Complex Systems 7 (1993) 1-23

Neural Networks and
Cellular Automata Complexity

J. Gorodkin,* A. Sgrensen,* and O. Winther*
CONNECT, The Niels Bohr Institute,
Blegdamsvej 17, 2100 Copenhagen @, Denmark

Abstract. The genotype-phenotype relation for the 256 elementary
cellular automata is studied using neural networks. Neural networks
are trained to learn the mapping from each genotype rule to its corre-
sponding Li-Packard phenotype class. By investigating learning curves
and networks pruned with Optimal Brain Damage on all 256 rules, we
find that there is a correspondence between the complexity of the
phenotype class and the complexity (net size needed and test error)
of the net trained on the class. For Li-Packard Class A (null rules),
it is possible to extract a simple logical relation from the pruned net-
work. The observation that some rules are harder for the networks
to classify leads to an investigation of rule 73 and its conjugate rule
109. Experiments reveal 3-cycles in magnetization, in agreement with
observations in higher dimensional cellular automata systems.

1. Introduction

Cellular automata (CAs) are dynamical systems discrete in space, time, and
state variables, and characterized by possession of exclusively local mecha-
nisms of interaction. They constitute good models for the study of nonlinear
complex systems. Included among their many applications are simulation
tools of biological and Artificial Life systems [3], the Navier-Stokes equation
of hydrodynamics [5], random number generators [20], and speculative mod-
els of everything, for example, the whole universe being modeled in the form
of one single cellular automaton [4]. The popularity of cellular automata
stems from their simplicity and transparency in definition; being discrete in
all respects they are well-suited for computer experiments. But in spite of
the simplicity in definition, the set of cellular automata (e.g., the set of one-
dimensional cellular automata) contains many rules with very complicated
behavior.

It is of interest to characterize, within the set of all CA rules, the location
of rules having a certain behavior. The set of rules of a certain behavior—for

*Email: gorodkin, allan, winther Qconnect.nbi.dk

@ 1992 Clomnplex Svetems Publicatione Ine.

2 J. Gorodkin, A. Sgrensen, and O. Winther

[efele] [[efe] [=] []

i=1,4; 241

Figure 1: An elementary one-dimensional cellular automaton. Each
site or cell in the lattice is in either the ON (a filled circle in the cell)
or OFF (an empty cell) state. In the example illustrated here, the
site ¢ — 1 is OFF and the sites ¢ and 4 + 1 are ON.

example, chaotic—constitutes a subset of the set of all CA rules. This subset
usually presents a nontrivial structure. One way to characterize the structure
is through neural networks.

The 256 elementary CAs provide an extremely simple example of a CA
system, but there are still a number of unsolved problems. Using neural
networks, we study the relation between the genotypes that correspond to
the same phenotype class. For each phenotype, a network learns to divide
the 256 CA rules into two categories: the ones that belong to the phenotype,
and the ones that do not. This application of neural networks leads to a
further investigation of individual rules and phenotype classes, using mean-
field theory.

Li and Packard [14] investigated the relation between genotypes of a given
phenotype through the probabilities that genotypes are connected to one
another, where two genotypes are said to be connected if their Hamming
distance is equal to 1. When we use neural networks we also take into
account Hamming distances, but the distances are not biased at 1; all possible
distances are incorporated by the neural network. Therefore, neural networks
provide a more detailed picture of the relation between genotypes of the same
phenotype.

We begin by introducing the elementary CAs. Section 3 contains mean-
field theory, and Section 4 treats neural networks and the pruning scheme.
In Section 5, we present results of neural network simulations, including
learning curves and pruning. At the end of the section we discuss the simplest
phenotype class and CA rule 73.

2. The elementary cellular automata

The type of CA considered here is one-dimensional, that is, we have a one-
dimensional lattice of cells as illustrated in Figure 1.

Cell states are evolved by updating the ith site, for all ¢ of the lattice, to
a new state (ON or OFF), depending on its own state and the two neighbor
states at sites ¢ — 1 and ¢+ 1. An example: site ¢ is updated to ON if exactly
two of the three sites ¢ — 1, ¢, and 7 + 1 are ON; otherwise it is updated to
OFF. We impose a periodic boundary by letting outermost cells be nearest
neighbors. The updated string appears in Figure 2.

An update corresponds to one iteration or a single discrete time step.
Before any updating procedure is applied it is important to specify the size

Neural Networks and Cellular Automata Complexity 3

[ef [el | [efefef []]

=11, 4]

Figure 2: The updated string of cells. Note that all sites of Figure 1
were updated simultaneously.

of the lattice and boundary conditions. In theory, the lattice can be infinitely
long; in practice, it is finite. It is therefore necessary to choose appropriate
boundary conditions. They are often periodic, but could just as well be fixed.
In general, the following characteristics must be specified.

e Lattice dimension (here 1D).

e Lattice size (i.e., the number of cells).

e Boundary conditions (i.e., what to do with the edges).
e Initial state of the cells.

For notational purposes we denote ON states by +1 and OFF states by
—1. In each set of three cells, each cell takes one of two values, —1 or +1, and
is then mapped to a value which again is either —1 or +1. In other words,
we map 2% = 8 onto 2 possible states. Thus there are 28 = 256 different sets
of 3 to 1 mappings. This is illustrated in Figure 3.

These updating procedures are also called CA rules. The general notation
introduced in Figure 3 reads

by b bs by bs by by bo. (1)

This notation can be rewritten in Wolfram notation [20] in terms of the b;
as

7
> 277 b; +1) € {0,...,255}. (2)
3=0

From this we see that the CA rule in Figure 3 is number 104. Any possible

8-sequence of b; specifies a CA rule. Whether the 8-sequence or the Wolfram

number is used, we call it the genotype. Every CA rule, regardless of its
numbering, is a genotype (i.e., a definition of the local dynamics applied to
the one-dimensional lattice).

