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Abstract. In this pap er we present the results of simple co-evolut ion­
ary models that simulate the tempora l development of a populati on
of interact ing bit strings . Each bit st ring is decoded into funct ional
groups called "genes." The indi vidu als participate in a pro cedure
similar to t he Darwini an principle, that is, random int eraction (in
which the genes det ermine the fitness of an ind ividual) followed by
det ermini stic select ion including random errors during reproducti on.
We use three select ion models: selection by sorting and replacing,
tourn ament selection, and energy flow.

We compare t he result s for each mod el to t hose of a random­
selection model to ensure t hat "emergent" (non-t rivial) features are
really caused by evolut ionary pro cesses. T he influence of selection
is clearly evident when comparing the age dist ributions of individu­
als and species to t hose of t he random-selection case . While t he age
distribution of the individuals shows a systematic deviation from an
exponential behavior in the select ion case, the species ages tend to
follow a power law when applying non-random select ion . The species
show a dynamic of "pu nct uated equilibria" that is similar to the be­
havior of natural systems.

1. Introduction

In a recent paper [6] we introduced a computat ional model that was designed
to simulate an open-ended evolution (evolution without end). We defined
a system consist ing of a populat ion of co-evolving interact ing individuals,
namely bit st rings, which are subjected to an evolutionary algorithm based
on the Darwinian principles of random interaction and non-random select ion.
Because of the interact ion we have only frequency-dependent fitness (see [13])
in our model, that is, the re is no global optimizat ion toward a predefined goal.
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The current popul at ion defines whet her an individual is fit, and thus selection
of t he currently fittest individuals takes place.

We st udy the tempora l development of systems wit h different parame­
ters and compare the results of the dynamics to those of a random-selection
model. This comparison proves to be a very helpful too l in deciding which
features are non-trivial or "emergent," in contrast to t hose that are just
caused by predefined rules.

2. Short description of the model

In thi s sect ion we summarize t he main features of our model. For details see
[6].

We choose individuals with a minimal length of 32 bits because we want to
have a huge state space (of bit sequences) so that many different possibilit ies
for evolut ionary development are present. The bit st rings are decoded into
functional units called "genes" using a binary decod ing tree that ensures
the decoding of every possible bit sequence without ambig uity. There are
20 different genes with lengths of 3 to 8 bits. We implemented this second
level to create a hierarchical st ructure in the highly dimensional state space
of the possible bit sequences. We were guided by natural systems that can
be described using different hierarchical levels. This second level endows the
system with an inherent dist inct ion between genotype and phenotype.

We define an int eracti on procedure for the ind ividuals that takes place
on t he gene level. In an elementary interaction, two randomly chosen genes
of two interacting individu als are used to change the "fitness" or score of the
individuals. In each t ime step, each individua l part icipates in a fixed number
of elementary interactions. The fittest individuals of the current populat ion
are selected to pro duce offspr ing. The contents of an offspring is changed
with a low probability using t he genetic operators "mutation," "crossover,"
and "cut and splice." Using t hese basic ingredients for our model, a single
time ste p of a simulation consists of t he following sequence:

1. Int eract ion phase

2. Selection phase

3. Repro duction phase

2.1 Decoding

One of the results described in [6] gave strong evidence that the use of start­
codons (which signal the beginning of a gene in t he bit st ring) is almost
unavoidable if a safe and flexible information storage mechanism is wanted.
For all simulations presented here we used the same startcodon (' 110'), which
already proved useful for t he binary decoding tree presented in [6].

One consequence of startcodons is t he possibility of having "junk" in­
format ion that is not decoded. T he average fraction nb of decoded bits per
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Figure 1: Temporal evolut ion of the average normalized information
length for bit strings of three different bit lengths. For the random­
selection model the average normalized information length is approx­
imately 2/3.

individual st arts at n b ~ 2/ 3 after a random initializat ion (which is approx­
imately 10 to 14 genes in an individual of 96 bits) and decreases to n b ~ 0,3
during several hundred tim e ste ps (see Figure I ). This phenomenon is typ­
ical of all simulations presented here and can be explained as an effort by
t he pop ulation to escap e from the strong select ion pressur e, An individual
that contains only a few informat ion bits very likely produces an offspring
that belongs to th e sam e species as the parent , If, on the other hand, t he
information length exceeds some threshold, the offspring more likely belongs
to a different species that is in most cases less fit than the original one, This
causes all indiv iduals with too much (and t hus too easily changed) infor­
mation to be eliminated quickly, which is similar to the inform ation error
catastrophe [5J, We cannot really give a lower bound (as can be seen in Fig­
ure 1), but we can argue that each indiv idual needs at least one gene. If an
individual has no gene, its score is zero because it cannot interact , But if it
has a "good" gene, its average score will be positive (individuals with "bad"
genes disappear quickly), Therefore, an individual must have at least one
gene to have a positive score.

