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Abstract. In this pap er , t he interaction between molecular free-point
dipoles is prop osed as an analog of t he dynamics of randomly inter­
connected neurons. Typically, neural interaction has been described
as being ana logous to the stochastic aspects of the magnetic Ising spin
model. For example, Hopfield 's attractor neural network follows t he
zero-field spin-glass analogy and warrants the neur al interconnections
to have bilateral symmetric weights across the inte racting neurons.
But t he act ua l neur al intercon nect ions may not pose such a symme­
t ry, because the stochastic aspects of excitatory and inhi bitory synap­
t ic responses are not the same; and, in general, ra ndom asymmetry
in synaptic couplings more closely approximates physiological real­
ity. The int erconnecting weights that decide the collect ive response
across a neur al arrangement are asymmet ric bot h temporally as well
as spatially. Lack of spatial symmet ry effects in the specificat ion of
anisot ropic proli feration of neur al state-t ransit ions has motivat ed t he
present work; the consiste nt requirement of symmetric weight s in neu­
ral assembly modeling (analogous to the Ising spin-glass model) is
thereby obviated. In th e relevant considerat ions, neur al interactions
are depicted as being similar to t hose of molecular free-point dipol es­
specifically, those of a liquid crystal in the nematic phase having a
long-range orient ati onal order. This partial anisot ropy in spatial ori­
entation incorporates an asymmetry in synapt ic coupling act ivity, and
is addressed via Langevin 's theory of dipole orientation . A stoc has­
t ically justifiable sigmoidal act ivatio n function is derived therefrom
to represent the squas hing action in the input-output relation of t he
complex dynamics pertinent to the cellular automata.
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1. Introduction

The standard analogy of neurons with the aggregates of interacting magnetic
spins contains certain inconsistencies. The analogy arises from the fact that
t he organization of neurons is a collective enter pr ise in which the act ivity
of interactive cells const itutes a cooperat ive process similar to that of spin
interact ions in a magnetic syst em. The st rengt hs of synaptic connect ions
between t he cells (represent ing the extent of int eractive dynamics in t he cel­
lular aut omata) are considered to be analogous to t he st rengths of exchange
interactions in magnet ic spin syst ems. Synapt ic act ivity, manifest ing as t he
competit ion between the excitatory and inhibitory processes, is regarded as
being equitable to the competit ion between t he ferromagnetic and ant ifer­
romagnetic exchange inte ractions in spin-glass systems. Also, t he threshold
condition st ipulated for t he neural network is viewed as the analog of the con­
dition of metast ability against single spin flips in the Ising spin-glass model.

Despite similarit ies between neurons and magnetic spins, a major in­
consist ency persists regarding synapt ic coupling versus spin interactions.
Nearest-neighbor spin-spin interactions are symmetric; successive rows of
the spin system can be added in any direction. On the contrary, the t ime­
development of a neural network has a specific forward direction; in other
words, the neural problem is inherent ly anisotropic. In addit ion, not only
is the state of a neuron at any t ime-instant determine by the state of some
or all of the neurons at the previous instant , but the state of a neuron at a
specific locat ion is dependent on the state of some or all the neurons at the
previous location across t he neurocellular arrangement . Thus, asymmetry in
the synapt ic coupling is governed by both the st ructured funct ional aspect
pertinent to t he pro cessing of temporal sequences of synaptic events, and the
physioanatomical considerations related to the cellular act ivity and st ruc­
t ure. (The problem of synaptic asymmetry has even broader implications in
neur al network st rategies, as discussed in [1].)

