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A bstract. A new approach for designing and training neural net­
works is developed using a distr ibuted genet ic algorithm. A search for
the optimal architecture and weights of a neural network comprising
binary, linear threshold units is performed. For each individual unit ,
we look for th e opt imal set of connections and associated weights
under the restriction of a feedforward network str ucture. This is ac­
complished with th e modified genet ic algorithm, using an objective
function-fitness-that considers, primarily, the overall network er­
ror; and, secondarily, using the unit 's possible connections and weights
that are preferable for cont inuity of the convergence process. Exam­
ples are given showing the pot ential of th e proposed approach.

1. Introduction

Interest in neural networks has increased treme ndously in recent years. Much
of this renewed int erest has been moti vated by t he development of sup er­
vised learni ng algor ithms that were applied for different purposes, espe cially
for classificat ion tasks. However , none of the exist ing algorit hms offers an
analyti c solut ion that shows which neural network should be designed for a
given problem [6] . The most common algorithm for t raining neural networks
is backpropagation [14J. In many applications that used backpropagation ,
an appropriate neural network was found afte r a reasonable number of iter­
at ions [14, 6]. T he main dr awb ack of the backpropagation algorit hm is t hat
there is nothing in the algorit hm that prevents it from becoming t rapped in
local minima; evident ly, in many problems, such as adder and parity [14],
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the neur al network that is obtained by backpropagat ion does not give t he
correct solut ion.

Several st udies used genet ic algorit hms (GAs) while t ra ining neur al net­
works [17, 13, 11, 5, 8,9]. They chose GAs because they were found to be
effect ive in a wide variety of search and optimization problems t hat oth erwise
were trapped in local minim a [7, 3]. GAs were included in th e t ra ining of
neural networks in several ways by different studies. Whit ley and Hansen
[17] and Montana and Davis [13] presented training pro cesses in which GAs
were applied for determination of the weights between connected nodes in
neur al network s. Both st udies yield bet t er results when compared to back­
propagation , including cases that are often trapp ed in local minima. Miller
and Tod [11], Harp , Samad , an d Guh a [5], and Kitano [8J presented attempts
to produce a process using GAs in which connect ions betwee n nod es could
be constructed or delet ed during the t ra ining period. However , the network
performance was evaluated by means of the convent ional backpropagat ion
algorithm. Therefore, the combinat ion of backpropagation and GAs yielded
reasonable results only for limited cases.

Using the backpropagation met hod in training neural networks limits the
potent ial of GAs to avoid ent rapment in local minima. Koza [9J suggest ed a
process of neur al-network design using GAs for both the st ructure and the
weights, and tested it for an XOR problem. These at tempts were pract ical
only for networks with a limited numb er of units because the sear ch space
increased exponent ially [8].

A different approach for bu ilding a feedforward layered network was pre­
sented by Mezard and Nadal, using t he t iling algorithm for any given Boolean
function [IOJ. The archi tecture is not fixed in advance, bu t is generated by a
growt h pro cess th at add s layers (and units inside a layer) unti l convergence.
Alpaydin's Grow-and-Learn (GAL) algorithm [1] pres ents a proc ess that also
guarantees an error-free training dat a set , by adding and removing "exemplar
units" in order to get the correc t classification. The network size obtained
in these algorit hms might grow more than necessary, and the generalizat ion
thus obtained might be unsatisfactory (as Baum and Haussler [2] show).

In the present study, we introduce a distributed genet ic algorithm for
t ra ining neur al network s with GAs in which t he search for t he optimal neu­
ral network is done separately for every unit t hat is a single neuron in the
neur al network. This search method is one of t he major differences between
our work and other studies that combine both methodologies. The search
space is drastically reduced in comparison to the previous works that con­
sider the ent ire neural network. T he sear ch is done over th e whole unit 's
possible connect ions and weights in every given state of th e network during
the process. This gives our approach an advantage over the gradient descent
methods- robust ness to ent rapment in local minima- and t herefore expands
t he range of solvable problems. This method yields a neur al-network training
algorithm that performs dynamic modification of a network st ruct ure and its
weights , and at the same time eliminates the need to predet ermine the net­
work structure (the numb er of intern al layers and number of units in each
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layer, for example) . The algorithm iteratively alters connect ion weights, and
either generates or eliminates connections in order to reduce t he error of a
given network. Nevert heless, when no altera t ion is found to redu ce t he net­
work 's error in an iterat ion, each unit is examined to see whether replacing
it by optional uni t inputs would help improve the convergence process to t he
global minimum. For thi s purpose the algorit hm defines for each unit a group
of strings used as opt ional unit inputs, which is called "the unit genotype
population." T his group of st rings is revised with the GA operators at the
end of each iteration.

