Complex Systems 6 (1992) 459-477

A Distributed Genetic Algorithm for Neural Network
Design and Training

S. Oliker
M. Furst
Dept. of Electrical Engineering—Systems,
Faculty of Engineering, Tel Aviv University,
Ramat Aviv 69978, Israel

O. Maimon
Dept. of Industrial Engineering,
Faculty of Engineering, Tel Aviv University,
Ramat Aviv 69978, Israel

Abstract. A new approach for designing and training neural net-
works is developed using a distributed genetic algorithm. A search for
the optimal architecture and weights of a neural network comprising
binary, linear threshold units is performed. For each individual unit,
we look for the optimal set of connections and associated weights
under the restriction of a feedforward network structure. This is ac-
complished with the modified genetic algorithm, using an objective
function—fitness—that considers, primarily, the overall network er-
ror; and, secondarily, using the unit’s possible connections and weights
that are preferable for continuity of the convergence process. Exam-
ples are given showing the potential of the proposed approach.

1. Introduction

Interest in neural networks has increased tremendously in recent years. Much
of this renewed interest has been motivated by the development of super-
vised learning algorithms that were applied for different purposes, especially
for classification tasks. However, none of the existing algorithms offers an
analytic solution that shows which neural network should be designed for a
given problem [6]. The most common algorithm for training neural networks
is backpropagation [14]. In many applications that used backpropagation,
an appropriate neural network was found after a reasonable number of iter-
ations [14, 6]. The main drawback of the backpropagation algorithm is that
there is nothing in the algorithm that prevents it from becoming trapped in
local minima; evidently, in many problems, such as adder and parity [14],

460 S. Oliker, M. Furst, and O. Maimon

the neural network that is obtained by backpropagation does not give the
correct solution.

Several studies used genetic algorithms (GAs) while training neural net-
works [17, 13, 11, 5, 8, 9]. They chose GAs because they were found to be
effective in a wide variety of search and optimization problems that otherwise
were trapped in local minima [7, 3]. GAs were included in the training of
neural networks in several ways by different studies. Whitley and Hansen
[17] and Montana and Davis [13] presented training processes in which GAs
were applied for determination of the weights between connected nodes in
neural networks. Both studies yield better results when compared to back-
propagation, including cases that are often trapped in local minima. Miller
and Tod [11], Harp, Samad, and Guha [5], and Kitano [8] presented attempts
to produce a process using GAs in which connections between nodes could
be constructed or deleted during the training period. However, the network
performance was evaluated by means of the conventional backpropagation
algorithm. Therefore, the combination of backpropagation and GAs yielded
reasonable results only for limited cases.

Using the backpropagation method in training neural networks limits the
potential of GAs to avoid entrapment in local minima. Koza [9] suggested a
process of neural-network design using GAs for both the structure and the
weights, and tested it for an XOR problem. These attempts were practical
only for networks with a limited number of units because the search space
increased exponentially [8].

A different approach for building a feedforward layered network was pre-
sented by Mézard and Nadal, using the tiling algorithm for any given Boolean
function [10]. The architecture is not fixed in advance, but is generated by a
growth process that adds layers (and units inside a layer) until convergence.
Alpaydin’s Grow-and-Learn (GAL) algorithm [1] presents a process that also
guarantees an error-free training data set, by adding and removing “exemplar
units” in order to get the correct classification. The network size obtained
in these algorithms might grow more than necessary, and the generalization
thus obtained might be unsatisfactory (as Baum and Haussler [2] show).

In the present study, we introduce a distributed genetic algorithm for
training neural networks with GAs in which the search for the optimal neu-
ral network is done separately for every unit that is a single neuron in the
neural network. This search method is one of the major differences between
our work and other studies that combine both methodologies. The search
space is drastically reduced in comparison to the previous works that con-
sider the entire neural network. The search is done over the whole unit’s
possible connections and weights in every given state of the network during
the process. This gives our approach an advantage over the gradient descent
methods—robustness to entrapment in local minima—and therefore expands
the range of solvable problems. This method yields a neural-network training
algorithm that performs dynamic modification of a network structure and its
weights, and at the same time eliminates the need to predetermine the net-
work structure (the number of internal layers and number of units in each

A Distributed Genetic Algorithm 461

layer, for example). The algorithm iteratively alters connection weights, and
either generates or eliminates connections in order to reduce the error of a
given network. Nevertheless, when no alteration is found to reduce the net-
work’s error in an iteration, each unit is examined to see whether replacing
it by optional unit inputs would help improve the convergence process to the
global minimum. For this purpose the algorithm defines for each unit a group
of strings used as optional unit inputs, which is called “the unit genotype
population.” This group of strings is revised with the GA operators at the
end of each iteration.

