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Abstract. This paper provides a substantial proof th at genet ic al­
gorithms (GAs) work for t he traveling salesman problem (TSP) . The
method introduced is based on an adjacency matrix representation of
the TSP t hat allows t he GA to manipulate edges while using conven­
tional crossover. This combination, interleaved with invers ion (2-opt),
allows th e GA to rapidly discover the best known solutions t o seven of
the eight TS P test problems frequentl y st udied in t he lit erature. (The
GA solut ion is within 2% of t he best known solution for t he eighth
problem.) T hese results st and in contrast to earli er t ent ative conclu­
sions that GAs are ill-suited to solving TSP problems, and suggest
that the performance of probabilisti c search algorithms (such as GAs)
is highly dependent on representation and t he choice of neighborhood
operators.

1. Introduction

The traveling salesman prob lem (TSP) is a prototypical NP-complete prob­
lem [7]: easy to state, difficult to solve. A salesman, starting from his home
city, is to visit each city in a given list and then retu rn home. The challenge
of the TSP is to find the visitation order that minimizes the total distance
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traveled. In other words, given a sequence of cit ies CI , C2, .. . , Cn and inter­
city distances d(C i,Cj) , the goal is to find a permutat ion 7T of the cit ies that
minimizes the sum of distan ces,

n - l

I::d(C7r (i ) , C7r (i+1 ) ) + d(c7r(n ) , C7r (I ) )
i= l

Pr act ical applicat ions of th e TSP include rout e finding, and wiring [23].
Other applicat ions with non-symmet ric distances (d(Ci ' Cj ) f d(cj ,Ci)) in­
clude air route select ion with wind factor [5J. In this paper , we will con­
cent ra te on the symmetric TSP, where t he dist ances satisfy the condition
d(Ci' Cj) = d(cj ,c.), for 1 :::; i , j :::; n.

T he TS P problem has been approached by both exact and heuristic or
probabilistic methods. Exact meth ods include cutting planes, branch and
bound [33], and dynamic programming [1]. However, due to the fact that
TS P is NP complete, without specialized problem reduction, exact methods
are able to solve only small problems. On the other hand, heuristic and
probabilist ic methods are able to solve large problems. Examples of th e lat ter
methods include 2-opt [28, 17], Markov chain [29], TABU Search [8, 21],
neural networks [15], simulat ed annea ling [20, 22], and genet ic algorithms
[11, 12, 14, 16, 24, 26, 32, 36].

Among the largest prob lems known to have been solved to optimality is a
2392-city problem solved by Padberg and Rinaldi [33], using a combination
of problem reduction, cutting planes, and branch and bound. Johnson [18J
provided optimal solut ions for severa l selected problems from th e literature
known to be NP complete, using an iterated Lin-Kernighan algorit hm. Knox
[21] reported that TABU search and a version of simulated annealing [22J
exhibit similar performance. Those two approaches outp erformed the genet ic
algorithm variants proposed by Wh itley, et al. [36], and achieved the best
known result s for a var iety of smaller prob lems. Among th e most promising
GA result s were those of Muhlenbein [31], whose solut ion length of 27702 for a
532-city problem is near the known opt imal of 27686. Anoth er promising GA
implementation was that of Lidd [24], who used an implicit penalty function
formulation .to genera te good GA solut ions (competit ive with Knox's results)
for a variety of smaller problems.

We show that if t he representat ion and genet ic recombination operators
are properly chosen, genetic algorit hms can be competit ive with the best
known techniques, contrary to Knox's findings [21J. This is achieved by
introducing a binary matrix represent at ion and a matrix crossover (MX) .
Our empirical results on a cross section of problems from the literature yield
t he best known solut ions to these problems in seven out of eight cases.

