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Abstract. In this paper we present the results of simple co-evolution-
ary models that simulate the temporal development of a population
of interacting bit strings. Each bit string is decoded into functional
groups called “genes.” The individuals participate in a procedure
similar to the Darwinian principle, that is, random interaction (in
which the genes determine the fitness of an individual) followed by
deterministic selection including random errors during reproduction.
We use three selection models: selection by sorting and replacing,
tournament selection, and energy flow.

We compare the results for each model to those of a random-
selection model to ensure that “emergent” (non-trivial) features are
really caused by evolutionary processes. The influence of selection
is clearly evident when comparing the age distributions of individu-
als and species to those of the random-selection case. While the age
distribution of the individuals shows a systematic deviation from an
exponential behavior in the selection case, the species ages tend to
follow a power law when applying non-random selection. The species
show a dynamic of “punctuated equilibria” that is similar to the be-
havior of natural systems.

1. Introduction

In a recent paper [6] we introduced a computational model that was designed
to simulate an open-ended evolution (evolution without end). We defined
a system consisting of a population of co-evolving interacting individuals,
namely bit strings, which are subjected to an evolutionary algorithm based
on the Darwinian principles of random interaction and non-random selection.
Because of the interaction we have only frequency-dependent fitness (see [13])
in our model, that is, there is no global optimization toward a predefined goal.

*Electronic mail address: freund@wpts0.physik.uni-wuppertal.de
tElectronic mail address: wolter@wpts0.physik.uni-wuppertal.de

@™ 1002 Camnlevy Svatems Puhlications. Tne.



26 Harald Freund and Robert Wolter

The current population defines whether an individual is fit, and thus selection
of the currently fittest individuals takes place.

We study the temporal development of systems with different parame-
ters and compare the results of the dynamics to those of a random-selection
model. This comparison proves to be a very helpful tool in deciding which
features are non-trivial or “emergent,” in contrast to those that are just
caused by predefined rules.

2. Short description of the model

In this section we summarize the main features of our model. For details see
[6].

We choose individuals with a minimal length of 32 bits because we want to
have a huge state space (of bit sequences) so that many different possibilities
for evolutionary development are present. The bit strings are decoded into
functional units called “genes” using a binary decoding tree that ensures
the decoding of every possible bit sequence without ambiguity. There are
20 different genes with lengths of 3 to 8 bits. We implemented this second
level to create a hierarchical structure in the highly dimensional state space
of the possible bit sequences. We were guided by natural systems that can
be described using different hierarchical levels. This second level endows the
system with an inherent distinction between genotype and phenotype.

We define an interaction procedure for the individuals that takes place
on the gene level. In an elementary interaction, two randomly chosen genes
of two interacting individuals are used to change the “fitness” or score of the
individuals. In each time step, each individual participates in a fixed number
of elementary interactions. The fittest individuals of the current population
are selected to produce offspring. The contents of an offspring is changed
with a low probability using the genetic operators “mutation,” “crossover,”
and “cut and splice.” Using these basic ingredients for our model, a single
time step of a simulation consists of the following sequence:

1. Interaction phase
2. Selection phase

3. Reproduction phase

2.1 Decoding

One of the results described in [6] gave strong evidence that the use of start-
codons (which signal the beginning of a gene in the bit string) is almost
unavoidable if a safe and flexible information storage mechanism is wanted.
For all simulations presented here we used the same startcodon (‘110’), which
already proved useful for the binary decoding tree presented in [6].