2. The Algorithm D escription

2.1 P roblem Statement

Let us define N as a network with a feedforward st ructure , N = {V,C, W,B} ,
where V , C, W , and B are sets of units, connect ions , weights , and bias
values, respectively. V is the union of t hree disjoint sets VN , VH , and VM ,

where VN includes N uni ts in the inpu t layer, VH includes H hidden units,
and VM includes M units in the output layer. T he training data set is
composed of P elements. Each element p is a pair of vectors {X P,15p } ,

where XP = (Xb , " " X;;"_ l) is the input vector , and DP= (db, ,d~_ l ) is
the output vector whose values are defined as c!!. = ± 1 for i = 0, , M - 1.

To accomplish an appropriate neural network for a given task, we start
with a network whose numbers of units in the inpu t and out put layers are
dr iven by the problem; the init ial neur al network has an arbitrary number of
hidden units with the const raint of a feedforward st ruct ure. The purpose of
the distributed genet ic algorit hm present ed here is to design a neur al network
that will yield a min imum error between th e given out put vectors and those
derived by the neur al network.

For each training element p , EP is t he error that is obtained by

1 M - l

EP= 2 L I d~ - a;;"+H+mL
m = O

(1)

where af is t he output of unit Vi obtained by the N N for input vector XP.
T he output of a un it Vi is defined as

if Vi E VN

otherwise
(2)

where Wij is the weight of t he connect ion from unit Vj to un it Vi, and b,
is the bias of uni t Vi . T he neur al network is mod ified after each iteration
according to convergence criteria t hat will be discussed in sect ion 2.3. T he
modifications are applied not only to t he connect ion weights (as is usually
done in neur al network learni ng algorithms), but also to t he neural network
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Set arbit ra ry initial state of network
and units genotype populations
Apply the training data set and
calculate the network out put error and fitness
value
Calculate fitness values for all the genotypes
Terminate when achieving desired network
error or exceeding a maximum
numb er of it erati ons
Modify the network by using the best
genotypes
Create a new generation of genotype s for each
unit with the use of GA operators
Modify inputs to isolat ed units
Repeat by going to Step 2

Figure 1: The neural network distribu ted genet ic algorithm.

st ruct ure (by adding and deleting connections between units), which is less
common.

The network N is modified in an iterative proc ess to reduce the current
error E , which is the overall neur al network mean error for the ent ire training
dat a set :

(3)

2.2 The neural network distributed genetic algorithm

The distributed genet ic algorithm opera tes separa tely on each of the hidden
and out put-layer units. The algorit hm specifies a population of genotypes for
each of these units. For uni t Vi there are K genotypes, where each genotype
gf (k = 1, ..., K) includes connections with weight s and a bias value. Every
genotype maintains the feedforward st ructure of the network.

The iterative process is composed of eight primary steps , which are sum­
marized in figure 1. A concise version of the algorithm appears in Ap­
pendix A.

The algorit hm is performed by applying t he following steps for a given
problem:

Step 1: The algorithm sets the number of the input and output un its, an
arbit ra ry numb er of hidden units, and an initial feedforward st ruct ure . K
genotypes are assigned randomly for each hidd en and output unit .

Step 2: The whole t ra ining data set is applied to t he neur al network by
set ting the input layer to XP, calculat ing the output of the neur al network,
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and comparing it to the set DP. Two ter ms are th en derived: a fitness value
equal to t he network error as defined in (3), and an addit ional term that is
determined according to heur ist ic convergence criteria tha t are discussed in
sect ion 2.3.2.

