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Abstract. Convergence rat es and generalization performance are
compared for the squared error metric and a relat ive entropy metric
on a contiguity problem using several optimization algorithms. The
relat ive entropy measure converged to a good solution slight ly more
often than the squared error metric given the same distribution of
init ial weights . However, where the results differed, the squared error
metric converged on average more rapidly to solutions th at generalized
better to the test data. These results are not in complete agreement
with some results previously published.

1. Introduction

A considerable reduction in the number of iterations required to reach good
performance on a classification task was reported by Solla et al. for a relative
ent ropy (RE) metric as comp ared to the standard squared error (SE) metric
[2]. The improvement in convergence speed was attributed to differences in
th e contours of the error surfaces [2]; cur iously, t his improvement was termed
"accelerated learning," although it resu lted from a change in the error metric
rather than in t he optimization algorithm.

Different learning algor ithms have different convergence properties. For
example, in the quadratic case, first-order methods converge at a rate t ha t
depends on t he condit ion number of t he Hessian matrix, whereas the quasi
Newton methods converge in a number of steps determined by the rank of
the Hessian [1]. Thus, the convergence rate of different learn ing algorit hms
can depend on different properties of the Hessian matrix. Clearly, different
erro r metrics can have different Hessians; therefore, changing the error met ric
can have different consequences for different learning algorithms.

In this paper , several optimization algorithms are used to compare the
SE and RE metrics on the same classification problem for which results were
previously reported [2]. Section 2 rest ates the error metrics and the clas
sification problem and describes the experimental conditions. In Section 3,
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the metri cs are compared using an online learning algorithm, to establish a
baseline for comparison with the results of Solla. This section also investi
gates the match between the fixed step size used in the learni ng algorithm
and the error metric. Optimization results using a quasi-Newton algorit hm
are presented in Section 4.

2. Problem Statement

2.1 Error Metrics

Using the notation of Solla, the squared error metric

EQ = ~ f I= (Oj _7ja?
a = lj=l

and th e relative entropy metric

m NL {T'" 1 _ T'" }
EL = L L 7j'"In ~'?' + (1 - 7j"') In 1 _ 0:

",= 1 J= l J J

(1)

(2)

are compared, where a = 1 ... m is the index of the training token, j =
1 . .. NL is the index of the output unit , 7j'" is the target value for the j th
output unit , and OJ is th e act ual out put unit value. Note that in the case
of an exact solut ion, EQ = EL = 0, since OJ = 7j'" for all a .].

The faster convergence obtained by Solla using the RE metri c was ex
plained by appealing to its greater steepness [2, page 636]. However, the in
creased "steepness" could simply be the result of a scale factor, which could
be compensated for by th e learning constant . (Suppose, for example, that
the RE metri c were simply K, t imes the SE metric; then, using TIRE = TlSE/ K,

would result in identical weight upd ates in the scaled space.) Thus, it be
comes necessary to distinguish the effects of the shap e of the error surface
from the effects of step size in comparing error metrics. This distin ction is
pursued in what follows by

1. trying to separate scaling from shape, and

2. using an optimization method in which th e step size is chosen optimally
at each iteration.

Suppose th e RE metric is relat ed to th e SE metric by a constant scale
factor . We consider the contribution of a single observation to the metric
under the condit ion of 0, 1 targets. In this case,

and

eL = -In(l- z ) (3)

(4)
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Scaled Relative Entropy and Squared Error Metrics
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Figure 1: Comparison of scaled relat ive entropy and squared error
metrics.
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where z = 10j - 1j"I. Suppose further t hat the RE metric is scaled so that
it has the same value as the SE metric for z = 0.5; that is, t he metrics are
identical for the case where the unit is maximally "uncert ain."