2.2 Interaction

There are many different ways to define an interaction proc edure (see, for
example, [11, 12]), We chose a binary-interaction algorithm that contains
deterministi c and random parts, The deterministi c part is defined by a 20 x 20
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interaction matrix A that contains random numb ers of a specified inte rval.
Each ent ry A g,g' of this matrix represents the int eraction between two genes
g and g'. For example, the element A5,5 gives t he interaction st rengt h when
gene E encounte rs gene E. This matrix is fixed for t he ent ire simulat ion, so
it represents some kind of "frozen randomness." The random part consists
of t he choice of (a) two individu als i and k , or (b) two interacting genes in
t hese indiv iduals, I (from i) and m (from k). A single interaction cha nges
the fitnesses (scores) f (i ) and f (k ) in the following way:

f (i) +- f( i) + Am,1>
f (k ) +- f( k ) + At,m.

(1)

Each individual of t he population parti cipat es in a int eractions per time ste p.

2.3 Selection

In the following sect ion we describ e three different selection algorithms that
choose the fittes t indiv iduals of a population to prod uce offspring after the
interaction phase.

1. Selection by sorting and replacing. The simplest select ion pro cedure
is to sort the individuals of t he population in accorda nce with their
fitness values, and then replicat e the fit test individuals and have the
offspr ing of the fittest replace the worst. We implemented versions that
choose the best half (or t he best quarter) of a population to replicat e
and replace the worst half (quarter) . In this way a const ant portion
Pe = (1/2)(1/4) of the population is replaced in each tim e step, which
causes a cont inuous change in the populat ion.

2. Tourn ament selection. Goldb erg et al. [7] int roduced an alte rnative
method of selection that takes into account the frequency dependence
of fitness. This procedure, called tournament select ion, consists of the
comparison (compet it ion) of all individuals within a subgroup of t he
population. The population is divid ed into groups of equal size (at
least two, bu t other numbers are also possible). The one with the
highest fitness value survives and may replicat e if it wins more than one
tournament . All t he individuals that do not win a single tournament
are eliminated. If th e tournament size is s, each individual usually
participates in s tournament s.

In t he simplest version of tournament selection, the groups consist of
two individuals; the bet ter replicates and the worse is eliminated. This
way individu als with a fitness below average st ill have a chance to "win"
when competing against even worse oppo nents. On the other hand , a
good individual can be "beaten" by a better one, alt hough it s fitness
value might be above the average of the current population. Tourna­
ment select ion allows two possibilities for the fract ion Pe of eliminated
individuals per time step:
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• a constant fraction Pe = 1/2, as in "sort ing and replacing," if only
one tournament round is performed,

• an average constant fraction Pe = 1/ 3 with local fluctuat ions, if
each individual participates in two tournaments (for more details
see Appendix C).

3. En ergy flow. We also developed another selection pro cedure [15] that
seems more "natural" than the previous ones. Organisms usually need
some renewable resources that are available in their environment and
that for simplicity we call "energy." Therefore we also implement ed an
energy-based pro cedure for selection (see also [2, 14]).

One simple way to do this is to create an energy source E; for the
individuals that is filled at the beginning of each tim e step with a con­
st ant energy. The individuals take energy from this source during the
interaction phase (as long as it contains enough energy). The int eract­
ing genes determine t he amount of energy that the two individuals get
from th e source.

The individuals replicate when their energy levels exceed some thresh­
old value Et hr and give some of the energy to their offspring. At the
beginning (or end) of each time step the energy of an individual is
decreased by an amount Ec called "energy costs per t ime ste p." An
individual is eliminated if its energy falls below this value.

