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Abstract. The genotype-phenotype relat ion for the 256 elementary
cellular automata is studied using neura l networks. Neural networks
are trained to learn the mapping from each genotype rule to its corre­
sponding Li-Packard phenotype class. By invest igating learning curves
and networks pruned with Optimal Brain Damage on all 256 rules, we
find that there is a correspondence between the complexity of the
phenotype class and the complexity (net size needed and test error)
of the net trained on the class. For Li-Packard Class A (null rules),
it is possible to extract a simple logical relation from the pruned net­
work. The observation that some rules are harder for the networks
to classify leads to an investigation of rule 73 and its conjugate rule
109. Experiments reveal 3-cycles in magnetization, in agreement with
observations in higher dimensional cellular automata systems .

1. Introduction

Cellular automata (CAs) are dynamical systems discrete in space, t ime , and
state variables, and characterized by possession of exclusively local mecha­
nisms of interaction . They constit ute good models for the st udy of nonlinear
complex systems. Included among their many applications are simulation
tools of biologica l an d Artificial Life systems [3], the Navier-Stokes equation
of hydrodynamics [5], random number generators [20], and speculative mo d­
els of everything, for examp le, the whole un iverse being modeled in the form
of one single cellular automaton [4]. T he popularity of cellular automata
stems from their simplicity and transparency in definit ion; being discrete in
all respects t hey are well-suited for computer experiments. But in spite of
the simplicity in definition, the set of cellular automata (e.g., t he set of one­
dimensional cellular automata) contains many ru les wit h very complicated
behavior.

It is of interest to characterize, wit hin the set of all CA ru les, the location
of rules having a certain behavior. T he set of rul es of a certain behavior-for
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Figure 1: An elementary one-dimensional cellular automaton. Each
site or cell in the lattice is in either the ON (a filled circle in the cell)
or OFF (an empty cell) state . In the example illustrated here, the
site i- I is OFF and the sites i and i + 1 are ON.

example, chaotic-const itutes a subset of the set of all CA rules. This subset
usually presents a nontrivial st ructure. One way to characterize the st ructure
is through neural networ ks.

The 256 elementary CAs provide an ext remely simple example of a CA
system, but there are st ill a number of unsolved problems. Using neural
networks, we st udy the relation between the genotypes that correspond to
the same phenotype class. For each phenotype, a network learns to divide
the 256 CA rules into two categories: the ones that belong to the phenotype,
and the ones that do not. This appli cation of neur al networks leads to a
further investigation of individual rules and phenotype classes, using mean­
field th eory.

Li and Packard [14] investigated the relation between genotypes of a given
phenotype t hrough the probabili ties that genoty pes are connected to one
anot her, where two genoty pes are said to be connected if their Hamming
distance is equal to 1. When we use neur al networks we also take into
account Hamming dist ances, but the distances are not biased at 1; all possible
distances are incorporated by the neural network. T herefore, neural networks
provide a more det ailed picture of the relation between genotypes of the same
phenotype.

We begin by introducing th e elementary CAs. Section 3 contains mean­
field th eory, and Section 4 treats neural networks and th e pruning scheme.
In Section 5, we present results of neur al network simulations, including
learning curves and pruning. At the end of the sect ion we discuss t he simplest
phenotype class and CA rule 73.

2. The elementary cellular automata

The type of CA considered here is one-dimensional, that is, we have a one­
dimensional lat tice of cells as illustrated in Figure 1.

Cell states are evolved by updating the ith site, for all i of t he lattice, to
a new state (ON or OFF) , depending on its own state and the two neighbor
states at sites i- I and i + 1. An example: site i is updated to ON if exactly
two of the three sites i - I , i , and i + 1 are ON; otherwise it is updated to
OFF. We imp ose a periodic boundary by let tin g outermost cells be nearest
neighbors. The updated string appears in Figure 2.

An update corresponds to one iterati on or a single discrete time step.
Before any updating procedur e is applied it is important to specify the size
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Figure 2: The updated st ring of cells. Note that all sites of Figure 1
were updated simultaneously.

3

(2)

of th e lat t ice and bound ary condit ions . In theory, the lat tice can be infinitely
long; in practice, it is finite. It is therefore necessary to choose appropriate
boundary cond it ions. They are often periodic, but could just as well be fixed.
In general, th e following characterist ics must be specified .

• Lat tice dimension (here 1D).

• Lattice size (i.e., the number of cells) .

• Boun dary conditions (i.e., what to do with the edges) .

• Initi al state of the cells.

For not ational purposes we denote ON states by +1 and OFF states by
-1. In each set of t hree cells, each cell t akes one of two values, - l or +1, and
is then mapp ed to a value which again is either -l or + 1. In other words ,
we map 23 = 8 onto 2 possible states. Thus t here are 28 = 256 different sets
of 3 to 1 mappings. This is illustrated in Figure 3.

