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Abstract. This paper provides a substantial proof that genetic al-
gorithms (GAs) work for the traveling salesman problem (TSP). The
method introduced is based on an adjacency matrix representation of
the TSP that allows the GA to manipulate edges while using conven-
tional crossover. This combination, interleaved with inversion (2-opt),
allows the GA to rapidly discover the best known solutions to seven of
the eight TSP test problems frequently studied in the literature. (The
GA solution is within 2% of the best known solution for the eighth
problem.) These results stand in contrast to earlier tentative conclu-
sions that GAs are ill-suited to solving TSP problems, and suggest
that the performance of probabilistic search algorithms (such as GAs)
is highly dependent on representation and the choice of neighborhood
operators.

1. Introduction

The traveling salesman problem (TSP) is a prototypical NP-complete prob-
lem [7]: easy to state, difficult to solve. A salesman, starting from his home
city, is to visit each city in a given list and then return home. The challenge
of the TSP is to find the visitation order that minimizes the total distance
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traveled. In other words, given a sequence of cities ¢y, s, ..., c, and inter-
city distances d(c;, ¢;), the goal is to find a permutation 7 of the cities that
minimizes the sum of distances,

n—1

Z d(c‘n(i), C‘lr(i+1)) + d(cw(n): Cvr(l))
=1

Practical applications of the TSP include route finding, and wiring [23].
Other applications with non-symmetric distances (d(c;,¢;) # d(cj,¢;)) in-
clude air route selection with wind factor [5]. In this paper, we will con-
centrate on the symmetric TSP, where the distances satisfy the condition
d(ci,cj) = d(cj,¢i), for 1 <4, j <n.

The TSP problem has been approached by both exact and heuristic or
probabilistic methods. Exact methods include cutting planes, branch and
bound [33], and dynamic programming [1]. However, due to the fact that
TSP is NP complete, without specialized problem reduction, exact methods
are able to solve only small problems. On the other hand, heuristic and
probabilistic methods are able to solve large problems. Examples of the latter
methods include 2-opt [28, 17], Markov chain [29], TABU Search [8, 21],
neural networks [15], simulated annealing [20, 22], and genetic algorithms
(11, 12, 14, 16, 24, 26, 32, 36].

Among the largest problems known to have been solved to optimality is a
2392-city problem solved by Padberg and Rinaldi [33], using a combination
of problem reduction, cutting planes, and branch and bound. Johnson [18]
provided optimal solutions for several selected problems from the literature
known to be NP complete, using an iterated Lin-Kernighan algorithm. Knox
[21] reported that TABU search and a version of simulated annealing [22]
exhibit similar performance. Those two approaches outperformed the genetic
algorithm variants proposed by Whitley, et al. [36], and achieved the best
known results for a variety of smaller problems. Among the most promising
GA results were those of Muhlenbein [31], whose solution length of 27702 for a
532-city problem is near the known optimal of 27686. Another promising GA
implementation was that of Lidd [24], who used an implicit penalty function
formulation to generate good GA solutions (competitive with Knox’s results)
for a variety of smaller problems.

We show that if the representation and genetic recombination operators
are properly chosen, genetic algorithms can be competitive with the best
known techniques, contrary to Knox’s findings [21]. This is achieved by
introducing a binary matrix representation and a matrix crossover (MX).
Our empirical results on a cross section of problems from the literature yield
the best known solutions to these problems in seven out of eight cases.

2. Genetic algorithms

Genetic algorithms (GAs) are general purpose optimization algorithms de-
veloped by Holland [13], with roots in work by Bledsoe (2], Fogel, et al. [6],
and others. Holland’s intention was to develop powerful, broadly applicable
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techniques with which to attack problems resistant to other known methods.
Loosely motivated by the example of population genetics, genetic search is
population based, proceeding from generation to generation. The criteria
of “survival of the fittest” provides evolutionary pressure for populations to
develop increasingly fit individuals. Although there are many variants, in-
cluding simple GA [10], GENITOR [35], mGA [10], CHC [5], and apGA [25],
the basic mechanism of the GA consists of the following two steps.