One consequence of startcodons is the possibility of having “junk” in-
formation that is not decoded. The average fraction n; of decoded bits per
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Figure 1: Temporal evolution of the average normalized information
length for bit strings of three different bit lengths. For the random-
selection model the average normalized information length is approx-
imately 2/3.

individual starts at ny ~ 2/3 after a random initialization (which is approx-
imately 10 to 14 genes in an individual of 96 bits) and decreases to n, ~ 0.3
during several hundred time steps (see Figure 1). This phenomenon is typ-
ical of all simulations presented here and can be explained as an effort by
the population to escape from the strong selection pressure. An individual
that contains only a few information bits very likely produces an offspring
that belongs to the same species as the parent. If, on the other hand, the
information length exceeds some threshold, the offspring more likely belongs
to a different species that is in most cases less fit than the original one. This
causes all individuals with too much (and thus too easily changed) infor-
mation to be eliminated quickly, which is similar to the information error
catastrophe [5]. We cannot really give a lower bound (as can be seen in Fig-
ure 1), but we can argue that each individual needs at least one gene. If an
individual has no gene, its score is zero because it cannot interact. But if it
has a “good” gene, its average score will be positive (individuals with “bad”
genes disappear quickly). Therefore, an individual must have at least one
gene to have a positive score.

2.2 Interaction

There are many different ways to define an interaction procedure (see, for
example, [11, 12]). We chose a binary-interaction algorithm that contains
deterministic and random parts. The deterministic part is defined by a 2020
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interaction matrix A that contains random numbers of a specified interval.
Each entry Ay of this matrix represents the interaction between two genes
g and ¢'. For example, the element Aj5 gives the interaction strength when
gene E encounters gene E. This matrix is fixed for the entire simulation, so
it represents some kind of “frozen randomness.” The random part consists
of the choice of (a) two individuals ¢ and k, or (b) two interacting genes in
these individuals, ! (from 7) and m (from k). A single interaction changes
the fitnesses (scores) f(i) and f(k) in the following way:

F@) = F(@) + Amp,
f(k) = f(k) + Ay

Each individual of the population participates in « interactions per time step.

(1)

2.3 Selection

In the following section we describe three different selection algorithms that
choose the fittest individuals of a population to produce offspring after the
interaction phase.

1. Selection by sorting and replacing. The simplest selection procedure
is to sort the individuals of the population in accordance with their
fitness values, and then replicate the fittest individuals and have the
offspring of the fittest replace the worst. We implemented versions that
choose the best half (or the best quarter) of a population to replicate
and replace the worst half (quarter). In this way a constant portion
pe = (1/2)(1/4) of the population is replaced in each time step, which
causes a continuous change in the population.

2. Tournament selection. Goldberg et al. [7] introduced an alternative
method of selection that takes into account the frequency dependence
of fitness. This procedure, called tournament selection, consists of the
comparison (competition) of all individuals within a subgroup of the
population. The population is divided into groups of equal size (at
least two, but other numbers are also possible). The one with the
highest fitness value survives and may replicate if it wins more than one
tournament. All the individuals that do not win a single tournament
are eliminated. If the tournament size is s, each individual usually
participates in s tournaments.

In the simplest version of tournament selection, the groups consist of
two individuals; the better replicates and the worse is eliminated. This
way individuals with a fitness below average still have a chance to “win”
when competing against even worse opponents. On the other hand, a
good individual can be “beaten” by a better one, although its fitness
value might be above the average of the current population. Tourna-
ment selection allows two possibilities for the fraction p, of eliminated
individuals per time step:
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e a constant fraction p, = 1/2, as in “sorting and replacing,” if only
one tournament round is performed,

e an average constant fraction p. = 1/3 with local fluctuations, if
each individual participates in two tournaments (for more details
see Appendix C).

3. Energy flow. We also developed another selection procedure [15] that
seems more “natural” than the previous ones. Organisms usually need
some renewable resources that are available in their environment and
that for simplicity we call “energy.” Therefore we also implemented an
energy-based procedure for selection (see also [2, 14]).

One simple way to do this is to create an energy source E for the
individuals that is filled at the beginning of each time step with a con-
stant energy. The individuals take energy from this source during the
interaction phase (as long as it contains enough energy). The interact-
ing genes determine the amount of energy that the two individuals get
from the source.

The individuals replicate when their energy levels exceed some thresh-
old value Fip,, and give some of the energy to their offspring. At the
beginning (or end) of each time step the energy of an individual is
decreased by an amount E, called “energy costs per time step.” An
individual is eliminated if its energy falls below this value.