The phenotype is determined by the asymptotic macrodynamics on the
lattice, observed when the genotype has acted for an infinitely long time on a
given initial state. (In practice, however, we can only observe a finite number
of iterations.) Generally, genotypes and phenotypes provide popular terms,
and aid intuitive understanding when studying cellular automata.

The phenotypes used in this paper are the five types suggested by Li and
Packard [14]. By numerical simulations on typical initial configurations (i.e.,
the values of each cell were initially uncorrelated and taken to be —1 or +1
with probability 0.5), five basic qualitative classes of asymptotic global CA
behavior were found.

4 J. Gorodkin, A. Sgrensen, and O. Winther

|

|

|

—

Figure 3: A procedure which updates a cell state to +1 if exactly two
of the three cell states are +1, and to —1 otherwise. This is just one
of the 256 possible updating procedures. The general scheme is to
replace the numbers in the right column with numbers b; € {—1,+1}
where j =0,...,7. From this, all 256 CA rules can be created. (The
symbol b; is chosen for historical reasons.) This table, which contains
all the three-blocks, is called a rule table. Each three-block is mapped
onto a single value by a function f : {—1,+1}% — {-1,+1}, (ie.,
f(=1,-1, —1) = by, f(—l, -1, +1) =by,..., f(+1,+1,+1) = b7)

L]
£
|

|

|
N EAR IR TN

l

Class A Null rules, 24 elements: Homogeneous fixed-point rules.
Class B Fixed-point rules, 97 elements: Inhomogeneous fixed-point rules.
Class C Periodic rules, 89 elements.

Class D Locally chaotic rules, 10 elements: Chaotic dynamics confined
by domain walls.

Class E Globally chaotic rules, 36 elements: Rules with random-seeming
spatial-temporal patterns, or exponentially divergent cycle lengths
as lattice length is increased, or a nonnegative spatial response
to perturbations.

An illustration of sample rules from these classes (except the trivial
Class A) is given in Figure 4. (The simulations presented in this paper were
performed on an HP9000/750 with the random number generator drand48.)

This classification scheme for elementary CAs is similar to the one sug-
gested by Wolfram ([21], for details see [14]). Wolfram [20] “reduced” the
number of rules to 88 by considering obvious symmetry operations that never
change the phenotypes: reflection, conjugation, and their composite. We im-
plement these operations on the bit string from (1) in the following.

Neural Networks and Cellular Automata Complexity 5

20
40
60

80
100

3.

CA rule 200, Class B CA rule 33, Class C
0
g
20E
g
40E
: 5
60 E
s
80 E
5
100 E
0 20 40 60 80 100 0 20 40 60 80 100
Space space
CA rule 73, Class D CA rule 110, Class E
i SEl | B 20
} SEH
i H | 40
1 SElEEES E t F
i EE EEE L
! EE H | EEH 80 e
; = H | EEE E r,
i =8 =Ra 100 .
0 20 40 60 80 100 0 20 40 60 80 100
space space

Figure 4: The time evolution of sample CA rules from Classes B, C, D,
and E. Note that the time axis is oriented downwards. The horizontal
axis represents the one-dimensional lattice. The initial configurations
(t = 0) were chosen by randomly setting each cell ON with a proba-
bility of 0.5. (Periodic boundary conditions were chosen.)

. Reflection is the interchange of the outermost right and outermost left

cells in the three-block of the rule table. This leads to a reflected image
in simulations (e.g., instead of moving to the right one moves to the
left), yielding

b7 be b5 b4 b3 b2 b1 b() - b7 b3 b5 b1 bg bg b4 bg. (3)

. Conjugation is the inversion (b; — —b;) of all inputs and outputs of

the rule table, and corresponds to an inverse image in simulation, as
follows.

br b bs by bs by by by — bo by b bs by bs b br, (4)
where b; = —b;.

The commutative operation combining reflection and conjugation is

b7 b6 b5 b4 b3 bg b] b() — bo b4 b2 bs b1 b5 b3 b7. (5)

These operations will subsequently be applied in a discussion of rule extrac-
tion from networks.

6 J. Gorodkin, A. Sgrensen, and O. Winther

3. Mean-field theory

In this section we investigate the evolution of a global property of the lattice:
the average number of ON states (in other words, the magnetization). The
dynamical state variable at site 7, s; € {—1,+1} evolves according to

si(t +1) = f (siz1(2), 8i(t), si1a(t)) (6)

where f is as expressed in Figure 3. The magnetization at time ¢ + 1 is
expressed as

iszt+1)+1
2

f (Si—l(t),si(?: sir(t)) + 1_ (7

m(t+1) =

I
N

Il
M=

e A E

o
I
N

(Note that only ON states are included in the sum.)

Our goal is to investigate how well the Li-Packard phenotypes divide
among mean-field calculated categories. Inspired by [1], we proceed with the
following calculations. The mean-field value in Equation (7) can be further
written as

m(t+1) = z y: fnd)+l

1_1 51,82,83==+1 2
X 5(51, Si_l(t))é(SZ, Si(t))6(33, Si+1(t)) (8)

f(s1,82,83)+1
2

$1,82,53==%1
X ~25 s1,8i-1(t))8(82, 5i(t))6(s3, 5i41(t)),

where §(s, s") is the Kronecker delta given by

1+ ss’
2 b

8(s,s") = s, s € {-1,1}. 9)

Inserting this value into the previous equation gives

miE+1l)=),

f(s1,52,83) +1

$1,82,53==%1 2
i XN: 1+ slsi_l(t) 1+ sti(t) 14 838i+1 (t) (10)
N& 5 2 2

The mean-field approzimation is then reached by replacing s;(t) with the
mean-value 2m(t) — 1 (which is 1 for m(t) = 1, and —1 for m(t) = —1),