1. Evaluation of individual fitness and formation of a gene pool.

2. Recombination and mutation.

Individuals resulting from these operations form the next generation, and
the process is iterated until the system ceases to improve. Individuals (chro-
mosomes) are typically fixed length binary strings. They are selected for the
gene pool in proportion to some monotonic function of their relative fitness,
as determined by the objective function. In the gene pool individuals are
mutated and crossed. Mutation corresponds to a probabilistic flipping of
the bits of an individual. The simplest implementation of crossover selects
two “parents” from the pool and, after choosing the same random positions
within each parent string, exchanges their tails. Crossover is typically per-
formed with some probability (the crossover rate); parents not crossed are
cloned. The resulting “offspring” form the subsequent population.

3. The motivation of our method

The search space for the TSP is the set of permutations of the cities. The
most natural way to represent a tour is through path representation, where
the cities are listed in the order in which they are visited. As an example
of path representation, assume that there are six cities: {1, 2, 3, 4, 5, 6}.
The tour denoted by (1 2 3 4 5 6) would be interpreted to mean that the
salesman visits city 1 first, city 2 second, city 3 third, ..., returning to city 1
from city 6.

Although this representation seems natural enough, there are at least two
drawbacks to it. The first is that it is not unique. For example, (23456 1)
and (345 6 1 2) actually represent the same tour as (1 2 3 4 5 6); that is, the
representation is unique only as far as the direction of traversal-—clockwise or
counterclockwise—and the originating city. This representational ambiguity
generally confounds the GA. The second drawback is that a simple crossover
operator could fail to produce legal tours. For example, the following strings
with cross site 3 fail to produce legal tours.

before crossover (12345 6)

(245631)
crossover site A

after crossover (12363 1) «— illegal
(245456) «— illegal
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Although Lidd [24] has apparently overcome the problem of infeasibility,
and produced good results using two-point crossover in conjunction with an
implicit penalty function [26], conventional GA wisdom has led researchers to
experiment with feasibility preserving recombination operators. Among these
operators are Goldberg and Lingle’s partially mapped crossover (PMX) [11],
Davis’s order crossover (OX) [3], and Oliver et al.’s cycle crossover (CX) [32].
Grefenstette, et al. [12], Liepins, et al. [27], and Whitley, et al. [36] also inves-
tigated recombination operators that focused on edges (adjacency relations)
rather than fixed positions. These approaches removed the representational
ambiguity, and in general produced results superior to those of the positional
approaches.

After critically reviewing GA approaches for the TSP, we propose the
basic building blocks to be edges as opposed to the absolute positions of the
cities. A city in a given position without adjacent or surrounding informa-
tion has little meaning for constructing a good tour; it is hard to claim that
injecting city 3 in position 2 is better than injecting it in position 5. Pre-
sumably, the use of adjacency information in the OX can partially explain
the experimental results (see [32]), in which it performs 11% and 15% better
than the PMX and the CX, respectively.

4. Matrix crossover

We use a binary matrix to represent edges directly, and apply a conventional
crossover to the matrix. These operations are closer to the original GA oper-
ators than the aforementioned adjacency recombination operators. Thus, we
are able to manipulate edges while still using the two conventional crossover
operators.

4.1 Representation

The binary matrix representation is formed as follows. The matrix is n by
n, where n is the number of cities. For a given tour, a direction of traversal
is chosen. If there is an edge from city i to 7, the entry (7, 7) of the matrix is
set to 1. The remaining entries of the matrix are set to 0. For example, the
matrix representation for the tour (adcefb) is

a b c d e f
al0 0 01 0 O
b{1 0 0 0 0 O
c|0O 0 0 0 10
dl{0 01 0 0 O
e(0 0 0 0 0 1
f{0 1 0 0 0 O

This representation is unique as far as direction of traversal (the two
traversal directions produce adjacency matrices that are transposes of one
another). For example, (abcdef) and (bcdefa) have the same matrix
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representation. However, matrix representation requires much more storage
space (n *n bits for an individual) than path representation (n characters
for an individual). Therefore, to efficiently utilize space, we use matrix rep-
resentation only when performing crossover and use path representation for
storage.

