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Abstract. Convergence rates and generalization performance are
compared for the squared error metric and a relative entropy metric
on a contiguity problem using several optimization algorithms. The
relative entropy measure converged to a good solution slightly more
often than the squared error metric given the same distribution of
initial weights. However, where the results differed, the squared error
metric converged on average more rapidly to solutions that generalized
better to the test data. These results are not in complete agreement
with some results previously published.

1. Introduction

A considerable reduction in the number of iterations required to reach good
performance on a classification task was reported by Solla et al. for a relative
entropy (RE) metric as compared to the standard squared error (SE) metric
[2]. The improvement in convergence speed was attributed to differences in
the contours of the error surfaces [2]; curiously, this improvement was termed
“accelerated learning,” although it resulted from a change in the error metric
rather than in the optimization algorithm.

Different learning algorithms have different convergence properties. For
example, in the quadratic case, first-order methods converge at a rate that
depends on the condition number of the Hessian matrix, whereas the quasi-
Newton methods converge in a number of steps determined by the rank of
the Hessian [1]. Thus, the convergence rate of different learning algorithms
can depend on different properties of the Hessian matrix. Clearly, different
error metrics can have different Hessians; therefore, changing the error metric
can have different consequences for different learning algorithms.

In this paper, several optimization algorithms are used to compare the
SE and RE metrics on the same classification problem for which results were
previously reported [2]. Section 2 restates the error metrics and the clas-
sification problem and describes the experimental conditions. In Section 3,
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the metrics are compared using an online learning algorithm, to establish a
baseline for comparison with the results of Solla. This section also investi-
gates the match between the fixed step size used in the learning algorithm
and the error metric. Optimization results using a quasi-Newton algorithm
are presented in Section 4.

2. Problem Statement
2.1 Error Metrics
Using the notation of Solla, the squared error metric
1 m Np
3 2 (07 - T) 1)
a—l j=1
and the relative entropy metric
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are compared, where @ = 1...m is the index of the training token, j =
1...Ng is the index of the output unit, 7 is the target value for the jth
output unit, and Of is the actual output unit value. Note that in the case
of an exact solution, Eq = Er, = 0, since O = 7> for all o, j.

The faster convergence obtained by Solla using the RE metric was ex-
plained by appealing to its greater steepness [2, page 636]. However, the in-
creased “steepness” could simply be the result of a scale factor, which could
be compensated for by the learning constant. (Suppose, for example, that
the RE metric were simply « times the SE metric; then, using nge = nsg/k
would result in identical weight updates in the scaled space.) Thus, it be-
comes necessary to distinguish the effects of the shape of the error surface
from the effects of step size in comparing error metrics. This distinction is
pursued in what follows by

1. trying to separate scaling from shape, and

2. using an optimization method in which the step size is chosen optimally
at each iteration.

Suppose the RE metric is related to the SE metric by a constant scale
factor. We consider the contribution of a single observation to the metric
under the condition of 0,1 targets. In this case,

er =—1In(l—=2) (3)
and

€Q = z% (4)
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Scaled Relative Entropy and Squared Error Metrics
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Figure 1: Comparison of scaled relative entropy and squared error

metrics.

where z = |Of — 7,%|. Suppose further that the RE metric is scaled so that
it has the same value as the SE metric for z = 0.5; that is, the metrics are
identical for the case where the unit is maximally “uncertain.”

eg = %(0.5)2 =k * (e = —1In(0.5)) (5)
whence
Kk =28In2 (6)

Accordingly, we define the scaled relative entropy (SRE) metric as:

m Np Ta . _T;x
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We now compare graphically the SE and scaled RE metrics for a single
unit in Figure 1. It may observed that the metrics are equal for z values of
0, 0.5, and approximately 0.9. The scaled RE is increasingly greater than
the SE metric as the absolute difference between target and actual exceeds
0.9. However, when the absolute difference is between 0.5 and 0.9, the SE



498 Raymond L. Watrous

1 2 3 N

Figure 2: A solution to the contiguity problem with L = 2. All
couplings {W;;} have absolute value of unity. Excitatory (W;; = +1)
and inhibitory (W;; = —1) couplings are indicated by — and —e,
respectively. Intermediate units are biased by Wi(l) = —0.5 ; the
output unit is biased by Wim = —(ko +0.5).

is slightly greater, while for differences of 0 to 0.5, the scaled RE is again
slightly greater.

This observation suggests that, apart from a constant scale factor, the
effective difference between the SE and RE metrics might lie in the treatment
of outliers, where the difference between actual and desired response is greater
than 0.9. For other cases, the differences might be relatively small.