Some fluctuations ente r the scenario because the previously fixed values
for populat ion size, numb er of replicating individuals per time step, and
so forth are no longer constants. The syst em acts more stochast ically, so
one has to take great care in assigning initi al conditions and boundary
conditi ons. For exa mple, the ent ire pop ulation might die during a
single time st ep if the individuals do not save enough energy to pay
th eir energy costs per t ime step. This could happ en if individuals
replicate too often during a single t ime step and give too much energy
to their offspring. An easy way to avoid t his behavior is to decrement
the energy of an individu al by E; first , then decide whet her enough
energy remains to pro duce offspring.
In an energy-flow model the ent ire scenario is more sensitive to im­
plementation errors. On the other hand, the syste m might have more
capability for evolution than the other models because the "natural
fluctuat ions" may create different pathways in t he state space .

2 .4 R eproduction

Wh en replicating, the original individual (parent) produ ces one copy (off­
spring), which gets all values (genes, energy cost , threshold, etc.) from its
parent. The age and offspring counters of the new individual are set to zero
(so the individual is like a newborn, not produced by cell division ). During
the replication process copying errors of the genetic material appear with low
probability. We implement ed mutation (single-bit flip) and crossover (in a
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few cases for comparison also cut and splice), because they seem to be the
most significant errors that appear in natural replication processes [3, 5J.

3. Randomness

Randomness and determinism are t he cooperating counterparts of an evo­
lut ionar y system. While the deterministic rules define the framework for
evolut ionary processes (they can be viewed as the combination of all influ­
ences of the fixed part of t he environment), the random parts of a model
simulate realistic boundary condit ions like t hermal fluctuat ions, for exam­
ple. As we already mentioned in [6], the interaction matr ix should enable all
possible kinds of interact ion between individuals. Thi s can be implemented
most easily by choosing random numbers for the matrix elements .

In nat ural environments randomness is caused, for example, by chemico­
physical fluctuat ions and by the stochast ic behavior of other individuals.
This can be simulated well by implementing the random interaction scheme
described in Section 2.2.

Thusf ar we have explained only the randomness used in our models. Now
we introduce an addit ional tool called random interaction m odels. They prove
very useful in dist inguishing between evolutionary processes and behavior
caused by the predefined rules of the system. We use the term evolutionary
processes in contrast to optimization processes. In our view optimization
processes have a global predefined aim, whereas evolutionary processes are
driven by local optimization but include no global fitness funct ion.

We used two different versions of a random model that showed similar
results:

• In the first version of random selection the fitness is changed by adding
random numbers instead of matrix elements decoded by the genes. So
the random matrix is "switched off" while the other parts of the model
stay the same.

• In the second version we chose random genes inst ead of t he decoded
genes for interact ion , and the interaction matr ix remained the same as
in t he non-random model.

Using random models we obt ain the result s of a "zero exper iment" of
the considered evolut ionary model. Thi s is reminiscent of the "flat fitness
landscape" of Derrid a and Peliti [4]. A random model can be defined easily
for every evolut ionary model and thus should be used as a standard reference
mod el.

4 . The concept of sp ecies

The dynamics of our syste m lead to successful groups of genes. Sequences
with t he same gene content but with different arrangements (like ABABAA
and AAAABB (A4 B2 ) ) are equivalent during the interaction phase because
on average they get the same score. In addit ion, A4B2 has on average the
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same prop erties as A2B (AAB). These groups are thus naturally considered
as belonging to the same species. A species is consequent ly defined as the
group of individuals containing t he same ratio of gene numbers as describ ed
above .

Whereas the lifetime of an individual is rest ricted to a few time steps
(depending on the parameters of the model; compare Appendix A and [6]),
the lifetime of a species may be much longer (up to thousands of t ime ste ps).
A necessary condit ion for this is that individuals produ ce with high proba­
bility identical offspring (i.e., offspring belonging to the same species). An
analyt ical treatment of t he species age behavior is possible for the random
select ion model; det ails are given in Appe ndix B.

5. Simulations

We simulated the tempora l development of bit string populations wit h rather
small populat ion sizes (64 to 512, in few cases up to 104

) . In most run s we
chose a constant bit length (e.g., 96 bits) per individu al. In some cases
where we used "cut and splice" during reproduction we allowed changes in
bit length. The interaction rate was varied from a = 5 to a = 50. We
defined an average mutation probability Pm per bit , so short bit strings had
the same mutat ion rate as longer ones. We varied the value from Pm = 10-2

to Pm = 10- 4 and found that Pm = 10- 3 was most useful for our purpose.
This value is very close to the natu ral mutation probability (see [5]).