Neural Networks and Cellular Automata Complexity 7

thereby neglecting correlation between nearest neighbors. The sum over i
vanishes, and

5 f(s1,82,83)+1

m(t+1) = =

81,82,83==%1

1—.‘33

1—s

- 1] [32.1n(t)+—}—%éfg} [33.7n(t)4—

X {51 -m(t) +
(11)

The new sum is over all possible values of the states. Inserting the f values
yields, after some calculation,

m(t+ 1) = ap + aam(t) + aem?(t) + azm®(t), (12)
where the coeffiecients are given by the matrix equation
(67)) 1 0 0 0 un)
o _ -3 1 0 0 ny
o |T] 3 -2 1 0|m| 3)
a3 -1 1 -1 1]|ns
with
b+ 1
ne = ";’ € {0,1} (14)
by +by+bs+3
— # € {0,1,2,3) (15)
b3+ bs+ b
Ny = %M €{0,1,2,3} (16)
by +1
ng = 7;“ €{0,1}. (17)

This gives us 2 X 4 X 4 x 2 = 64 possible configurations of [ngninong]. Be-
cause the determinant of the matrix in (13) is 1 (and therefore different from
zero), each polynomial can thus be represented by a unique configuration of
[ngnlngns].

The collection [ngningng] is identical to what are usually called the mean-
field clusters, which is shown clearly in (14)—(17). By investigating the mean-
field clusters for each CA rule, we find that Class D behaves differently from
the other LP classes in two ways. This is illustrated in Table 1, where those
mean-field clusters containing Class D rules are extracted from the 64 mean-
field clusters.

Our first observation is that whenever a rule from Class D appears, it is
in a mean-field cluster where all other rules are from the periodic Class C.
This indicates that rules from Class D could have similar behavior to those
from Class C. Interestingly, our other observation, illustrated more clearly in
Table 2, is that rules 73 and 109 clearly have a different mean-field cluster
from the rest of those belonging to Class D. This indicates that these two
rules could differ from the rest of the Class with respect to behavior. These
observations will be used in a later section.

8 J. Gorodkin, A. Sgrensen, and O. Winther

CA rule numbers and Li-Packard indices

3
S
=
Ay
3
N
3
&

14]C] 26[D] 28[C] 38[C] 50[C] 52[C] 70]C] 82[D] 84[C]

41[C] 73[D] 97[C]

142]C] 154[D] 156[C] 166]D] 178[C] 180[D] 198[C] 210|D] 212[C]

1 0

2 0

3 0 | 107[C] 109[D] 121[C]
11

11

= | Ol | =|O
NIN|~=|O|N

143[C) 155[C] 157[C] 167[D] 179[C] 181[D] 199[C] 211[C] 213[C]

Table 1: The five mean-field clusters of Class D.

' CA rule ’ [nonineng) }

26 [0210]
73 [1020]
82 0210]
109 [1130]
154 (0211]
166 [0211]
167 [1211]
180 [0211]
181 [1211]
210 [0211]

Table 2: Rule numbers of all the locally chaotic Class D CAs, together
with their mean-field characterization [ngninans] (extracted from Ta-
ble 1). Rules 73 and 109 are the only locally chaotic rules which do
not have [ning] = [21].

4. Neural networks and Optimal Brain Damage

In this section we describe a specific type of neural network used for deter-
mining whether a given CA rule belongs to a particular LP class; together
with a method for pruning connections called Optimal Brain Damage [13].
We consider a network which divides all CA rules into two categories,
those which belong to Class A and those which do not. (The same is done for
LP classes B, C, D, and E.) The number of connections is used as a measure
of network complexity, even though this measure is not exact.! The LP class

1Neural network complexity is an intuitive and still vaguely defined concept. Discus-
sions on using the number of (effective) parameters as a measure of model complexity, for
example, can be found in [15, 16] and references therein.

Neural Networks and Cellular Automata Complexity 9

by
|
by . 0
¢ | F
by
L wy,

Figure 5: The artificial neuron. The sum of the inputs b1, b, ..., bar
is weighted with the weights w;, j = 1,2,..., M. The threshold is
denoted ¢ and the output F. The neuron gets M inputs, which are
outputs of other neurons and/or inputs from the outside world.

for which the net with the smallest number of parameters can perform the
dichotomy is the one that corresponds to the phenotype for which the relation
between the corresponding genotypes is said to have the smallest complexity.

4.1 Application-specific networks

An artificial neural network is a network composed of computational units
(called neurons). The formal neuron is an input/output device which con-
verts a number of inputs into a single output. The neuron has as many
weights as inputs, and the output F' is generally a non-linear activation func-
tion g of the weighted sum of the inputs minus a given threshold, that is,

M
F=F(b1;-~-,bM)=g(ijbj_t), (18)

where w; is the weight of input b; and ¢ is the threshold. (This neuron is
illustrated in Figure 5.) A commonly used activation function is g = tanh
which we use here; for further details see [12].

As the network we use has to answer only “yes” or “no” (i.e., a Boolean
problem), we need only one output; and as a CA rule can be represented by
eight binary numbers, we can be satisfied with eight inputs. Data represen-
tation is an important aspect of neural network application, and one could
argue that we might as well use 256 inputs and let each represent a given rule.
However, in that case we would learn only an enumeration of the CA rules
and nothing about the specific content which distinguishes them from each
other. In fact, using more than eight inputs would mean that we had inserted
prior knowledge into the network. We do not want to do that, because we
are interested in comparing the nets using exactly the full information from
each rule.