2.2 Contiguity Problem

Following Solla, the contiguity problem was used to compare the SE and RE
metrics. The contiguity problem consists of finding the number & of clumps
of contiguous bits of value 1. The simpler form of the contiguity problem
used by Solla and here is a dichotomous classification task for £ < 2 and
k> 2.

An exact solution to the contiguity classification task is given by Solla
using N hidden units [2, Figure 2], and is reproduced here as Figure 2. Note
that the input is not treated as circular in the contiguity problem; thus, there
are no links from the final input unit to the initial hidden unit.

The hidden units compute 0-1 transitions over pairs of adjacent bits,
whereas the output unit simply counts the transitions and checks whether
there are more than k. Note that this solution is exact for target values
of 0,1 only if the network consists of binary threshold units. The binary
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threshold function can be realized using sigmoidal units with infinite gain;
this, however, implies unbounded weights.

With bounded weights, the hidden units will take on three values, depend-
ing on whether one input is equal, less than, or greater than the other input.
Thus, the output unit must take on different values for some members within
the same class. This means that there can be no zero-error solution, and a
particular solution will represent the best compromise given the training set.

2.3 Experimental Conditions

The following experimental conditions were chosen to be as close as possible
to those described by Solla [2].

The contiguity problem was investigated for N = 10 bits. Networks with
10 input units, 10 hidden units, each with a fan-in of p, and one output
unit were evaluated for p = 2...6. 50 strings randomly chosen from the
330 k = 2 negative examples, and 50 strings randomly chosen from the 462
k = 3 positive examples were used as training data; the remaining strings
constituted the test set. The same training/test split was used in all the
experiments reported.

The initial weight values were chosen from a normal distribution N(0, 1),
subject to a hard limit of 1.

Following Solla, target values of 0 and 1 were used for training throughout.
For classification, network responses |O§ —7.%| < 0.1 were considered correct;
the classification accuracy was computed as the number of correct responses
relative to the total number of examples.

In setting the stopping criterion, we guaranteed a mazimum absolute
difference of |Of — T.%| = 0.1. Thus, similarly to Solla, we set

(0.1)2 = 0.005. (8)

N =

1m
ese =5 (0"~ T <
a=1

However, in contrast to Solla, we did not use a squared error measure as a
stopping criterion for the RE metric; instead, we used the RE metric itself,
under the same assumption as before, and set

T 1-7¢ 1
- a I —T%1] < ~ 0.
€ERE = QEZI {T In 0o + (1 7 ) Il1 0"} In 09 ~ 0.10 (9)

3. Online Optimization
3.1 Optimal Step Size

The relationship between the error metric and the learning constant n was
explored in a small experiment in which the same randomly initialized net-
work (p = 2) was optimized separately for each error metric for 100 epochs
of the online algorithm using 15 values of the learning constant 7 from 0.001
to 10.0.
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Error Metric
Step Size | SE RE SRE

0.001 |12.81 69.73 12.80
0.002 |12.69 69.13 12.66
0.005 | 12.57 67.50 12.59
0.010 |12.39 62.95 1249
0.020 |12.056 55.76 12.31
0.050 |10.36 43.64 11.56
0.100 9.09 3893 10.18
0.125 8.58 3590 9.88
0.200 7.52 3442 8.68
0.250 7.07 35.88 8.11
0.500 6.31 3858 7.12
1.000 542 5844 6.22
2.000 594 126.28 7.17
5.000 5.55 89.79 9.76
10.000 9.80 249.06 18.90

Table 1: Value of Error Metric after 100 Epochs of Online Optimiza-
tion using Fixed Step Size Algorithm for Various Values of 7.

A plot of the error metric, evaluated over the complete training set, as
a function of complete epochs of the online algorithm, showed a monotonic
decrease in the SE and SRE metrics for values of n < 0.5 and in the RE
metric for n < 0.1. For larger values of 7, there were oscillations in the
decreasing function, which increased in magnitude with increasing 7. The
RE metric seemed to be unstable for n > 2.0.

The values of the SE, RE, and SRE metrics after 100 epochs are listed
for each value of 7 in Table 1. The RE is much greater than the SE and SRE
for all values of 1. The values of the SE and SRE metrics are quite similar,
especially for small values of 7.

The minimum SE and SRE values were reached using 7 = 1.0, whereas
the minimum RE value occurred at n = 0.2; thus, there was a difference
in the optimal step size of a factor of 5. Note that this factor is not very
different from the scale factor of 81In2 & 5.55. Note also that the step sizes
which led to minimal metric values after 100 epochs were slightly larger than
the maximum step size for which the descent was monotonic.

The values used by Solla (0.25 for the SE metrics, 0.125 for the RE
metric) are both smaller than the optimal values obtained by this experiment.
However, the value of 0.125 used with the RE metric is slightly larger than the
maximum value leading to monotonic descent (0.1) and may be significantly
larger relative to the error surface than the value used for the SE.