We implemented different versions of the three bas ic selection algorithms
introdu ced in Section 2.3. The results are described in t he following subsec­
tions.

5.1 General results

One genera l result valid for all implementat ions concerns the age distributi on
of individu als. As explained in App endix A, we expect an exponent ial age
distribut ion if elimination of individuals is purely a random process. This
is indeed the case for random select ion models, as can be seen in Figure 2
(squares) , but if selection is present this distributio n is deformed. Some indi­
viduals that are fitter than the others survive longer, and others pro duced by
mutation lead to worse individuals that are quickly eliminated (see Figure 2,
diamonds and crosses) .

The age dist ribution for individu als is deformed slight ly, but asymptot­
ically it is st ill exponent ial. One reason for this is that the populat ion is
usually very homogeneous ; that is, nearly all individu als have the same ge­
net ic contents , so they are equally fit and eliminat ion is in fact a random
process. Only at t he beginning of a simulation and when there is genetic
takeover do we have a wide range of fitness.

We obtain qualitatively different result s when we look at the age dist ribu­
tion of species. In App endix B we show that, for a purely rand om mod el, we
also expect an asymptotically exponent ial age distribution. Figure 3 reflects
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labeled "Recursion" of Figure 3, corresponding to an infinite popu­
lation. We see an exponential distrib ution with an effective cut-off
age tcut-off ~ 500. In a finite population this age decreases sharp ly,
as can be seen for the data labeled "random case" (<» that are from
a simulation with a populat ion of 64 bit strings (tcut-off ::; 100). In
contrast to this we see that, with selection, the dist ribution can best
be described by a power law, even for small populations (64 and 128
bit strings).

our assumption t hat using t he theory of branching processes is valid for t he
ran dom selection model. T herefore we have only one time sca le present that
is related to the probability t hat an offspring be longs to the same spec ies
as its parent. In contrast to this we see a completely different behavior if
selection is present (see F igure 4). The data are bet t er described by a power
law; from this we can conclude that there is more than one t ime sca le.

5 .2 Sorting and replacing

In our implement ation of this model we sort the population in accordance
with the fitness of the individu als an d let t he best half (or quarter) replicate
and replace the worst ha lf (or quarter) .

The results of our simulations (of 64 individuals) can be summarized
as follows. T he strong selection pressure causes an optimization procedure
that chooses t he successful genes depending on the values of t he interact ion
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Figure 5: Occupation number of genes as a landscape over the time­
genes plane. Only 2 to 5 genes have large occupation numbers, all
other genes are negligible. The dominating group of genes changes
several times during this simulation (genetic takeover).

matrix (see Figure 5). Thi s leads to a "poorness" in the species landscape,
in which only one quasispecies (a "wildtype" with few mutants) survives.
The system gets "stuck" in a local optimum from which it cannot escape
for long periods of t ime. After such a period of metast abi lity very sudden
changes appear unt il the next state of intermediate st ability is reached (see
Figure 5; t c::; 1500, 3900, . . . , 8000). This dynamics of punctuated equilibria
is typical for our models, and can also be seen when we look at the species
traces in Figure 6.T his figure shows all species that were in th e simulat ion
for at least 20 t ime steps. The species are numbered in order of appear­
ance; the lat er a species appears for th e first t ime the higher its numb er.
The numb er of individu als belonging to th at species is not taken into con­
sidera t ion. In some phases many new species come up until a t akeover takes
place (e.g., t E [3900,6000 ]) whereas in other phases there is lit t le change
(e.g., t E [1500, 3900] and t E [8000,1 0000]). Usually the st rongest species
has 5 (in cases of change) to 30 (in stable phases) members and there are
approximately 30 species, but only 2 to 3 of th em have more t han 4 members.

In Figure 6 there are also species traces for the random mod el. In con­
t ras t to the selection case, a nearly constant flux of new species occurs and,
moreover , species do not reapp ear . Alt hough it seems that a single (or few)
species take over the whole populat ion, t his is not true. There are very few
species that surv ived at least 20 t ime st eps, but on average there are more
than 50 species present in each t ime step. The st rongest species usually has
no more than 3 or 4 members. From this we conclude that in the rand om
case the dynamics is similar to a random walk in the highly dimensional
phase space of possible species.

Wh en looking at the details of the evolutionary pro cess of this model, it
becomes evident that there are very few pathways for mutations t hat can
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create new successful indi vidu als. Most of the possible mutations create
genes t ha t are eliminated during the following time st eps so that this mat erial
cannot enter the popul at ion.