4.2 Matrix crossover

Matrix Crossover (MX) is a natural extension of the conventional 1-point
or 2-point crossover on strings and deals with column positions rather than
bit positions. A crossover site is selected at random. MX exchanges all the
entries of the two parents determined by the crossover site(s). The following
example illustrates crossing between sites 2 and 5.

Parent 1: (adcefb)

-0 A0 O
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SO -=-OOoOOoO|0
OO O OO |
oo o oOoOOoO|o
OH O OO O+

Parent 2: (aebcfd)
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[en B o B e Ben B o I8 Sl Ko}
SO O R OO+

MX sites: A A

One of the two children resulting under two-point MX is as follows.

a b c¢c d e f
al0 0 0 0 1 O
b{1 0 1 0 0 0 «— duplicate
c|0 0 0 0 0 0O «— vacant
d|/0 0 0 0 0 0 «— vacant
e|/0 0 0 0 0 1
f{0 1 0 1 0 0 +«— duplicate

As shown in this example, MX may result in infeasibility in the form of
duplications or cycles. These two problems are treated in the following two
steps.
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Figure 1: Two cycles in the resulting matrix.

Step 1. Remove the duplication by moving a 1 from each row with duplicate
1s into another row that has no 1 entries. This is done to preserve as many
of the existing edges from the parents as possible.

For this example, the entries in positions (b,a) and (f,b) are moved to
(d,a) and (c,b), respectively. This results in the following matrix.

a b c d e f
al0 0 0 0 1 0
bj0 01 0 0 O
c|0O 1 0 0 0 O
d|{1 0 0 0 0O
e(0 O 0 0 0 1
f{o0 1 01 0O

Although there is only one 1 in each row or column in the matrix, a path
may contain cycles, as in this example, which has the two cycles (daef) and
(bc) (see Figure 1). Cycles can be broken by employing Step 2, as follows.

Step 2. Cut and connect cycles to produce a legal tour that preserves as
many as possible of the existing edges from the parents.

For this example, we have two choices, either connecting f to b or to c.
The edge (f,b) exists in one of the parents, whereas (f,c) does not. Thus,

we select edge (f,b), and the new tour becomes (daefbc), as illustrated in
Figure 2.

5. Schema analysis for binary matrix representation

According to the fundamental schema theorem for GAs, the survival proba-

bility (Ps(H)) for a schema of defining length §(H) after crossover is
6(H)

P,(H)=1-p,—=

(H) Pe

where n is the string length, and p, is the probability of conventional cross-

over. It is clear that the survival probability of the schema increases as

the defining length decreases. Short defining length and high fitness (along

with selection scheme) are features of schemata that are likely to survive
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Figure 2: Selecting the right edge to connect cycles.

as building blocks to construct good solutions. The fundamental schema
theorem is based on conventional string representation and crossover. We
discuss such a relationship based on binary matrix representation and matrix
CrOSSOVer.

In order to define an edge schema, an “indifference” symbol (*) is added to
represent any of the remaining permutations. The following binary matrix is
an example of an edge schema of defining length § = 4 (the distance between
the outermost fixed positions of a schema, including the two end positions)
and order O(H) = 3 (the number of fixed bits).

a b c d e f
alx 1 x 0 0 =*
bix 0 x 1 0 =x
clx 0 % 0 0 =x
d{x 0 * 0 0 =
e|lx 0 x 0 0 =x
flx 0 x 0 1 =«

edge schema: (*axbfx)

Generally, (n — O(H) — 1)! is the number of directional tours that each
edge schema of order O(H) represents. When O(H) =0, (n — O(H) — 1)! =
(n—1)!, for example. This also explains the uniqueness of the matrix repre-
sentation as compared to the path representation.