Within the framework of stat ist ical mechanics considerat ions, the stat e­
transit ion probabilities in magnetic spin syste ms between two states S1 and
S2 (with probabilit ies specified with reference to t he equilibrium state So)
are equal in both direct ions. That is, microscopic reversibility pertaining to
magnetic spin interact ions is inherent to the st rengt h of coupling between
symmet rical exchange interact ions. However , in the neural system observed
by Griffith [2], such symmet ric weights of neur al int eract ion are questionable.
In an aggregate of M cells with a dichotomous state of act ivity (as in the
spin system) having 2M possible st ates, identi fied as S = 1, 2, . . . , 2M , t here
is only a superficial analogy with a quantum mechanics situation. (This an al­
ogy refers to a set of M subsyst ems, each having two possible quant um states;
for example, a set of M atoms each having a spin ~ . ) Each of the 2M states
has a definite successor in t ime, such that the progress of t he state-t ransit ion
process corresponds to a sequence i 2 = Z(ii ) -+ i 3 = z (i2) . . . . This sequence
would event ually te rminate in either of two dichotomous states, S1 => +Su or
S2 => - S£, with the transit ional probabilities P(S1,2). The natural tendency
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for this microscopic parameter is simply to tend towar d Po, the equilibrium
value; there is no likelihood of the successor function z showing any bilateral
symmetry. In other words, in the neural cycle of state transit ions, the inter­
connect ing weights between any two cells i and j are such that W i ,j =I W j ,i'

That is, there is no perceivable microscopic reversibility, implying that th e
synaptic connect ions in neural networks are seldom symmetric. Quite often,
either Wi,j or Wj,i is nonzero. This asymmetry implies the existence of a
dispari ty between the number of excitatory and inhibitory synapses on the
one hand, and the corresponding synaptic act ivit ies on the other.

The inconsist ency between neurons with inherent asymmetric synaptic
couplings and symmet ric spin-glass inte ractions led Griffith [2J to declare
that the analogy between them had "no practical value." Nevert heless, sev­
era l compromises have been prop osed [1, 2-4] that show the usefulness of the
analogy. The assumpt ion of symmetry, and the specific form of the synap t ic
coupling in a neural assembly, define what is generally known as th e Hop­
field model. This mod el demonstrates the basic concept s and functioning of
a neural network , and serves as a start ing point for a variety of models in
which many underlying assumpt ions are relaxed to meet some of the require­
ments of real systems. For example, the quest ion of Wi,j being unequal to
Wj,i in a neural system was addressed in a proposal by Little [3], who de­
fined a time-domain long-range order such that the corresponding anisotropy
introduces bias te rms in the Hamiltonian relation , making it asymmet ric to
match the neural Hamiltonian. That is, Little's long-range order, with refer­
ence to neurons, corresponds to a t ime-domain-based long-tim e correlation
of the states; these t ime-persistent states of a neur al network are equated
to the long-range (spatial) order in an Ising spin syst em. Little, therefore,
attempted to incorporate th e asymmetric considera t ions in the neur al inter­
act ions via correlated t ime developments.

Lit tle's model, however, lacks the attribut ions of spatial correlation effects
(the spatial anisotropicity, depicting t he state transit ion at one locat ion being
correlated to some or all of such transitions in the previous location ). Because
both temporal and spatial anisotrop icity coexist in the neur al state-t rans ition
pro cess, it is imperative to elucidate and incorp orate a spatial persistency in
the proliferation dynamics of state t ransit ions. It is the mot ive of th e present
st udy to develop a st ochastic model of the spatially anisotropic neurocellular
(inte rconnected) arr angement , for adoption in conjunct ion with th e tempora l
st at istics of Little.

Problem definit ion

The problem posed in t his paper refers to the modeling of the spatial an­
isotropy in interconnected neur al arrangements. The relevant method of at­
t ributi ng long-range orde r to neurons [3] is followed, except that it is referred
to spatial (orientational) anisot ropy. To facilitate this approach, free-point
molecular dip ole interactions are considered as an analogy, in place of mag­
netic spin interactions. Free-point molecular dipole int eractions with par tial
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anisot ropy in spatial arrangement describe the nematic phase in a liquid
crystal. Hence, the present analysis equates neur al stat ist ics to t hose of a
nematic phase system, in concurrence with the assert ion that "the living cell
is act ually a liquid crystal" [6J. On the basis of the proposed spatial aniso­
t ropy, t he squashing action up on the input-ou tput relation pert aining to t he
dynamics of cellular automat a is described appropriately by a stochast ically
justifiable sigmoidal function.