These updating pro cedures are also called CA rules. The genera l not at ion
introduced in Figure 3 reads

b7 b6 b5 b4 b3 b2 b1 boo (1)

This not ation can be rewritten in Wolfram not ation [20] in terms of the bj

as
7

L 2j
-

1 (bj + 1) E {O, .. . , 255}.
j=O

From this we see that the CA rule in Figur e 3 is numb er 104. Any possible
8-sequence of bj specifies a CA rule. Wheth er the 8-sequence or the Wolfram
number is used , we call it the genotype. Every CA rule, regardless of its
numbering, is a genotype (i.e., a definition of the local dynamics applied to
the one-dimensional lat tice).

The phenotype is determined by the asymptot ic macrodynamics on the
latt ice, observed when the genotype has acted for an infinitely long time on a
given initial state . (In pract ice, however, we can only observe a finite number
of iterations.) Generally, genotypes and phenotypes provide popular terms,
and aid int uit ive underst anding when studying cellular automata.

The phenotypes used in this paper are the five types suggested by Li and
Packard [14]. By numerical simulations on typical init ial configurations (i.e. ,
the values of each cell were init ially uncorr elated and taken to be - lor +1
wit h probability 0.5), five basic qualitat ive classes of asymptot ic global CA
behavior were found.
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Figure 3: A procedure which updates a cell state to + 1 if exactly two
of the th ree cell states are + 1, and to - 1 otherwise. This is just one
of the 256 possible updating procedures. The general scheme is to
replace the numbers in the right column with numbers bj E {- I , + I}
where j = 0, . .. , 7. From this, all 256 CA rules can be created. (The
symbol bj is chosen for historical reasons.) This table, which conta ins
all the three-blocks, is called a rule table. Each three-block is mapped
onto a single value by a function f : {- 1,+1}3 ---+ {- 1,+1}, (i.e.,
f( - 1, - 1, - 1) = bo, f (- I , - 1, +1) = b1 , ... , f (+ I , +1, + 1) = b7)'

Class A Null rules, 24 elements: Homogeneous fixed-point ru les.

Class B Fixed-point ru les, 97 elements : Inhomogeneous fixed-point rules.

Class C Periodic rules, 89 elements .

Class D Locally chaot ic rules, 10 elements: Chaotic dynamics confined
by domain walls.

Class E Globally chaotic rules, 36 elements: Rules with random-seeming
spat ial-tempora l pat terns, or exponent ially divergent cycle lengths
as lat tice length is increased, or a non negative spat ial response
to perturbati ons.

An illustrati on of sample rules from these classes (except the trivial
Class A) is given in Figure 4. (The simulations presented in this paper were
performed on an HP9000/750 with t he ra ndom number generator drand48.)

This classificat ion scheme for elementary CAs is similar to the one sug­
gested by Wolfram ([21]' for det ails see [14]). Wolfram [20] "reduced" the
number of rules to 88 by considering obvious symmetry operat ions t hat never
change the phenotyp es: reflection, conjugat ion, and their composite. We im­
plement t hese operations on the bit string from (1) in the following.
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Figure 4: The time evolut ion of sample CA rules from Classes B, C, D,
and E. Note that the t ime axis is oriented downwards. The horizontal
axis represents the one-dimensional lattice. The init ial configurations
(t = 0) were chosen by randomly sett ing each cell ON with a proba­
bility of 0.5. (Periodic boundary conditions were chosen.)

1. Reflection is t he interchange of the outermost right and outermost left
cells in the three-block of the rul e table. T his leads to a reflected image
in simulations (e.g. , instead of moving to the right one moves to t he
left ) , yielding

(3)

(4)

2. Conjugation is the inversion (bj ---t -bj ) of all inpu ts and outputs of
t he ru le tab le, and corre sponds to an inverse image in simulation, as
follows.

b7 b6 b5 b4 b3 b2 b1 bo -------> bo b1 b2 b3 b4 b5 b6 b7 ,

where bj = - bj .

3. T he commutat ive operation combining reflect ion an d conjugat ion is

(5)

These operations will subsequently be applied in a discussion of ru le ext rac­
tion from networks.
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3. Mean-field theory

In this sect ion we invest igat e the evolutio n of a global property of the lat tice:
the average number of ON states (in other words, the magnetization). The
dynamical state variable at site i , s, E {-I ,+I} evolves accord ing to

Si(t + 1) = f (Si- 1(t) , Si(t ), SH1(t)) , (6)

where f is as expressed in Figure 3. T he magnetization at t ime t + 1 is
expressed as

( )
_ 1 ~ Si(t + 1) + 1

m t +l = - L
N i=l 2

= 2-t f (Si- 1(t), Si(t ),Si+l(t)) + 1.

