Complex Systems 6 (1992) 443-457

Training Artificial Neural Networks for Fuzzy Logic

Abhay Bulsari*
Kemisk-tekniska fakulteten, Abo Akademi,
SF 20500 Turku/Abo, Finland

Abstract. Problems requiring inferencing with Boolean logic have
been implemented in perceptrons or feedforward networks, and some
attempts have been made to implement fuzzy logic based inferencing in
similar networks. In this paper, we present productive networks, which
are artificial neural networks, meant for fuzzy logic based inferencing.
The nodes in these networks collect an offset product of the inputs,
further offset by a bias. A meaning can be assigned to each node in
such a network, since the offsets must be either —1, 0, or 1.

Earlier, it was shown that fuzzy logic inferencing could be per-
formed in productive networks by manually setting the offsets. This
procedure, however, encountered criticism, since there is a feeling that
neural networks should involve training. We describe an algorithm for
training productive networks from a set of training instances. Unlike
feedforward neural networks with sigmoidal neurons, these networks
can be trained with a small number of training instances.

The three main logical operations that form the basis of inferenc-
ing—NOT, OR, and AND—can be implemented easily in productive
networks. The networks derive their name from the way the offset
product of inputs forms the activation of a node.

1. Introduction

Problems requiring inferencing with Boolean logic have been implemented
in perceptrons or feedforward networks [1], and some attempts have been
made to implement fuzzy logic based inferencing in similar networks [2].
However, feedforward neural networks with sigmoidal activation functions
cannot accurately evaluate fuzzy logic expressions using the 7T-norm (see
section 2.1). Therefore, a neural network architecture was proposed [3] in
which the elementary fuzzy logic operations could be performed accurately.
(For a good overview of fuzzy logic, see [4, 5].) A neural network architecture
was desired for which the tedious task of training could be avoided, and

*On leave from Lappeenranta University of Technology. Electronic mail address:
abulsari@Qabo.fi

444 Abhay Bulsari

in which each node carried a specific meaning. Productive networks, as
then defined, offered many advantages (as described in [3]). It was shown
that fuzzy logic inferencing could be performed in productive networks by
manually setting the offsets. This procedure, however, encountered criticism,
since there is a feeling that neural networks should involved training.

With minor modification—namely, the addition of the disconnecting
offset—it is now possible to begin with a network of a size as large or larger
than required, and train it with a few training instances. Because of the
nature of productive networks, a small number of training instances suffices
to train a network with many more parameters. The parameters must take
the values —1, 0, or 1.

These modified productive networks retain most of the useful features
of the previous design. It is still possible to manually set the offsets for
well-defined problems of fuzzy logic. Each node still carries a meaning in
the same manner as before. The networks are very similar to feedforward
neural networks in structure. However, extra connections are permissible,
which was not the case previously. A price has been paid for this increased
flexibility, in the form of a more complicated calculation of the net input to
a node.

2. The basic fuzzy logical operations

There is increasing interest in the use of fuzzy logic and fuzzy sets, for various
applications. Fuzzy logic makes it possible to have shades of grey between the
truth values of 0 (false) and 1 (true). Statements such as “the temperature
is high” need not have crisp truth values, and this flexibility has permitted
the development of a wide range of applications, from consumer products to
the control of heavy machinery. Fuzzy expert systems are expert systems
that use fuzzy logic based inferencing.

Almost all logical operations can be represented as combinations of NOT
(~), OR (V), and AND (A) operations. If the truth value of A is represented
as t(A), then we shall assume that

t(~A) =1—t(A)
t(AV B) =t(A) +t(B) — t(A) t(B)
t(AA B) =t(A)t(B)
The OR equation shown above can be modified to a more suitable form
as follows:
AV B =~(~A AN~B)
t(AVB)=1-—(1-t(A)(1—-tB))
which is equivalent to the equation shown above, but is in a more useful
form. Similarly, for three operands, one can write
t(ANBAC) =t(A)t(B)tC)
t(AVBVC)=1—-(1—-t(A)1-tB))[1-tC))

Training Artificial Neural Networks for Fuzzy Logic 445

Since Boolean logic is a special case of fuzzy logic (in which truth values are
either 0 or 1), productive networks can be used for Boolean logic as well.