It should be noted that Little's approach in facilitat ing asymmet ry in the
neur al int erconnection (via long-range t ime-correlat ion of state-transit ional
events ) follows basically (pseudo) thermodynamic considerations ; the desired
temporal anisotropicity is achieved by int roducing a bias-term in the Hamil­
tonian relation depicting the temporal dynamics of the state-transit ions. The
present stud"y is also based on the thermodynamics of the associated statis­
t ics. This app roach stochastically justifies the input-output response and in­
troduces a spat ial (orientat ional) anisotropicity in th e neural state-transit ion
pro cess.

2. Free-point molecular d ipole interactions

Suppose a set of polarizable molecules are anisotropic, with a spatial long­
range orientational order corresponding to the nematic liquid crystal in the
mesomorphic phase. T his differs from an isot ropic molecular arr angement ,
as in liquid , in t hat t he molecules are spontaneously oriented wit h their long
axes approximately parallel. T he preferred direction or orient ational order
may vary from point to point in the medium, but in the long range, a specific
orientational parallelism is retained.

In the nematic phase, the statistical aspect s of dipole orientat ion in the
presence of an externally app lied field can be st udied via Langevin 's theory
with the following hypotheses.

1. The molecules are point-dipoles wit h a prescribed extent of anisot ropy.

2. The ensemble average taken at an instant is t he same as the time
average taken on any element (ergodicity property).

3. The characterist ic quantum numbers of the problem are sufficient ly
high that t he system obeys the classical st at ist ics of Maxwell-Boltzmann
(the limit of quantum statist ics for systems with high quantu m num­
bers). The present characterizat ion of paraelect ricity, t herefore, differs
from spin paramagnet ism, in which t he quantum levels are restricted
to two values only.

4. T he dipole molecules, in general, when subjected to an exte rnal electric
field E , experience a moment J-LE = aE E , where oe by definit ion
refers to the polarizability of the molecule. The dipole orientation
cont ribut ing to t he polarization of the material is quant ified as P =
N(fJ-E) , where N is the dipole concent ration.
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Figure 1: Free-point dipole and its moments .

5. In an anisotropic system such as the liquid crystal, there is a perma­
nent dipole moment JLPE, the direction of which is assumed along the
long-axis of a nonspherical dipole configuration. Consequent ly, two or­
thogonal polarizability components exist , namely QE, along the long
axis and QEo perp endicular to this long axis.

3. The order parameter

The dip ole moments in an anisotropic molecule are depicted in Figure 1. Pro­
ject ing along the applied elect ric field E , the net induced elect ric polarizat ion
moment is

JLE = JLpE cosO+ (QEl cos2 0 + QEo sin2 O)E

= JLPE cosO+ (t.QE cos2 0 + QEo)E (3.1)

where t.QE is a measure of anisot ropicity.
The corresponding energy of the polarized molecule in the presence of an

applied field E is const ituted by (i) the potent ial energy WPE due to the
permanent dipole, given by

WPE = - JLPE ' E = - J-lPEE cos 0

and (ii) the potent ial energy due to the induced dipole given by

W;E = -~ (Qel cos2 0 + QEo sin2 O)E 2

(3.2)

(3.3)

Hence, the total energy is equal to WT = WPE + WiE. Furthermore, the
statist ical average of J-lE can be specified by

( E) = JJ-lE exp [- WPE/ksT] dSl
J-l f exp[ - WtlksT] dSl

(3.4)
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where dD is t he elemental solid angle around t he direction of E . That is,
dJJJ = 27fsin(0) dO . By performing the integration of (3.4) using (3.1),

(3.5)

(3.6)

where the quantity (cos2 0) varies from ~ (for randomly oriented molecules)
to 1 (for the case where all the molecules are parallel, or ant iparallel, to the
field E ). On the basis of these limits, the following parameter is defined.