N i=l 2
(7)

(Note that only ON states are included in the sum.)
Our goal is to invest igate how well the Li-Packard phenotypes divide

among mean-field calculated cat egories. Inspired by [1], we proceed with the
following calculat ions. The mean-field value in Equat ion (7) can be further
written as

(8)

1 N
X N 2:8(Sl,Si_1(t) )8(S2 ,Si(t ))P"(S3 ,Si+l(t)),

i=l

where 8(s,s' ) is the Kronecker delta given by

8( ' ) = 1 + SS'
s , S 2' S , s' E {-I , I}. (9)

Inserting this value into the previous equation gives

m(t + 1) = 2:
Sl,S2, S3=±1

The mean-field approximation is then reached by replacing Si(t) with the
mean-value 2m (t ) - 1 (which is 1 for m (t) = 1, and - 1 for m(t ) = - 1),
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thereby neglect ing correlation betwee n nearest neighb ors. The sum over i
vanishes, and

m(t+ 1) = L

x [Sl .m(t) + I ~Sl] [S2 . m (t) + I~ S2] [S3 . m(t ) + I~ S3] .

(11)

The new sum is over all possible values of t he states. Inserting t he f values
yields, after some calculation,

m(t + 1) = Qo + Qlm(t) + Q2m2(t) + Q3m3(t),

where the coeffiecients are given by the matrix equation

(12)

with

r

I O
= -3 1

3 -2
-1 1

o
o
1

-1

(13)

(14)

(16)

(15)

bo+ 1
no = - 2- E {O,I}

= bl + b2 + b4 + 3 {O 1 2 3}n l 2 E , , ,

= b3 + bs + b6 + 3 {O 1 2 3}n2 2 E, , ,

b7 + 1
n3 = - 2- E {O , I}. (17)

This gives us 2 x 4 x 4 x 2 = 64 possible configurations of [nOnln2n3]. Be­
cause th e determinant of the matrix in (13) is 1 (and t herefore different from
zero) , each polynomial can thus be rep resented by a unique configuration of
[nOnln2n3].

The collection [nOnln2n3] is identical to what are usually called the mean­
field clust ers, which is shown clearly in (14)-(17). By investigatin g the mean­
field clusters for each CA rule, we find that Class D behaves differently from
the other LP classes in two ways. This is illustrat ed in Table 1, where t hose
mean-field clusters cont aining Class D rules are extracted from th e 64 mean­
field clusters.

Our first observation is that whenever a rule from Class D app ears, it is
in a mean-field cluster where all other rules are from t he periodi c Class C.
This indicates that rules from Class D could have similar behavior to t hose
from Class C. Interestingly, our other observation, illustrated more clearly in
Table 2, is that rules 73 and 109 clearly have a different mean-field cluster
from the rest of those belonging to Class D. This indicates that these two
rules could differ from the rest of the Class with respect to behavior. These
observations will be used in a lat er sect ion.
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no nl n2 n3 CA rule numbers and Li-Packard indices

0 2 1 0 14[C] 26[D] 28[C] 38[C] 50[C] 52[C] 70[C] 82[DJ 84[C]

1 0 2 0 41[C] 73[DJ 97[C]

1 1 3 0 107[C] l09[D] 121[C]

0 2 1 1 142[C] 154[D] 156[C] 166[D] 178[C] 180[D] 198[C] 210[D] 212[C]

1 2 1 1 143[C] 155[C] 157[C] 167[D] 179[C] 181[D] 199[C] 211[C] 213[C]

Table 1: The five mean-field clusters of Class D.

26 [0210 ]

73 [1020]

82 [0210]

109 [1130]

154 [0211]

166 [0211]

167 [1211]

180 [0211]

181 [1211]

210 [0211]

Table 2: Rule numbers of all th e locally chaot ic Class D CAs, togeth er
with their mean-field characterizat ion [nonlnzn3] (extracted from Ta­
ble 1). Rules 73 and 109 are the only locally chaotic rules which do
not have [n lnz] = [21].

4. Neural networks and Optimal Brain Damage

In this section we describe a sp ecific typ e of neural network used for det er­
mining whether a given CA rule belongs to a particular LP class; to gether
with a method for pruning connect ions called Optimal Brain Damage [13].

We consider a network which divides all CA rul es into two categories,
those which belong to Class A and those which do not. (The same is done for
LP classes B, C, D, and E.) The number of connections is used as a measure
of network complexity, even though this measure is not exact .' The LP class

lNeural network complexity is an intuitive and still vaguely defined concept . Discus­
sions on using the number of (effective) parameters as a measure of model complexity, for
example, can be found in [15, 16] and references therein.
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bl
WI

b2
W2

t F

bM
WM

Figure 5: The artificial neuron. The sum of the inputs bl , b2 , ... , bu
is weighted with the weights W j , j = 1,2 , . . . , M. The threshold is
denoted t and the output F . The neuron gets M inputs , which are
outputs of other neurons and/or inputs from the outside world.

9

for which the net with the smallest numb er of parameters can perform the
dichotomy is the one that corresponds to th e pheno type for which the relation
between the corresponding genotypes is said to have the smallest complexity.

4 .1 A p p lication-s pecific networks

An artifi cial neural network is a network composed of computational units
(called neurons). The formal neuron is an input /output device which con­
verts a numb er of inputs into a single output . The neuron has as many
weights as inputs, and the output F is genera lly a non-linear activation func­
tion g of the weighted sum of the inputs minus a given threshold, that is,

(18)

where Wj is th e weight of input bj and t is the threshold. (This neuron is
illustrated in Figure 5.) A commonly used activation function is g = tanh
which we use here; for further details see [12].