Step 3: Step 2 is repeated for every genotype of the hidden and output-layer
units. The complexity is significant ly reduced because of t he binary out put
of the units (for more details, see sect ion 2.3.1).

Step 4: The algorit hm stops if t he desired network error is obtained or the
number of iterations exceeds a maximum number .

Step 5: For every unit , the genotype with t he minimum fitness value is
chosen as a candidate to replace t he current unit . If among all the candidates
there is one that yields a minimum error, it rep laces the current unit in the
NN. If among the candidates there are several unit s that yield the same
minimum error, t he replacement of the different units is done sequent ially.
The replacement is stopped if one of th e candidates causes a st ruct ural change
in the neural network (that is, the addit ion or deletion of connect ions) .

Step 6: In the reconstructed neur al network, new genotypes in the popula­
tion are assigned to each unit in the hidden layer that has a path to a unit
in t he output layer , and to units in the output layer. A new population of
K genotypes is reproduced from the population of K current genotypes by
the genetic algorit hm [3J as follows.

1. A pair of genotypes is picked from the curre nt population by the rank­
ing select ion method. By using ranking select ion in the algorithm the
select ive pressure and population diversity are better controlled , and
premature convergence caused by genotypes with very high fitness ra­
t ios is avoided [3, 4, 18J . The ranking is performed according to t he
fitness value, which allows t he definition of a linear distribution func­
tion for the genoty pe select ion procedure.

2. A new pair of genotypes are produced by a uniform crossover operation
that is applied to the selected pair [3, 15]. The different connections
in the reproduced genotypes get t heir weights with equa l probabili ty
from one of the parent genotypes .

3. A mutation operation is applied to the new pair of genotypes. This
operation includes random changes of weights and bias values, and
generat ion of new possible connections at low probabili ty.

Step 7: Since the algorithm makes dynamic modifications in the neural
network structure , some units might become isolated , with no rou te to the
output-l ayer uni ts and no effect on t he neur al network out put error. Afte r a
number of iterations, the connect ions to such units are modified rand omly.

Step 8: Perform the next iteration by going to Step 2.
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Figure 2: Error versus changes in the network.

This iterat ive t ra ining pro cess dyn amically mod ifies the neural network
in order to find a solut ion. Figure 2 illust rates this behavior for the two-bit
adder problem. The network 's error is displayed whenever the network is
alte red. Changes occur both wit h and without error reduction (as a result of
modifications of the network toward a preferable st ate). This representative
example indicates a local minimum ent rapment when considering the output
error as the only crit eria .

Another illustration describ es the learning process behavior for a simple,
small neur al network of th e "parity four" problem. (In thi s problem there are
four input un its and one output unit . For this example we chose two hidden
units.) Six different states of the learning process are shown in figure 3.
In the init ial state (a) unit 6 is isolated . Following one iteration (b) the
neural network was mod ified so that th e connect ion from hidden unit 5 to
output unit 7 was eliminated, thus two hidden units became isolated. This
connection was regenerated , however , in a later iteration of t he learn ing
procedure (c). T he connect ion between th e two hidden units 5 and 6 was
generated only following the random modifications of the input connect ions
to the isolated unit 6 (d). Evident ly, without t his modification t he neur al
network did not converge to a final state. In the final st ate (f) none of t he
units were isolated; in comparison to the initial state , two connect ions had
been add ed, one from hidden unit 6 to output unit 7, and t he second between
hidd en unit 6 and hidd en unit 5. Note that the connect ion between uni ts
6 and 5 was generated only after the connection between these two units in
the opposite direct ion was eliminated (d and e) .

2.3 E valuation of genotype fitness

The fitness value is defined by heuristic considerations, and it consists of two
main components . The first relates to th e network error for the genotype,
and the second expresses the NN convergence ability. The genotype wit h the
smallest fitness value will be favored.
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Figure 3: An example of modifications in network st ructure in the
learni ng phase of a parity-four pro blem; (a) represents t he init ial ra n­
dom network, (b-f) t he development s on the way to t he final network .
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2.3.1 Calculation of network er r or for the genotype

In every it eration one wants to choose the best genotype of all hidden and
out put un its; therefore, t he neur al network error has to be calculated (H +
M )K + 1 times . Inst ead of calculat ing t he network error for each genoty pe
replacement , we take advantage of the fact that the outpu t value of a hidden
unit or an out put unit can be either + 1 or - 1 (2). As a result, the genotype
out put can either yield t he un it output or its inverse. T he genotype error for
a given training vector p is t hus equa l eit her to EJ' (1), or to Ef-which is
calculated as EP, except that unit Vi output af is replaced by - af. Therefore,
in t he beginning of every iteration we obt ained only EJ' and H + M values
for Ef , and the error of every genotype was then assigned as EJ' or Bf.