2. The Algorithm Description
2.1 Problem Statement

Let us define AV as a network with a feedforward structure, N' = {V, C, W, B},
where V, C, W, and B are sets of units, connections, weights, and bias
values, respectively. V' is the union of three disjoint sets Viy, Vg, and Vjy,
where Vy includes N units in the input layer, V includes H hidden units,
and Vi includes M units in the output layer. The training data set is
composed of P elements. Each element p is a pair of vectors {X?, DP},
where XP = (a8,...,2%_,) is the input vector, and DP = (B, ...,d%,_,) is
the output vector whose values are defined as & = +1 fori =0,...,M — 1.

To accomplish an appropriate neural network for a given task, we start
with a network whose numbers of units in the input and output layers are
driven by the problem; the initial neural network has an arbitrary number of
hidden units with the constraint of a feedforward structure. The purpose of
the distributed genetic algorithm presented here is to design a neural network
that will yield a minimum error between the given output vectors and those
derived by the neural network.

For each training element p, EP is the error that is obtained by

. 1 M-1 " "
EF = 5 Z |dm - aN+H+mI’ (1)

m=0

where a? is the output of unit v; obtained by the NN for input vector X?.
The output of a unit v; is defined as
x? if v; € Vy

a}f — N+H-1 (2)
. sgn Z wi;al +b; | otherwise

7=0

where w;; is the weight of the connection from unit v; to unit v;, and b;
is the bias of unit v;. The neural network is modified after each iteration
according to convergence criteria that will be discussed in section 2.3. The
modifications are applied not only to the connection weights (as is usually
done in neural network learning algorithms), but also to the neural network

462 S. Oliker, M. Furst, and O. Maimon

Step 1. Set arbitrary initial state of network
and units genotype populations

Step 2. Apply the training data set and
calculate the network output error and fitness
value

Step 3 Calculate fitness values for all the genotypes

Step 4. Terminate when achieving desired network
error or exceeding a maximum
number of iterations

Step 5. Modify the network by using the best
genotypes

Step 6. Create a new generation of genotypes for each
unit with the use of GA operators

Step 7. Modify inputs to isolated units

Step 8. Repeat by going to Step 2

Figure 1: The neural network distributed genetic algorithm.

structure (by adding and deleting connections between units), which is less
common.

The network A/ is modified in an iterative process to reduce the current
error F/, which is the overall neural network mean error for the entire training
data set:

1 P-1
E=3 S EP (3)
p=0

2.2 The neural network distributed genetic algorithm

The distributed genetic algorithm operates separately on each of the hidden
and output-layer units. The algorithm specifies a population of genotypes for
each of these units. For unit v; there are K genotypes, where each genotype
g¥ (k= 1,..., K) includes connections with weights and a bias value. Every
genotype maintains the feedforward structure of the network.

The iterative process is composed of eight primary steps, which are sum-
marized in figure 1. A concise version of the algorithm appears in Ap-
pendix A.

The algorithm is performed by applying the following steps for a given
problem:

Step 1: The algorithm sets the number of the input and output units, an
arbitrary number of hidden units, and an initial feedforward structure. K
genotypes are assigned randomly for each hidden and output unit.

Step 2: The whole training data set is applied to the neural network by
setting the input layer to X?, calculating the output of the neural network,

A Distributed Genetic Algorithm 463

and comparing it to the set DP. Two terms are then derived: a fitness value
equal to the network error as defined in (3), and an additional term that is
determined according to heuristic convergence criteria that are discussed in
section 2.3.2.

Step 3: Step 2 is repeated for every genotype of the hidden and output-layer
units. The complexity is significantly reduced because of the binary output
of the units (for more details, see section 2.3.1).

Step 4: The algorithm stops if the desired network error is obtained or the
number of iterations exceeds a maximum number.

Step 5: For every unit, the genotype with the minimum fitness value is
chosen as a candidate to replace the current unit. If among all the candidates
there is one that yields a minimum error, it replaces the current unit in the
NN. If among the candidates there are several units that yield the same
minimum error, the replacement of the different units is done sequentially.
The replacement is stopped if one of the candidates causes a structural change
in the neural network (that is, the addition or deletion of connections).