As the network we use has to answer only "yes" or "no" (i.e., a Boolean
problem), we need only one output; and as a CA rule can be represent ed by
eight binary numbers, we can be satisfied with eight inputs. Data represen­
tat ion is an important aspect of neural network application, and one could
argue that we might as well use 256 inputs and let each represent a given rule.
However , in that case we would learn only an enumeration of the CA rules
and nothing about the specific content which distin guishes them from each
other. In fact , using more than eight inputs would mean that we had inserted
prior knowledge into the network. We do not want to do that , because we
are interested in comparing the nets using exact ly the full information from
each rule.

After specifying how many inputs and outputs to use, we must determine
how to connect them. We use a two-layer feed-forward network as illustrat ed
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Inputs Hidden Neurons Output Neuron

Figure 6: A 2-layer, fully connected network with 8 inputs, M (= 6)
hidden neurons, and one out put neuron. The input weights (i.e., the
weights between inputs and hidden neurons) are denoted Wij , and the
output weights (the weights between hidden neurons and the outp ut
neuron) are denoted Wi. The corresponding thresholds ti and T are
symbolized by the vertical lines through the neurons. The different
layers of neurons are often referred to as the input , the hidden, and
the output layer.

in Figure 6. It is known th at this type of network is capable of universal
computat ion, provided sufficient ly many hidden neuro ns are used [12].

This network implements th e function

Fw(ba
) = tanh [f Wi ' t anh (t wijbj - ti) - T] ,

,=1 J=O

(19)

where ba = bo,""b'7 is t he input, that is, the given CA rule, with a E
{O, 1, . . . ,2 55}. The output of the net is Fw (ba ) . The ot her quantities are
defined in Figure 6. Once the net is t rained , in order to get a Boolean
output , we apply a hard delimiter on the real-valued out put (in this case, a
sign-funct ion instead of t anh). So t he fina l funct ion used is sign(Fw(ba ) ) .

As shown in Figur e 6, t he network architecture is invariant under a per­
mutation of the input elements. Therefore, a renumbering of the cellular
aut omata, (for example, by permut ing b, and bj , i, j = 0,1 , . .. , 7,) will not
cha nge the difficulty of the learning task.

To t ra in the neur al net we use the back-prop agati on learning algorithm
(see [12], and references therein), which means tha t we minimize an err or
function by gradient descent . It is convenient to choose for th e error measure
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(20)

the Kullback relative entropy for tanh out put [12], given by

trset [1 1 + y'" 1 1 - o ]
E (w) = L -2( I+y"') log ~ +-2 (I - y"') log y~ ,

'" 1 + Fw(b"' ) 1 - Fw(b"' )

where y'" is the known out put of input (CA rule) a , and wis the vecto r of
all weights (including thresholds) . The sum over a includes only t hose a in
the t raining set .

Briefly, let the vector ii be the collect ion of all weights in the net . Weight
Uk is then updated according to

(21)

where n is the numb er of iterations (updatings) and

fJE
tluk(n ) = -TJ- ; (22)

fJUk

in other words, the weight s are updated by taking a step in th e opp osit e
direction of the gradient scaled with a factor TJ . This par amet er is also known
as the learning rate . For layered networks t he gradient can be rewrit ten in
such a way that it can be back-propagated through the network , layerwise.

4.2 Pruning

Careful pruning is most likely to improve the genera lization ability of a net­
work that has redundancy in the number of connect ions (see [13, 9, 6, 19]).
Simulations on ot her t asks have shown that Op tim al Brain Damage (OBD) is
capable of finding minimal or nearly minimal architectures [6]. The motiva­
tion for looking for the minimal represent ation can be justified by Ockham 's
Razor [19], a principle that states that

Among two mod els of the same phenomenon the simplest which
decribes it sufficiently well should be preferred.

For a neural network , we will take the number of connections as a measure
of the descript ion length , and sufficiently good description will mean giving
the right outp ut on the tra ining set . The minimal numb er of connect ions
needed to perform the map ping tells us something about how complex the
mapping is.

OBD was introduced by Le Cun et al. [13]; the procedure is as follows.
First , t he network is trained to do the training examples, and then the weight
with the sma llest import ance (i.e. , t he weight which will cause the smallest
increase of the err or function) is removed. Thereafter , the net is retrained
and a weight removed again, and so on.

The perturbation of a weight Uk (which is any weight in the network)
causes a perturbati on of the error function (20), which can be written to the
second order as

fJE 1 fJ2E
8E = L~8Uk + 2L~8Uk8ul . (23)

k UUk k,l UUkUUI
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E (u)

8E
- - - - - - ~- ~-~- ---.---~

-------1--- - ----'---- - - - - - Uk
U'k

Figure 7: After tr aining, the weight configuration is assumed to give
an energy minimum (or close to one) with Uk = Uk ' as illustrated.
This weight is removed by sett ing 8Uk = - u k' that is, Uk = O. The
cost of th is is 8E .