2.3.2 Evaluation of genotype influence on n et work convergence

The network error is not t he only criterion for network modifications, as
several genotypes might have the same error E ; in that case our purpose is
to find a genotype that is most likely to decrease the neur al network error
in succeeding iterations. For every element p in th e t raining dat a set, a
procedure for det ermining the pre ferred genoty pe is applied. The procedure is
based on heur ist ic rules (whose det ailed considera t ion follows) that eventually
define a value f (p). The procedure is repeated for every element in the
t ra ining dat a set, and the genotype is selected according to the minimum
L:E P>O f (p)·

Let us define an effective unit Vi as a un it whose Bf < EP. Such a
unit might have a genotype that yields an opposite out put , which certainly
will affect an d reduce the error EJ'. T hat genotype will replace its unit if
it reduces the overall error E accumulated for the ent ire learning dat a set .
On the other hand, when the unit is not effect ive no change (genotype)
can improve the present network state. T herefore, we define t he first and
fundament al heuristic assumpt ion as follows.

A ssu m p t ion 1. Increasing the number of effective units in the network im­
proves the convergence process.

We will add several other assumpt ions that will enable intermediate states
with more effective units, or with other benefit criteria. The subsequent
assumptions are expressed in terms of the fitness value that the genet ic al­
gorithm accumulates for the ent ire learning dat a set, and are verified by
the results of the simulat ions . The proposed algorithm treats effective and
non-effective unit's genot ypes different ly.

H euristic r ules for effective unit s . Let us define an inverse connec­
tion as a connect ion from hidden unit Vj to unit Vi that yields an inverse
output of Vi (an by substitut ing -a~ for a~ in equa t ion (2) . If this subst itu­
t ion does not affect Vi output , the connect ion is considered to be a non-inverse
connect ion.
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A disturbing connection is a connect ion between two effect ive hidden units
Vi and Vj, which is a non-inverse connect ion from Vj to Vi . Such a connect ion
prevents generation of new connect ions under the feedforward restriction.
Our goal in the algorithm is to allow as many st ructural cha nges of the
neur al network as needed , therefore we will prefer a network with a minimum
numb er of disturbing connect ions to effective units. We can therefore state
the following assumption.

Assum ption 2. A genotype of an effective unit Vi with a smaller number
of disturbing connections is preferred.

If such a genotype is not found , we consider the next assumption.

Assum pt ion 3. Among genotypes having the same numb er of disturbing
connections, the one whose disturbing connections have the lowest weights
(Wij) is preferred.

In the case that effective uni t Vi does not have disturbing connect ions,
its genotypes are evaluated according to the desired-inverse connection. A
desired-inverse connection is a connect ion from a non-effecti ve hidden uni t to
an effective uni t that is neither an inverse nor an allowed (but nonexistent )
connect ion, according to the feedforward const raint. A non-effective unit
might becom e an effect ive unit in succeeding iterations if its connect ion to
another effect ive unit becomes an inverse connect ion .

Accord ing to Assumption 1, we prefer neur al networks with th e max imum
number of effect ive uni ts; therefore , we shall prefer a genotype from the
effective uni t pool which has a maximum numb er of inverse connect ions from
hidden non-effective units, or , in ot her words, has minimum desired-inverse
connections. Thus, we state the next assumption.

Assumption 4. A genotype of an effective unit Vi with a smaller num ber
of desired-inverse connections is preferred.