Step 6: In the reconstructed neural network, new genotypes in the popula-
tion are assigned to each unit in the hidden layer that has a path to a unit
in the output layer, and to units in the output layer. A new population of
K genotypes is reproduced from the population of K current genotypes by
the genetic algorithm [3] as follows.

1. A pair of genotypes is picked from the current population by the rank-
ing selection method. By using ranking selection in the algorithm the
selective pressure and population diversity are better controlled, and
premature convergence caused by genotypes with very high fitness ra-
tios is avoided [3, 4, 18]. The ranking is performed according to the
fitness value, which allows the definition of a linear distribution func-
tion for the genotype selection procedure.

2. A new pair of genotypes are produced by a uniform crossover operation
that is applied to the selected pair [3, 15]. The different connections
in the reproduced genotypes get their weights with equal probability
from one of the parent genotypes.

3. A mutation operation is applied to the new pair of genotypes. This
operation includes random changes of weights and bias values, and
generation of new possible connections at low probability.

Step 7: Since the algorithm makes dynamic modifications in the neural
network structure, some units might become isolated, with no route to the
output-layer units and no effect on the neural network output error. After a
number of iterations, the connections to such units are modified randomly.

Step 8: Perform the next iteration by going to Step 2.

464 S. Oliker, M. Furst, and O. Maimon

Figure 2: Error versus changes in the network.

This iterative training process dynamically modifies the neural network
in order to find a solution. Figure 2 illustrates this behavior for the two-bit
adder problem. The network’s error is displayed whenever the network is
altered. Changes occur both with and without error reduction (as a result of
modifications of the network toward a preferable state). This representative
example indicates a local minimum entrapment when considering the output
error as the only criteria.

Another illustration describes the learning process behavior for a simple,
small neural network of the “parity four” problem. (In this problem there are
four input units and one output unit. For this example we chose two hidden
units.) Six different states of the learning process are shown in figure 3.
In the initial state (a) unit 6 is isolated. Following one iteration (b) the
neural network was modified so that the connection from hidden unit 5 to
output unit 7 was eliminated, thus two hidden units became isolated. This
connection was regenerated, however, in a later iteration of the learning
procedure (c). The connection between the two hidden units 5 and 6 was
generated only following the random modifications of the input connections
to the isolated unit 6 (d). Evidently, without this modification the neural
network did not converge to a final state. In the final state (f) none of the
units were isolated; in comparison to the initial state, two connections had
been added, one from hidden unit 6 to output unit 7, and the second between
hidden unit 6 and hidden unit 5. Note that the connection between units
6 and 5 was generated only after the connection between these two units in
the opposite direction was eliminated (d and e).

2.3 Evaluation of genotype fitness

The fitness value is defined by heuristic considerations, and it consists of two
main components. The first relates to the network error for the genotype,
and the second expresses the NN convergence ability. The genotype with the
smallest fitness value will be favored.

A Distributed Genetic Algorithm 465

(a) (d)

S

-~
N
=

\]
N

(b) (e)

1 4

o
[N

Figure 3: An example of modifications in network structure in the
learning phase of a parity-four problem; (a) represents the initial ran-
dom network, (b—f) the developments on the way to the final network.

466 S. Oliker, M. Furst, and O. Maimon

2.3.1 Calculation of network error for the genotype

In every iteration one wants to choose the best genotype of all hidden and
output units; therefore, the neural network error has to be calculated (H +
M)K + 1 times. Instead of calculating the network error for each genotype
replacement, we take advantage of the fact that the output value of a hidden
unit or an output unit can be either +1 or —1 (2). As a result, the genotype
output can either yield the unit output or its inverse. The genotype error for
a given training vector p is thus equal either to EP (1), or to EF—which is
calculated as EP, except that unit v; output a? is replaced by —a?. Therefore,
in the beginning of every iteration we obtained only EP and H + M values
for EF, and the error of every genotype was then assigned as EP or EF.