1 2 (
eQ = 2(0.5) = K, * eL = -In(0.5)) (5)

whence

K, = 8 ln2 (6)

Accordingly, we define the scaled relative ent ropy (SRE) metric as:

(7)

We now compare graphically the SE and scaled RE metrics for a single
unit in Figure 1. It may observed that t he metrics are equa l for z values of
0, 0.5, and approximate ly 0.9. The scaled RE is increasingly greater t han
the SE metric as t he absolute difference between target and act ual exceeds
0.9. However, when the absolute difference is between 0.5 and 0.9, the SE
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Error Metric
Step Size SE RE SRE

0.001 12.81 69.73 12.80
0.002 12.69 69.13 12.66
0.005 12.57 67.50 12.59
0.010 12.39 62.95 12.49
0.020 12.05 55.76 12.31
0.050 10.36 43.64 11.56
0.100 9.09 38.93 10.18
0.125 8.58 35.90 9.88
0.200 7.52 34.42 8.68
0.250 7.07 35.88 8.11
0.500 6.31 38.58 7.12
1.000 5.42 58.44 6.22
2.000 5.94 126.28 7.17
5.000 5.55 89.79 9.76

10.000 9.80 249.06 18.90

Table 1: Value of Error Metric after 100 Epochs of Online Optimiza
tion using Fixed Step Size Algorithm for Various Values of T/ .

A plot of the error metri c, evaluated over the complete training set, as
a function of complete epochs of the online algorithm, showed a monotonic
decrease in t he SE and SRE metrics for values of." :S 0.5 and in t he RE
metric for." :S 0.1. For larger values of .", there were oscillat ions in the
decreasing function , which increased in magnitude wit h increasing.". The
RE metric seemed to be unstable for." 2 2.0.

The values of the SE, RE , and SRE metri cs after 100 epochs are listed
for each value of." in Table 1. The RE is much greater than the SE and SRE
for all values of.". The values of the SE and SRE metrics are quite similar ,
especially for small values of .".

The minimum SE and SRE values were reached using." = 1.0, whereas
the minimum RE value occurred at ." = 0.2; thus, there was a difference
in the optimal step size of a factor of 5. Note that t his factor is not very
different from the scale factor of 8 ln 2 ~ 5.55. Note also that the step sizes
which led to minimal metric values after 100 epochs were slight ly larger than
the maximum step size for which t he descent was monotonic.

The values used by Solla (0.25 for the SE metri cs, 0.125 for the RE
metric) are both smaller t han the optimal values obtained by this experiment .
However, the value of 0.125 used with the RE metric is slight ly larger than the
maximum value leading to monotonic descent (0.1) and may be significantly
larger relative to the error surface than the value used for the SE.

3.2 Online Experiments

Following Solla [2], 10 optimizations for both the SE and RE metr ics were
carr ied out from different random initial conditions for values of p = 2 . . . 6.



A Comparison between Squared Error and Relative Entropy Metrics 501

p Total Error Training (%) Test (%)
2 1.27 ± 1.08 84.4 ± 11.6 70.5 ± 14.7
3 1.08 ± 0.94 83.8 ± 9.0 63.6 ± 6.1
4 0.59 ± 0.53 92.2 ± 6.3 63.0 ± 4.0
5 0.72 ± 0.65 92.8 ± 6.4 58.9 ± 4.0
6 0.17 ± 0.14 97.4 ± 2.0 58.5 ± 1.8

Table 2: Results of Online Optimization of Squared Error Metric
Using Fixed Step Size Algorithm with T/ = 0.25.

In addi t ion, the SRE metri c was similarly evaluated; t here were 10*5*3 = 150
experiments.

The optimizat ions were carr ied out using a fixed step-size algorithm op
erat ed in online mode. Following Solla, a learning rat e of 0.25 was used for
the SE metri c and 0.125 for the RE metri c. The learning rat e for the SRE
metric was 0.25. Since the SRE metric is simply a scaled version of the RE ,
t his latter experiment amounts to using a scaled st ep size of 0.045 for the
RE metri c.

After each pass through the training data, the objective function was
evaluated over the corpus and recorded. The optimization was allowed to
run until 2000 iterations were completed,1 until the stopping criterion was
met , or until the algorithm halted because it was unable to furt her reduce
the funct ion.

During opt imizat ion, the SE and SRE metri cs decreased monotonically.
The decrease in the RE metric was non-monotonic in 10 cases; generally, the
non-monotonic cases were among the highest in final error values and lowest
in training and test performances.

In no case was the minimum metri c value achieved within 2000 iterat ions.
However , the training performance achieved after 2000 iterations was perfect
in 8 cases for the SE, 10 cases for the SRE, and 16 cases for the RE metri c.
The average test performance of the perfectly trained networks was 73.4%
for the SE, 72.7% for the RE , and 67.9% for t he SRE metri c. In no case was
t he test performance perfect .