5.3 Tournament selection

The "sort ing and replacing" algorithm leads t o a poor species landscape
because the select ion pressure is so st rong that individuals that are only
slight ly less fit than the average drop out immediat ely. For these individuals
there is no chance to prove more useful in future genera t ions, which cont ra­
dicts the properties of natural evolut ionary syst ems [10]. This is improved
in tournament select ion. We simulated two different versions of tournament
selection models: one is a single round model, so Pe = 1/2; th e other in­
cludes two rounds in each selection phase, so the t ime average (Pel = 1/3
(see App endix C).

Although for the sorting model we see a distinct deviation from the ex­
ponenti al age distribution for individuals , this is not t rue for tournament
selection (see Figur e 7).There is only a very slight but systematic deviation
from equat ion (2) for higher ages (t > 25) which is caused by selection. For
very high ages (t > 35) , we see st ronger deviations, reflecting the small num­
ber of individuals that reach a very old age (the smallest ent ry corresponds
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to one individual during a simulation of 64 individu als over 106 t ime steps).
These small deviations do not imply t hat tournament select ion corresponds
to a random model, as is evident from Figure 4. There we also see that the
age distribution for species is best described by a power law.

Although t he select ion pressur e seems less st rong compared to the sorting
and replacing model, a very similar situation appears. Once aga in only one
quasispecies survives and the phenomenon of punctuated equilibr ia appears
(see Figure 8). The number of different species in the population is compa­
rable to the number in the previous model. Figure 8 shows all species that
appeared at least once for more than 50 time steps.

5.4 Energy flow

We implemented different versions of an energy-flow model [15] and compared
the results to those of the two other selection algorithms. For the first version,
we chose fixed values for (a) energy source per t ime step, (b) energy cost per
time step, and (c) t hreshold for replication , to keep the results comparable
to the other mode ls. The dynamics of this version lead to constant averages
for different variables (e.g., populati on size, numb er of replicating individuals
per t ime step) and thus ensures t hat the age distributions for individuals and
species are well defined for long simulat ions (see Figures 2 and 4).

The species land scape for the energy-flow model shows more variability
in comparison to t he previous models. Figure 9 shows t he species t races for
all species that were in the simulation more than 50 tim e steps. A much
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larger number of species, namely 1734, endured more than 50 times steps, in
contrast to only 267 species in Figure 8.

But the main results are th e same as before: Very few species domi­
nate t he dynamics, and a tendency toward short individuals (measured in
information contents) is seen.

6. Conclusions

Although in our mode ls t here is no real open-ended evolution, some features
of natural evolutionary systems do appear, such as punctuated equilibria [8]
and the need for "soft" select ion [10] and startcodons. Our pop ulations show
a stochastic behavior of metastable st ates interrupted by short phases of
genet ic takeover. The principle of stochasticity combined with deterministic
select ion (i.e., Darwin ian evolution) seems to cause this metastable behavior ,
so there is no need for external catastrophes (such as aste roid impacts, as
mentioned by [1]).

Anot her import ant result for our evolutionary models is th e influence of
select ion on the age distribution of individuals and species . While t he age dis­
tribution of individu als shows (sometimes only slight ) deviation from an ex­
ponent ial distribut ion when comparing a specific model to a random version
of this model, the species age distribution shows more significant changes. In
fact , we can give an explicit analyt ic formula only for the random-selection
case, which can be interpreted as a branching proc ess (see Appendix B). For
random mod els t he species age distribution converges asymptotically to an
exponent ial distribut ion, while for nonrandom select ion mod els a power law
appears for a wide range of species ages. While for individuals there exists
only one t ime scale (related to the eliminati on probability p), for species
there are severa l t ime scales that can lead to the observed power law. This
could be a first hint at open-ended evolut ion.

Nevertheless our mod els have some deficiencies. Although we see some
evolut ionary process occurring, it seems that in t he long run we have only
an optimizat ion process. This is very likely caused by the simple linear
interaction scheme described in Sect ion 2.2. This opt imization leads to only
sparse diversity in the species landscap e and contradicts the results of natural
evolut ion. The linear part of the dynamics (i.e., the interaction matrix) thus
dominates the sto chast ic parts (the random choice of individuals and genes).
Consequently one has to change the interaction to some nonlinear procedure
to have a chance of open-ended evolution. But it is not at all clear how this
nonlinear interact ion could be implemented in a natural way.