2.3.2 Evaluation of genotype influence on network convergence

The network error is not the only criterion for network modifications, as
several genotypes might have the same error F; in that case our purpose is
to find a genotype that is most likely to decrease the neural network error
in succeeding iterations. For every element p in the training data set, a
procedure for determining the preferred genotype is applied. The procedure is
based on heuristic rules (whose detailed consideration follows) that eventually
define a value f(p). The procedure is repeated for every element in the
training data set, and the genotype is selected according to the minimum
Ym0 f(p)- _

Let us define an effective unit v; as a unit whose Ef < EP. Such a
unit might have a genotype that yields an opposite output, which certainly
will affect and reduce the error FP. That genotype will replace its unit if
it reduces the overall error E accumulated for the entire learning data set.
On the other hand, when the unit is not effective no change (genotype)
can improve the present network state. Therefore, we define the first and
fundamental heuristic assumption as follows.

Assumption 1. Increasing the number of effective units in the network im-
proves the convergence process.

We will add several other assumptions that will enable intermediate states
with more effective units, or with other benefit criteria. The subsequent
assumptions are expressed in terms of the fitness value that the genetic al-
gorithm accumulates for the entire learning data set, and are verified by
the results of the simulations. The proposed algorithm treats effective and
non-effective unit’s genotypes differently.

Heuristic rules for effective units. Let us define an inverse connec-
tion as a connection from hidden unit v; to unit v; that yields an inverse
output of v; (a}) by substituting —a¥ for ¥ in equation (2). If this substitu-
tion does not affect v; output, the connection is considered to be a non-inverse
connection.

A Distributed Genetic Algorithm 467

A disturbing connection is a connection between two effective hidden units
v; and v;, which is a non-inverse connection from v; to v;. Such a connection
prevents generation of new connections under the feedforward restriction.
Our goal in the algorithm is to allow as many structural changes of the
neural network as needed, therefore we will prefer a network with a minimum
number of disturbing connections to effective units. We can therefore state
the following assumption.

Assumption 2. A genotype of an effective unit v; with a smaller number
of disturbing connections is preferred.

If such a genotype is not found, we consider the next assumption.

Assumption 3. Among genotypes having the same number of disturbing
connections, the one whose disturbing connections have the lowest weights
(w;;) is preferred.

In the case that effective unit v; does not have disturbing connections,
its genotypes are evaluated according to the desired-inverse connection. A
desired-inverse connection is a connection from a non-effective hidden unit to
an effective unit that is neither an inverse nor an allowed (but nonexistent)
connection, according to the feedforward constraint. A non-effective unit
might become an effective unit in succeeding iterations if its connection to
another effective unit becomes an inverse connection.

According to Assumption 1, we prefer neural networks with the maximum
number of effective units; therefore, we shall prefer a genotype from the
effective unit pool which has a maximum number of inverse connections from
hidden non-effective units, or, in other words, has minimum desired-inverse
connections. Thus, we state the next assumption.

Assumption 4. A genotype of an effective unit v; with a smaller number
of desired-inverse connections is preferred.

We illustrate the latter assumption by means of the two-bit adder prob-
lem. The network architecture in state (1) of figure 2 is displayed in figure 4.
In that stage, according to Assumption 4, the process modifies the network
in order to establish a preferable state toward convergence (without gaining
a direct error reduction). In Figure 4, unit 6 is an effective unit while unit 5
is not; the connection from unit 5 to unit 6 is non-inverse, such that unit 6
has one desired-inverse connection. The algorithm prefers a unit 6 genotype
that decreases the number of desired-inverse connections for that unit. In
this genotype, the weights of the connections from units 1, 2, and 5 to unit 6
were modified; as a result, the connection between units 5 and 6 becomes an
inverse connection. Unit 5 is thereby turned into an effective unit, enabling
continuation of the convergence.

In order to differentiate among genotypes of an effective unit that have
no disturbing connections, but have the same number of desired-inverse con-
nections, we estimate how far each genotype output is from being inverted.

468 S. Oliker, M. Furst, and O. Maimon
7 8 9

Figure 4: First example of an intermediate network stage.

Among the genotypes that obtained the same error, we shall prefer the one
that is the closest to being inverted, since only that genotype whose output
is the inverse of the original output has the potential to reduce the error.

To measure how far the output is from being inverted, two parameters
must first be defined. The first parameter is G, which determines how far
genotype k is from actually reducing the error EP (that is, changing unit v;
output from a? to —a?). This parameter is defined as

N+H-1

B =| 3 whal+0f|, (4)
j=0

where wfj are the weights and bf is the bias of genotype k of unit v;. The

second parameter,)\ff , evaluates the distance of a desirable-inverse connec-
tion from becoming an inverse connection. The second parameter is defined
as

NH-1 . i
Z Winp + b7 + 2wj;(—af)
n=0

(4)

kp _
)\ij =

A genotype with smaller values of § and \ is preferred.