We illustrate the lat ter assumpt ion by means of the two-bit adder prob­
lem. The network architecture in state (1) of figure 2 is displayed in figure 4.
In that stage, according to Assumption 4, the pro cess modifies the network
in order to establish a preferable state toward convergence (wit hout gain ing
a direct error reduction). In Figure 4, unit 6 is an effect ive unit while unit 5
is not ; the connect ion from unit 5 to unit 6 is non-inverse, such that unit 6
has one desired-inverse connect ion. The algorithm prefers a unit 6 genotype
that decreases th e numb er of desired-inverse connect ions for that uni t . In
this genotype, the weights of the connections from units 1, 2, and 5 to uni t 6
were modified; as a result , t he connect ion between units 5 and 6 becomes an
inverse connect ion. Unit 5 is t hereby turned into an effective unit , ena bling
continuation of th e convergence.

In order to differentiate among genotypes of an effective un it that have
no disturbing connect ions, but have the same numb er of desired-inverse con­
nections, we estimate how far each genotype outp ut is from being inverted.
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9

Figure 4: First example of an intermediate network stage.

Among the genot ypes that obtained the same error , we shall prefer th e one
that is the closest to being inverted , since only that genotype whose output
is the inverse of the original output has the potential to redu ce the error.

To measure how far t he output is from being inverted , two parameters
must first be defined . The first paramete r is rJ?, which determines how far
genotype k is from act ually reducing t he error FJ' (that is, chang ing unit Vi

output from af to -aD. This parameter is defined as

(4)

where wt are t he weights and b7 is the bias of genotype k of unit Vi . The

second parameter, \ ']' , evalua tes the distan ce of a desirable-inverse connec­
tion from becoming an inverse connect ion. The second parameter is defined
as

(5)

A genotype with smaller values of f3 and A is pre ferred.

Heuristic rules for non-effective units. Hidden units th at are non­
effect ive do not have the potent ial to reduce the erro r in the current iterat ion
for a given input . We t herefor e shall define heur istic rul es that will allow as
much generation of new connections as possible, t hereby increasing the num­
ber of effect ive units in succeeding iterations. The new connect ions thus
generated can contribute to the reducti on of t he neur al network error. Exist­
ing connect ions between hidden units limit the genera t ion of new connect ions
because of the feedforward struct ure restrict ion. Let us define an internal
connection as a connect ion between hidden units, which allows us to state
th e following assumption.

Assumption 5. A genotyp e with a smaller number of internal connections
is preferred.
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Figure 5: Second example of an intermediate network stage.

If all t he genotypes have the same number of internal connections we shall
prefer those with the lowest weights (see Assumption 3).

Assumption 6. Among genotypes having the same number of internal con­
nections, the one with the lowest weight values of internal connections is
preferred.

An output uni t is considered t o be non-effect ive when it has t he correct
output ; inverting such a uni t increases the error. Any inverse connect ion
from hidden un it Vj might convert correct outp ut . Therefore, we have the
next assumption:

Assumption 7. A non-effective output unit genotype with a smaller num­
ber of inverse connect ions is preferred.

We again exemplify the lat ter assumption by means of the two-bit adder
pr oblem. The network architecture in state (2) of figure 2 is describ ed in
figur e 5. There the out put of uni t 8 is correc t and t he out put of unit 9 is
not . Unit 8 in this state is a non-effective output un it. The connect ion from
unit 6 to unit 8 is inverse, and t he algorithm pr efers a genoty pe of unit 8
that hass a non-inverse connection from uni t 6. Replacing unit 8 changes
the weigths from uni ts 2, 3, and 6, as well as the bias ; and for one of t he
patterns wit h erroneous network output the connect ion from unit 6 becomes
non-inverse. As a consequence any change in uni t 6 would not increase t he
err or , and, ind eed , the subsequent it eration allows a change in uni t 6.

To differentiate among t he genotypes of out put unit Vi t hat have t he same
number of inverse connect ions , we define a par ameter T;'j. This par ameter
evaluates how far the inverse connect ion is from being non-inverse:

(6)

A genotyp e with smaller values of T is pr eferred.
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The overall fitness. Based on the above assumpt ions, the algorithm
updates the genotyp e fitness value for every training data set. For a given
element p in the t ra ining dat a set we define a fitness value for every hidden
unit Vi , as follows:

if Zf >O

otherwise

{
KIEP+ K 2N[ + K 3TJf

if = K1Ef + K 2Sf + K 3W sp,

where

{

W zi

TJf = min'\P /3P
j 1.J' 1.