The average metric value at termination , and tr aining, and test perfor
mances for the 10 optimizati ons are summarized in Tables 2, 3, and 4. In the
case of the SE met ric (Table 2), the average error decreased as the receptive
field p increased, except for p = 5. There was a corresponding increase in
t he performance on the training da ta, except for p = 3, and a corresponding
decrease in the performance on t he test data .

The average RE (Table 3) similarly decreased as the size of the receptive
field increased . There was a corresponding increase in t he performance on
the training dat a and, for p > 2, a decrease in performance on the test data

IT his corresponds roughly to the number of total passes through the training dat a
reported by Solla for networks to converge successfully for the SE metric.
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p Relative Entropy Training (%) Test (%)
2 6.47 ± 3.24 80.5 ± 9.3 66.2 ± 14.3
3 3.79 ± 4.14 90.2 ± 9.5 74.0 ± 11.8
4 1.67 ± 1.81 95.3 ± 5.3 69.9 ± 5.0
5 1.56 ± 1.00 96.0 ± 3.2 65.8 ± 2.5
6 0.76 ± 1.14 98.2 ± 3.5 63.4 ± 4.1

Table 3: Results of Online Optimization of Relative Entropy Metric
Using Fixed Step Size Algorithm with 7) = 0.125.

p Scaled Relative Entropy Training (%) Test (%)
2 2.20 ± 0.90 78.1 ± 8.6 63.5 ± 11.7
3 1.33 ± 1.07 86.9 ± 10.8 67.6 ± 8.0
4 0.79 ± 0.55 93.2 ± 5.7 67.3 ± 3.0
5 0.87 ± 0.70 93.2 ± 6.6 61.7 ± 4.0
6 0.58 ± 0.51 95.9 ± 4.6 60.1 ± 3.3

Table 4: Results of Online Optimization of Scaled Relative Entropy
Metric Using Fixed Step Size Algorithm with 7) = 0.25.

wit h increasing p. Except for p = 2, t he average performance on the training
and test data was greater for the RE than for t he SE.

The average SRE (Table 4) also generally decreased as the size of t he
receptive field increased (except for p = 4). There was a corresponding
increase in the performance on the training data and, for p > 2, a decrease
in performance on the test data with increas ing p. The level of performance
of the SRE was uniformly lower than the RE; since the SRE and RE metrics
differ only by a scale factor, this demonstrates that the performance of the
optimization dep ends crit ically on the step size. Like the RE , the SRE metric
resulted in better performance t han the SE for p 2: 2, although by a smaller
margin.

Contrary to Solla, for p = 2, networks that converged to perfect training
performance did not give perfect test performance. Also contrary to Solla,
for p = 2, t he average RE training and test performance was worse than
the average SE training and test performance. Further contrary to Solla,
for p 2: 3, learning was not always successful; although the average training
performanced increased wit h p , perfect training performance was not always
obtained within the limit of 2000 iterations.

4. Quasi-Newton Method

In comparing t he SE and RE measures, it would be advantageous to remove
the uncertainty about the optimal step size. This may be done using an
optimization algorithm in which the step size is opt imized at every point
by a one-dimensional sub-optimization called a line search. T his process
is an integra l par t of the quasi-Newton methods, which have the addit ional
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p Total Error Iterations Training (%) Test (%)
2 3.36 ± 1.12 492 ± 272 84.5 ± 6.1 65.3 ± 6.5
3 2.54 ± 0.94 589 ± 293 86.9 ± 6.9 66.1 ± 5.6
4 2.19 ± 1.14 668 ± 256 90.2 ± 6.1 66.2 ± 6.6
5 1.97 ± 0.80 534 ± 315 90.6 ± 5.7 62.8 ± 4.0
6 2.00 ± 0.73 568 ± 285 89.7 ± 4.5 60.3 ± 4.9

Table 5: Results of Squared Error Minimization Using BFGS Algo
rithm.

advantage t hat the search direction is oriented by an iteratively approximated
inverse Hessian matrix. This serves to increasingly direct the line search
toward the minimum of the funct ion.

In the following experiments, t he Broyden-Fletcher-Goldfarb-Shanno
(BFGS) quasi-Newton met hod was used [1]. Optimizations were carried out
from 20 different random init ial condit ions for both the SE and RE metrics
for p = 2 . .. 6; there were 20 * 5 * 2 = 200 experiments. The init ial net
works formed a superset of the 10 used in previo us experiments . The same
50 posit ive and 50 negative training strings were used as before .