Heuristic rules for non-effective units. Hidden units that are non-
effective do not have the potential to reduce the error in the current iteration
for a given input. We therefore shall define heuristic rules that will allow as
much generation of new connections as possible, thereby increasing the num-
ber of effective units in succeeding iterations. The new connections thus
generated can contribute to the reduction of the neural network error. Exist-
ing connections between hidden units limit the generation of new connections
because of the feedforward structure restriction. Let us define an internal
connection as a connection between hidden units, which allows us to state
the following assumption.

Assumption 5. A genotype with a smaller number of internal connections
is preferred.

A Distributed Genetic Algorithm 469

Figure 5: Second example of an intermediate network stage.

If all the genotypes have the same number of internal connections we shall
prefer those with the lowest weights (see Assumption 3).

Assumption 6. Among genotypes having the same number of internal con-
nections, the one with the lowest weight values of internal connections is
preferred.

An output unit is considered to be non-effective when it has the correct
output; inverting such a unit increases the error. Any inverse connection
from hidden unit v; might convert correct output. Therefore, we have the
next assumption:

Assumption 7. A non-effective output unit genotype with a smaller num-
ber of inverse connections is preferred.

We again exemplify the latter assumption by means of the two-bit adder
problem. The network architecture in state (2) of figure 2 is described in
figure 5. There the output of unit 8 is correct and the output of unit 9 is
not. Unit 8 in this state is a non-effective output unit. The connection from
unit 6 to unit 8 is inverse, and the algorithm prefers a genotype of unit 8
that hass a non-inverse connection from unit 6. Replacing unit 8 changes
the weigths from units 2, 3, and 6, as well as the bias; and for one of the
patterns with erroneous network output the connection from unit 6 becomes
non-inverse. As a consequence any change in unit 6 would not increase the
error, and, indeed, the subsequent iteration allows a change in unit 6.

To differentiate among the genotypes of output unit v; that have the same
number of inverse connections, we define a parameter 7;-];” . This parameter
evaluates how far the inverse connection is from being non-inverse:

N+H-1
T =] Y winah + b + 2uj(—df) (6)

n=0

A genotype with smaller values of 7 is preferred.

470 S. Oliker, M. Furst, and O. Maimon

The overall fitness. Based on the above assumptions, the algorithm
updates the genotype fitness value for every training data set. For a given
element p in the training data set we define a fitness value for every hidden
unit v;, as follows:

g KiEP + KQNZP + Kg?ﬁ ifv, e YP .
K= K\Ef + K57 + Kzwge otherwise @
where
M = mm AP;, 87 otherwise
- Zg’ it 27 >0
‘ R? otherwise

Y? represents the effective units set, S the number of internal connections
to unit v;, and wgr the minimal weight of internal connection to unit v;
Wep = ming, .ew Wsj, vi,V; € Va. ZP represents the number of disturbing
connections, and R the number of the desired-inverse connections.

For an output unit the fitness is defined as

fp KlEp if v € Yr (8)
¢\ KyEP + KoIP + Kst? otherwise
where I; is the unit v; inverse connections set, and & = min; 7. K7 > K >

K3 are positive constants. The genotype that obtains the mlmmum of the
S Erso J(p) is selected.

3. Simulation results

Initial results are presented here for the algorithm that we have proposed.
The algorithm was tested in parity, symmetry, and two-bit adder problems.
Such problems are used as benchmarks for various neural network training
methods [14].

Parity. Extensively discussed in [12] and [14], parity is the most com-
monly used problem for comparison of neural network training methods. For
a binary input vector containing values of +1 and —1, the output required
is +1 if the +1 number at the input vector is even, and —1 otherwise. This
problem is difficult to solve using a neural network because the output re-
quired is different for the closest input vectors (which differ only by a single
bit). For a network containing a hidden layer, the minimum number of units
in the hidden layer is identical to the number of the input-layer units. Only
when additional connections are allowed—for example, between the input
and output layers—can the number of hidden units be reduced.