P {Zf if Zf > 0
Ni = Rf otherwise

if Vi E Y P

otherwise
(7)

Y P repr esents the effect ive units set , Sf the numb er of internal connections
to unit Vi, and WsP the minimal weight of int ern al connection to unit Vi ;

ws; = miIlwi j EWW;j , Vi ,Vj E VH . Zf represents the numb er of disturbing
connect ions, and Rf the number of the desired-inverse connections.

For an output unit th e fitness is defined as

if Vi E Y P

otherwise
(8)

where I i is the unit Vi inverse connections set , and tf = min , Tfy. K 1 » K 2 »
K 3 are positive constants. The genotype that obtains the minimum of the
L:EP>O f(p) is selected.

3. Simulation results

Initial results are present ed here for the algorithm that we have proposed.
The algorit hm was test ed in parity, symmetry, and two-bit adder problems.
Such problems are used as benchmarks for various neur al network training
methods [14].

Parity. Ext ensively discussed in [12] and [14], parity is th e most com­
monly used problem for comparison of neur al network training methods. For
a binary input vector cont ain ing values of + 1 and -1 , the output required
is +1 if the +1 numb er at the input vector is even, and -1 otherwise. This
problem is difficult to solve using a neur al network because the out put re­
quired is different for the closest input vectors (which differ only by a single
bit ). For a network cont aining a hidden layer , the minimum number of units
in the hidden layer is identi cal to the numb er of the inpu t-layer uni ts. Only
when addit ional connections are allowed-for example, between the input
and output layers- can the numb er of hidd en unit s be redu ced.
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Problem Hidden units Median Success rate

pari ty 4 4 148 0.98
pari ty 4 3 198 0.96
par ity 4 2 460 0.72
pari ty 5 5 253 1.00
parity 5 4 203 0.98
parity 5 3 502 0.94
pari ty 6 6 2380 0.70
parity 7 7 3799 0.60
symmetry 4 2 160 0.92
symmetry 6 2 1788 0.70
2-bit binary adder 2 399 0.54

Table 1: Simulation results. The median is a measure of the number
of iterations required for a success rat e of 50%.

471

Symmetry. For this problem, a dist inct ion is made if the input vecto r
shows symmetry with respect to the cent er. The output required is + 1
for a state of symmetry and -1 otherwise [14J. This problem, too, has
been attempted by various t ra ining processes. The minimum solution for a
network with a hidden layer is a network containing only two units in t hat
layer.

Two-bit binary adder. In t his case , t he problem is to find a network
that performs summing of two binary numb ers with two bits each. This
network contains four units in the input layer and th ree in t he out put layer,
for which summation is required . Minimum implementation is obtained using
a network cont aining only two hidden units. Two-bit add er problems are
frequent ly t rapped at local minima when the backpropagation algorithm is
used, if hidden uni ts are not added [14].

Whil e simulating the above problems, the following parameters for the
genetic algorithm were defined.

• Population size-40 genotypes per unit

• Selective pressure-1.6 (the top ranking genotype in the population is
defined as being 1.6 t imes more likely to reproduce t han the average
individual in the population)

• Mutation rate-0.1

Convergence was checked in 50 tri als for each problem, where every t rial be­
gan with a rand om initial state of the neural network (t hat is, connect ions and
their associate weights ). T he simulat ion results are summarized in table 1.

For comparison, in two problems we have tried to obtain convergence with
the conventional backpropagation algorit hm, without adding hidden units.
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(Hidden units are usually added in order to avoid entrapment at local minim a
[14, 16J .)

• Pari ty 4 with three hidden-layer uni ts (with connect ions between out­
pu t and input layer): No convergence was obtained in many trials, with
various initi al condit ions and various values of gain and moment um [14].

• T wo-bit binary adder : No convergence was achieved, and the back­
prop agation pro cess was found to "reliably lead the system into local
minima" [14] when searching for the solut ion with only two hidden
units.