SO= ~(COS2 0) - ~

= 0 (for (cos2 0) = ~)

= 1 (for (cos2 0) = 1)

Definition. The parameter So, which is bounded between 0 and 1 under the
conditions of equation (3.6), represents the "order parameter" of the system
(6j.

Appropriate to the nematic phase, SO specifies the long-range orienta­
t ional parameter pertaining to a liquid crystal of rod-like molecules, as fol­
lows. Assumin g t hat t he dist ribut ion funct ion of the molecules is cylindr ically
symmetric about the axis of preferred orientation, SO defines the degree of
alignment: for perfectly parallel (or ant ipara llel) alignme nt SO = 1, while for
random orient ations SO= O. In the nematic phase, So has an intermediat e
value that is st rongly temperat ure-dependent.

SO = 0 refers to an isot rop ic statist ical arrangement of rand om orien­
tations, such t hat for each dip ole pointing in one direction, there is (sta­
t ist ically) a corresponding molecule pointing in the opposite direct ion (see
Figure 2). In t he presence of an external elect ric field E , the dipo les expe­
rience a torque and tend to polarize along E , so that t he system becomes
slight ly anisot ropic; eventually, under a strong field (E) , the system becomes
totally anisot ropic with SO = 1.

4. Collective stochastic response of neurons under act ivat ion

By means of the analogy to a random, statist ically isot ropic dipole syste m,
the graded response of neurons under act ivat ion was modeled previously by
the authors [8], applying t he concepts of Langevin 's theory of dipole polar­
ization. The cont inuous graded response of neuron act ivity (corresponding
to the stochastic interaction between incoming excitations that prod uce t rue ,
collective, nonlinear effects) was elucidated in terms of a sigmoidal function,
specified by the Langevin function L(AlJi) where A = 13/kB T , with 13 be­
ing the scaling factor and a, depict ing the neural state-vector. Explicit ly,
L(x ) = coth(x) - l / x . Fur ther , kBT depicts the Boltzmann energy corre­
sponding to the (pseudo) temperature , T .

In t he present considerat ions, neurons are specifically depicted as similar
to the nematic phase of liquid crystals, and are assumed to possess an inher­
ent, long-range spatial order. In other words, it is suggested that 0 < SO < 1
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Figure 2: Ty pes of disorders in spat ial free-point molecular arrange­
ment s: (a) Complet ely ordered (total anisot ropy) ; Parallel and an­
t ipara llel arrangements. (b) Part ial long-range order (pa rt ial aniso­
t ropy): Nematic phase arrange ment. (c) Total absence of long-range
order (total isot ropy): Rand om arrangement.
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is a more valid order funct ion for the neural assembly than SO = O. In terms
of SO = ~ ( COS2 e) - ~ , the term (cos2 e) should correspond to a value be­
tween ~ and 1 (justifyin g t he spatial anisotropy) , rat her t han the lower limit ,
namely ~.

To dete rmine an appro priate squashing function for this inte rmediate
range of (cos2 e) (between ~ and 1, or, for 0 < SO < 1), the quantity (cos2 e)
is replaced by (~ + -lq ) in defining the order parameter So. Hence,

(4.1)

where q --+ 00 and q = ~ set the corresponding limits of SO = 0 and So = 1,
respectively.

Resorting again to statistical mechanics, q = ~ refers to dichotomous
states if the number of states are specified by (2q + 1). For t he dipoles
or neural alignments, it corresponds to the two totally discrete anisotropic
orientations (parallel or antiparallel). In a stat ist ically isotropic, randomly
oriented system, however , the numb er of possible discrete alignments would
approach infinity, as dict at ed by q --+ 00.

For the intermediate (2q + 1) number of discrete orientations, the extent
of dipole alignment to an external field (or, correspondingly, the out put re­
sponse of a neuron to excitat ion) would be decided by the prob ability of a
discrete orient ation being realized. It can be specified by [9]

(4.2)

Equation 4.2 is a modified Langevin function and is also known as the
Bernoulli function. The traditional Langevin function L(x ) is the limit of
Lq(x) for q --+ 00. The other limiting case, namely q = ~ (which exists for
dichotom ous st at es) , corresponds to L1/2(X) = tanh(x) .