Because we have learned th e training data, we are at a minimum with weight
ii" , and the first term can therefore be neglected. The cost of removing the
kth weight Uk when trained to Uk = Uk (i.e. , setting Su; = - U k and bUl = 0
for all l =1= k) , is therefore

1 a2E
bE ~ Sk = "2 au~ u% , (24)

where Sk is called the saliency of weight Uk (see Figure 7). How to calculate
(a2E) / (auD, for example, can be found in [13, 6].

5. N u m er ical experiments

In this section, we investigate the degree of complexity of the mutual relat ion
between genotypes for each corresponding LP class, using neural networks .
We employ two pr imary approaches: comparing learning curves of the re­
spective networks which represent the LP classes, and using the full 256 CA
rules as the training set and pruning the nets by OBD . We compare the
number of free parameters left in each network.

5.1 Learning curves

A learn ing curve is produced by starting with a given training-set size Ptrain ,

where the inputs (CA rules) are chosen randomly. The network is t hen
trained until it has learned to correctly classify all examples in the training
set. T his is done a number of t imes (which defines the "ensemble size")
for different initial weight configurations and an increasing training-set size
Ptra in . We define the test error as

E Eclass
test = ,

Ptest mclass
(25)
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where the numb er of misclassificat ions is

test set
Eclass = L 8 (_yO:Fw(bO: ))

0:

with

13

(26)

(27)8 (x )= {1 if x > O .
o otherwise

The misclassifications Eclass are divided by the test-set size (Ptest 256 ­
Ptrain) , and t he number of elements of the LP class in quest ion (mclass) ' By
dividing over mclass we are asking how difficult it is to learn t he problem,
per element in the given class. We simply use a norm alization with respect
to t he numb er of elements in each class , in agreement with the relative bias
of the different networks when respect ively trained to recognize a different
numb er of +Is [17].

Let ting Ptrain increase, we can plot the average test error of the ensemble
for each Ptrain as a funct ion of Ptrain' Such a plot is called a learning curve. We
use gaussian error bars, even though t he errors do not seem to be norm ally
dist ribut ed and more convenient criteria could be used [8, 6]. Figur e 8 shows
the learning curves corresponding to th e classificat ion of the different LP
classes.

The first significant observation from the lear ning curves in Figure 8 is
t hat the simple LP classes (i.e., A, B, and C) have a much lower level of test
error tha n the chaot ic classes D and E do. The nets represent ing the three
simple classes generalize much bet ter than the chaot ic ones do. We see that
the relation between genotypes having simple phenotype is simp ler than th e
relat ion between genotypes having more complex phenotype.

The second significant observation is that Class D merges just as well with
Class C as it does with Class E. This is realized by comparing the learning
curve of Class C with that of Class CD, and the learning curve of Class E
with that of Class DE. In both cases the two lear ning curves are "close" to
each other. Li and Packard [14] merge Classes D and E in one case because
they are both chaotic and Class D contains few elements. The mean-field
theory has encouraged us to merge Classes C and D.

5.2 P runed networks

Using the ent ire set of possible examples, the networks are then pruned as
much as possible by OBD , and the number of parameters left in each case is
compared. This is reasonable, from the point of view t hat the numb er of free
parameters in a network can be considered a measur e of how "complex" a
function Fw' it implements. Again , we normalize with respect to t he numb er
of elements in each LP class. The resu lts are given in Table 3. Each network
was found in an ensemble of 15 networks.

Considering Table 3, we note that the interest ing quant ity q / m class is
much higher for the chaotic classes D and E than for the nonchaot ic classes
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Figur e 8: Learning curves for networks represent ing the CA classes.
The x-axis is t he number of training examples, and the y-axis is t he
normalized classification test error (i.e., the usu al test error divided
by t he number of elements in the respective LP class). The chaotic
classes, indeed , have a much higher error level. We also see that the
behavior of the learning curves for Classes C and CD are similar and,
likewise, Classes E and DE . Each error bar was produced from six
nonpruned networks, that is, the ensemble size was 6 networks per
training example. Each network had 8 hidd en neurons .
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A 24 16 3 0.67

B 97 50 6 0.52

C 89 53 7 0.60

D 10 28 3 2.80

E 36 44 6 1.22

CD 99 56 7 0.57

DE 46 48 7 1.04

Table 3: Results for networks corresponding to each of the LP classes
A, B, C, D, E, and the composites CD and DE. The number of pa­
rameters after pruning is q, mclass is the number of elements in each
LP class, and h is the number of hidden units left after pruning.

15

A, B, and C. Taking into account the number of elements in each class, the
corresponding networks are thus more complex for the complex classes than
for t he simpler classes. The numb er q/ m class for Class D is very high, which
is probably a result of the low numb er of elements in this class.

A network with the smallest numb er of parameters does not necessarily
have the smallest number of hidden neurons [6]; for Class A we also found
a network with 2 hidden neurons and 17 parameters, cont aining int eresting
symmetries.