After specifying how many inputs and outputs to use, we must determine
how to connect them. We use a two-layer feed-forward network as illustrated

10 J. Gorodkin, A. Sgrensen, and O. Winther

1
2%
%
"
R

X
")
e
@
%
X
0

)

]

P

)
K/
K
g
05
XX
‘@‘t
W

)

O

9

@
NODDN

K]

3

\

{
8
W
X{
"é
{

AN
‘s!\v
VS
i
O 0’?
%% ,//

Inputs Hidden Neurons Output Neuron

Figure 6: A 2-layer, fully connected network with 8 inputs, M (= 6)
hidden neurons, and one output neuron. The input weights (i.e., the
weights between inputs and hidden neurons) are denoted w;;, and the
output weights (the weights between hidden neurons and the output
neuron) are denoted W;. The corresponding thresholds ¢; and T are
symbolized by the vertical lines through the neurons. The different
layers of neurons are often referred to as the input, the hidden, and
the output layer.

in Figure 6. It is known that this type of network is capable of universal
computation, provided sufficiently many hidden neurons are used [12].
This network implements the function

M 7
F,(b%) = tanh {Z W; - tanh (Z wizb§ — ti) -7, (19)
i=1 =0

where b = bg,...,b% is the input, that is, the given CA rule, with a €
{0,1,...,255}. The output of the net is F,,(5%). The other quantities are
defined in Figure 6. Once the net is trained, in order to get a Boolean
output, we apply a hard delimiter on the real-valued output (in this case, a
sign-function instead of tanh). So the final function used is sign(F,,(b%)).

As shown in Figure 6, the network architecture is invariant under a per-
mutation of the input elements. Therefore, a renumbering of the cellular
automata, (for example, by permuting b; and b;, 4,57 = 0,1,...,7,) will not
change the difficulty of the learning task.

To train the neural net we use the back-propagation learning algorithm
(see [12], and references therein), which means that we minimize an error
function by gradient descent. It is convenient to choose for the error measure

Neural Networks and Cellular Automata Complexity 11

the Kullback relative entropy for tanh output [12], given by

trset 1 1+ya 1 1_ya
E(W) = “(1+y")log——5-+-(1-y*)]log—-"5—|, 20
(@) =2 |5+v%) e RE 2T T

where y® is the known output of input (CA rule) o, and w is the vector of
all weights (including thresholds). The sum over « includes only those a in
the training set.

Briefly, let the vector @ be the collection of all weights in the net. Weight
ug, is then updated according to

ur(n+ 1) = uk(n) + Aug(n), (21)
where 7 is the number of iterations (updatings) and
OF
Auy(n) = —Tia—uk; (22)

in other words, the weights are updated by taking a step in the opposite
direction of the gradient scaled with a factor n. This parameter is also known
as the learning rate. For layered networks the gradient can be rewritten in
such a way that it can be back-propagated through the network, layerwise.

4.2 Pruning

Careful pruning is most likely to improve the generalization ability of a net-
work that has redundancy in the number of connections (see [13, 9, 6, 19]).
Simulations on other tasks have shown that Optimal Brain Damage (OBD) is
capable of finding minimal or nearly minimal architectures [6]. The motiva-
tion for looking for the minimal representation can be justified by Ockham’s
Razor [19], a principle that states that

Among two models of the same phenomenon the simplest which
decribes it sufficiently well should be preferred.

For a neural network, we will take the number of connections as a measure
of the description length, and sufficiently good description will mean giving
the right output on the training set. The minimal number of connections
needed to perform the mapping tells us something about how complex the
mapping is.

OBD was introduced by Le Cun et al. [13]; the procedure is as follows.
First, the network is trained to do the training examples, and then the weight
with the smallest importance (i.e., the weight which will cause the smallest
increase of the error function) is removed. Thereafter, the net is retrained
and a weight removed again, and so on.

The perturbation of a weight u; (which is any weight in the network)
causes a perturbation of the error function (20), which can be written to the
second order as

OF 1 8’E
6E = Xk:auszuk—k 2%:(%

k6u1 5uk6ul. (23)

12 J. Gorodkin, A. Sgrensen, and O. Winther

Uk
U

FH = o e

Figure 7: After training, the weight configuration is assumed to give
an energy minimum (or close to one) with u; = uj, as illustrated.
This weight is removed by setting duy, = —uj, that is, uy = 0. The
cost of this is §F.

Because we have learned the training data, we are at a minimum with weight
u4*, and the first term can therefore be neglected. The cost of removing the

kth weight u;, when trained to ux = uj (i.e., setting dur = —uy and du; =0
for all [# k), is therefore
16°E
OF ~ S = 56—'“’2611%, (24)

where s, is called the saliency of weight uy (see Figure 7). How to calculate
(0*E)/(0u}), for example, can be found in [13, 6].

5. Numerical experiments

In this section, we investigate the degree of complexity of the mutual relation
between genotypes for each corresponding LP class, using neural networks.
We employ two primary approaches: comparing learning curves of the re-
spective networks which represent the LP classes, and using the full 256 CA
rules as the training set and pruning the nets by OBD. We compare the
number of free parameters left in each network.

5.1 Learning curves

A learning curve is produced by starting with a given training-set size pirain,
where the inputs (CA rules) are chosen randomly. The network is then
trained until it has learned to correctly classify all examples in the training
set. This is done a number of times (which defines the “ensemble size”)
for different initial weight configurations and an increasing training-set size
Dirain- We define the test error as

Ecla.ss

Etest =)
DtestMeclass

(25)

Neural Networks and Cellular Automata Complexity 13

where the number of misclassifications is

test set

FEass = Z S} (_yaFw(ga)> (26)
with
_J1 ifz>0
Bg)= {0 otherwise - 27)

The misclassifications E.,s are divided by the test-set size (pus; = 256 —
Dirain), and the number of elements of the LP class in question (mepss). By
dividing over mgass we are asking how difficult it is to learn the problem,
per element in the given class. We simply use a normalization with respect
to the number of elements in each class, in agreement with the relative bias
of the different networks when respectively trained to recognize a different
number of +1s [17].