Some fluctuations enter the scenario because the previously fixed values
for population size, number of replicating individuals per time step, and
so forth are no longer constants. The system acts more stochastically, so
one has to take great care in assigning initial conditions and boundary
conditions. For example, the entire population might die during a
single time step if the individuals do not save enough energy to pay
their energy costs per time step. This could happen if individuals
replicate too often during a single time step and give too much energy
to their offspring. An easy way to avoid this behavior is to decrement
the energy of an individual by E. first, then decide whether enough
energy remains to produce offspring.

In an energy-flow model the entire scenario is more sensitive to im-
plementation errors. On the other hand, the system might have more
capability for evolution than the other models because the “natural
fluctuations” may create different pathways in the state space.

2.4 Reproduction

When replicating, the original individual (parent) produces one copy (off-
spring), which gets all values (genes, energy cost, threshold, etc.) from its
parent. The age and offspring counters of the new individual are set to zero
(so the individual is like a newborn, not produced by cell division). During
the replication process copying errors of the genetic material appear with low
probability. We implemented mutation (single-bit flip) and crossover (in a
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few cases for comparison also cut and splice), because they seem to be the
most significant errors that appear in natural replication processes [3, 5].

3. Randomness

Randomness and determinism are the cooperating counterparts of an evo-
lutionary system. While the deterministic rules define the framework for
evolutionary processes (they can be viewed as the combination of all influ-
ences of the fixed part of the environment), the random parts of a model
simulate realistic boundary conditions like thermal fluctuations, for exam-
ple. As we already mentioned in [6], the interaction matrix should enable all
possible kinds of interaction between individuals. This can be implemented
most easily by choosing random numbers for the matrix elements.

In natural environments randomness is caused, for example, by chemico-
physical fluctuations and by the stochastic behavior of other individuals.
This can be simulated well by implementing the random interaction scheme
described in Section 2.2.

Thus far we have explained only the randomness used in our models. Now
we introduce an additional tool called random interaction models. They prove
very useful in distinguishing between evolutionary processes and behavior
caused by the predefined rules of the system. We use the term evolutionary
processes in contrast to optimization processes. In our view optimization
processes have a global predefined aim, whereas evolutionary processes are
driven by local optimization but include no global fitness function.

We used two different versions of a random model that showed similar
results:

e In the first version of random selection the fitness is changed by adding
random numbers instead of matrix elements decoded by the genes. So
the random matrix is “switched off” while the other parts of the model
stay the same.

e In the second version we chose random genes instead of the decoded
genes for interaction, and the interaction matrix remained the same as
in the non-random model.

Using random models we obtain the results of a “zero experiment” of
the considered evolutionary model. This is reminiscent of the “flat fitness
landscape” of Derrida and Peliti [4]. A random model can be defined easily
for every evolutionary model and thus should be used as a standard reference
model.

4. The concept of species

The dynamics of our system lead to successful groups of genes. Sequences
with the same gene content but with different arrangements (like ABABAA
and AAAABB (A4B,)) are equivalent during the interaction phase because
on average they get the same score. In addition, A4B> has on average the
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same properties as As B (AAB). These groups are thus naturally considered
as belonging to the same species. A species is consequently defined as the
group of individuals containing the same ratio of gene numbers as described
above.

Whereas the lifetime of an individual is restricted to a few time steps
(depending on the parameters of the model; compare Appendix A and [6]),
the lifetime of a species may be much longer (up to thousands of time steps).
A necessary condition for this is that individuals produce with high proba-
bility identical offspring (i.e., offspring belonging to the same species). An
analytical treatment of the species age behavior is possible for the random
selection model; details are given in Appendix B.

5. Simulations

We simulated the temporal development of bit string populations with rather
small population sizes (64 to 512, in few cases up to 10*). In most runs we
chose a constant bit length (e.g., 96 bits) per individual. In some cases
where we used “cut and splice” during reproduction we allowed changes in
bit length. The interaction rate was varied from a@ = 5 to @ = 50. We
defined an average mutation probability p,, per bit, so short bit strings had
the same mutation rate as longer ones. We varied the value from p,, = 1072
to pm = 107 and found that p,, = 10~ was most useful for our purpose.
This value is very close to the natural mutation probability (see [5]).