Schema Theorem. Assuming that crossover always occurs, that is, that
pe = 1, the survival probability of the edge schema is

§ ne% 1 (agnc*6/m)
= —_— = c ]_ — | =
R(H) =1 n n {k ( (2) )

* (1 _ (n;l-(s)g) : (1 - %) ) (n;5>agnd
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1 (agnd = 6/n) 1 1 (agnd * 6/n)
*{’“d(l“(é) )*ﬁ*l“(l‘(a) )
_ agnge ((agnd + agnc) * §/n)
(5) (-G )
n 2
_ agnc _ agnd
(=)D (-7}
n n n

where agnd and agnc are the average number of duplications and cycles,
respectively, and k., k4, and kg, are control variables defined in Equations

(11), (14), and (15).
Proof. Suppose that 1-point MX is used; the survival probability of schema
H is therefore

Pu(H) =1 - Fy(H) 1)

where P;(H) is the probability of schema H being disrupted. The schema
can be disrupted when the crossover site is either within or outside of 6.

Fy(H) = P(d| W)P(W) + P(d| O)P(0) (2)

where

d = disruption of H of defining length 6
W = crossover site is within §
O = crossover site is outside §

We give a pictorial representation of the edge schema of n cities with §
defining length. The probability of the crossover site being within § is given
by P(W) = §/n, therefore, the probability of the crossover site being outside
§is P(O) =1-6/n = (n—6)/n. The probability of disruption given that
the crossover site is within § is P(d | W) = L.

n
! | | [
)

The edge schema for n-cities

Let the probability of disruption when the crossover site k is outside 6
be represented by P(d | O) = P(d,). Under this condition, disruption may
occur whether or not duplications exist.

P(d,) = P(d, | dup)P(dup) + P(d, | n_dup)P(n_dup) (3)
where

dup = duplications exist after crossover
n_dup = no duplications exist after crossover
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In order to facilitate the derivation of the probability of no duplication,
consider the following figure.

n
" s
B (n — 5)!
P(n_dup) = (P(n—6,n—6—k)P(n—6,k)) 4
_(n—=6—-k)K! X
T
therefore,
P(dup) =1- P(n-duP)
:1_(n—6—k)!k! )

(n—6)!

In Equation (4), because the crossover site k varies from 1 ton—§—1, in
the worst case (k = n—6§—1) with fixed ¢, P(n_dup) = 1/(n—4). Considering
the fact that § < n — 1, which is the situation in most cases, it is reasonable
to assume that P(n-dup) = 0, and therefore P(dup) ~ 1. Hence, Equation
(3) becomes

P(d,) ~ P(d, | dup) (6)

Let, P(d, | dup) = P(do_aup)- This term signifies the disruption proba-
bility when the crossover is outside of § and duplications exist. It may be
further expressed when the duplications occur inside or outside of § as

P(do_qup) = P(do_aup | dup-outsch) P(dup_outsch)

7
+ P(do_dup | dup-insch)P(dup_insch) )

where

dup_outsch = all duplications are outside ¢
dup_insch = at least one duplication occurs inside §

The probability of exactly one duplication being outside of § is (n—8)/n.
Thus,

P(dup_outsch) = (ﬂy@d (8)

n

P(dup_insch) = 1 — <” - 6>agnd 9)
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The disruption probability when all of the duplications are outside of § can
be further expanded according to the existence or absence of cycles. Let
P(do_aup | dup-outsch) = P(do_dup_outsen); then,

P (do_dup.outsch) =P (do_dup_outsch I IlO_CyC)P (HO_CyC)
+ P(do_dup_outsch | CYC)P(C}’C)

If the crossover site is outside of §, then no duplications exist inside of §, there
is no cycle, and the probability of disruption is equal to zero. Therefore,

1
P(do_dup_outsch) =0% P(DO-CYC) T+ P(do_dup_outsch | CyC) (]- - ;i) (10)

where

no_cyc = no cycle exists
cyc = cycle occurs
P(dy_qup_outsch | cyc) can be further expanded according to the cycle’s
location inside or outside of §. The schema structure may be destroyed by

removing the cycles. As stated earlier, the cycles are cut and connected while
preserving as many of the existing edges from the parents as possible. Let

P(do_aup_outsch | €yC€) = P(do_dup_outsch_cy< | cyc-insch) P(cyc_insch)
+ P(do_dup_outsch_cyc | cyc-outsch) P(cyc_outsch)

where

cyc-outsch = cycle exists outside 6
cyc_insch = at least one cycle exists inside 6