Letting pirain increase, we can plot the average test error of the ensemble
for each pirain as a function of pyai,. Such a plot is called a learning curve. We
use gaussian error bars, even though the errors do not seem to be normally
distributed and more convenient criteria could be used [8, 6]. Figure 8 shows
the learning curves corresponding to the classification of the different LP
classes.

The first significant observation from the learning curves in Figure 8 is
that the simple LP classes (i.e., A, B, and C) have a much lower level of test
error than the chaotic classes D and E do. The nets representing the three
simple classes generalize much better than the chaotic ones do. We see that
the relation between genotypes having simple phenotype is simpler than the
relation between genotypes having more complex phenotype.

The second significant observation is that Class D merges just as well with
Class C as it does with Class E. This is realized by comparing the learning
curve of Class C with that of Class CD, and the learning curve of Class E
with that of Class DE. In both cases the two learning curves are “close” to
each other. Li and Packard [14] merge Classes D and E in one case because
they are both chaotic and Class D contains few elements. The mean-field
theory has encouraged us to merge Classes C and D.

5.2 Pruned networks

Using the entire set of possible examples, the networks are then pruned as
much as possible by OBD, and the number of parameters left in each case is
compared. This is reasonable, from the point of view that the number of free
parameters in a network can be considered a measure of how “complex” a
function F,~ it implements. Again, we normalize with respect to the number
of elements in each LP class. The results are given in Table 3. Each network
was found in an ensemble of 15 networks.

Considering Table 3, we note that the interesting quantity q/meass 1S
much higher for the chaotic classes D and E than for the nonchaotic classes

14 J. Gorodkin, A. Sgrensen, and O. Winther
0015 0015 :
Class A Class B
0010 4 oo B
0005 4 ook -
000 0000 . .
0 5 100 150 m 50 0 5 100 150 mw 5
0015 o 0015
Class C Class D
0010 4 oo 4
0005 1w
N H\;\H_‘WH\H\'/ - ‘
0 5 100 150 m 20 0 5 100 150 0 20
0015 0015
Class E Class CD
000F 1 ooor .
00sF 1 oot .
0000 000 M
0 5 100 150 0 50 0 5 100 150 W 50
0015 T —
Class DE

0 100 150 0 20

Figure 8: Learning curves for networks representing the CA classes.
The z-axis is the number of training examples, and the y-axis is the
normalized classification test error (i.e., the usual test error divided
by the number of elements in the respective LP class). The chaotic
classes, indeed, have a much higher error level. We also see that the
behavior of the learning curves for Classes C and CD are similar and,
likewise, Classes E and DE. Each error bar was produced from six
nonpruned networks, that is, the ensemble size was 6 networks per
training example. Each network had 8 hidden neurons.

Neural Networks and Cellular Automata Complexity 15

| Net | Metass | g [B] g/metass
A 24 |16[3| 067
B | 97 |50|6| 0.52
C | 8 [53]7]| 0.60
D | 10 [28(3| 280
E | 36 |[44]6] 1.22
CD| 99 |56(7| 057
DE | 46 [48|7| 1.04

Table 3: Results for networks corresponding to each of the LP classes
A, B, C, D, E, and the composites CD and DE. The number of pa-
rameters after pruning is g, mass is the number of elements in each
LP class, and A is the number of hidden units left after pruning.

A, B, and C. Taking into account the number of elements in each class, the
corresponding networks are thus more complex for the complex classes than
for the simpler classes. The number g/mjass for Class D is very high, which
is probably a result of the low number of elements in this class.

A network with the smallest number of parameters does not necessarily
have the smallest number of hidden neurons [6]; for Class A we also found
a network with 2 hidden neurons and 17 parameters, containing interesting
symmetries.

The mean-field theory indicated that Classes C and D could merge. As
for the learning curves, we see that Class CD merges with Class C at least
as well as Class DE merges with Class E. This could suggest that Class D
is as much periodic as it is chaotic. On the other hand, it is natural in this
regard to investigate how well Class D merges with Classes A and B, in order
to test whether the networks completely ignore the merging of Class D with
any other class (i.e., by preserving the relative values of ¢/Mmcass)-

For Classes A and D merged, we found a smallest network with 41 param-
eters which could solve the classification task. The fraction q/mgass = 1.21,
together with an A = 5, indicates that the two classes cannot be merged;
that is, the relations between the genotypes for the different phenotypes do
not possess the same complexity. For Classes B and D merged, we found
a smallest network with 61 parameters (and h = 7), hence q/mclass = 0.57.
This indicates that Class D also merges with Class B; this will be further
investigated subsequently.

5.3 A logical relation between Class A genotypes

It is possible to extract a logical rule from the Class A network because the
network is saturated (i.e., sign can be substituted for tanh without changing

16 J. Gorodkin, A. Sgrensen, and O. Winther

1.197586

1.109918

—0.697621 2

1.197531

0.549358
L 2.578842

—1.333669 T - -

1.109918

2.687348 —1.773918

—0.697621 i B
T L -707"4.496529
»e

—1.334022

0.549358 7
—1.333669

—1.336729 .
»

Figure 9: The neural network which can tell whether a CA
rule belongs to Class A. The dashed lines symbolize negative
weights/thresholds. The vertical lines through the neurons symbolize
the thresholds. The integers are labels for the inputs and all other
numbers are the sizes of the weights. The network is notably sym-
metric.

the output of any input). The network which solves the classification task
for Class A with two hidden neurons has a remarkably simple structure, as
illustrated in Figure 9.

This network has many identical or nearly identical weights. This sharing
of weights encouraged a further investigation. The weights which were not
identical were set equal, and it was established by testing that this new
weight configuration (see Figure 10) could produce the right outputs. In the
following, we will argue why there must be this weight sharing.