We implemented different versions of the three basic selection algorithms
introduced in Section 2.3. The results are described in the following subsec-
tions.

5.1 General results

One general result valid for all implementations concerns the age distribution
of individuals. As explained in Appendix A, we expect an exponential age
distribution if elimination of individuals is purely a random process. This
is indeed the case for random selection models, as can be seen in Figure 2
(squares), but if selection is present this distribution is deformed. Some indi-
viduals that are fitter than the others survive longer, and others produced by
mutation lead to worse individuals that are quickly eliminated (see Figure 2,
diamonds and crosses).

The age distribution for individuals is deformed slightly, but asymptot-
ically it is still exponential. One reason for this is that the population is
usually very homogeneous; that is, nearly all individuals have the same ge-
netic contents, so they are equally fit and elimination is in fact a random
process. Only at the beginning of a simulation and when there is genetic
takeover do we have a wide range of fitness.

We obtain qualitatively different results when we look at the age distribu-
tion of species. In Appendix B we show that, for a purely random model, we
also expect an asymptotically exponential age distribution. Figure 3 reflects
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Figure 2: Comparison of the age distribution for the random model
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0.1

TITR

0.01

0.001

0.0001

1le-05

1e-06

1

G | L
Data

Recursion -----

Analytical ------ g

S, | S |}

1e-07
0

Figure 3:

100

150

200

400 450 500

Comparison of the age distribution for species between a
simulation (dots) and two analytical functions (see Appendix B for
details). Data are well described by these exponential distributions.



Evolution of Bit Strings IT 33

Galton-Watson -----
Random case -¢---
Sorting -+
Tournament ~&-
Energy -%-

0.01

0.001

Probability (age > t)

le-05 % \ 3

1e-06 :
1 10 100 1000

Aget

Figure 4: Comparison of species age distribution to the random-
selection case on a double logarithmic plot. To make things clearer
we show on the y-axis the probability that a species survives at least
t time steps. The line labeled “Galton-Watson” accords to the line
labeled “Recursion” of Figure 3, corresponding to an infinite popu-
lation. We see an exponential distribution with an effective cut-off
age teut—off = 500. In a finite population this age decreases sharply,
as can be seen for the data labeled “random case” (<) that are from
a simulation with a population of 64 bit strings (tcut—o < 100). In
contrast to this we see that, with selection, the distribution can best
be described by a power law, even for small populations (64 and 128
bit strings).

our assumption that using the theory of branching processes is valid for the
random selection model. Therefore we have only one time scale present that
is related to the probability that an offspring belongs to the same species
as its parent. In contrast to this we see a completely different behavior if
selection is present (see Figure 4). The data are better described by a power
law; from this we can conclude that there is more than one time scale.

5.2 Sorting and replacing

In our implementation of this model we sort the population in accordance
with the fitness of the individuals and let the best half (or quarter) replicate
and replace the worst half (or quarter).

The results of our simulations (of 64 individuals) can be summarized
as follows. The strong selection pressure causes an optimization procedure
that chooses the successful genes depending on the values of the interaction
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Figure 5: Occupation number of genes as a landscape over the time-
genes plane. Only 2 to 5 genes have large occupation numbers, all
other genes are negligible. The dominating group of genes changes
several times during this simulation (genetic takeover).

matrix (see Figure 5). This leads to a “poorness” in the species landscape,
in which only one quasispecies (a “wildtype” with few mutants) survives.
The system gets “stuck” in a local optimum from which it cannot escape
for long periods of time. After such a period of metastability very sudden
changes appear until the next state of intermediate stability is reached (see
Figure 5; ¢ ~ 1500, 3900, . ..,8000). This dynamics of punctuated equilibria
is typical for our models, and can also be seen when we look at the species
traces in Figure 6.This figure shows all species that were in the simulation
for at least 20 time steps. The species are numbered in order of appear-
ance; the later a species appears for the first time the higher its number.
The number of individuals belonging to that species is not taken into con-
sideration. In some phases many new species come up until a takeover takes
place (e.g., t € [3900,6000]) whereas in other phases there is little change
(e.g., t € [1500,3900] and ¢t € [8000,10000]). Usually the strongest species
has 5 (in cases of change) to 30 (in stable phases) members and there are
approximately 30 species, but only 2 to 3 of them have more than 4 members.