Wh en using energy flow, the dynamics lead to more diversity of species
(compare Figures 8 and 9), but in principle t he successful gene groups stay
t he same.

Appendix A Elimination probability of the individuals

The elimination probability dist ribution of the individu als can be calculated
for the case of a constant fraction Pe E [0, 1] of replaced individuals per time
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step. The expectation value dt for the probability of an individual being
eliminat ed after a lifetime of t t ime steps is given by

dt = a x exp (-bt) ,

This can be rewritten as an exponential distribution

a = _P- > 0 b = - In (1 - p) >_ O.1 -p - ,

The average lifetime T = 2:, id; is then given by p- I .

(2)

(3)

Ap pendix B Lifeti mes of species

If we consider a random mod el we can use the theory of branching processes
[9] to estimate the species lifetime dist ribution. In its simp lest form it is called
the Galton-Watson branching proc ess and can be formulated as follows:

Let Po ,PI,P2 , ... be the respective probabilit ies that an individual
has 0, 1,2, . .. offspring , let each offspring have the same proba­
bility for offspring of its own, and so on. What is the probability
that this line is extinct after n generations, and more generally
what is the probability for any given number of descendants in
this line in any given generation?

Theory te lls us that if the average number of offspring m is less than
1, each line goes ext inct with prob ability 1. Because our population size is
constant (at least on average) and we use mutations as a source of change,
we indeed have m < 1. So each species definitely becomes ext inct. We are
now inte rested in the age distribut ion of species .

Branching processes are analyzed using the generating function of the
probability dist ribution {pd of offspring

00

f(s) = L PkSk with 0 :::; s :::; 1
k=O

and their iterates

(4)

h(s) = f(s) and fn+l(s) = f(Jn(s)) = fn(J(s)) for n = 1,2,.. . (5)

The power series of fn has as coefficients Pn,k the probabilities that after n
generations a species cont ains k members , iff in generat ion 0 there was only
1 member . From this follows that

Qn = Pn,O - Pn-I,O = fn(O) - fn-I(O) (6)

is the probability that a species goes ext inct after exactly n generations (for
details see [9]) .

For our mode ls we have the following features . In the selection phase of
each t ime step a part Po of t he individuals is eliminated, a part PI survives,
and a part P2 survives and creates one descendant. For the following cal­
culations we are interest ed only in those offspring that belong to the same
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(7)

species where M labels the probability for identical offspring. This changes
our probabilit ies Pi to Pi:

P~ = Po

P{ = 1 - (1 + M )Po

P~ = M Po.

If we take our dynamics literally and regard each t ime step as one generation ,
we get f(s) = P~ + P{s + P~S2 and m = 1'(0) = 1 - P~ + P~M. Performing
the recursion needed in equation (6), we get results that show an exponen­
tially decreasin g age distribution for species (see Figure 3, the line label ed
"recursion") .

A disadvantage of t his recursion is that we do not obtain an analyt ical
result . But if the probabilities {Pk} form a geometric series of the form

Pk = bck- 1 with k = 1,2 , . . . and 0 < b, c and b < 1 - c (8)

we get the following analyt ical form for the iterates:

with m = b/ (I- c)Z and So = (1 - b - c)/c(l - c).
Starting from equation (7) we can easily calculate the probabilit ies {pd

as defined in equation (8) . For example, the probability Po that an individu al
has no offspring contains two parts, one that the individu al does not survi ve
the first t ime step (i.e., P~ ) and a second t hat it survives the first t ime st ep
but has no offspring (i.e., P{Po):

Po = P~ + P{Po· (10)

This gives Po = 1/ (1+ M). In a similar fashion we get a recursion for the Pk,

Pk = P{Pk + P~Pk-1>

which leads to

M
b = (1+ M)2

M
c = --

I + M

as defined in equat ion (8), which obeys b < 1 - c as demanded.
Insertin g all t his into equation (6) we get

which is for M < 1 asymptotically an exponent ial distribution.