The mean-field theory indicated that Classes C and D could merge. As
for t he learning curves, we see t hat Class CD merges with Class C at least
as well as Class DE merges with Class E. This could suggest that Class D
is as much periodic as it is chaot ic. On the other hand, it is natural in t his
regard to investigate how well Class D merges with Classes A and B, in order
to test whether the networks completely ignore t he merging of Class D wit h
any other class (i.e., by preserving t he relative values of q/mclass).

For Classes A and D merged, we found a smallest network with 41 param­
ete rs which could solve t he classification task. The fraction q/mclass = 1.21,
together with an h = 5, indicates t hat the two classes cannot be merged;
that is, t he relat ions between t he genotypes for the different phenotypes do
not possess th e same complexity. For Classes Band D merged , we found
a smallest network with 61 parameters (and h = 7), hence q/mclass = 0.57.
This indicates that Class D also merges with Class B; this will be further
invest igated subsequent ly.

5 .3 A logical relation b et ween Clas s A genotypes

It is possible to ext ract a logical ru le from the Class A network because the
network is sat urated (i.e., sign can be subst ituted for t anh without changing



16 J. Gorodkin, A . Serenseii, and O. Winther

2 .68 734 8- - - - - ~ - - - - - - - - - - -

_ _ _ .. ,- .: : :···~.496529

..,..,~----~:---:::::~'---__2.5 7884 2

- 0. 6 9 762 1 ' .

7

2 . -
-1 .33402 2

6

4

1.1975 31
5

3
-0.697 6 21

1
- 1. 333669

- 1 .3 36729 .:
o ..

Figure 9: The neural network which can tell whether a CA
rule belongs to Class A. The dashed lines symbolize negat ive
weights/thresholds. The vert ical lines through the neurons symbolize
the thresholds. The integers are labels for the inputs and all other
numbers are the sizes of the weights. The network is notably sym­
metric.

the output of any input) . The network which solves the classificat ion task
for Class A with two hidden neurons has a remarkably simple st ructure , as
illustrated in Figure 9.

This network has many ident ical or near ly identical weights. This sharing
of weights encouraged a further investigation . The weights which were not
identical were set equal, and it was established by test ing that t his new
weight configurat ion (see Figure 10) could produ ce the right outputs. In the
following, we will argue why there must be t his weight sharing.

Because the network implements the phenotype classification, it must be
invari ant under t he phenotyp e-conserving symmetries. The network function
with two hidd en units can be written as

(28)

where g = tanh and 7ih, i = 1, 2 are the weights for t he respective hidden
neurons. Let us define S as a symmet ry operatio n. In the present case,

(29)

Both the reflection (3) and the conjugat ion (4) symmetry have the property
that 52 = 1. For the net funct ion (28) , thi s gives two possible choices of
weight const raint to conserve the symmetry; on the one hand,

(30)
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Figure 10: The rewritten network which can solve the classification
of CA rules in Class A. There are only four different values for the
parameters.

and on the other,

5 2'lih = W2 while using t l = t2 and WI = W 2, (31)

where it is easy to see that the latter symmetry operation imp lies 52W2 = WI .

By inspection, we observe that the network has chosen 51 as the reflection
symmetry and 52 as the conjugation symmetry. It is easy to demonstrate as
well that the network is invar iant under the combined operation 5152 if (30)
and (31) hold . The operation 52 is completely in agreement with the fact
that Class A can be divided into two disjoint sets, such that conjugation of
all CA rules in one set gives the ru les of the other.

Employing the net above , one can extract the following algebraic descrip­
tion, which is implemented by the network.

(32)

1 if bo = b: = bz = b4 = - 1
and b3 + b6 =1= 2

1 if b3 = b5 = b6 = b7 = 1
and bl + b4 =1= -2

- 1 otherwise

where we note that bo = bl = b2 = b4 = - 1 and b3 +b6 =1= 2 gives no = nl = 0
and n2 :::; 2, and that b3 = b5 = b6 = b7 = 1 and bl + b4 =1= - 2 gives nl ~ 1,
n2 = 3, and n3 = 1. We recognize that the first two cond it ions in (32) are
each other 's conjugates, and both are invariant under refiect ion .f Of course,

2It should be mentioned that the expression alsocan be derived directly by observing
Class A elements.
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Ensemble NBorder Most frequently nonlearned CA rules

All 12831 0[6A] 32[6A] 168[6AJ8[5A] 40[5A] 253[5A] 255[5AJ
232[7BJ 233[6B] 236[6B] 237[6BJ

B4 7247 128[3A] 234[2AJ 254[2A] 255[2AJ 139[4B] 57[3B ] 69[3BJ
116[3B J 209[3BJ 201[2CJ 60[lEJ 106[l E J 153[lE J 195[l E J

Cs 4334 205[2BJ 237[2BJ 108[3CJ 37[2CJ 201[2C] 105[4EJ

D5 4515 162[lBJ 176[l BJ 38[1OJ 52[1OJ 201[1OJ 73[9DJ 109[9D]