2.1 TUnfitness of the sigmoid

We have yet to explain why fuzzy logic cannot be implemented in feedforward
networks with sigmoidal activation functions. Such networks have a smooth
transition from the “yes” to the “no” state, and are said to have a graceful
degradation.

A A B can be performed in a feedforward neural network by o(t(A4) +
t(B) — 1.5), where o is the sigmoid function from 0 to 1. This procedure has
two major limitations. The truth value of A A B is a function of the sum of
their individual truth values, which is far from the result of equations given
above. This truth value is almost zero until their sum approaches 1.5, and
after that it is almost one. The width of this transition can be adjusted, but
the character of the function remains the same. If ¢(A) = 1 and ¢(B) = 0,
t(A A B) is not exactly zero.

Another objection to the use of the sigmoid is more serious. Using
o(t(A) +t(B) — 1.5) to calculate t(A A B) yields the following result:

H(ANBYAC) £ AN (BAC))

3. Productive networks

A productive network, as defined here, no longer imposes a limit on the num-
ber of connections, as do feedforward networks. The extraneous connections
do not matter since their weights can be set to zero. Each node plays a
meaningful role in these networks. It collects an offset product of inputs,
further offset by a bias. For example, the activation of the node shown in
figure 1 can be written as

a=wy— |(w — 1) (w2 — x2) (w3 — z3)|

when the offsets are 0 or 1. If an offset is —1, it effectively disconnects the
link. In general,

a=wy— H(wj _ xj)[l'*'%wj(l*wj)]
J

Thus, if an offset is —1, it only multiplies the product by 1. The output of
the node is the absolute value of the activation, a.

y = |al

The nondifferentiability of the activation function is not a problem. Nev-
ertheless, if desired, the activation function can be made continuous by

446 Abhay Bulsari

Figure 1: A node in a productive neural network.

node

offset

%1

Figure 2: Inverting an input in a productive network

replacing it with a product of the argument and the —1 to 1 sigmoid, with a
large gain, (3:

1
y=a <_1 * 21 —I—exp(—,@a))

The offset, w;, shifts the value of the input by some amount, usually 0 or
1. The input remains unaffected when the offset is 0, and a logical inverse
(negation) is taken when the offset is 1. In addition to the offset inputs, there
is a bias, wg, which further offsets the product of the offset inputs.

The productive network has several nodes with one or more inputs (see
figures 6 and 8). The inputs should be positive numbers < 1. Each of the
nodes has a bias, alternatively called the offset of the node. A bias of 0 or
—1 has the same effect—a node offset of zero is the same as not having a
node offset. The output is a positive number < 1. Productive networks are
so named because of the multiplication of inputs at each node.

4. Implementation of the basic fuzzy logical operations

To show that one can represent any complicated fuzzy logic operation in
productive networks, it suffices to show that the three basic operations can
be implemented in this framework.

The simplest operation, NOT, requires an offset only, which can be pro-
vided by the input link (as shown in figure 2). Alternatively, this offset can
be provided by the bias instead of the link, with the same result.

Training Artificial Neural Networks for Fuzzy Logic 447

Figure 4: Applying OR to three inputs in a productive network

AND is also implemented in a facile manner in this framework. It needs
only the product of the truth values of its arguments; hence, neither the links
nor the bias have offsets (as shown in figure 3, for three inputs).

On the other hand, OR needs offsets on all the input links, as well as on
the bias (see figure 4). The offsets for OR and AND indicate that they are
two extremes of an operation, which would have offsets between 0 and 1. In
other words, one can perform a 0.75 AND and a 0.25 OR of two operands A
and B by setting wp = 0.25, w; = 0.25, and w, = 0.25.

Figure 5 shows how ~A V B can be implemented. This is equivalent to
A implies B (A = B).