3.2 Online Experiments

Following Solla [2], 10 optimizations for both the SE and RE metrics were
carried out from different random initial conditions for values of p = 2...6.
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Total Error Training (%)  Test (%)

1.274+1.08 844+11.6 70.5+14.7
1.08+0.94 83.8+9.0 63.6 £6.1
0.59+£0.53 92.2+6.3 63.0+4.0
0.72+0.65 92.8+6.4 58.9+4.0
0.17+0.14 97.4+20 58.5+1.8
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Table 2: Results of Online Optimization of Squared Error Metric
Using Fixed Step Size Algorithm with n = 0.25.

In addition, the SRE metric was similarly evaluated; there were 10x5%3 = 150
experiments.

The optimizations were carried out using a fixed step-size algorithm op-
erated in online mode. Following Solla, a learning rate of 0.25 was used for
the SE metric and 0.125 for the RE metric. The learning rate for the SRE
metric was 0.25. Since the SRE metric is simply a scaled version of the RE,
this latter experiment amounts to using a scaled step size of 0.045 for the
RE metric.

After each pass through the training data, the objective function was
evaluated over the corpus and recorded. The optimization was allowed to
run until 2000 iterations were completed,! until the stopping criterion was
met, or until the algorithm halted because it was unable to further reduce
the function.

During optimization, the SE and SRE metrics decreased monotonically.
The decrease in the RE metric was non-monotonic in 10 cases; generally, the
non-monotonic cases were among the highest in final error values and lowest
in training and test performances.

In no case was the minimum metric value achieved within 2000 iterations.
However, the training performance achieved after 2000 iterations was perfect
in 8 cases for the SE, 10 cases for the SRE, and 16 cases for the RE metric.
The average test performance of the perfectly trained networks was 73.4%
for the SE, 72.7% for the RE, and 67.9% for the SRE metric. In no case was
the test performance perfect.

The average metric value at termination, and training, and test perfor-
mances for the 10 optimizations are summarized in Tables 2, 3, and 4. In the
case of the SE metric (Table 2), the average error decreased as the receptive
field p increased, except for p = 5. There was a corresponding increase in
the performance on the training data, except for p = 3, and a corresponding
decrease in the performance on the test data.

The average RE (Table 3) similarly decreased as the size of the receptive
field increased. There was a corresponding increase in the performance on
the training data and, for p > 2, a decrease in performance on the test data

1This corresponds roughly to the number of total passes through the training data
reported by Solla for networks to converge successfully for the SE metric.
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p Relative Entropy Training (%)  Test (%)
2 6.47 + 3.24 80.5+9.3 66.2 +14.3
3 3.79+4.14 90.2+9.5 74.0+11.8
4 1.67+1.81 95.3+5.3 69.9£5.0
5 1.56 4+ 1.00 96.0 &+ 3.2 65.8 £2.5
6 0.76 +£1.14 98.24+3.5 63.4+4.1

Table 3: Results of Online Optimization of Relative Entropy Metric
Using Fixed Step Size Algorithm with n = 0.125.

p Scaled Relative Entropy Training (%)  Test (%)
2 2.20+£0.90 78.1 8.6 63.5 £ 11.7
3 1.33 £1.07 86.9+10.8 67.6+8.0
4 0.79 £0.55 93.2£5.7 67.3£3.0
5 0.87+0.70 93.2+6.6 61.7+4.0
6 0.58 £ 0.51 95.9+ 4.6 60.1+3.3

Table 4: Results of Online Optimization of Scaled Relative Entropy
Metric Using Fixed Step Size Algorithm with n = 0.25.

with increasing p. Except for p = 2, the average performance on the training
and test data was greater for the RE than for the SE.

The average SRE (Table 4) also generally decreased as the size of the
receptive field increased (except for p = 4). There was a corresponding
increase in the performance on the training data and, for p > 2, a decrease
in performance on the test data with increasing p. The level of performance
of the SRE was uniformly lower than the RE; since the SRE and RE metrics
differ only by a scale factor, this demonstrates that the performance of the
optimization depends critically on the step size. Like the RE, the SRE metric
resulted in better performance than the SE for p > 2, although by a smaller
margin.

Contrary to Solla, for p = 2, networks that converged to perfect training
performance did not give perfect test performance. Also contrary to Solla,
for p = 2, the average RE training and test performance was worse than
the average SE training and test performance. Further contrary to Solla,
for p > 3, learning was not always successful; although the average training
performanced increased with p, perfect training performance was not always
obtained within the limit of 2000 iterations.