2. G enetic a lgor it hm s

Genet ic algorithms (GAs) are general purpose optimization algorithms de­
veloped by Holland [13], with roots in work by Bledsoe [2], Fogel, et al. [6],
and others. Holland 's intention was to develop powerful, broadly applicable
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techniques with which to attack problems resist ant to other known methods.
Loosely motivated by the example of population genet ics, genet ic search is
populat ion based, proceeding from generation to generation. T he criteria
of "survival of the fittest" provides evolut ionary pressur e for pop ulations to
develop increasingly fit individu als. Alt hough there are many variants , in­
cluding simple GA [10], GENIT OR [35], mG A [10], CRC [5], and apGA [25],
the bas ic mechanism of the GA consists of the following two steps.

1. Evaluation of individu al fitness and formation of a gene poo l.

2. Recombination and mutation.

Individuals resulting from these operations form the next genera t ion, and
the process is iterated until the system ceases to improve. Individuals (chro­
mosomes) are typically fixed length binary st rings. They are selected for the
gene poo l in proportion to some monotonic function of their relative fitness,
as det ermined by the obj ect ive function. In the gene pool individuals are
mutat ed and crossed. Mutation corresponds to a probabilisti c flipping of
the bits of an individual. The simplest implement ation of crossover selects
two "parents" from the pool and, after choosing the same random positions
within each parent st ring, exchanges t heir t ails. Crossover is typically per­
formed with some probabili ty (the crossover ra te ); parents not crossed are
cloned. The resulting "offspring" form the subsequent popu lation .

3. T he motivation of our method

The search space for th e TSP is the set of permu tations of the cities. The
most natural way to represent a tour is t hrough path representation, where
the cit ies are listed in the order in which they are visited. As an example
of path repr esentation, assum e that there are six cit ies: {I , 2, 3, 4, 5, 6}.
The tour denoted by (1 2 3 4 5 6) would be interpreted to mean that the
salesman visits city 1 first , city 2 second, city 3 third, .. . , returning to city 1
from city 6.

Although this representation seems natu ral enough, there are at least two
drawbacks to it. The first is that it is not unique. For example, (2345 6 1)
and (34 5 6 1 2) act ually represent the same tour as (1 2 3 4 5 6); that is, the
represent at ion is unique only as far as the direction of traversal- clockwise or
counte rclockwise- and the originating city. This represent atio nal ambiguity
genera lly confounds th e GA. The second drawback is th at a simple crossover
operator could fail to produce legal tours. For example, the following st rings
with cross site 3 fail to produce legal tours .

before crossover (1 2 3 4 5 6)

crossover site

afte r crossover

(2 4 5 6 3 1)
/\

(1 2 3 6 3 1)
(2 4 5 4 5 6)

<----- illegal
<----- illegal
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Although Lidd [24] has apparent ly overcome the problem of infeasibility,
and produced good results using two-point crossover in conjunction with an
implicit penalty function [26], conventional GA wisdom has led researchers to
experiment wit h feasibility preserving recombination operators. Among these
operators are Goldbe rg and Lingle's par tially mapped crossover (PMX) [11],
Davis's order crossover (OX) [3], and Oliver et al.'s cycle crossover (CX) [32].
Grefenstette, et al. [12], Liepins, et al. [27], and Whitley, et al. [36] also inves­
t igated recombination operators that focused on edges (adjacency relati ons)
rather than fixed posit ions. These approaches removed the representat ional
ambiguity, and in general produced results superior to those of the positional
approaches.

After critically reviewing GA approaches for the TSP, we prop ose the
basic building blocks to be edges as opposed to the absolute positions of the
cit ies. A city in a given posit ion without adjacent or surro und ing informa­
tion has lit tle meaning for constructing a good tour; it is hard to claim t hat
injecting city 3 in position 2 is better t han injecting it in position 5. Pre­
sumably, the use of adj acency informati on in the OX can part ially explain
the experimental results (see [32]), in which it performs 11% and 15% better
than the PMX and the CX, respectively.

4 . Matrix crossover

We use a binary matrix to represent edges directly, and apply a conventional
crossover to the matrix. These operations are closer to the original GA oper­
ators t han the aforement ioned adjacency recombination operators. Thus, we
are able to man ipulate edges while st ill using the two convent ional crossover
operators.