If the functions clarity(A) and fuzziness(A) are defined as

clarity(A) = 1 — fuzziness(A)
fuzziness(A) = 4 x t(A A ~A),

they can then be calculated in this framework.

Figure 5: ~z1 V g

448 Abhay Bulsari

A XOR B
0 1
0
AVB AAB
node 1 o 0
offsets
1 0 1
g inputs
A B

Figure 6: Network configuration for A XOR B

5. Illustrations of the manual setting of offsets

Applying AND and OR operations over several inputs can be performed by a
single node. If some of the inputs must be inverted, this can be accomplished
by changing the offset of the particular link. Thus, not only can a single node
perform AABAC and AV BV C, but also AA BA~C' (which would require
wo = 0, w; =0, wy =0, and ws = 1.) However, operations that require
brackets for expression—for example, (A V B) A C—require more than one
node.

An exclusive OR applied two variables—A XOR, B—can also be written
as (AV B) A~(AA B). Each of the bracketed expressions requires one node,
with one more node required to perform AND between them (see figure 6). (A
XOR B) can also be written as (AVB)A(~AV~B), or (AA~B)V(~AAB),
each of which could result in different configurations.

A program, SNE, was developed to evaluate the outputs of a productive
network; an output for this XOR problem is shown in Appendix A. Feed-
forward neural network studies often begin with this problem, fitting four
points with nine weights by backpropagation. (Productive networks also re-
quire nine parameters, but fit the entire range of truth values between 0
and 1.) Figure 7 shows the XOR values for fuzzy arguments. t(A) increases
from left to right, ¢(B) increases from top to bottom, and the values in the
figure are ten times the rounded value of t(A XOR B).

In [1], a small set of rules was presented, designed to govern the selection
of the type and mode of operation of a chemical reactor carrying out a single
homogeneous reaction. As defined, there are regions in the state space (for
example, between ry/r; = 1.25 and 1.6) where none of the rules may apply.
In fact, these were meant to be fuzzy regions, to be filled in a subsequent
work such as this one. The set of rules has therefore been slightly modified,
and is given below. There are two choices for the type of reactor, stirred-tank

Training Artificial Neural Networks for Fuzzy Logic 449

001111222233334444555566667 77788889990 %*
0011112222333344445555666667 77788889999
1111122223333444445555666667 777888889999
11112222333334444555556666677777888889999

111 333 55555 TTTT
11222233333444445555556666677777788888899
33333 a 555555 TTTTTTT

22223333334444455555566666667 777777888888
222333333444444555555666666677 77777788888
223333334444445555555666666667 77777777888
3333333444444555555556666666667 7777777778
33333444444455555555566666666667 777777777

3333444 55555555 8TTTTTTTTT
3344444 5556555555 TTTTTTT
44444444455555555555666666666666666666667
44444455555555555 666

5555555555555
44455555555555555566666666666666666666666
5555555555555555
55555555555555566666666666666666665555555
55555555555566666666666666666555555555555
55555556666666666666666666555555555555555
66666666666666666666666655555555555555555
S5555555555555444

S555555555555544444

S555555555 a4aa
5 5555555555 aqa4q
TTT7T77766666666666666555555565554444444433
TTTTTTTTT 55555555 33

TTT 7777 7776666666666555555555444444433333
B7777777777666666666555555554444443333333
88877777777 766666666555555544444433333322
888887777777 76666666555555444444333333222
888888777777 76666666555555444443333332222
©8888887777777666665555554444433333322222
0988888877777 7666665555554444433333222211
9998888887777 7666665555544444333332222111

7T TTT 555554444 33 1111
+*0999888887777666665555444443333222211111
*+0ODOB8887777666665555444433332222111100
**#ODDOOBBEB777766665555444433332222111100

Figure 7: A XOR B

or tubular; and two choices for the mode of operation, continuous or batch.
In the following rules these choices are assumed to be mutually exclusive;
that is, the sum of their truth values is 1.

1.

If the reaction is highly exothermic or highly endothermic—say 15
kCal/gm mol (else we call it athermal)—select a stirred-tank reactor.