4. Quasi-Newton Method

In comparing the SE and RE measures, it would be advantageous to remove
the uncertainty about the optimal step size. This may be done using an
optimization algorithm in which the step size is optimized at every point
by a one-dimensional sub-optimization called a line search. This process
is an integral part of the quasi-Newton methods, which have the additional
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Total Error Iterations Training (%) Test (%)

3.36+1.12 492+272 845+6.1 65.3+6.5
2.54+094 589+£293 86.9+£69 66.1+5.6
219+1.14 668+£256 90.2+6.1 66.2+6.6
1.97+0.80 534+315 90.6+£5.7 62.8+4.0
2.00+0.73 568285 89.7+45 60.3+£49

SO W NS

Table 5: Results of Squared Error Minimization Using BFGS Algo-
rithm.

advantage that the search direction is oriented by an iteratively approximated
inverse Hessian matrix. This serves to increasingly direct the line search
toward the minimum of the function.

In the following experiments, the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) quasi-Newton method was used [1]. Optimizations were carried out
from 20 different random initial conditions for both the SE and RE metrics
for p = 2...6; there were 20 * 5 ¥ 2 = 200 experiments. The initial net-
works formed a superset of the 10 used in previous experiments. The same
50 positive and 50 negative training strings were used as before.

The same termination criteria were also used, except that the maximum
number of iterations was set at 1000; since each iteration typically involves
at least 2 function evaluations, this limit seemed to be at least as generous
as the one used for the fixed step size algorithms.

As guaranteed by the descent property of the quasi-Newton algorithms,
the decrease in error was monotonic for all optimizations. In the SE case,
the descent was often gradual to a plateau, with occasional abrupt down-
steps, generally reaching the plateau value within 100 iterations; in no case
did the algorithm terminate at the error criterion of 0.005. In the RE case,
the descent similarly was often gradual to a plateau, with occasional abrupt
down-steps; in fact, the shape of the RE optimization curves were very similar
to those for the SE metric for the same initial conditions (see Figure 3).
However, there were breakthroughs in 4 cases to the criterion value of 0.1.
These breakthroughs, one at p = 4, two at p = 5 and one at p = 6, all
occurred in less than 60 iterations. The performance of these networks on
the training data was perfect and averaged 67.2% on the test data.

In 29 cases, 14 for the SE and 15 for the RE metric, the BFGS algorithm
exhausted the preset limit of 1000 iterations. In the remaining 167 cases, the
algorithm halted because it was unable to further reduce the metric.

The averages across all trials of the metric at termination, number of
iterations, training and test accuracies are shown in Tables 5 and 6. It may be
observed that the average squared error and average relative entropy decrease
with increasing p, except for p = 6. The average number of iterations using
SE is maximum at p = 3, and is less than the maximum for RE, which occurs
at p = 2. The average training accuracy for the SE metric increases slightly
with p until p = 6, where it dips slightly. The pattern for the RE metric is
similar, although the value for p = 2 is much lower than the values for p > 2.
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Decrease in Relative Entropy Metric using BFGS Optimization
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Figure 3: A comparison of optimizations from 20 different initial con-
ditions for the squared error (lower panel) and relative entropy (upper
panel) metrics using the BFGS algorithm. Iterations are shown up to
1000 on a log scale; note metrics shown on different log scales.
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Relative Entropy Iterations Training (%) Test (%)

19.95+£5.71 770261 70.1+£9.2 56.3£7.9
10.96 £ 5.27 6561 £256 83.0%£85 67.5%£6.5
9.20 +=4.99 568 £2566  85.3+8.7 656.5E7.5
6.64 +6.08 496+ 314 89.6+8.8 64.0+6.4
7.941+4.70 542+305 86.7£89 58.6+7.0
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Table 6: Results of Relative Entropy Minimization Using BFGS Al-
gorithm.

The average training performance for the SE is greater than that for the RE
for all p. Apart from p = 2, the difference between the SE and RE metrics
in average test performance is not large; for p = 2, the SE leads to greater
average test accuracy by 9%.

These results suggest that the RE metric does not accelerate learning with
the BFGS algorithm. However, using RE may increase the likelihood of con-
vergence to a global minimum; given the properties of the BFGS algorithm,
this convergence can occur quite rapidly.

5. Conclusions

Several conclusions may be drawn from these experiments. First of all, it is
clear that the choice of optimal step size is both problem- and metric-specific.
Second, there seems to be a slightly higher probability of convergence to a
good solution with the relative entropy metric for the same distribution of
initial weights. However, for p = 2, the squared error leads (on average)
to higher training set performance and better test set performance than the
relative entropy metric.

It seems unlikely that these differences can be explained satisfactorily in
terms of the relative steepness of the error surfaces, since that difference is
taken into account by the quasi-Newton methods. It may be preferable to
understand the differences in terms of the increased cost of extreme outliers
obtained with the relative entropy metric.
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