(11)

(12)

(13)

(14)
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At this stage we have to make some remarks regarding our approxima­
tio n. We implicitly made the assumption t hat we have non-overlapping gen­
erat ions , which considering our dynamics is definitely not t rue. In addit ion,
in our simulations we measure t ime in t ime ste ps and not in generations.
This poses no problem if we rescale with the average lifet ime T as defined in
Appendix A:

1
Q(t ) = -Qt/T' (15)

T

Simulations of the random model with a large popul ation (104 individuals)
over long t imes (2 x 105 time steps; see t he data dots in Figur e 3) show
that the results, describ ed by equat ion (15) , are not as good for t < 50 (see
Figur e 3, the "analyt ical" line) as for large values of t , although both lines
show the same exponent ial behavior.

Appendix C Elimination probability for tournament se lection

If tournament select ion is performed by choosing a tournament size of s = 2
and making two rounds, the best individu al produces m = 2 offspr ing, the
median individual produces m = 1 offspring , and the worst indi vidual pro­
duces m = 0 offspring. These properties are similar for t he sorting and
replacing model, but for tournament select ion t hey are only valid on a sta­
tistical basis.

T he probability P for elimination is a straightforward calculat ion. Af­
ter an interact ion phase each individual can be characterized by a numb er
x E [0, 1] t hat is equivalent to the probabi lity that another randomly chosen
individual has a lower score. The best individual has x = 1, whereas the
worst has x = O. Consid er the probabilities qi(X) of an individual producing
i offspr ing:

qo(x ) = (1 - X)2, ql(X) = 2x(l- x) , q2(X) = x2. (16)

The average probability Pi of produ cing i offspr ing is given by the average
of qi(x) over the ent ire popu lation,

Pi = t qi(x )dx , (17)

from which follows Po = 1/ 3.
Both the condit ions I:f=o Pi = 1 and I:f=o iPi = m must be valid. Because

we consider an averag e constant population size, we get P2 = Po , which can
be checked easily. Generalizat ion of these results to a different to urnament
size is stra ightforward .

Acknowledgments

We would like to thank Peter Grassberger for proposing the subject, for
many stimulating and helpful discussions , and for a crit ical reading of this
manuscript. This work was supported by the Volkswagen-Stiftung , cont ract
AZ 1/ 66 995.



42

References

Harald Freund and Rob ert Wolter

[1] W . Alvarez, F . Asaro, H. V. Michel, and L. W . Alvarez, "Iridium Anomaly Ap­
proximately Synchronous with Terminal Eocene Extinct ions," Science, 216
(1982) 886- 888.

[2] A. M. Assad and N. Packard, "Emergent Colonization in an Artificial Ecol­
ogy," Preprint (1991).

[3] F. Crick , Life Itself: Its Origin and Nature (New York, Simon and Schuster ,
1981).

[4] B. Derrida and L. Peliti , "Evolution in a Flat Fitness Landscap e," Bulletin
of Mathemati cal Biology, 53 (1991) 355-382.

[5] M. Eigen and P. Schuster, Th e Hypercyc1e (Berlin, Spr inger-Verlag, 1979).

[6] H. Freund and R. Wolter, "Evolut ion of Bit St rings: Some Preliminary Re­
sults ," Complex Systems, 5 (1991) 279-298.

[7] D. E. Goldbe rg, B. Korb , and K. Deb, "Messy Genetic Algorithms: Motiva­
tion, Analysis , and First Result s," Complex Systems, 3 (1989) 493-539.

[8] S. J. Gould , Wonderful Life: Th e B urgess Shale and the Nature of History
(New York , W .W . Norton, 1989).

[9] T .E. Harr is, The Theory of Branching Processes, (Berlin , Springer-Verlag ,
1963).

[10] M. Kimura , "The Neutral Theory of Molecular Evolu tion," Scientific Amer­
ican, 241 (November 1979) 94-104.

[11] C. G. Langton (editor), Artificial Life, (Reading, Mass. , Addison-Wesley,
1989).

[12] C. G. Langton, C. Taylor, J. D. Farmer , and S. Rasmussen (editors) , Artificial
Life II, (Read ing, Mass., Addi son-Wesley, 1992).

[13] J. Maynard-Smith, Evolu tion and the Th eory of Games (Cambridge, Cam­
bridge University P ress, 1982).

[14] N. Packard , "Int rinsic Adaption in a Simp le Mode l for Evolution," pages
141- 155 in Artificial Life, edite d by C. G. Langton (Reading , Mass. , Addison­
Wesley, 1989).

[15] R. Wolt er, "Selbst organisierende Evolutionsmo delle," Dip lomarbeit , Univer­
sity of Wup pert al (1992) .