Thus, the sigmoida l function F (x ) that decides the neural out put response
to an excitation has two bounds. With F(x) = tanh(x), it corresponds to
the assumpt ion that there exists a total orientational long-range order in
the neural arrangement. As previously discussed by t he aut hors [8], F (x ) =
tanh(x) has been convent ionally regarded as the squashing function for neural
nets purely on empirical considerat ions: the input-output nonlinear relation
being S-shaped (which remains bounded between two logistic limits, and
follows a continuous monotonic functional form between those limits). In
terms of the input variable ai and t he gain/scaling parameter A of an ith
neuron , the sigmoidal function specified as the hyberbolic tangent function
is t anh( Aai) . The logistic operation that compresses the range of the input so
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that the output remains bounded between the logical limits is also specified
alternatively by an exponent ial form F(x) = 1/ [1+ exp( - x )], with x = AO"i .

The adoption of the hyperbolic tangent or t he exponent ial form in neu­
ral network analyses has been purely empirical, with no justifiable reasoning
attribut ed to their choice (except for their being sigmoidal). Hence, the
authors developed st atistical-mechanics-based considerations (as applied to
the st ate vector of a neural unit) to elucidate a just ifiable sigmoidal funct ion
[8J . As a result, by analogy with particle dynamics (wherein the collective
response is attributed to nonlinear dependence of forces on posit ions of part i­
cles), the corresponding statistics due to Maxwell-Boltzmann were exte nded
to neural response to describe the stochastic aspects of t he neural state vec­
tor O"i . Hence, as elaborated by the authors in [8], t he Langevin funct ion
L(AO"i) was derived as the sigmoid representing the neural input -output re­
sponse with A = /3/kBT , where /3 is a scale factor and kBT represents the
pseudo-Boltzm ann energy, as before.

Pursuant to the discussion of Equation (4.2), L(x) = Lq~oo (x) specifies
the syst em in which the randomness is totally isot ropic; that is, it is implicit
that the anisotropicity is zero . This refers to an extensive situation, assuming
that the neural configuration poses no spatial anisotropicity or long-range
order whatsoever. Likewise, the intuit ive modeling of F(x) = tanh(x) (as
commonly adapted) depicts a totally anisotropic system wherein the long­
range order SO attains 1. In other words, tanh(x) = Lq~1/2(X), with the
dichotomous discrete orientations (parallel or antiparallel) being specified by
(2q + 1) --t 2.

In the nematic phase, neither of the functions just discussed (namely,
tanh(x) and L(x)) is commensurable, since a partial long-range order (de­
picting a partial anisotropicity) is imminent in such systems. Thus, with
~ < q < 00 , the true sigmoid of a neural arrangement (with an inherent
nemat ic, spatial long-range order) should be Lq(x ).

Remark. It can be concluded that the conventional sigmoid (namely, the
hyperbolic tangent or its variations) and the Langevin function [8] consti­
tute the upper and lower bounds , respectively, of the state-vector squashing
characteristics of a neural unit . The relevant considerations of the foregoing
discussions are summarized in Tab le 1.

5. Hamiltonian of t he neural arrangement w ith spatial
long- range order

In general, t he anisotropicity of a disorder leads to a Hamilto nian that can
be specified in two ways as follows.

(a) Suppose the exchange Hamiltonian is given by

(5.1)

where W x x , W yy , and Wzz are diagonal elements of the exchange matrix W
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(with the off-diagonal elements being zero) . If Wx x = Wy y = 0 and Wz z =1= 0,
it is a symmetric anisotro py (with dichotomous states as in the Ising model).
Note that the anisotropy arises if the st rength of at least one of the exchange
constants is different from the other two. If Wx x = Wy y =1= 0 and Wzz = 0, it
corresponds to an isot ropic xy mode l; if Wx x = Wy y = Wzz , it is known as
the isot ropic Heisenberg mode l.