4. 1 R epr esent a tion

The binary matri x representation is formed as follows. The matrix is n by
n , where n is t he number of cit ies. For a given tour , a direction of traversa l
is chosen. If t here is an edge from city i to i , the ent ry (i , j) of the matrix is
set to 1. The remaining entries of the matrix are set to O. For example, the
matrix representation for the tour (a d c e f b) is

a b

a 0 0
b 1 0
cOO
d 0 0
e 0 0
f 0 1

c d e f

o 1 0 0
o 000
o 0 1 0
1 000
000 1
o 000

This representation is unique as far as direct ion of t raversal (the two
traversal directions prod uce adjacency matrices that are transposes of one
anot her). For example, (abcde f) and (bc defa) have the same matrix
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representation. However, matrix representation requires much more storage
space (n * n bits for an individual) than path representation (n characters
for an individual). Therefore, to efficient ly ut ilize space , we use matrix rep­
resentat ion only when performing crossover and use path representation for
storage.

4. 2 Matrix crossover

Matrix Crossover (MX) is a natural extension of the conventional l -point
or 2-point crossover on strings and deals with column positions rather than
bit positions. A crossover site is selected at random. MX exchanges all the
entries of the two parents determined by the crossover site(s) . The following
example illustrates crossing between sites 2 and 5.

Parent 1: (adcefb)

a b c d e f

a 0 0 0 1 0 0
b 1 0 0 0 0 0
c 0 0 0 0 1 0
d 0 0 1 0 0 0
e 0 0 0 0 0 1
f 0 1 0 0 0 0

Parent 2: (a ebcfd)

a b c d e f

a 0 0 0 0 1 0
b 0 0 1 0 0 0
c 0 0 0 0 0 1
d 1 0 0 0 0 0
e 0 1 0 0 0 0
f 0 0 0 1 0 0

MX sites: 1\ 1\

One of the two children result ing under two-point MX is as follows.

a b c d e f

a 0 0 0 0 1 0
b 1 0 1 0 0 0 f-- duplicate
c 0 0 0 0 0 0 f-- vacant
d 0 0 0 0 0 0 f-- vacant
e 0 0 0 0 0 1
f 0 1 0 1 0 0 f-- duplicate

As shown in this example, MX may result in infeasib ility in the form of
duplications or cycles. These two problems are t reated in the following two
steps.
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{ ( (1)(agnd*6/n)) 1 [( (1) (agnd *6/n))+ kd 1 - - * - + kd 1 - -
2 n 2

(
n _ b)agnC ((I)((agnd+ agnc)*6/n))

* - - +kdcl - -
n 2

where agnd and agnc are the average number of dupli cations and cycles,
respectively, and kc' kd, and kdc are control variabl es defin ed in Equations
(11), (14), and (15).

Proof. Suppose that l -point MX is used; the survival probability of schema
H is therefore

(1)

where Pd(H) is the probability of schema H being disrupted. The schema
can be disrupted when the crossover site is either within or outside of b.

Pd(H) = P(d IW)P(W) + P(d I O)P(O)

where

d = disruption of H of defining lengt h b
W = crossover site is within b

o = crossover sit e is outside b

(2)

We give a pictorial represent ation of the edge schema of n cities with b
defining lengt h. The probability of the crossover site being wit hin b is given
by P(W) = bin, therefore, the prob abili ty of t he crossover site being outside
b is P(O) = 1 - bin = (n - b)ln . The prob ability of disruption given th at
the crossover site is within b is P(d I W) = 1.

n
1--------------------------100

- - -00 00 _1 __----------1
8

The edge schema for n-cities

Let the probability of disruption when the crossover site k is outside b
be represented by P(d I 0) == P(do) . Under this condition, disruption may
occur whether or not duplications exist .