A Distributed Genetic Algorithm 471

Problem Hidden units | Median | Success rate
parity 4 4 148 0.98
parity 4 3 198 0.96
parity 4 2 460 0.72
parity 5 253 1.00
parity 5 4 203 0.98
parity 5 3 502 0.94
parity 6 6 2380 0.70
parity 7 7 3799 0.60
symmetry 4 2 160 0.92
symmetry 6 2 1788 0.70
2-bit binary adder 2 399 0.54

Table 1: Simulation results. The median is a measure of the number
of iterations required for a success rate of 50%.

Symmetry. For this problem, a distinction is made if the input vector
shows symmetry with respect to the center. The output required is +1
for a state of symmetry and —1 otherwise [14]. This problem, too, has
been attempted by various training processes. The minimum solution for a
network with a hidden layer is a network containing only two units in that
layer.

Two-bit binary adder. In this case, the problem is to find a network
that performs summing of two binary numbers with two bits each. This
network contains four units in the input layer and three in the output layer,
for which summation is required. Minimum implementation is obtained using
a network containing only two hidden units. Two-bit adder problems are
frequently trapped at local minima when the backpropagation algorithm is
used, if hidden units are not added [14].

While simulating the above problems, the following parameters for the
genetic algorithm were defined.

e Population size—40 genotypes per unit

e Selective pressure—1.6 (the top ranking genotype in the population is
defined as being 1.6 times more likely to reproduce than the average
individual in the population)

e Mutation rate—0.1

Convergence was checked in 50 trials for each problem, where every trial be-
gan with a random initial state of the neural network(that is, connections and
their associate weights). The simulation results are summarized in table 1.
For comparison, in two problems we have tried to obtain convergence with
the conventional backpropagation algorithm, without adding hidden units.

472 S. Oliker, M. Furst, and O. Maimon

(Hidden units are usually added in order to avoid entrapment at local minima
(14, 16].)

e Parity 4 with three hidden-layer units (with connections between out-
put and input layer): No convergence was obtained in many trials, with
various initial conditions and various values of gain and momentum [14].

e Two-bit binary adder: No convergence was achieved, and the back-
propagation process was found to “reliably lead the system into local
minima” [14] when searching for the solution with only two hidden
units.

4. Convergence to a steady state

We can prove that the distributed iterative process we have presented, with
some restrictions, is a converging process. The restrictions we set are the
following:

e The algorithm is performed asynchronously (step 5 is applied only to
a single unit).

e The stochastic modifications are avoided (step 7 is not applied).

e The genotype that can substitute its unit when it does not reduce the
network error E should have the following properties: (1) for every
element in the training data set, its outputs should be the same as
the unit outputs; (2) it should not cancel an inverse connection to an
effective unit; and (3) it should not add an inverse connection from an
effective to a non-effective unit.

These restrictions enable us to prove that the training process converges
to a steady state, but they also significantly slow the convergence process.
Let us define an “energy” function F'.

P-1
F= Z (KlEp+ Z (K3N1P+K4775) + Z (K2+K35'f+K4wa)

p=0 Vieyr V;gY?
EP>0 VieVy
+ > (K3]f+K4tf)> (9)
V;gYP
VieVm

where
P KsZP it ZP >0
! R? otherwise

and where K7 > Ky > K3 > K, > K5 > 1 are positive constants. We
shall prove that F' has a lower bound, and that it is decreased with every
change in network structure and weights until it reaches a steady state.

If in a certain iteration F' = 0, the obtained network represents the solu-
tion for the whole training data set. We shall show that a series of energy
functions obtained in n iterations Fi, Fs,..., F, satisfies F;.; < F;.

A Distributed Genetic Algorithm 473

Theorem 1. A network converges to a steady state when it is trained by
the distributed genetic algorithm.

Proof. To prove convergence to a steady state we shall show that lim,
F, > 0. Since all the constants and terms for F; are nonnegative, F; > 0 for
every .

Every change in the network indicates that a certain genotype is selected
to replace its unit inputs. If the current iteration n yields energy F,, then
selecting a genotype that replaces a unit v; results in a modified neural net-
work whose energy is Fj, ;1. We shall show that F,,,; < F,. If the genotype
error is smaller than the original error F, F,.; < F,. According to the
definition, K7 > Ky > K3 > K, > Kj; therefore, if the first term in
equation (9) is greater in iteration n than in iteration n + 1, the other terms
are negligible. When the error of the selected genotype in iteration n + 1
is equal to the error in iteration m, the second and third terms in equation
(9) must be considered. A genotype was selected, thus there exists a unit v
whose Y prso fi(p) is smaller than that obtained in iteration n. However it
is possible that for another unit v;, Y gro fj(p) is greater in iteration n + 1.
But in the restricted algorithm, it can happen only in two cases:

1. If v; was not an effective unit in iteration n and became one in itera-
tion n + 1. However, even if 3" zsvq fj(p) is greater in iteration n + 1,
F,.1 < F,, because the number of non-effective units in iteration n + 1
was reduced relative to iteration n. The resultant energy as defined
by equation (9) is lower, since K> multiplies the number of the non-
effective units, and Ky >> K.