(b) Given that the system has an anisotropicity due to part ial long-range
order, as in the nematic phase representation of the neural arrangement, t he
correspond ing Hamiltonian is

H = -WL: SiSj s n, (5.2)

where Ha refers to the anisotropic contribution, which can be specified by an
inherent constant h? related to the order parameter So, so that

H = - L:L: WijSiSj - L: h?Si
j

(5.3)

Whil e the interactions Wij are local, H refers to an extensive quantity
corresponding to the long-range orientational (spatial) interconnections in
the neural arrangement .

6. Sp at ial p ersistence of synaptic t ransmission in t he nemat ic
phase repr es ent ation of neural arrangement

The nematic phase model ing of the neural arrangement specifies a long-range
spatial anisot ropy, which may pose a persist ence (or, preferably, a direct ional
rout ing) of the synapt ic t ransmission. Pertinent analysis would be similar
to t he tim e-domain persistence in neural firing patterns demonstrated by
Lit tle [3].

Considering (2q +1) possible spatial orientations (or states) pert aining to
M interacting neurons as represented by 1II (a), the probability of obtaining
t he state 1II(d ), having started with a preceding 1II(a)m spatial intervals (x) ,
can be written in terms of a transfer matrix [3] as

1II (a')T~1II (a) (6.1)

(6.2)

where 1II(a) can be expressed in terms of (2q + 1)M orthonormal eigenvec­
tors ti; (with eigenvalues Ar ) of t he operator T M . Each 'I3r has (2q + 1)M
components, one for each configuration a:

(2q+l)M

1II (a) = L: 'I3r (a)
r=l

Hence,

(6.3)
r
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Analogous to Little's t ime-domain persistent order analysis [3] , it is of
interest to find a particular state al afte r m spatial steps, having commenced
at an arbit rary spat ial location in t he neural topology. The probabili ty of
obt aining the st ate a2 afte r l spat ial ste ps, given al after m spat ial steps
from the commencement locat ion, can be written as [3]:

(6.4)

which explicit ly specifies no spatial correlation between the states a l and a2.
However , if the maximum eigenvalue Am ax is degenerat e, the above facto riza­
tion of r(ab ( 2) is not possible and there will be a spat ial correlat ion in the
synapt ic transmission behavior. Such a degeneracy in spat ial order can be
at t ributed to any possible t ransit ion from isot ropic to anisot ropic nematic
phase in the neur al configuration. That is, should there be a persistent or
orient at ional linkage/ interact ion of neurons in the path of synaptic t ransmis­
sion, degeneracy may set in. In the spin system, a similar degeneracy refers
to t he transition from a paramagnet ic to a ferromagnetic phase. In a neu­
ral system, considering the persist ence in the t ime-domain, Little [3] observes
t hat long-range t ime-ordering is related to short-t erm memory considera t ions
as dictated by intracellular biochemical pro cess(es).

7. Discussions

In essence, the possibility has been proposed of a long-range spat ial order
prevailing in neural arr angement , so that a persistence in random synaptic
signal proliferation (partially oriented in a specific direction) could exist . The
following inferences result .

1. Because rand om asymmetry in synapt ic coupling is a physiological re­
ality, it refers implicit ly to the existence of spatial anisot ropy in neu­
ral interactions with a persistent long-range order ; this spatial long­
range order in neur al arrangement mimics the nematic phase orient a­
tions of liquid cryst als. Neural interactions can t herefore be regarded
as analogous to an elect ric dipole interact ion model pertain ing to the
anisot ropic (random) collect ion of molecular free-point dip oles.

2. With a prescrib ed anisotropicity, t he disordered system of neurons can
be specified by an order parameter So, such that 0 < SO< 1, where
SO defines the degree of alignment in t he preferred directi on. For a
perfectly parallel (or ant iparallel) polarizat ion, SO = 1; for isot ropically
random orientations, SO = o.