Because the network implements the phenotype classification, it must be
invariant under the phenotype-conserving symmetries. The network function
with two hidden units can be written as

Foy(6%) = g(Wag(B® -) — t1) + Wag(B* - @y — t2) — T), (28)

where g = tanh and w;, ¢ = 1,2 are the weights for the respective hidden
neurons. Let us define S as a symmetry operation. In the present case,

F,,(Sb%) = F,(b%). (29)

Both the reflection (3) and the conjugation (4) symmetry have the property
that S? = 1. For the net function (28), this gives two possible choices of
weight constraint to conserve the symmetry; on the one hand,

81151 = ’lEl and 511172 = ’lIfz, (30)

Neural Networks and Cellular Automata Complexity 17

T
1.0
6 1.0
—0.5
5 1.0
0.5
4
1.0
3 s
2
0.5
1
—10 .°°
0 »

Figure 10: The rewritten network which can solve the classification
of CA rules in Class A. There are only four different values for the
parameters.

and on the other,
SoWy = W while using ¢, =t, and W; =W, (31)

where it is easy to see that the latter symmetry operation implies Spws = .
By inspection, we observe that the network has chosen S; as the reflection
symmetry and S, as the conjugation symmetry. It is easy to demonstrate as
well that the network is invariant under the combined operation ;5> if (30)
and (31) hold. The operation Sy is completely in agreement with the fact
that Class A can be divided into two disjoint sets, such that conjugation of
all CA rules in one set gives the rules of the other.

Employing the net above, one can extract the following algebraic descrip-
tion, which is implemented by the network.

1 ifbg=by=by=0b=-1
and b3 + be 7é 2
F(bOa bla b27 b3; b4a b57 bﬁ: b7) = 1 if b3 = b5 = bﬁ = b7 =1 (32)
and by + by # —2
—1 otherwise
where we note that by = by = by = by = —1 and b3 +bg 5% 2 givesng=n; =0
and ny < 2, and that bg3 = bs = bg = by = 1 and by + by 7& —2 gives ny; > 1,
ng = 3, and ng = 1. We recognize that the first two conditions in (32) are
each other’s conjugates, and both are invariant under reflection.? Of course,

2Tt should be mentioned that the expression also can be derived directly by observing
Class A elements.

18 J. Gorodkin, A. Sgrensen, and O. Winther

| Ensemble | NBorder Most frequently nonlearned CA rules l

An 1283, 0[6A] 32[6A] 168[6A] 8[5A] 40[54] 253[5A4] 255[54]
232(7B)] 233[6B] 236[6B] 237(6B]

B, 724 128[3A] 234[24] 254[24] 255[24] 139[4B] 57[3B] 69[3B]

116(3B] 209[3B] 201[2C] 60[1E] 106[LE] 153[LE] 195[1E]

Cs 4334 205[2B] 237[2B] 108[3C] 37[2C] 201[2C] 105[4E]

Ds 4515 162[1B] 176[1B] 38[1C] 52[1C] 201[1C] 73[9D] 109[9D]

Eis 524 | 160[LA] 13[3B] 162[2B] 133[2C] 178[2C] 167[2D] 105[3E]
54[2E] 89[2E] 153[2E] 183[2E]

CDy4 475 | 4[2B] 72[2B] 132[2B] 197[2B] 113[3CD] 105[8E] 182[3E]
DE; 34y 94[3CD] 118[2CD] 109[2C D]54[4E] 161[2E]

Table 4: Borderlines for the ensembles from Table 3. For each prun-
ing step of the networks a number of CA rules—the borderlines—were
no longer learned. The table shows borderlines for back-propagation,
after 5000 epochs with OBD. “Ensemble” is the LP class, where the
index refers to the number of networks (among the 15 possible) which
learned correct classification; in other words, only borderlines for
pruned networks are included. The number Ngg.ger is the total num-
ber of borderlines among the ensemble after the 5000 iterations. The
index here refers to the number of different borderlines. The numbers
with square brackets refer to CA rules, together with the number of
times they occur in a given ensemble. Letters in the square brackets
are the LP classes.

the expression can be written as a logical relation, but that would be more
cumbersome.

5.4 Borderline cellular automata

A CA rule which is at the border between two LP classes with respect to be-
havior in a given context (in this case, neural networks) is called a borderline.
The borderlines were traced by looking for those rules which the networks
had trouble with, that is, the most frequently nonlearned rules during the
training/pruning process. We present the most frequent borderlines in Ta-
ble 4. The borderlines for all ensembles except D and CD appear with the
same frequency within each ensemble. Rules 73 and 109 clearly differ from
the rest of the borderlines in ensemble D. In ensemble CD it is rule 105 which
differs. (Borderlines are also discussed in [18].)

Observation of the run with Classes A and D merged gave the result that
73 and 109 were the only borderlines. This suggests that 73 and 109 are not
connected with the rules in Class A, and that this is the reason why Classes

Neural Networks and Cellular Automata Complexity 19

A and D merge so badly. The composite class AD inherits the borderlines
from Class D itself.

Because the Class BD rules 73 and 109 are slightly more common border-
lines than the others, it is likely that the elements in Class D are somehow
embedded in Class B, due to the large difference between the number of el-
ements in the two classes. This could also be the case for Classes C and D
merging. Nonetheless, the mean-field clusters indicate that the latter merg-
ing could be possible, and the network does not contradict this.

Though rule 105 is a clear borderline in ensemble CD, it is not as distinct
as 73 and 109 are in ensemble D.

5.5 Borderlines from Class D

We briefly analyze the borderline rules 73 and 109, which are each other’s
conjugates (see (4)). The mean-field clusters indicate that the two rules
deviate from the other rules in Class D. The neural networks find these rules
much more difficult to classify than all the other CA rules. These facts
demand a further investigation.