P(do ) = P(do I dup)P(dup) + P(do I n_dup)P (n_dup)

where

dup = duplicat ions exist after crossover

n.dup = no duplicat ions exist after crossover

(3)
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In order to facilitate the derivation of the probability of no dupli cation,
consider the following figure.

n
In 00- __n .. 1----------------1_-00_" - • ..1--------------1

k 0

(n - 8)!
P (n_dup) = (P(n - 8,n - 8 - k)P(n - 8, k))

(n - 8 - k) ! k!
(n - 8)!

therefore,

P(dup) = 1 - P(n_dup)

1 - (n - 8 - k)! k!
(n - 8)!

(4)

(5)

In Equation (4), because t he crossover site k varies from 1 to n - 8 - 1, in
the worst case (k = n - 8-1 ) with fixed 8, P (n_dup) = 1/ (n-8). Considering
the fact that 8 < n - 1, which is the sit uation in most cases, it is reasonable
to assume that P(n_dup) ~ 0, and therefore P(dup) ~ 1. Hence, Equ ation
(3) becomes

P(do) ~ P(do I dup) (6)

Let , Pid; I dup) == P (do_duP)' This term signifies the disruption proba­
bility when the crossover is out side of 8 and dupli cations exist. It may be
further expressed when the duplications occur inside or outside of 8 as

P (do_duP ) = P (do_duP Idup.outschjP fdup .outsch)

+ P (do_duP Idup.inschjPfdup.lnsch]

where

dup .outsch = all dupli cations are outside 8

dup.insch = at least one duplicat ion occurs inside 8

(7)

The probability of exact ly one dupli cation being outside of 8 is (n - 8)/ n.
Thus,

(
8)agnd

P (dup_outsch) = n:
(

8) agnd
P (dup-.insch) = 1 _ n:

(8)

(9)
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The disruption probability when all of the duplications are outside of 8 can
be further expanded according to the existence or absence of cycles. Let
P(do_dup Idup.outsch) == P(do_dup_outsch); then,

P(do_dup_outsch) = P(do_dup_outsch Ino.cycj Pjno.cyc)

+ P(do_dup_outsch I cyc)P(cyc)

If the crossover site is outside of 8, then no duplications exist inside of 8, there
is no cycle, and the probability of disruption is equal to zero. Therefore,

where

no.eye = no cycle exists

eye = cycle occurs

P(do_dup_outsch I eye) can be further expanded according to the cycle's
location inside or outside of 8. The schema structure may be destroyed by
removing the cycles. As stated earlier, the cycles are cut and connected while
preserving as many of the existing edges from the parents as possible. Let

P (do_dup_outsch Icyc) = P (do_dup_outsch_cyc Icyc.insch) P (cyc.insch]

+ P (do_dup_outsch_cyc Icyc.outsch)P (cyc.outsch)

where

cyc.outsch = cycle exists outside 8

cyc.insch = at least one cycle exists inside 8

The probability of no cycle occurring inside 8 is

( 8) agnc
P(cyc_outsch) = n:

thus,

( 8) agnc
P(cyc_insch) = 1 _ n:

The probability of survival of the schema after removing all the cycles is
(1/2)(agnc*6/n). Therefore,

( (
1) (agnc*6/n))

P(do_dup_outsch_cyc I cyc.insch] = kc 1 - "2
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where kc < 1 is a cont rol vari able (the selection of which is influenced by the
method chosen for preserving the edges from the existing par ent s) . Thus,

( (
1) (agne*o/n)) ( (n _8)a

g
ne)

P(do_dup_outseh Ieye) = kc 1 - "2 * 1 - - n-

+ 0 *P (cyc_outsch)

= k
c

(1 - G) (agne*o/n))

* (1 _(n ~ 8)rgne
)

Substituting equat ion (11) int o equation (10) , it becomes

(11)

(12)( (
8) agne) 1* 1_ n: * (1 _;)

Let us consider the prob ability of disruption when the crossover sit e is
within 8. Equation (7) can be further expanded according t o the existe nce
or absence of cycles.