In Figure 6 there are also species traces for the random model. In con-
trast to the selection case, a nearly constant flux of new species occurs and,
moreover, species do not reappear. Although it seems that a single (or few)
species take over the whole population, this is not true. There are very few
species that survived at least 20 time steps, but on average there are more
than 50 species present in each time step. The strongest species usually has
no more than 3 or 4 members. From this we conclude that in the random
case the dynamics is similar to a random walk in the highly dimensional
phase space of possible species.

When looking at the details of the evolutionary process of this model, it
becomes evident that there are very few pathways for mutations that can
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Figure 6: Species traces for the selection case compared using sort-
ing on the random case. All species that were in the simulation at
least once for more than 20 time steps are shown. The species are
labeled according to their first appearance in the simulation. In the
random case there is approximately a straight line that corresponds
to a constant flux of new species.

create new successful individuals. Most of the possible mutations create
genes that are eliminated during the following time steps so that this material
cannot enter the population.

5.3 Tournament selection

The “sorting and replacing” algorithm leads to a poor species landscape
because the selection pressure is so strong that individuals that are only
slightly less fit than the average drop out immediately. For these individuals
there is no chance to prove more useful in future generations, which contra-
dicts the properties of natural evolutionary systems [10]. This is improved
in tournament selection. We simulated two different versions of tournament
selection models: one is a single round model, so p. = 1/2; the other in-
cludes two rounds in each selection phase, so the time average (p.) = 1/3
(see Appendix C).

Although for the sorting model we see a distinct deviation from the ex-
ponential age distribution for individuals, this is not true for tournament
selection (see Figure 7).There is only a very slight but systematic deviation
from equation (2) for higher ages (¢ > 25) which is caused by selection. For
very high ages (¢ > 35), we see stronger deviations, reflecting the small num-
ber of individuals that reach a very old age (the smallest entry corresponds
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Figure 7: Comparison of the age distribution for tournament selection
to equation (2) with p =1/3.

to one individual during a simulation of 64 individuals over 10¢ time steps).
These small deviations do not imply that tournament selection corresponds
to a random model, as is evident from Figure 4. There we also see that the
age distribution for species is best described by a power law.

Although the selection pressure seems less strong compared to the sorting
and replacing model, a very similar situation appears. Once again only one
quasispecies survives and the phenomenon of punctuated equilibria appears
(see Figure 8). The number of different species in the population is compa-
rable to the number in the previous model. Figure 8 shows all species that
appeared at least once for more than 50 time steps.

5.4 Energy flow

We implemented different versions of an energy-flow model [15] and compared
the results to those of the two other selection algorithms. For the first version,
we chose fixed values for (a) energy source per time step, (b) energy cost per
time step, and (c) threshold for replication, to keep the results comparable
to the other models. The dynamics of this version lead to constant averages
for different variables (e.g., population size, number of replicating individuals
per time step) and thus ensures that the age distributions for individuals and
species are well defined for long simulations (see Figures 2 and 4).

The species landscape for the energy-flow model shows more variability
in comparison to the previous models. Figure 9 shows the species traces for
all species that were in the simulation more than 50 time steps. A much



Evolution of Bit Strings IT

Species (arbitrary number)

Species (arbitrary number)

300 ; : : :
250 | R

200

100 | ; -

80000

0 1 1
20000 40000

Time t

60000 100000
Figure 8: Species traces for the tournament selection model. All
species are shown that were at least 50 time steps in the simulation.
The species are labeled according to their first appearance in the sim-
ulation.