We start by investigating why 73 and 109 are much more frequent border-
lines than any other rule in Class D. By observing the remaining eight rules
in Class D, and combining them appropriately, we find that the following
function produces the right output for all the rules except 73 and 109.

1 if bg = by = b5 = —1,
b1=b4=1&11db3=—b6
F(bo, by, by, b3, by, bs, b, b7) = 1 ifbp=bs=0b=1, (33)
b3 = bs = —1 and b1 = —b4
—1 otherwise

Because rules 73 and 109 directly contradict all three claims in the first two
cases, it must be clear that incorporating them will increase the complexity
of the expression considerably. Even without incorporating them, this ex-
pression is more complicated than the one found for Class A (32). This is
the case in spite of the fact that Class A contains more than twice as many
elements as Class D.

Equation (33), in agreement with Table 1, yields ny = 2 and ny = 1. The
first is seen from by = —1, by = by = 1 or from by = 1, by = —by; and the
second from bs = —1, by = —bg or from bs = 1, by = bg = —1.

There are several ways to investigate the evolution of a CA rule. In-
spired by the mean-field considerations, we choose to consider the evolution
of magnetization m(¢). By doing so, we neglect the distribution of states on
the one-dimensional lattice, and consider only how many of them are ON
and how many are OFF. A first approach towards understanding of magne-
tization provides the mean-field approximation. Doing so, it is easy to see
that rule 73, applied in (13), gives the following polynomial,

m(t+ 1) = —3m®(t) + 5m?(t) — 3m(t) + 1, (34)

20 J. Gorodkin, A. Sgrensen, and O. Winther

which maps the interval (0,1) onto itself. This mapping has one fixed point
only, solving m*(t+1) = m*(t) with the value m* = 0.4056. Because the right
side of the equation leads to a negative Lyapunov exponent A ~ —0.8565, the
fixed point is stable (i.e., an attractor).

The behavior of rule 73 is thus trivial in the mean-field theory. We
wished to compare this with numerical experiments, so we investigated rule
73 through numerical simulations of the magnetization. We show a phase
space plot of the magnetization in Figure 11. We see that it is far from a
fixed point, but more like a periodic 3-cycle, with possible hidden periodicity
of higher order.

We simulated variable lattice sizes up to 2'®, and different random initial
cell configurations (with a probability 0.5 for states to be ON) for each. In
all cases, the fundamental structure was found to be at the same position;
that is, the 3-cycle structure was not just a finite lattice-size effect, even
though small variations were present for small lattices and a small number of
iterations. Furthermore, the initial magnetization was crudely varied from 0.2
to 0.8 with steps of 0.1. For initial magnetizations above 0.3 the fundamental
structure was preserved, but slightly displaced in the phase space. For initial
magnetization 0.2, the 3-cycle structure vanished.

All ten rules of Class D have very similar global patterns on the lattice
(as considered, for instance, by Li and Packard). But when magnetization
is considered, rules 73 and 109 clearly differ from all the others by having
3-cycles. We also investigated the magnetization for the chaotic Class E rules,
and all of them had trivial behavior (though rule 54 displayed an ellipsoid
object that became significantly smaller when the lattice size was increased).
The fact that rule 105 also displayed trivial magnetization behavior could
indicate that merging Class C and D is not as interesting from a “network”
point of view as when seen from the mean-field theory.

Though it is trivial that the periodic rules of Class C display periodic
behavior in magnetization, the periodicity in magnetization of the locally
chaotic rules 73 and 109 is more subtle. These rules are a priori periodic
only within the domain walls, but these periodicities are of different length
and are turned on at different times. The positions of the domain walls
themselves are random, because of the random initial configuration of all
cells.

The 3-cycle of the one-dimensional rules 73 and 109 seems to be interest-
ing in the ongoing debate about the possibility of producing global oscillations
in extended systems with short-range interactions; observations of quasiperi-
odic behavior in five and three dimensions by Chaté and Manneville [2] and
Hemmingsson [10] somehow disagree with arguments given, for example, by
Grinstein [7]. A further discussion of rule 73 in this context is given in [11].

6. Conclusions and perspectives

An important question concerning CAs is the relation between genotypes
(rule numbers) having the same phenotype (complexity class). We have

Neural Networks and Cellular Automata Complexity 21

Q4QQET T T T T T T T T T L o e e e e L

0.480

0.470

m(t+1)

0.460

0.450

Figure 11: Phase space plot of magnetization for rule 73. We observe
how the magnetization at time ¢ + 1 depends on the magnetization
at time ¢t. Of 500,000 epochs, the figure shows the last 20,000 data
points for a lattice length of 217 with periodic boundary conditions.
The initial states in the lattice were set randomly, with probability
0.5 for states to be ON, i.e., the initial magnetization was 0.5.

studied this relation for the elementary CA rules, using neural networks. Such
networks learn by examples, and are known for their ability to generalize and
to achieve a compact representation of data.

By applying neural networks in two independent ways, making use of
generalization abilities and numbers of connections (net complexity), we have
shown that genotypes in the nonchaotic LP classes are connected in a simpler
way than the genotypes in the chaotic classes.

Our investigations gave additional results. We found a logical relation
between Class A genotypes, and the networks were able to track down the
borderline rules 73 and 109. These most-frequent borderlines revealed a
nontrivial 3-cycle in magnetization. Note that all of the Wolfram Class 4
complex CA rules (i.e., 54, 110, 124, 137, 147, and 193) are not capable of
universal computation and, for that reason, may not be very interesting from
a dynamical point of view. This is in agreement with the fact that no special
borderline status of these rules was observed.

That the neural networks exposed rules 73 and 109 as borderlines corrob-
orates their differences from the other rules in Class D with respect to mean-
field clusters. However, searching for intriguing CA rules through mean-field

22 J. Gorodkin, A. Sgrensen, and O. Winther

clusters might be cumbersome in higher dimensions; it seems to be much
more convenient to use a small number of neural networks.