P(do_dup I dup .insch) = P(do_dup_inseh Ino.eye) * P(no_cyc)

+ P(do_dup_inseh I cyc) * P (cyc) (13)

where P(no_cyc) = l in , therefore P (cyc) = 1 - (lin ). The disruption
probability when the crossover site is outside 8, and duplication is inside 8
with no cycles is

( (
l ) (agnd*o/n))

P(do_dup_inseh I no.eye) = kd 1 - "2 (14)

where kd < 1 is a cont rol variable, the selection of which is influenced by the
chosen method of removing duplicati ons. The third term of equat ion (13) is
further expanded when the cycles are eit her inside or outside of 8 as

P(do_dup_inseh I cyc) = P(do_dup_inseh_eye I cyc.out sch jPfcyc.outsch)

+ P (do_dup_inseh_cyc Icyc.insch)P (cycinsch]

_ ( (1) (agnd *o/n)) (n _8) a
gn

e
-kd1-- *--

2 n

( (
l ) (agnd*o/n) (l)(agnc *o/n))

+kd 1- - -
e 2 2

(15)
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where kde < 1 is a control variable, the selection of which is influenced by the
methods for removing both dupli cations and cycles. Substituting (14) and
(15) into (13), it becomes

( (
1)(agnd*8/n)) 1

P (do_duP I dup...insch) = kd 1 - "2 *n

[( (
1)(agnd*8/n)) (n_8)agne

+ kd l -- *--
2 n

( (
1)((agnd+agne)*8/n))

+ kd 1- -
e 2

(16)

Substi tuting (8), (9), (12), and (16) into (7), it becomes

( (1)(agne*8/n)) ( (n_8)agne)
P(do Idup) = ke 1- - * 1- - -

2 n

( 1) (n _8)agnd* 1- - * --
n n

{ ( (
1)(agnd*8In) ) 1

+ kd 1- - *-
2 n

[ ( (
1)(agnd*8/n)) (n_8)agne

+ kd 1- - * --
2 n

( (
1)((agnd+agne) *8/n))

+kd 1- -
e 2

* (1 _ (n: 8r
gne

)] * (1 _~)}

* (1 _ (n: 8r
gnd

) (17)

Finally, subs ti tuting equations (17) and (2) into equat ion (1), we obtain
Ps(H) .•

The survival probabilities for the 30- and 75-city TSP for various values
of 8 are shown in Figure 3. The control variables and t he average number
of dupli cations and cycles are set to k d = k e = k ed = 0.8, and agnd =
agnc = (n/3 ), respectively. The figure shows that as 8 decreases, the schema
survival prob ability increases. Along with the tournament select ion, high
fitness schema and shor t defining length schema have a tendency to survive
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30 Cities

75 Cities

8070605040302010
O'-------'------~L------"'--'--~--~--~------'-'~------.!

o

Defining Lengt h

Figure 3: Survival probabilities versus defining length.

in the population. This complies with the fundamental t heorem for GAs.
Thus, by the selection of appropriate values for the control variables, matrix
crossover can have similar effects to convent ional crossover-except that the
survival probability decays faster than the conventional GA schema theorem .

Just as the fundamental schema theorem is suitable for 2-point crossover,
this analysis is suitable for 2-point MX, since 2-point MX wit hout control of
the segment length easily can be t ransformed to l- point MX. In 2-point MX,
agnc and agnd can be reduced by controlling segment size. With smaller agnd
and agnc , the terms (1- ((n _<5)/n)agnd) and (1- ((n_<5)/n)agnc) will decrease
more rap idly as <5 decreases , t hus improving the schema survival probability.
This is the theoretical explanation for the result shown in Tab le 1.

6. MX with inversion

We further spec ialize our GA variant by incorporating the inversion operator
(2-opt) , which has a venerab le history of generating good TSP solut ions by
itse lf. This type of hybridization is exactly what is advocated by Muhlenbein,
et al. [30Jfor the solution of real-world problems.