E15 5240 160[lAJ 13[3B ] 162[2B ] 133[2CJ 178[2C] 167[2D ] 105[3E]
54[2E] 89[2E] 153[2E] 183[2E]

CD14 4726 4[2BJ72[2B ] 132[2B ] 197[2B ] 113[3CD] 105[8E] 182[3E]

DE7 3426 94[3CDJ 118[2CDJ 109[2CD]54[4EJ 161[2EJ

Table 4: Borderlines for t he ensembles from Tab le 3. For each prun­
ing step of t he networks a number of CA rules-the borderlines- were
no longer learn ed. The table shows borderlines for back-propagation,
aft er 5000 epochs with OBD. "Ensemble" is t he LP class, where t he
index refers to the number of networks (among t he 15 possible) which
learned correct classification; in other words, only bor derlines for
pruned networks are included. T he numb er NBorder is the total num­
ber of borderlines among t he ensemble after the 5000 iterat ions. The
index here refers to the number of different borderlines. T he numbers
with square brackets refer to CA rules, together with t he number of
t imes t hey occur in a given ensemble. Let ters in t he square brackets
are the LP classes .

the expression can be written as a logical relat ion, but that would be more
cumbersome.

5.4 Borderline cellular automata

A CA rule which is at the border between two LP classes with respect to be­
havior in a given context (in this case, neural networks) is called a borderline.
The borderlines were traced by looking for those rules which t he networks
had trouble with, that is, the most frequently nonlearn ed rules during the
training/pruning process. We present the most frequent borderlines in Ta­
ble 4. The borderlines for all ensembles except D and CD appear with the
same frequency within each ensemble. Rules 73 and 109 clearly differ from
the rest of the borderlines in ensemble D. In ensemble CD it is rule 105 which
differs. (Borderlines are also discussed in [18].)

Observation' of the run with Classes A and D merged gave the result that
73 and 109 were the only borderlines. Thi s suggests that 73 and 109 are not
connected with t he rules in Class A, and that this is the reason why Classes
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A and D merge so badly. The composite class AD inherits the borderlines
from Class D itself.

Because the Class BD rules 73 and 109 are slight ly more common border­
lines than the othe rs , it is likely that the elements in Class D are somehow
embedded in Class B, due to the large difference between the number of el­
ements in the two classes. Th is could also be the case for Classes C and D
merging. Nonetheless, the mean-field clust ers indicat e that the latter merg­
ing could be possible, and the network does not contradict this .

Though rule 105 is a clear borderline in ensemble CD, it is not as distinct
as 73 and 109 are in ensemble D.

5.5 Borderlines from Class D

We briefly analyze the borderline rules 73 and 109, which are each other's
conjugates (see (4)) . The mean-field clusters indicat e that the two rules
deviate from the other rules in Class D. The neural networks find these rules
much more difficult to classify than all the other CA rules. These facts
demand a furt her invest igat ion.

We start by investigating why 73 and 109 are much more frequent border­
lines than any other rule in Class D. By observing the remaining eight rules
in Class D, and combining them appropriately, we find that the following
function produces the right output for all the rules except 73 and 109.

if bo = bz = bs = -1 ,
bl = b4 = 1 and b3 = - b6

ifbz=bs =b7 = 1, (33)

b3 = b6 = - 1 and bl = - b4

otherwise

Because rules 73 and 109 direct ly contradict all t hree claims in the first two
cases, it must be clear that incorporating them will increase the complexity
of the expression considerably. Even without incorporat ing them, this ex­
pression is more complicated than the one found for Class A (32). Thi s is
the case in spite of the fact that Class A contains more than twice as many
elements as Class D.

Equ ation (33), in agreement with Table 1, yields nl = 2 and nz = 1. T he
first is seen from bz = -1 , bl = b4 = 1 or from bz = 1, bl = - b4 ; and the
second from bs = -1, b3 = -b6 or from bs = 1, b3 = b6 = -1.

There are several ways to invest igate the evolution of a CA rule. In­
spired by the mean-field considerations, we choose to consider the evolution
of magnetization m (t). By doing so, we neglect t he distribution of st at es on
the one-dimensional lat tice, and consider only how many of them are ON
and how many are OFF. A first approach towards und erst andi ng of magne­
tizat ion provides the mean-field approximation. Doing so, it is easy to see
that rule 73, applied in (13), gives t he following polynomial,

m(t + 1) = - 3m 3 (t ) + 5mZ(t) - 3m(t) + 1, (34)
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which maps the interval (0,1) onto itself. T his mapping has one fixed point
only, solving m*(t+1 ) = m*(t) with the value m* = 0.4056. Because the right
side of t he equation leads to a negative Lyapunov exponent A;:'; - 0.8565, the
fixed point is stable (i.e., an attractor).