Whether our results for one-dimensional elementary CAs hold for higher
dimensional systems is an open question. However, there are several di-
rections for future work. 1) Application of the neural network method to
classification schemes of cellular automata in higher dimensions. 2) Building
symmetries into the networks, which could perhaps lead to logical relations
for the other elementary LP classes, and help to minimize the number of
free parameters for higher dimensional systems. 3) Construction of new
classification schemes in higher dimensions, by neural networks trained with
unsupervised learning on the space-time evolutions of CAs, in other words,
to find clusters in the set of space-time evolutions.

In conclusion, we found that the application of neural networks led to a
nontrivial result relating the complexity of the network learning a specific LP
class to the complexity of the dynamical behavior of the class itself (chaotic
versus nonchaotic). Through the discovery of a metric in the space of CA
rules, neural networks are capable of tracking down rules which are on the
“edge” of a class. If this holds for higher dimensions, it might be possible to
find the universal computational rules at the edge of a chaotic class.

Acknowledgments

We wish to thank Sara A. Solla and Benny Lautrup for valuable discussions,
Henrik Flyvbjerg for drawing our attention to mean-field theory, and Lars
Kai Hansen for discussions on learning curves; also Allon Percus for proof-
reading. This research is supported by the Danish Research Councils for the
Natural and Technical Sciences through the Danish Computational Neural
Network Center (CONNECT).

References

[1] Z. Burda, J. Jurkiewicz, and H. Flyvbjerg, “Classification of Networks of
Automata by Dynamical Mean-field Theory,” Journal of Physics A, 23 (1990)
3073-3081.

[2] H. Chaté and P. Manneville, “Evidence of Collective Behaviour in Cellular
Automata,” FEurophysics Letters, 14(5) (1991) 409-413.

[3] J.D. Farmer and A. d’A. Belin, “Artificial Life: The Coming Evolution,” Los
Alamos Technical Report LA-UR-90-378 (1990).

[4] E. Fredkin, “Digital Mechanics: An Information Process Based Reversible
Universal Cellular Automaton,” Physica D, 45 (1990).

[5] U. Frisch, B. Hasslacher, and Y. Pomeau, “Lattice-gas Automata for the
Navier-Stokes Equation,” Physical Review Letters, 56 (1986) 1505.

[6] J. Gorodkin, L. K. Hansen, A. Krogh, C. Svarer, and O. Winther, “A Quan-
titative Study of Pruning by Optimal Brain Damage,” International Journal
of Neural Systems, 4(2) (June, 1993) 159-169.

Neural Networks and Cellular Automata Complexity 23

(7l

(10]

[11]

[12]

[13]

(14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

G. Grinstein, “Stability of Nonstationary States of Classical, Many-Body Dy-
namical Systems,” Journal of Statistical Physics, 5 (1988) 803.

L. K. Hansen and P. Salamon, “Neural Network Ensembles,” IEFFE Transac-
tions on Pattern Analysis and Machine Intelligence, 12 (1990) 993-1001.

B. Hassibi and D. Stork, “Second Order Derivatives for Network Pruning:
Optimal Brain Surgeon,” in Advances in Neural Information Processing Sys-
tems 5 (Denver 1992), edited by S. J. Hanson, J. D. Cowan, and C. L. Giles
(San Mateo, CA, Morgan Kaufmann, 1993).

J. Hemmingsson, “A Totalistic Three-Dimensional Cellular Automaton with
Quasi-periodic Behavior,” Physica A, 183 (1992) 255-261.

J. Hemmingsson, A. Sgrensen, H. Flyvbjerg, and H. Herrmann, “What Syn-
chronization?” Europhysics Letters, 23(9) (1993) 629-634.

H. Hertz, A. Krogh, and R. Palmer, Introduction to the Theory of Neural
Networks, Lecture Notes Volume I, Santa Fe Institute, Studies in the Sciences
of Complexity (Reading, MA, Addison-Wesley, 1991).

Y. Le Cun, J. S. Denker, and S. Solla, “Optimal Brain Damage,” pages 598—
605 in Advances in Neural Information Processing Systems 2, edited by D. S.
Touretzky (San Mateo, CA, Morgan Kaufmann, 1990).

W. Li and N. H. Packard, “The Structure of the Elementary Cellular Au-
tomata Rule Space,” Complez Systems, 4 (1990) 281-297.

J. E. Moody, “The Effective Number of Parameters: An Analysis of Gen-
eralization and Regularization in Nonlinear Learning Systems,” in Advances
in Neural Information Processing Systems 4, edited by J. E. Moody, S. J.
Hanson, and R. P. Lippmann (Morgan Kaufmann, San Mateo, CA, 1992).

J. Rissanen, “Stochastic Complexity and Modeling,” The Annals of Stochas-
tics, 14(3) (1986) 1080-1100.

D. W. Ruck, S. K. Rogers, M. Kabrisky, M. E. Oxley, and B. W. Suter, “The
Multilayer Perceptron as an Approximation to a Bayes Optimal Discriminant
Function,” IEEE Transactions on Neural Networks (Letters), 1(4) (1990).

A. Sgrensen, “Genotypes and Phenotypes in Elementary Cellular Automata,”
Cand. Scient. Thesis, The Niels Bohr Institute, February 1993.

H. H. Thodberg, “Improving Generalization of Neural Networks through
Pruning,” International Journal of Neural Systems, 1(4) (1991) 317-326.

S. Wolfram, editor, Theory and Applications of Cellular Automata (Singapore,
World Scientific, 1986).

S. Wolfram, “Universality and Complexity in Cellular Automata,” Physica
D, 10 (1984) 1-35.