4 . Convergence to a steady state

We can prove that the distribut ed it erative pro cess we have presented, with
some restri ctions, is a converging pro cess. The restricti ons we set are t he
following:

• The algorit hm is performed asynchronously (step 5 is applied only to
a single unit).

• The stochast ic modifications are avoided (step 7 is not applied).

• The genotype that can substit ute its unit when it does not reduce t he
network error E should have the following properties: (1) for every
element in t he t ra ining dat a set , its out puts should be t he same as
t he unit out puts; (2) it should not cancel an inverse connect ion to an
effective unit ; and (3) it should not add an inverse connect ion from an
effective to a non-effective unit .

These restrictions enable us to prove that the t raining process converges
to a steady state, but they also significantly slow the convergence process.

Let us define an "energy" function F.

+ L (K 3 I[ + K 4tn)
I!;\i! YP
I!;EVM

(9)

where

- p _ {KsZ[ if Z[ > 0N -, Rf otherwise

and where tc, » K 2 » K 3 » K 4 » tc, » 1 are positive constants . We
shall prove that F has a lower bound, and that it is decreased with every
change in network st ructure and weights until it reaches a steady state.

If in a certain itera tion F = 0, the obtained network represents the solu­
tion for the whole t ra ining dat a set. We shall show that a series of energy
functions obtained in n iterations Fl , F2 , . .. , Fn sat isfies Fi+l ::::: Fi.
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Theorem 1. A network converges to a steady state when it is trained by
the distributed genetic algorithm .

Proof. To prove convergence to a steady state we shall show that liIIln_ oo
r ; 2 O. Since all the constants and te rms for F; are nonnegative, F; 2 0 for
every i .

Every change in the network indi cates that a certain genotype is selected
to replace it s unit inputs. If the curre nt iteratio n n yields energy F,.. , then
select ing a genoty pe that replaces a unit Vi resul ts in a modified neur al net­
work whose energy is Fn+1 ' We shall show that Fn+1 < Fn . If t he genotype
error is smaller than t he original error E , Fn +1 < Fn . According to the
definit ion , K1 » K 2 » K 3 » K 4 » K 5 ; therefore , if t he first term in
equat ion (9) is greater in iteration n t han in iteration n + 1, the ot her terms
are negligible. When t he error of t he selected genotype in iteration n + 1
is equal to t he error in iteration n , the second and third terms in equa tion
(9) must be considered. A genotype was selected, thus there exists a unit v,;
whose L:EP>Oj;(p) is smaller t han that obtained in iteration n . However it
is possible that for anot her uni t Vj, L: EP>O j j (p ) is greater in iteration n + 1.
But in the restricted algorithm, it can happen only in two cases :

1. If Vj was not an effective unit in iterat ion n and became one in it era­
tion n + 1. However , even if L:EP>Oh (p) is greater in iteration n + 1,
Fn+1 < Fn because the number of non-effect ive units in it eration n + 1
was reduced relative to iteration n. T he result ant energy as defined
by equat ion (9) is lower , since K2 multiplies t he number of t he non­
effect ive units, and K2 >> K3 .

2. The number of disturbing connect ions Zf to uni t Vi is reduced and the
number of desired-inverse connections to ot her uni ts may be increased.
In this case F is decreased , since K 5 » 1. •

Note that t he numb er of iterat ions requir ed to achieve convergence has no
upp er bound, since only some of the iterations yield changes in the network
architecture or its weights. The process is composed of a series of changes,
each of which reduces F unti l it stops at a global or local minimum .

5. Discussion and conclusions

We have present ed a new approach to t he design and training of neur al net­
works, using a distributed genetic algorithm. Since most of the calculations
are performed separately for each unit , the training process can efficient ly
use a parallel computer.

T his pr ocess modifies network st ructure in order to find opt imal param­
ete rs . For each unit , t he best set of parameters is sought within a dynamic
environment generated by other units t hat also vary. We conclude from the
simulat ions that the presented approach provides robust ness against ent rap­
ment at a local mini mum, in cont ras t to gradient descent processes. T his
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approach eliminates the need to predeterm ine network structure elements,
and achieves efficiency by using a search space orders of magnitude smaller
than t hat used in standard methods.