1800 T T T T

1600 - &

1400 -

1200 -

1000 - g

800

400 -

200

20000

40000 80000 100000

Time t

Figure 9: Species traces for the energy model. All species are shown
that were in the simulation at least 50 time steps. The species are
labeled according to their first appearance in the simulation.

37



38 Harald Freund and Robert Wolter

larger number of species, namely 1734, endured more than 50 times steps, in
contrast to only 267 species in Figure 8.

But the main results are the same as before: Very few species domi-
nate the dynamics, and a tendency toward short individuals (measured in
information contents) is seen.

6. Conclusions

Although in our models there is no real open-ended evolution, some features
of natural evolutionary systems do appear, such as punctuated equilibria [§]
and the need for “soft” selection [10] and startcodons. Our populations show
a stochastic behavior of metastable states interrupted by short phases of
genetic takeover. The principle of stochasticity combined with deterministic
selection (i.e., Darwinian evolution) seems to cause this metastable behavior,
so there is no need for external catastrophes (such as asteroid impacts, as
mentioned by [1]).

Another important result for our evolutionary models is the influence of
selection on the age distribution of individuals and species. While the age dis-
tribution of individuals shows (sometimes only slight) deviation from an ex-
ponential distribution when comparing a specific model to a random version
of this model, the species age distribution shows more significant changes. In
fact, we can give an explicit analytic formula only for the random-selection
case, which can be interpreted as a branching process (see Appendix B). For
random models the species age distribution converges asymptotically to an
exponential distribution, while for nonrandom selection models a power law
appears for a wide range of species ages. While for individuals there exists
only one time scale (related to the elimination probability p), for species
there are several time scales that can lead to the observed power law. This
could be a first hint at open-ended evolution.

Nevertheless our models have some deficiencies. Although we see some
evolutionary process occurring, it seems that in the long run we have only
an optimization process. This is very likely caused by the simple linear
interaction scheme described in Section 2.2. This optimization leads to only
sparse diversity in the species landscape and contradicts the results of natural
evolution. The linear part of the dynamics (i.e., the interaction matrix) thus
dominates the stochastic parts (the random choice of individuals and genes).
Consequently one has to change the interaction to some nonlinear procedure
to have a chance of open-ended evolution. But it is not at all clear how this
nonlinear interaction could be implemented in a natural way.

When using energy flow, the dynamics lead to more diversity of species
(compare Figures 8 and 9), but in principle the successful gene groups stay
the same.

Appendix A Elimination probability of the individuals

The elimination probability distribution of the individuals can be calculated
for the case of a constant fraction p. € [0, 1] of replaced individuals per time
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step. The expectation value d; for the probability of an individual being
eliminated after a lifetime of ¢ time steps is given by

d=p(1 —p) )
This can be rewritten as an exponential distribution
d: = a x exp (=bt), a=1Lzo, b=—1In(l—-p) >0. (3)

The average lifetime 7 = Y td; is then given by p~1.

Appendix B Lifetimes of species

If we consider a random model we can use the theory of branching processes
[9] to estimate the species lifetime distribution. In its simplest form it is called
the Galton-Watson branching process and can be formulated as follows:

Let po, p1, P2, - . . be the respective probabilities that an individual
has 0,1,2,... offspring, let each offspring have the same proba-
bility for offspring of its own, and so on. What is the probability
that this line is extinct after n generations, and more generally
what is the probability for any given number of descendants in
this line in any given generation?

Theory tells us that if the average number of offspring m is less than
1, each line goes extinct with probability 1. Because our population size is
constant (at least on average) and we use mutations as a source of change,
we indeed have m < 1. So each species definitely becomes extinct. We are
now interested in the age distribution of species.

