0 -1 -1 -1 0 0 -1 0 0 1 -1 1 - 1 1
1 -1 - 1 0 0 1 -1 -1 - 1 -1 -1 0 1 -1 -1 0
1 1 1 0 1 -1 -1 0 -1 1 0 -1 0 1 0 0
0 0

SSQ O.OOOOOE+OO
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