T he est imated search-space size of this algorithm ind icates its pract ical
significance for real-world problems previously solved using larger networks.
For a network with n uni ts (in which every unit can be connected to n- 1 units
and a bias, every connect ion can be one of K possible weights; and where the
search space consists of all possible feedforward networks) the search space
is of the order K{1/2)n(n+l). In our algorithm the maximum local search space
is K" (n - 1 connections and a bias); and for n units, nKn. T his search
space is for a given intermediate state of the network ; for th e ent ire pro cess
we must multip ly it by the maximum possible number of intermediate states
until convergence. This can be est imated for the rest rict ed algorithm (as
describ ed in sect ion 4), since th e energy function F is bounded from below
and is decreased with every change. In studying the energy function (9) , we
find that the changes with error reduct ion are primarily of order 'Z'. T he
changes with no error reduction for a unit is maximum: K possible weight
changes from each (n -1) units and a bias, thus of the order nK and n2K for
all t he uni ts. Therefore, the search space for the restricted algorit hm is of
the order 2n n3K": Clear ly, t his is significantly smaller th en the search space
of previous proc esses (for large n):

(10)

Future research should include testing th e algorithm in pract ical prob­
lems, and implementing it on parallel hardware. From our earliest simula­
tions, we have found this approach to be very promising.

Appendix A The algorithm

A concise version of the dist ributed genetic algorithm follows.

1. Set a random initial st at e of a feedforward network N , an d a set of
genotyp es G .

2. Zero the overall network output error values and genotype fitness val­
ues.

E=O

l = 0 V 0:::; k < K , N:::; i < N + H + M

3. Set input vector XP and calculate the unit outputs (equation (2)).

4. Calculate E P (equation (1)) and updat e E (equation (3)) .

5. Calculate Bf for each of t he hidden and out put units.

6. Upd ate H (which is assigned to each genotype) , according to the
flowchart in figure 6.
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Figure 6: Fitness updating flow chart .
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K1, K2 , and Ka are constants for which the following holds: K1 »
K 2 » K a. The superscript k denotes th at the parameter is of genotype
k .

(11)

where w;f is the minimal weight of a disturbing connection to unit 7J;.

K1EP+ Ka'f/;P if Ef < EP, and both t he
t ra ining data set vectors for
which EP > 0 and af are un­
changed for a fixed number
of cycles

K1EP+ K2Si
kp +Kaw~; otherwise, if Vi is an hidden

unit

K1EP+ K2I;P+ Kat7P otherwise (12)

where w;f is the minim al weight of an intern al connect ion to unit Vi .

K1EP+ K2 H
- k kdg4 = K1Ef +K2(Qi - Ii ) +KaDi

if Ef = EP, and both the
training data set vecto rs for
which EP > 0 and af are un­
changed for a fixed numb er
of cycles

otherwise (13)

(14)
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where Qi is the number of pos ible connections to unit i that would not
interfere with the feedforward st ructure of the network.

7. Repeat steps 3 to 6 for all t raining dat a set vect or pairs P .

8. Find the genotype l with the lowest fitne ss value rA in each genotype
set of a non-isolated unit (where t he supe rscript l denotes t hat the
parameter is of genotype l )

f l = minfk
, k ' (15)

and maintain zI ::; Zi. This constra int can be relaxed if the network
error calculated for that genotype is smaller than E.

For those genotypes t hat are found to have both t he lowest element
of network error and a bet ter fitness t han t he exist ing uni t inpu ts, the
network is modified as follows:

W ij = { ~L

b, = b~

'if cL
oth erwise

(16)

(17)

If the network st ructure has been modified, no further modific ati ons
are execut ed during t his cycle.

For an isolated unit Vi , random modificat ions of W ij are done for each
C;j E C, afte r a certain number of iterations.

If there exist C;j E Q and C;j (j. C at a low probability, one of the
connections is exchanged.

9. New populations of genotypes are pro duced with the three GA opera­
tors, according to the fitness values of !;k.

10. If E > 0, repeat steps 2 to 9 until the overall error obtained equals zero
or t he maximum number of iterations is reached.
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