The probability of no cycle occurring inside 6 is

_ agnc
P(cyc_outsch) = (n - 6)

thus,

_ agnc
P(cyc_insch) =1 — <n - 5)

The probability of survival of the schema after removing all the cycles is
(1/2)(agne*8/m)  Therefore,

1

(agnc*6/n)
P (do_dup_outsch_cyc | Cyc_insch) =k, (1 - (§> )
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where k. < 1 is a control variable (the selection of which is influenced by the
method chosen for preserving the edges from the existing parents). Thus,

1 (agnc*6/n) _ agnc
P(do_dup_outsch | C}’C) =k (1 — (§> ) " <1 _ <n . 5) )

+ 0 * P(cyc-outsch)

=k, (1 - (%)‘agm*é/m)
% (1 _ <n—T5)>agHC> .

Substituting equation (11) into equation (10), it becomes

1 (agnc*6/n)
P(do_dup_outsch) == kc (1 — <§) )

* (1 - <” - 5)agm) x (1 - %) (12)

Let us consider the probability of disruption when the crossover site is
within 6. Equation (7) can be further expanded according to the existence
or absence of cycles.

P(do_dup | dup_insch) = P(do_dup_insch | nO—CyC) * P(HO_CyC)
+ P(do_dup_insch | CyC) * P(CyC) (13)

where P(no_cyc) = 1/n, therefore P(cyc) = 1 — (1/n). The disruption
probability when the crossover site is outside §, and duplication is inside §
with no cycles is

1 (agnd * 6/n)
P(do_dup_insch | IlO—C_YC) = kd (1 - (5) > (14)

where k; < 1 is a control variable, the selection of which is influenced by the
chosen method of removing duplications. The third term of equation (13) is
further expanded when the cycles are either inside or outside of § as

P (do_dup_insch | C}’C) =P (do_dup_insch_cyc | CyC—OUtSCh)P (CyC—OUtSCh)
+ P(do_dup_insch_cye | Cyc-insch)P(cyc_insch)

1 (agnd*8/n) _ agne
(7))
2 n
i (agnd * 6/n) 1 (agnc *§/n)
kao [1— (= -
B ( (2) (2) )
_ agnc
() 2
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where kg4, < 1 is a control variable, the selection of which is influenced by the
methods for removing both duplications and cycles. Substituting (14) and
(15) into (13), it becomes

1 (agnd * §/n) 1
P(do_qup | dup-insch) = k4 (1 _ (5) ) —
n

1 (agnd *§/n) -6 agnc
(-G ()
2 n
1 ((agnd +agnc) * §/n)
+ ke <1 - (5) )

. (1 - (”; 5>agnc>] " <1 - %) (16)

Substituting (8), (9), (12), and (16) into (7), it becomes

1 (agnc*8/n) n—=_§ agnc
P(do|dup)——kc<1—<§> >*(1—< - ) )
_ agnd
* (1 — l) * (n 6)
n n

(agnd * 6/n) _ agnc
0-GT) ()
2 n

*
/N
=
|
S
3
S|
>
——
&
=
5]
N——
I §
*
e
—
|
S~
——
N —

e 8 agnd
* (1 — ( n ) ) (17)
Finally, substituting equations (17) and (2) into equation (1), we obtain
P,(H). &

The survival probabilities for the 30- and 75-city TSP for various values
of § are shown in Figure 3. The control variables and the average number
of duplications and cycles are set to kg = k. = kg = 0.8, and agnd =
agne = (n/3), respectively. The figure shows that as § decreases, the schema
survival probability increases. Along with the tournament selection, high
fitness schema and short defining length schema have a tendency to survive
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Figure 3: Survival probabilities versus defining length.

in the population. This complies with the fundamental theorem for GAs.
Thus, by the selection of appropriate values for the control variables, matrix
crossover can have similar effects to conventional crossover—except that the
survival probability decays faster than the conventional GA schema theorem.