The same termination criteria were also used, except t hat the maximum
number of it erat ions was set at 1000; since each iteration typ ically involves
at least 2 function evaluations, this limit seemed to be at least as generous
as the one used for t he fixed step size algorit hms.

As guaranteed by the descent property of the quasi -Newton algorithms,
t he decrease in error was monotonic for all optimizations. In t he SE case,
the descent was often gradual to a plateau, with occasional abrupt down
steps, genera lly reaching t he plateau value within 100 iterat ions; in no case
did the algorithm te rminate at the error criterion of 0.005. In the RE case,
t he descent similarly was often gradual to a plateau, wit h occasional abrupt
down-steps; in fact, the shape of the RE optimization curves were very similar
to those for the BE metric for the same initial conditions (see Figure 3).
However , there were breakthroughs in 4 cases to the criterion value of 0.1.
These breakthroughs, one at p = 4, two at p = 5 and one at p = 6, all
occurre d in less than 60 iterations. The performance of these networks on
t he training data was perfect and averaged 67.2% on the test data.

In 29 cases, 14 for the SE and 15 for the RE metric, the BFGS algorithm
exhausted the preset limit of 1000 it erations. In t he remaining 167 cases, the
algorithm halted because it was unable to furt her red uce the metric.

The averages across all trials of the metric at te rmination, number of
iterations, training and test accurac ies are shown in Tab les 5 and 6. It may be
observed that the average squared error and average relati ve entropy decrease
with increasing p, except for p = 6. The average number of it erations using
SE is maximum at p = 3, and is less than the maximum for RE, which occurs
at p = 2. The average training accuracy for the SE metric increases slight ly
with p until p = 6, where it dips slightly. The pattern for t he RE metric is
similar, although the value for p = 2 is much lower than the values for p > 2.
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Decrease in Relative Entropy Metric using BFGS Optimization

o 10
2

·E~~~••~
e-,i ....-:.:::......:...,..:..:..:.:.:....
.~ ~Eigm'il

<>: IOlr / :T••••FT: .FH··•••• •• •• ~

Iteration s (p = 3)

Decrease in Squared Error Metric using BFGS Optimization

Iterations (p = 3)

Figure 3: A comparison of optimizations from 20 different initial con
ditions for the squared error (lower panel) and relative entropy (upper
panel) met rics using the BFGS algorithm. Iterations are shown up to
1000 on a log scale; not e metrics shown on different log scales.
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p Relative Entropy Iterations Training (%) Test (%)
2 19.95 ± 5.71 770 ± 261 70.1 ± 9.2 56.3 ± 7.9
3 10.96 ± 5.27 651 ± 256 83.0 ± 8.5 67.5 ± 6.5
4 9.20 ± 4.99 558 ± 255 85.3 ± 8.7 65.5 ± 7.5
5 6.64 ± 6.08 496 ± 314 89.6 ± 8.8 64.0 ± 6.4
6 7.94 ± 4.70 542 ± 305 86.7 ± 8.9 58.6 ± 7.0

Table 6: Results of Relative Entropy Minimization Using BFGS Al
gorithm.

The average training performance for the SE is greater than that for the RE
for all p. Apart from p = 2, the difference between the SE and RE metrics
in average test performance is not large ; for p = 2, the SE leads to greater
average test accuracy by 9%.

These results suggest that the RE metric does not accelerate learning with
the BFGS algorithm. However, using RE may increase the likelihood of con
vergence to a global minimum; given the properties of the BFGS algorithm,
this convergence can occur quite rapidly.

5. Conclusions

Several conclusions may be drawn from these experiments. First of all , it is
clear that the choice of optimal st ep size is both problem- and metric-specific.
Second, there seems to be a slightly higher probability of convergence to a
good solution with the relative entropy metric for the same distribution of
init ial weights . However, for p = 2, the squared error leads (on average)
to higher training set performance and better test set performance than the
relative entropy metric.

It seems unlikely that these differences can be explained satisfactorily in
terms of the relative steepness of the error surfaces, since that difference is
taken into account by the quasi-Newton methods. It may be preferable to
understand the differences in terms of the increased cost of extreme outliers
obtained with the relative entropy metric.
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