2. The number of disturbing connections Z to unit v; is reduced and the
number of desired-inverse connections to other units may be increased.
In this case F' is decreased, since K5 > 1. B

Note that the number of iterations required to achieve convergence has no
upper bound, since only some of the iterations yield changes in the network
architecture or its weights. The process is composed of a series of changes,
each of which reduces F' until it stops at a global or local minimum.

5. Discussion and conclusions

We have presented a new approach to the design and training of neural net-
works, using a distributed genetic algorithm. Since most of the calculations
are performed separately for each unit, the training process can efficiently
use a parallel computer.

This process modifies network structure in order to find optimal param-
eters. For each unit, the best set of parameters is sought within a dynamic
environment generated by other units that also vary. We conclude from the
simulations that the presented approach provides robustness against entrap-
ment at a local minimum, in contrast to gradient descent processes. This

474 S. Oliker, M. Furst, and O. Maimon

approach eliminates the need to predetermine network structure elements,
and achieves efficiency by using a search space orders of magnitude smaller
than that used in standard methods.

The estimated search-space size of this algorithm indicates its practical
significance for real-world problems previously solved using larger networks.
For a network with n units (in which every unit can be connected to n—1 units
and a bias, every connection can be one of K possible weights; and where the
search space consists of all possible feedforward networks) the search space
is of the order X(/2™(»+1) In our algorithm the maximum local search space
is K™ (n — 1 connections and a bias); and for n units, nK". This search
space is for a given intermediate state of the network; for the entire process
we must multiply it by the maximum possible number of intermediate states
until convergence. This can be estimated for the restricted algorithm (as
described in section 4), since the energy function F is bounded from below
and is decreased with every change. In studying the energy function (9), we
find that the changes with error reduction are primarily of order 2*. The
changes with no error reduction for a unit is maximum: K possible weight
changes from each (n— 1) units and a bias, thus of the order nk and n? for
all the units. Therefore, the search space for the restricted algorithm is of
the order 2"n3K". Clearly, this is significantly smaller then the search space
of previous processes (for large n):

0(2"n*K™) < O(K2™) (10)

Future research should include testing the algorithm in practical prob-
lems, and implementing it on parallel hardware. From our earliest simula-
tions, we have found this approach to be very promising.

Appendix A The algorithm

A concise version of the distributed genetic algorithm follows.

1. Set a random initial state of a feedforward network N, and a set of
genotypes G.

2. Zero the overall network output error values and genotype fitness val-
ues.

E=0
ff=0 V 0<k<K N<i<N+H+M

. Set input vector X? and calculate the unit outputs (equation (2)).
. Calculate E¥ (equation (1)) and update E (equation (3)).

. Calculate E? for each of the hidden and output units.

[I R

. Update fF (which is assigned to each genotype), according to the
flowchart in figure 6.

A Distributed Genetic Algorithm

add dga

add dgs

add dgs

add d91

Figure 6: Fitness updating flow chart.

475

K, K,, and K3 are constants for which the following holds: K; >
K5 > Kj. The superscript £ denotes that the parameter is of genotype

k.

dgy = K\ EP + KoNPP + Kan?

(11)

where wff is the minimal weight of a disturbing connection to unit v;.

K1EP + Ky}

dgz =
KlEp + K2Sfp + ngff’
K EP + K,I™ + Kqt'?

where wf,f’ is the minimal weight of an internal connection to unit ;.

Ky EP

dg3 —
K\EP + Ko H

dgs = K1 EP + Ky(Q; — IF) + K36F

if EP < EP, and both the
training data set vectors for
which EP > 0 and a? are un-
changed for a fixed number
of cycles

otherwise, if v; is an hidden
unit

otherwise (12)

if E = E?, and both the
training data set vectors for
which E? > 0 and a? are un-
changed for a fixed number
of cycles

otherwise (13)

476

10.