. If the reaction mass is highly viscous (say 50 centipoise or more), select

a stirred-tank reactor.

. If the reactor type is tubular, the mode of operation is continuous.

If ro/r1 < 1.6, prefer a continuous stirred tank reactor.

If ro/r1 > 1.6, the reaction mass is not very viscous, and the reaction
is quite athermal, prefer a tubular reactor.

If ro/r1 > 1.6, the reaction mass is not very viscous, but the reaction
is not athermal, prefer a stirred-tank reactor operated in batch mode.

. If ro/r; > 1.6, the reaction mass is quite viscous, and the reaction is

athermal, prefer a stirred-tank reactor operated in batch mode.

. If the production rate is very high compared to the rate of reaction

r1 (say 12 m® or more), and ro/r; > 5, prefer a stirred-tank reactor

operated in batch mode.

450 Abhay Bulsari

9. If the production rate is very high compared to the rate of reaction
r1 (say 12 m® or more), and ry/r; < 5, prefer a stirred-tank reactor
operated in continuous mode.

10. If ro/r1 > 1.6, the reaction mass is quite viscous, and the reaction is
not athermal, prefer a stirred-tank reactor operated in batch mode.

ro is the rate of reaction under inlet conditions, and r; is the rate of reaction
under exit conditions. If their ratio is large, a plug-flow (tubular) reactor
requires significantly less volume than a stirred-tank reactor operated con-
tinuously. A stirred-tank reactor operated in batch mode is similar to a
plug-flow reactor when the length coordinate of the tubular reactor resem-
bles time in a batch reactor. The aim of [1] was to investigate the feasibility of
implementing a fuzzy selection expert system in a productive neural network;
hence, the heuristics enumerated above are typical. They are not necessarily
the best set of rules for selecting reactors for single homogeneous reactions;
neither are they complete.

Figure 8 shows the implementation of these heuristics in a productive net-
work. It is much simpler than a feedforward neural network; it requires no
training, and does not have too many connections (weights). The offsets are
either 0 or 1, unlike the weights (which can have any value between —oo and
00). Of course, it also calculates the fuzzy truth values for the selection of
type and mode of operation of a chemical reactor. It is a little more reliable
since the function of each of the nodes in the network is known and under-
stood, and there is no question of the sufficiency of the number of training
instances. It may not be possible to represent every expression in two layers.
Having several layers, however, is not problematic for productive networks,
though it does cause difficulty in training feedforward neural networks.

It may be recalled that the inputs to productive networks are truth values
between 0 and 1. The five inputs to the network shown in figure 8 are

A t(rg/r1 < 1.6)

B t(u < 50)

C (|AHx| < 15)

D t(’r‘o / r < 5)

E t(F/r1<12)
These truth values can be calculated (using a ramp or a sigmoid) based on
criteria for the width of fuzziness. (For example, for A, t(r/r; < 1.2) =1
and t(ro/r; > 2.0) = 0, with a linear interpolation in between.) Appendix B
shows results of this system with clear inputs (truth values of 0 or 1). For
confirmation, these results were fed into an inductive learning program. This
program was able to elicit the heuristics for selecting a stirred-tank for con-
tinuous operation—AV ~BV ~C'V E) and (AV (BAC)V (D A E). This,
in effect, was the same as (AV (~AA BAC)V (D A E)), implemented in
the network directly from the heuristics. It was also confirmed that the im-
plausible selection of a tubular reactor operated in batch mode never took
place.

Training Artificial Neural Networks for Fuzzy Logic 451

stirred-tank continuous

Figure 8: Fuzzy-selection expert system in a productive network

6. Limitations of productive networks lacking the disconnecting
offset

If the inputs and outputs of a fuzzy logical operation are given, and if one
wants a productive network to learn the correlation, it is almost impossible
without the disconnecting offset. A productive network without the discon-
necting offset (—1) cannot be easily trained. There is no way to switch off
an output from a node that is connected. One must decide the connectivity
beforehand—which can be, at best, good guesswork.