The behavior of rule 73 is thus t rivial in the mean-field theory. We
wished to compare this with num erical experiments, so we invest igated rule
73 through numerical simulations of the magnetizat ion. We show a phase
space plot of the magnetization in Figure 11. We see that it is far from a
fixed point , but more like a periodic 3-cycle, with possible hidden periodicity
of higher order.

We simulated variable lat t ice sizes up to 218 , and different random initi al
cell configurations (with a probabili ty 0.5 for states to be ON) for each. In
all cases, the fundamental structure was found to be at the same position;
that is, the 3-cycle st ructure was not just a finite lat t ice-size effect, even
though small variations were present for small lat tices and a small number of
iterati ons . Furthermore, the initial magnetizat ion was crudely varied from 0.2
to 0.8 with steps of 0.1. For initi al magnetizat ions above 0.3 the fundamental
structure was preserved, but slightly displaced in the phase space . For init ial
magnetization 0.2, the 3-cycle structure vanished.

All ten rules of Class D have very similar global patterns on the lattice
(as considered, for instance, by Li and Packard ). But when magnetizati on
is considered, rules 73 and 109 clearly differ from all the others by having
3-cycles. We also invest igated the magnetizati on for the chaotic Class E rules,
and all of them had trivial beh avior (though rule 54 disp layed an ellipsoid
obj ect that became significantly smaller when th e lat t ice size was increased).
The fact that rule 105 also displayed trivial magnet ization behavior could
indicate that merging Class C and D is not as interesting from a "network"
point of view as when seen from t he mean-field t heory.

Though it is t rivial that the periodic rules of Class C display periodic
behavior in magnetization, the periodicity in magnet izat ion of the locally
chaot ic rules 73 and 109 is more subt le. These rules are a priori periodi c
only within the domain walls, but t hese periodicities are of different length
and are t urned on at different t imes. The positions of the domain walls
themselves are random , because of the random initial configuration of all
cells.

The 3-cycle of the one-dimensional rules 73 and 109 seems to be int erest­
ing in the ongoing debate about the possibility of produc ing global oscillations
in extended systems with short-range int eractions; observat ions of quasiperi­
odic behavior in five and t hree dimensions by Chate and Mann eville [2] and
Hemmingsson [10] somehow disagree with arguments given, for example, by
Grinst ein [7] . A furth er discussion of rule 73 in this context is given in [11] .

6 . Conclusions and p erspect ives

An imp ortant question concern ing CAs is the relat ion between genotypes
(rule numbers) having t he same phenotype (complexity class). We have
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Figure 11: Phase space plot of magnetization for rule 73. We observe
how the magnetization at time t + 1 depends on the magnetization
at time t. Of 500,000 epochs, the figure shows the last 20,000 data
points for a lattice length of 217 with periodic boundary conditions.
The initial states in the lattice were set randomly, with probability
0.5 for states to be ON, i.e., the init ial magnetization was 0.5.

st udied t his relation for the elementary CA rules, using neural networks. Such
networks learn by examples, and are known for t heir ability to generalize and
to achieve a compact representation of data.

By applying neur al networks in two independent ways, mak ing use of
generalization abi lities and numbers of connections (net complexity) , we have
shown that genotypes in the nonchaotic LP classes are connected in a simpler
way than t he genotypes in the chaotic classes .

Our investigations gave additional resu lts. We found a logical relation
between Class A genotypes, and the networks were ab le to t rack down the
borderline rules 73 and 109. These most-frequent borderl ines revealed a
nontrivial 3-cycle in magnet ization . Note that all of the Wolfram Class 4
comp lex CA rules (i.e. , 54, 110, 124, 137, 147, and 193) are not capable of
universal comp utation and , for that reason, may not be very int eresting from
a dynamical point of view. This is in agreement wit h the fact that no special
borderline status of these rules was observed.

That the neural networks exposed ru les 73 and 109 as borderlines corrob­
orates t heir differences from the other rules in Class D with respect to mean­
field clusters. However , searching for int riguin g CA rules through mean-field
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clusters might be cumbersome in higher dimensions; it seems to be much
more convenient to use a small number of neural networks.

Whether our results for one-dimensional elementary CAs hold for higher
dimensional systems is an open quest ion. However , there are several di­
rect ions for future work. 1) Appl ication of the neural network method to
classification schemes of cellular aut omata in higher dimensions. 2) Building
symmetries into the networks, which could perhaps lead to logical relations
for the other elementary LP classes, and help to minimize the number of
free parameters for higher dimensional systems. 3) Construc t ion of new
classificat ion schemes in higher dimensions, by neural networks t ra ined with
unsupervised learning on the space-time evolutions of CAs, in other words,
to find clusters in t he set of space-time evolut ions.

In conclusion , we found that the application of neur al networks led to a
nontrivial result relating the complexity of the network learning a specific LP
class to the complexity of the dynamical behavior of the class itself (chaotic
versus nonchaoti c). Through t he discovery of a metric in the space of CA
rules, neural networks are capable of tracking down rules which are on t he
"edge" of a class. If t his holds for higher dimensions , it might be possible to
find the universal computational rules at the edge of a chaot ic class .
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