Logically, t here are three ways to incorporate specialized "hill climbers"
such as 2-opt into the GA: use t he hill climber as a preprocessor to find a
highly fit initi al pop ulation, use the hill climber as a postprocessor to improve
upon t he GA solutions, or repeatedly int erleave the GA and the hill climber .
We interleave 2-opt with the other GA operators, repeat edly applying 2-opt
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as a deterministic hill climber to each chromosome in the populati on until
no further improvement occurs.

Note that in path representation , 2-opt is nothing more than inversion.
For any selected string, rand omly choose two cut sites, and invert the order of
the sub-string specified by th e cit ies located between the sites. For example,
for cut sit es between t he first and t he second and the fourth and fifth symbols
of the string

(a Ib c d i e f)

inversion yields

(ad cbef)

In our implement ation we use 2-opt as a deterministi c hill climber: we keep
the result of the swap only if it results in an improvement. Furthermore,
we iteratively apply 2-opt wit h increasing segment length. For the preceding
example, we would keep the result of the swap only if d(a, d) + d(b , e) <
d(a, b) + d(d, e); otherwise, we would keep the old tour. The it erative aspect
of our implementation systematically t ries all exchanges of length 2, then
length 3, and so on, until t he exchange of length n - 1 is tried.

7. Experimental results for GA with MX and inversion

In this sect ion, we present the best results known to us for a variety of TSP
problems, using a vari ety of solut ion techniques. We st ress that the tour
length generat ed by a probabilistic technique is a random variable whose es­
timated mean and variance should also be reported. In addition, the solution
quality should be judged by its computational complexity. For probabilistic
algor ithms, computational complexity has two dimensions: computat ion re­
quir ed to find the optima (assuming that an optimum can be found ), and
computation required to adequate ly support t he hypothesis that no better
solution can be found. A further complicat ion in reporting comparative com­
pu tational complexity of different met hods is the difficulty in finding a fair
measure. The numb er of function evaluat ions is one measure, although this
fails to account for differences in complexity in different algorithms' elemen­
t ary search operators (neighborho od search operators). For these reasons, the
solutions reported in Tabl e 1 are simply the best known solut ions generated
by each technique. (For details of computational complexity and variance,
see [34].) For matrix crossover with inversion applied to the problems we
studied, the difference among final solut ions due to different rand omization
is less than 1%.

For the common benchmark TSPs (30-, 50-, 75-, 100-, and 318-city) ,
Table 2 provides addit ional stat ist ics about the performance of the 2-point
MX with inversion .

One may claim that GAs have added lit tle to 2-opt in the solut ion of
these problems. In this respect, the experimental results in Table 3 show
that our implement ation of 2-opt alone cannot solve these problems, as it
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25 30 42 50 75 100 105 318
EDGE RECM. 421 428 545
PMX 498
OX 425
CX 517
TABU 1,711 420 699 535 627
PENALTY FUN 420
BINARY MX
& INVERSION 1,711 420 699 426 535 629 14,382.9 42,154
BEST KNOWN
SOLUTION 1,711 420 699 425 535 627 14,383 41,345

Table 1: Comparison of TSP res ults.

N Pop Seg Pm Gen Pop . Best

30 60 10 1% 10 420
50 100 15 1% 17 426
75 300 25 1% 21 535

100 400 40 1% 27 629
318 6000 100 1% 18 42154

Pop = popu lation size
Pm = probability of mutation
Gen = the generation in which the best solut ion was achieved
Seg = the largest allowed segment length in 2-pt Binary MX

Pop. Best = average best results with 2-pt Binary MX and inversion

Table 2: Experimental resul t s of GA wit h 2-point MX and inversion .

N Pop B. S. !terN

50 100 429 8
75 300 555 8

100 400 664 9

N = number of cities
B. S. = best result achieved using only 2-opt
IterN = number of times that each individual

has gone through a set of 2-opt

Table 3: Experimental res ults with 2-opt on ly.
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quickly becomes st uck, especially as the size of the TSP increases. We can
say t hat 2-opt by itself lacks t he power which MX provides t hrough producing
offspring from two parents.