The productive network is intended primarily for representing fuzzy log-
ical operations, and can of course do Boolean logic. That, however, is its
limit. It has hardly any other application.

7. Illustrations of training productive networks

The training of neural networks is intended to reduce the sum of the squares
of errors (SSQ) to a minimum, where the errors are the differences between
the desired and the actual neural network outputs. In feedforward neural
networks, it is sufficient to minimize the SSQ; in productive networks, how-
ever, it should be reduced to zero when the training instances are known to
be accurate.

There are a finite number of possibilities for the weight vector. This is
presumably an NP-complete problem. For a network with N weights, there
are 3" possibilities. It is therefore clear that searching the entire space is not
feasible when N exceeds 7 or 8. To solve this problem we present a simple
algorithm in the next subsection. Training is performed by modifying the
offsets in a discrete manner (varying among —1, 0, and 1). The essence of
this algorithm is similar to the Hooke and Jeeves method [6].

452 Abhay Bulsari

Since there is a disconnecting offset (—1), it is permissible to have more
nodes than necessary. There is no over-parametrization in these networks;
but an over-evaluation of fuzzy expressions is possible when there are extra
nodes, and this can result in wrong outputs. The exact number of nodes
can be determined if a complete set of training instances (all 2Vi= cases) is
available; but this requires the approach of the previous work, which has been
strongly criticized. Despite the fact that many respectable people in the field
of neural networks think that training is necessary, or that “a network is a
neural network only if it can be trained,” we maintain that this is not the
right way to construct productive networks.

7.1 The training algorithm

Hooke and Jeeves [6] proposed a zero-order optimization method, which looks
for the direction in which the objective function improves by varying one
parameter at a time. Derivatives are not required. When no improvement is
possible, the step size is reduced. In the problem under consideration here,
each parameter (offset) must take one of only three values. Hence, when
a parameter is being considered for its effect on the objective function, the
three cases are compared, and the one with the lowest SSQ is chosen.

Parameters to be considered for their effect on the SSQ can be chosen
sequentially or randomly. With a sequential consideration of parameters, the
search process often falls into cycles that are difficult to identify, stopping
only at the limit of the maximum number of iterations. With a random
consideration of parameters, the algorithm takes on a stochastic nature and
is very slow, but does not fall into such cycles. Nevertheless, the sequen-
tial consideration is found to be preferable for the kinds of problems to be
considered in sections 7.2 and 7.3.

Typical outputs of a program (SNT) implementing this algorithm are
presented in Appendices C and D. The algorithm is fast and reliable. It
runs into local minima at times (like any optimization algorithm would on a
problem with several minima), but since it is relatively fast, it is easy to try
different initial guesses. Because of the network architecture, it is possible
to interpret intermediate results, even, presumably, at every iteration. The
algorithm worked quite well with the problems considered in this paper.

7.2 The XOR problem

The XOR problem essentially consists of the training of a productive network
to perform fuzzy XOR operation on two inputs. With eight training instances
it was possible to train (2,2,1) and (2, 3, 1) networks easily, while (2, 1) and
(2,1,1) networks could not learn the operation. Appendix C presents the
results of training a (2, 3, 1) network.

It is easy to interpret the results of training these networks. The (2, 1)
network learned A A B from the eight training instances. The SSQ was
1.038. The (2,1,1) network learned ~A A B, resulting in the same SSQ,
1.038. These results are dependent on the initial guesses (to the extent that

Training Artificial Neural Networks for Fuzzy Logic 453

a different logical expression may result from a different initial guess), but
(2,1) and (2,1,1) would not have an SSQ of less than 1.038. The (2,2,1)
network learned it perfectly, as (AV B) A (~AV ~B). The (2,3, 1) network
once ran into a local minimum, with SSQ = 1.038, expressing (~B) A (~A A
~B) A (~B). As shown in Appendix C, this network can also learn (A4 V
B) A (~AV ~B), ignoring one of the nodes in the hidden layer, which was
~(A A B).