Just as the fundamental schema theorem is suitable for 2-point crossover,
this analysis is suitable for 2-point MX, since 2-point MX without control of
the segment length easily can be transformed to 1-point MX. In 2-point MX,
agnc and agnd can be reduced by controlling segment size. With smaller agnd
and agnc, the terms (1—((n—=4)/n)?") and (1—((n—48)/n)*™) will decrease
more rapidly as 6 decreases, thus improving the schema survival probability.
This is the theoretical explanation for the result shown in Table 1.

6. MX with inversion

We further specialize our GA variant by incorporating the inversion operator
(2-opt), which has a venerable history of generating good TSP solutions by
itself. This type of hybridization is exactly what is advocated by Muhlenbein,
et al. [30] for the solution of real-world problems.

Logically, there are three ways to incorporate specialized “hill climbers”
such as 2-opt into the GA: use the hill climber as a preprocessor to find a
highly fit initial population, use the hill climber as a postprocessor to improve
upon the GA solutions, or repeatedly interleave the GA and the hill climber.
We interleave 2-opt with the other GA operators, repeatedly applying 2-opt
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as a deterministic hill climber to each chromosome in the population until
no further improvement occurs.

Note that in path representation, 2-opt is nothing more than inversion.
For any selected string, randomly choose two cut sites, and invert the order of
the sub-string specified by the cities located between the sites. For example,
for cut sites between the first and the second and the fourth and fifth symbols
of the string

(a|bed|ef)
inversion yields
(adcbef)

In our implementation we use 2-opt as a deterministic hill climber: we keep
the result of the swap only if it results in an improvement. Furthermore,
we iteratively apply 2-opt with increasing segment length. For the preceding
example, we would keep the result of the swap only if d(a,d) + d(b,e) <
d(a,b) +d(d, e); otherwise, we would keep the old tour. The iterative aspect
of our implementation systematically tries all exchanges of length 2, then
length 3, and so on, until the exchange of length n — 1 is tried.

7. Experimental results for GA with MX and inversion

In this section, we present the best results known to us for a variety of TSP
problems, using a variety of solution techniques. We stress that the tour
length generated by a probabilistic technique is a random variable whose es-
timated mean and variance should also be reported. In addition, the solution
quality should be judged by its computational complexity. For probabilistic
algorithms, computational complexity has two dimensions: computation re-
quired to find the optima (assuming that an optimum can be found), and
computation required to adequately support the hypothesis that no better
solution can be found. A further complication in reporting comparative com-
putational complexity of different methods is the difficulty in finding a fair
measure. The number of function evaluations is one measure, although this
fails to account for differences in complexity in different algorithms’ elemen-
tary search operators (neighborhood search operators). For these reasons, the
solutions reported in Table 1 are simply the best known solutions generated
by each technique. (For details of computational complexity and variance,
see [34].) For matrix crossover with inversion applied to the problems we
studied, the difference among final solutions due to different randomization
is less than 1%.

For the common benchmark TSPs (30-, 50-, 75-, 100-, and 318-city),
Table 2 provides additional statistics about the performance of the 2-point
MX with inversion.

One may claim that GAs have added little to 2-opt in the solution of
these problems. In this respect, the experimental results in Table 3 show
that our implementation of 2-opt alone cannot solve these problems, as it
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25 30 | 42 | 50 | 75 | 100 105 318
EDGE RECM. 421 428 | 545
PMX 498
OX 425
CX 517
TABU 1,711 | 420 | 699 535 | 627
PENALTY FUN 420
BINARY MX
& INVERSION | 1,711 | 420 | 699 | 426 | 535 | 629 | 14,382.9 | 42,154
BEST KNOWN
SOLUTION 1,711 | 420 | 699 | 425 | 535 | 627 | 14,383 | 41,345

Table 1: Comparison of TSP results.

N | Pop | Seg | Pm | Gen | Pop. Best
30 60| 10| 1% | 10 420
50| 100| 15| 1% | 17 426
75 300 25| 1% | 21 535
100 | 400 | 40| 1% | 27 629
318 | 6000 | 100 | 1% | 18 42154

Pop = population size

Pm = probability of mutation

Gen = the generation in which the best solution was achieved

Seg = the largest allowed segment length in 2-pt Binary MX
Pop. Best = average best results with 2-pt Binary MX and inversion

Table 2: Experimental results of GA with 2-point MX and inversion.