3. With t he limits of SO being 0 and 1, the correspo nding anisot ropic
order function is defined by So = ~(~ + iq) - !, where q --+ 00 and

q = ! are the factors correspond ing to the lower and upper limits of
So, respectively.
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4. The nonlinear neural response with a squashed output for a given input
is normally specified by a sigmoidal function. For q = ! (or SO = 1),
the hyperbolic tangent function and its variations are conventionally
adapted as the sigmoid, despite the fact that the relevant neural config­
uration refers only to an extensive upper limit , being totally anisotropic
with parallel (or anti parallel) arrangement of neural cells. For q ---+ 00

(or Sa = 0), the Langev in function L(x) = coth(x) - l/x has been
demonstrated elsewhere by the authors [8] as a stochastically justifi­
able sigmoid to represent the neural disorder system (in place of the
hyperbolic tangent funct ion) . However, L(x) represents only the other
extreme of the order parameter, namely SO = 0 (corresponding to a
totally isotropic random configuration of the neural cells).

Hence, the present work suggests that in a true representation of the
neural arrangement , wherein there is a nematic phase attribution of
the neuron with a long-range spatial order, it may be necessary to
consider the factor q being such that ! < q < 00, which prescribes a
partial anisotropy to the neural system. As a consequence, the synaptic
transmission across the partially disordered, interconnected neural cells
corresponds to a persistent, direct iona l proliferation. That is, a spa­
tial pers istence of neural transmission consistent with a nematic phase
mode ling holds true.

5. The relevant sigmoid for the part ial (anisot ropic) disorder situation has
been indicated in the present work as Lq(x), known as the mod ified
Langevin funct ion or the Bernoulli function. The limiting cases of q ---+

00 and q = ! correspond to the lower and upper bounds, respect ively,
of the squashing characteristic of the neural response.

6. By mode ling the neural system as a partially anisotropic spatial order,
the corresponding transfer matrix depicting the neural interact ions au­
tomatically becomes asymmetric; therefore, the question of artificially
impos ing the restriction of bidirectional symmetry (that is, W i j = W j i )

on the weighting factor (of the interconnect ions) does not arise. The
relevant criticisms posed thereof (such as Griffith's [2]) are therefore
avoided .

7. With anisotropicity in the spatial arrangement, the corresponding Hamil­
tonian has an anisotropic contribution in port raying the extensive be­
havior of the neural interact ions.

8. Furt her , by considering a part ial (spatial) anisotropicity, the state t ran­
sit ions at any given neural sites i and j (both i and j falling in t he
preferred direct ion/ orient at ion) would exhibit a correlat ion. It refers
to a degeneracy in the spatial order and t he existence of t he nemat ic
phase.
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This correlation, if it exists , st ipulates a spa t ial persistence in synaptic
t ra nsmission, analogous to a long-range t ime-ordering that may exist
in the neural syste m as observed by Lit tle [3], or in the Ising model of
ferromagnetic phase subjected to an external field .

8. Conclusion

It has been proposed that, in addition to the t ime-domain persistent long­
range order (as conceived by Lit tle [3]), there is a spatial long-range order
coexisti ng in the neur al system, with the neural activity assuming a ne­
matic phase. The physiological asp ect of asymmetry in synaptic coupling
and t he corresponding bidirect ional asymmet ry in the neural inte ractions
is viewed therefore as due to considerations of both temporal and spatial
anisot ropy. The temporal anisot ropy refers to persistent t ime correlat ions
in the firing charac terist ics associated with the cells, and t he spatial aniso­
t ropy provides a preferenti al rou ting of neur al act ivity across the assembly of
neurons. Hence, the complex dynamic act ivit ies in cellular automata corre­
spond to the joint spa t iote mporal long-ra nge persistent behavior of int ercon­
nected neurons . Furthermore, the weight ed sum of the neur al inputs directed
anisot ropically at a cell (both spatially and temporally) constitutes t he ar­
gument of a nonlinear activat ion functi on. This function is shown as the
Bernoulli funct ion consistent with basic thermodynamic considerations .
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