With four training instances (all clear inputs and outputs), the same
networks were again trained by the algorithm described above. Unfortu-
nately, there is no way to prevent the network from learning (A V B) as
(AAN~B)V (~AANB)V(AAB)V B. Ais equivalent to as AV Aor ANA
in Boolean logic, but not in fuzzy logic, given the way we have calculated
conjunctions and disjunctions. Therefore, if one starts with clear training
instances (no fuzzy inputs or outputs), the network may learn one of the
expressions that is equivalent in Boolean logic. Fortunately, however, there
was a tendency to leave hidden nodes unused. The (2,2, 1) network learned
the XOR function as ~(AV ~B) V (A A ~B). The (2,5,1) network also
learned it correctly as (~A A B) V ~(~AV B) without adding extraneous
features from the hidden layar (leaving 3 nodes unused).

7.3 The chemical reactor selection problem

The chemical reactor selection heuristics listed in section 5 can also be taught
to productive networks from the 32 clear training instances (see Appendix B).
The (5,5,2), (5,6,2), (5,8,2), and (5,10, 2) networks were able to learn the
correct expressions, with an SSQ of 0.00. The number of iterations required
was between 200 and 3000, but each iteration took very little time. The
typical run times on a microVax II were between 1 and 10 minutes.

The (5, 5, 2) network used only four hidden nodes, the minimum required.
The (5,8,2) and (5, 10, 2) networks used seven and eight nodes, respectively.
They typically had one or two nodes simply duplicating the input (or its
negation). The results obtained with the (5,8,2) network are shown in Ap-
pendix D.

7.4 Limitations of the training approach

In Boolean logic, (AV B) can also be written as (AA~B)V (~AAB)V (AA
B)V B. A is equivalent to as AV A or A A A in Boolean logic, but not in
fuzzy logic, given the way we have calculated conjunctions and disjunctions.
Therefore, if one starts with clear training instances (no fuzzy inputs or
outputs), the network may learn one of the expressions that is equivalent in
Boolean logic.

It is not easy to obtain training instances with fuzzy outputs. It is always
possible to set the offsets manually, once the logical expression is known.
Training is apparently an NP-complete problem. Networks cannot be trained
sequentially like, as in backpropagation.

454 Abhay Bulsari

8. Conclusions

Productive networks, intended for fuzzy logic based inferencing, have fuzzy
truth values as inputs. The nodes collect an offset product of the inputs,
further offset by a bias. A meaning can be assigned to each node, and thus
one can determine the number of nodes required to perform a particular task.
Training is not required for problems of fuzzy logic, but the offsets are fixed
using the problem statement.

The three primary logical operations (NOT, OR, and AND), which form
the basis of inferencing, can be implemented easily in productive networks.
The offsets are either 0 or 1, and the nodes do not have complete connectivity
across adjacent layers (as do feedforward neural networks).

Productive networks are much simpler when compared to feedforward
neural networks. They require no training, and do not have too many con-
nections (weights). Their offsets are either 0 or 1 (unlike the weights, which
can have any value between —co and co0). They are a little more reliable,
since the function of each of the nodes in the network is known and under-
stood. Having several layers is not problematic for productive networks. A
disconnecting offset of —1 permits training, which can be accomplished with
very few instances. One need not know the number of nodes required.

Due to the significant advantages of productive networks over feedforward
networks, they could find more widespread use in problems involving fuzzy
logic.