S. Oliker, M. Furst, and O. Maimon

where @); is the number of posible connections to unit 7 that would not
interfere with the feedforward structure of the network.

Repeat steps 3 to 6 for all training data set vector pairs P.

Find the genotype [with the lowest fitness value ¢ in each genotype
set of a non-isolated unit (where the superscript | denotes that the
parameter is of genotype ()

fi = min ff (15)

and maintain Z! < Z;. This constraint can be relaxed if the network
error calculated for that genotype is smaller than F.
For those genotypes that are found to have both the lowest element
of network error and a better fitness than the existing unit inputs, the
network is modified as follows:
l 1
wi: Vo
wis = 4 Wij ij 16
= {0 otherwise (16)

b; = bﬁ (17)

If the network structure has been modified, no further modifications
are executed during this cycle.

For an isolated unit v;, random modifications of w;; are done for each
ci; € C, after a certain number of iterations.

If there exist ¢;; € @ and ¢;; € C at a low probability, one of the
connections is exchanged.

. New populations of genotypes are produced with the three GA opera-

tors, according to the fitness values of f¥.

If E > 0, repeat steps 2 to 9 until the overall error obtained equals zero
or the maximum number of iterations is reached.

References

(1]

2]

8]

4]

E. Alpaydin, “Grow-and-Learn: An Incremental Method for Category Learn-
ing,” Proceedings of the International Neural Network Conference, (1990) 761—
764.

E. B. Baum and D. Haussler, “What Size Net Gives Valid Generalization,”
Neural Computation, 1 (1989) 151-160.

D. E. Goldberg, Genetic Algorithms in Search Optimization and Machine
Learning (Reading, MA, Addison-Wesley, 1989).

D. E. Goldberg and K. Deb, “A Comparative Analysis of Selection Schemes
Used in Genetic Algorithms,” TCGA Report No. 90007, The Clearinghouse
for Genetic Algorithms, University of Alabama, Tuscaloosa (1990).

A Distributed Genetic Algorithm 477

[5]

[7]

(8]

(9]

[10]

(1]

[12]

[13]

(14]

(15]

(16]

(17]

(18]

S. A. Harp, T. Samad, and A. Guha, “Towards the Genetic Synthesis of Neu-
ral Networks,” Proceedings of the Third International Conference on Genetic
Algorithms, (1989) 360-369.

G. E. Hinton, “Connectionist Learning Procedures,” Artificial Intelligence,
40 (1989) 185-233.

J. H. Holland, Adaptation in Natural and Artificial Systems (Ann Arbor,
University of Michigan Press, 1975).

H. Kitano, “Designing Neural Networks Using Genetic Algorithms with Graph
Generation System,” Complex Systems, 4 (1990) 461-476.

J. R. Koza, “Genetic Programming: A Paradigm for Genetically Breeding
Populations of Computer Programs to Solve Problems,” technical report
STAN-CS-90-1314, Department of Computer Science, Stanford University
(1990).

M. Mézard and J. P. Nadal, “Learning in Feedforward Layered Networks:
The Tilling Algorithm,” Journal of Physics A, 22 (1989) 2191-2203.

G. F. Miller and P. M. Todd, “Designing Neural Networks Using Genetic Algo-
rithms,” The Third International Conference on Genetic Algorithms, (1989)
379-384.

M. L. Minsky and S. A. Papert, Perceptrons (Cambridge, MIT Press, 1969).

J. Montana and L. Davis, “Training Feedforward Neural Networks Using Ge-
netic Algorithms” (BBN Systems and Technologies, Inc., 1989).

D. E. Rumelhart and J. L. McClelland, Parallel Distributed Processing (Cam-
bridge, MIT Press, 1986).

G. Syswerda, “Uniform Crossover in Genetic Algorithms,” Proceedings of the
Third International Conference on Genetic Algorithms, (1989) 2-9.

G. Teasauro and B. Janssens, “Scaling Relationships in Back-propagation
Learning,” Complex Systems, 2 (1988) 39-44.

D. Whitley and T. Hanson, “The Genitor Algorithms to Optimize Neural Net-
works,” technical report CS-89-107, Department of Computer Science, Col-
orado State University (1989).

D. Whitley, “The Genitor Algorithm and Selection Pressure: Why Rank-
Based Allocation of Reproductive Trials is Best,” Proceedings of the Third
International Conference on Genetic Algorithms, (1989) 116-121.