8. Complexity analysis of the proposed techniques for the TSP

T he characterist ic of the traveling salesman problem which makes it so diffi­
cult to solve is its combinatorially explosive nature. The numb er of feasible
tours increases exponent ially as t he number of cit ies in a TS P increases.

One approach which would certainly find the opt imal solut ion of any TSP
is t he applicat ion of exhaustive enumeration and evaluation. The procedure
consists of genera t ing all possible tours and evaluating their corresponding
tour length. The to ur with the smallest length is selected as t he best , which
is guarant eed to be t he opt imal. If we could identify and evaluat e one to ur
per nanosecond (or one billion tours per second), it would require almost ten
million years (number of possible tours = 3.2 X 1023

) to evaluate all of the
to urs in a 25-city TSP.

The following relationship is obt ained for 30, 50, 75, 100, and 318 cit ies
from t he experimental result s in Table 1. Let the populati on size be some
proportion of t he numb er of cit ies.

populat ion size = p *n p a constant from 2 to 20

Then the numb er of inversions performed for each individu al is

n 1
L(n- k +1)~ - n2
k=2 2

T his result is based on t he method of inversion described in Section 6.
Then, the equivalent number of function evaluations for inversion at each
generation is:

1 4
P *n * - n

2 * - = 2 *P *n
2

2 n

Assuming that t he algorithm converges to opt imal solutio n with in acceptable
tolerance in finite generations, then the total numb er of function evaluations
for t he algorit hm, including the number of duplications or loops and cycles,
may be written as

T(n) = (2 * P *n
2 + pn + P3

n
+ P3

n
) *gen = An

2

where gen (a constant ) is the numb er of generat ions to convergence. The
produ ct of two constants, A, is also a constant . Note that the constants p
and gen for t he cases of 30, 50, 75, 100, and 318 cit ies are (2, 10), (2, 17),
(4, 21), (4,2 7), and (19, 18), respecti vely (see Table 2).

Remark. The numb er of dupli cations and loops in Step 1 of t he MX is con­
tro lled by t he segment size for t he matrix crossover (i.e., the crossover sites ).
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The maximum number of duplications and loops is n/3 if the segment size
is set to n/3. Therefore, as n increases, the time for processing duplications
and loops for Step 1 increases linearly. Similarly, the maximum number of
cycles in Step 2 of the MX is n/3.

9. Conclusion

We have presented a GA variant for solving the TSP that uses the con­
ventional GA operators and the recombination of edges. This variant uses
a binary matrix representation and a matrix crossover (MX) to search for
and combine useful building blocks. The optimal solutions for several TSPs
(and other results) obtained using this technique are generally competitive
with the best known techniques. These results suggest that the specific im­
plementation of the GA (including the choice of representation) plays an
important role in the GA's ability to satisfactorily solve the TSP. Schema
analysis has shown the usefulness of the binary matrix representation with
matrix crossover. Earlier conclusions suggesting that GAs were ill-suited to
the TSPs seem to have been premature.

For the method presented, the maximum deviation of the optimal solu­
tions from the best known solutions is less than 2%. This is explained by the
schema analysis : as n increases, the survival probability curve (Ps ) becomes
more convex to the defining length-axis, hence the performance deteriorates
(see Figure 3). In fact, the schema analysis shows the quality of the so­
lution as a function of the number of cities. However, the performance of
the method presented will deteriorate for larger problems (for instance, the
318-cities problem) .

In Table 1, the performance of this variant method is compared with
other GA methods, and shown to have the best performance. It has also
been shown that the performances of TABU and the method presented are
comparable for the problems reported by Knox [21], who compared TABU
with simulated annealing and genetic algorithms. Nonetheless, the purpose
of this paper is to show that a different approach to the TSP will enrich
the methodology for this set of problems, and not to prove that the method
presented is the best.
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