Appendix A. A typical output from SNE

Number of input and output nodes : 2 1
Number of hidden layers : 1

Number of nodes in each hidden layer : 2

Number of offsets : 9

Print option 0/1/2 : 1

Offsets taken from file : xor.in

0.5000 0.5000 0.5625

layer 2 0.5625
layer 1 0.7500 0.2500
layer 0 0.5000 0.5000

o
o

0.7500 0.2500 0.6602

layer 2 0.6602
layer 1 0.8125
layer 0 0.7500

o

.1875
.2500

o

0.2500 0.7500 0.6602

Training Artificial Neural Networks for Fuzzy Logic 455

layer 2 0.6602
layer 1 .8125 0.1875
layer 0 0.2500 0.7500

o

0.3333 0.3333 0.4938
layer 2 0.4938

layer 1 0.5556 0.1111
layer 0 0.3333 0.3333

Appendix B. Results of reactor selection with clear inputs

Number of input and output nodes : 5 2
Number of hidden layers : 1

Number of nodes in each hidden layer : 4

Number of offsets : 20

Print option 0/1/2 : 0

Offsets taken from file : SEL.IN

o
o
o
o
o
o

PP PP RRPRPPRPRPPRPPRO0OO0O00000000O00O0O0CO0
H PP OOOO0OO0OO0OO0OO0ORMFEFEREEPREPPLPPEPOOOOOORO
O OO RFRPFRPRFOOOOFRRFPREFEP P OOOORRERREEOOO
HOOFRFP,POOFRPLPOORRFRLROOFREFPLOOKFELOOREO
OrHrOFrROHOHLORLRORROROROFROHLOROR,O R
Ll e e e e e B i e i e N e e =
R R R R R R R R R, R R R R PR O0O0O0O0RO0OO0O0RL, OO

456 Abhay Bulsari

i i i
e
= = == O
= = O O K
O O =
e
i i e S

Appendix C. A typical output from SNT

This is the output from SNT.

Number of input and output nodes : 2 1
Number of hidden layers : 1
Number of nodes in each hidden layer : 3
Number of offsets : 13
Print option 0/1/2 : 1
The offsets taken from WTS.IN :
=ff =1 =1 =f =1 =i =1 =1 <1 =1 =1 =1 =i
Number of iterations : 500

Number of patterns in the input file 8
The offsets W >>> 1 to 13 :
i 0 o0 1 1 1 o0 O O O -1 o0 1

The residuals F >>> 1 to 8 :
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.00000E+00
.43750E-04
.43750E-04
.00000E+00

O OO O OO oo

SSQ : 0.38281E-08

Appendix D. An output from SNT for the chemical reactor
selection heuristics

This is the output from SNT.

Number of input and output nodes : 5 2
Number of hidden layers : 1

Number of nodes in each hidden layer : 8

Number of offsets : 66

Print option 0/1/2 : 0

Seed for random number generation : 10201

Training Artificial Neural Networks for Fuzzy Logic 457

Number of iterations : 1000

Number of patterns in the input file 32

The
1

1
1
1
0

ssq :

offsets W >>> 1 to 66 :
1 0 0 =1 =i 0 1 0o -1 -1
1 0O -1 -1 -1 0o 0 -1 0 0
-1 -1 0O O i -1 =1 -1 -1 -t
1 1 0 1 =1 =1 0 -1 1 0 -
0

= O O
|
-
]
—
[
o
O O - =

0.00000E+00

References

(1]

[3]

(6]

A. B. Bulsari and H. Saxén, “Implementation of Chemical Reactor Selection
Expert System in a Feedforward Neural Network,” Proceedings of the Aus-
tralian Conference on Neural Networks, Sydney, Australia, (1991) 227-229.

S.-C. Chan and F.-H. Nah, “Fuzzy Neural Logic Network and Its Learning
Algorithms,” Proceedings of the 24th Annual Hawaii International Conference
on System Sciences: Neural Networks and Related Emerging Technologies,
Kailua-Kona, Hawaii, 1 (1991) 476-485.

A. Bulsari and H. Saxén, “Fuzzy Logic Inferencing Using a Specially Designed
Neural Network Architecture,” Proceedings of the International Symposium
on Artificial Intelligence Applications and Neural Networks, Zurich, Switzer-
land, (1991) 57-60.

L. A. Zadeh, “A Theory of Approximate Reasoning,” pages 367-407 in Fuzzy
Sets and Applications, edited by R. R. Yager et al. (New York, Wiley , 1987).

L. A. Zadeh, “The Role of Fuzzy Logic in the Management of Uncertainty in
Expert Systems,” Fuzzy Sets and Systems, 11 (1983) 199-227.

R. Fletcher, Practical Methods of Optimization. Volume 1, Unconstrained Op-
timization (Chichester, Wiley, 1980).