N | Pop | B. S. | IterN
50 | 100 | 429 8
75 300 | 555 8
100 | 400 | 664 9

N = number of cities
B. S. = best result achieved using only 2-opt
IterN = number of times that each individual
has gone through a set of 2-opt

Table 3: Experimental results with 2-opt only.
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quickly becomes stuck, especially as the size of the TSP increases. We can
say that 2-opt by itself lacks the power which MX provides through producing
offspring from two parents.

8. Complexity analysis of the proposed techniques for the TSP

The characteristic of the traveling salesman problem which makes it so diffi-
cult to solve is its combinatorially explosive nature. The number of feasible
tours increases exponentially as the number of cities in a TSP increases.

One approach which would certainly find the optimal solution of any TSP
is the application of exhaustive enumeration and evaluation. The procedure
consists of generating all possible tours and evaluating their corresponding
tour length. The tour with the smallest length is selected as the best, which
is guaranteed to be the optimal. If we could identify and evaluate one tour
per nanosecond (or one billion tours per second), it would require almost ten
million years (number of possible tours = 3.2 x 10%%) to evaluate all of the
tours in a 25-city TSP.

The following relationship is obtained for 30, 50, 75, 100, and 318 cities
from the experimental results in Table 1. Let the population size be some
proportion of the number of cities.

population size = p *n p a constant from 2 to 20
Then the number of inversions performed for each individual is

L i
dn—k+1)~ Enz
k=2
This result is based on the method of inversion described in Section 6.
Then, the equivalent number of function evaluations for inversion at each
generation is:

1 4
p*n*§n2*5=2*p*n2

Assuming that the algorithm converges to optimal solution within acceptable
tolerance in finite generations, then the total number of function evaluations
for the algorithm, including the number of duplications or loops and cycles,
may be written as

T(n) = (2*p*n2+pn+%+%> * gen = An?
where gen (a constant) is the number of generations to convergence. The
product of two constants, A, is also a constant. Note that the constants p
and gen for the cases of 30, 50, 75, 100, and 318 cities are (2,10), (2,17),
(4,21), (4,27), and (19, 18), respectively (see Table 2).

Remark. The number of duplications and loops in Step 1 of the MX is con-
trolled by the segment size for the matrix crossover (i.e., the crossover sites).
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The maximum number of duplications and loops is n/3 if the segment size
is set to n/3. Therefore, as n increases, the time for processing duplications
and loops for Step 1 increases linearly. Similarly, the maximum number of
cycles in Step 2 of the MX is n/3.

9. Conclusion

We have presented a GA variant for solving the TSP that uses the con-
ventional GA operators and the recombination of edges. This variant uses
a binary matrix representation and a matrix crossover (MX) to search for
and combine useful building blocks. The optimal solutions for several TSPs
(and other results) obtained using this technique are generally competitive
with the best known techniques. These results suggest that the specific im-
plementation of the GA (including the choice of representation) plays an
important role in the GA’s ability to satisfactorily solve the TSP. Schema
analysis has shown the usefulness of the binary matrix representation with
matrix crossover. Earlier conclusions suggesting that GAs were ill-suited to
the TSPs seem to have been premature.

For the method presented, the maximum deviation of the optimal solu-
tions from the best known solutions is less than 2%. This is explained by the
schema analysis: as n increases, the survival probability curve (P;) becomes
more convex to the defining length-axis, hence the performance deteriorates
(see Figure 3). In fact, the schema analysis shows the quality of the so-
lution as a function of the number of cities. However, the performance of
the method presented will deteriorate for larger problems (for instance, the
318-cities problem).

In Table 1, the performance of this variant method is compared with
other GA methods, and shown to have the best performance. It has also
been shown that the performances of TABU and the method presented are
comparable for the problems reported by Knox [21], who compared TABU
with simulated annealing and genetic algorithms. Nonetheless, the purpose
of this paper is to show that a different approach to the TSP will enrich
the methodology for this set of problems, and not to prove that the method
presented is the best.
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