Branching processes are analyzed using the generating function of the
probability distribution {px} of offspring

f(8) = ms* with0<s<1 (4)
k=0

and their iterates

fi(s) = f(s) and faia(s) = f(fa(5)) = fa(f(s)) forn=1,2,... (5)

The power series of f, has as coefficients p, ; the probabilities that after n
generations a species contains k members, iff in generation 0 there was only
1 member. From this follows that

Qn= Pno — Pn-10= fn(o) - fn—l(o) (6)

is the probability that a species goes extinct after exactly n generations (for
details see [9]).

For our models we have the following features. In the selection phase of
each time step a part Py of the individuals is eliminated, a part P; survives,
and a part P, survives and creates one descendant. For the following cal-
culations we are interested only in those offspring that belong to the same
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species where M labels the probability for identical offspring. This changes
our probabilities P; to P

P =P,
Pl=1~{1-+M}P; (7)
P, = MP,.

If we take our dynamics literally and regard each time step as one generation,
we get f(s) = Py + P{s+ Pjs* and m = f'(0) = 1 — Py + P;M. Performing
the recursion needed in equation (6), we get results that show an exponen-
tially decreasing age distribution for species (see Figure 3, the line labeled
“recursion”).

A disadvantage of this recursion is that we do not obtain an analytical
result. But if the probabilities {p;} form a geometric series of the form

pr=0bcF! withk=1,2,... and0<bcandb<1l—c (8)

we get the following analytical form for the iterates:

1_50 mn(ln—sg )28
= n m =80 -
fn(s)_l_m (mn_so> 1—-(;:1:__810)3, n_1)2)'~' (9)

with m = b/(1 —¢)? and s = (1 — b —c)/c(1 — ¢).

Starting from equation (7) we can easily calculate the probabilities {p}
as defined in equation (8). For example, the probability py that an individual
has no offspring contains two parts, one that the individual does not survive
the first time step (i.e., Pj) and a second that it survives the first time step
but has no offspring (i.e., P{pp):

po = Fy+ Pipo. (10)

This gives pp = 1/(1+ M). In a similar fashion we get a recursion for the py,

Pk = Pipk + Pypi-1, (11)
which leads to

M

b= —+ 12

(1+ M)? (12)
M

A . 1
‘TiyM (13)

as defined in equation (8), which obeys b < 1 — ¢ as demanded.
Inserting all this into equation (6) we get

M1 — M)?
(1— M™) (1 — M)

which is for M < 1 asymptotically an exponential distribution.

Qn = o M™, (14)
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At this stage we have to make some remarks regarding our approxima-
tion. We implicitly made the assumption that we have non-overlapping gen-
erations, which considering our dynamics is definitely not true. In addition,
in our simulations we measure time in time steps and not in generations.
This poses no problem if we rescale with the average lifetime 7 as defined in
Appendix A:

Q) =~ Q- (15)

Simulations of the random model with a large population (10* individuals)
over long times (2 x 10° time steps; see the data dots in Figure 3) show
that the results, described by equation (15), are not as good for ¢ < 50 (see
Figure 3, the “analytical” line) as for large values of ¢, although both lines
show the same exponential behavior.

Appendix C Elimination probability for tournament selection

If tournament selection is performed by choosing a tournament size of s = 2
and making two rounds, the best individual produces m = 2 offspring, the
median individual produces m = 1 offspring, and the worst individual pro-
duces m = 0 offspring. These properties are similar for the sorting and
replacing model, but for tournament selection they are only valid on a sta-
tistical basis.

The probability p for elimination is a straightforward calculation. Af-
ter an interaction phase each individual can be characterized by a number
z € [0,1] that is equivalent to the probability that another randomly chosen
individual has a lower score. The best individual has z = 1, whereas the
worst has z = 0. Consider the probabilities g;(z) of an individual producing
i offspring:

o) =1-12)?% aq@)=221-1), g =21 (16)

The average probability p; of producing 7 offspring is given by the average
of g;(z) over the entire population,

5= /01 () dz, (17)

from which follows py = 1/3.

Both the conditions }_7_,p; = 1 and }.;_,ip; = m must be valid. Because
we consider an average constant population size, we get ps = pg, which can
be checked easily. Generalization of these results to a different tournament
size is straightforward.
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