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Abstract. In this paper, the interaction between molecular free-point
dipoles is proposed as an analog of the dynamics of randomly inter-
connected neurons. Typically, neural interaction has been described
as being analogous to the stochastic aspects of the magnetic Ising spin
model. For example, Hopfield’s attractor neural network follows the
zero-field spin-glass analogy and warrants the neural interconnections
to have bilateral symmetric weights across the interacting neurons.
But the actual neural interconnections may not pose such a symme-
try, because the stochastic aspects of excitatory and inhibitory synap-
tic responses are not the same; and, in general, random asymmetry
in synaptic couplings more closely approximates physiological real-
ity. The interconnecting weights that decide the collective response
across a neural arrangement are asymmetric both temporally as well
as spatially. Lack of spatial symmetry effects in the specification of
anisotropic proliferation of neural state-transitions has motivated the
present work; the consistent requirement of symmetric weights in neu-
ral assembly modeling (analogous to the Ising spin-glass model) is
thereby obviated. In the relevant considerations, neural interactions
are depicted as being similar to those of molecular free-point dipoles—
specifically, those of a liquid crystal in the nematic phase having a
long-range orientational order. This partial anisotropy in spatial ori-
entation incorporates an asymmetry in synaptic coupling activity, and
is addressed via Langevin’s theory of dipole orientation. A stochas-
tically justifiable sigmoidal activation function is derived therefrom
to represent the squashing action in the input-output relation of the
complex dynamics pertinent to the cellular automata.
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1. Introduction

The standard analogy of neurons with the aggregates of interacting magnetic
spins contains certain inconsistencies. The analogy arises from the fact that
the organization of neurons is a collective enterprise in which the activity
of interactive cells constitutes a cooperative process similar to that of spin
interactions in a magnetic system. The strengths of synaptic connections
between the cells (representing the extent of interactive dynamics in the cel-
lular automata) are considered to be analogous to the strengths of exchange
interactions in magnetic spin systems. Synaptic activity, manifesting as the
competition between the excitatory and inhibitory processes, is regarded as
being equitable to the competition between the ferromagnetic and antifer-
romagnetic exchange interactions in spin-glass systems. Also, the threshold
condition stipulated for the neural network is viewed as the analog of the con-
dition of metastability against single spin flips in the Ising spin-glass model.

Despite similarities between neurons and magnetic spins, a major in-
consistency persists regarding synaptic coupling versus spin interactions.
Nearest-neighbor spin-spin interactions are symmetric; successive rows of
the spin system can be added in any direction. On the contrary, the time-
development of a neural network has a specific forward direction; in other
words, the neural problem is inherently anisotropic. In addition, not only
is the state of a neuron at any time-instant determine by the state of some
or all of the neurons at the previous instant, but the state of a neuron at a
specific location is dependent on the state of some or all the neurons at the
previous location across the neurocellular arrangement. Thus, asymmetry in
the synaptic coupling is governed by both the structured functional aspect
pertinent to the processing of temporal sequences of synaptic events, and the
physioanatomical considerations related to the cellular activity and struc-
ture. (The problem of synaptic asymmetry has even broader implications in
neural network strategies, as discussed in [1].)

Within the framework of statistical mechanics considerations, the state-
transition probabilities in magnetic spin systems between two states S; and
S, (with probabilities specified with reference to the equilibrium state Sp)
are equal in both directions. That is, microscopic reversibility pertaining to
magnetic spin interactions is inherent to the strength of coupling between
symmetrical exchange interactions. However, in the neural system observed
by Griffith [2], such symmetric weights of neural interaction are questionable.
In an aggregate of M cells with a dichotomous state of activity (as in the
spin system) having 2™ possible states, identified as S = 1,2,...,2", there
is only a superficial analogy with a quantum mechanics situation. (This anal-
ogy refers to a set of M subsystems, each having two possible quantum states;
for example, a set of M atoms each having a spin .) Each of the 2™ states
has a definite successor in time, such that the progress of the state-transition
process corresponds to a sequence i = z(i;) — i3 = 2(i2) . ... This sequence
would eventually terminate in either of two dichotomous states, S; = +Sy or
Sa = —S, with the transitional probabilities p(S12). The natural tendency
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for this microscopic parameter is simply to tend toward py, the equilibrium
value; there is no likelihood of the successor function z showing any bilateral
symmetry. In other words, in the neural cycle of state transitions, the inter-
connecting weights between any two cells ¢ and j are such that W ; # W,.
That is, there is no perceivable microscopic reversibility, implying that the
synaptic connections in neural networks are seldom symmetric. Quite often,
either W;; or Wj; is nonzero. This asymmetry implies the existence of a
disparity between the number of excitatory and inhibitory synapses on the
one hand, and the corresponding synaptic activities on the other.

The inconsistency between neurons with inherent asymmetric synaptic
couplings and symmetric spin-glass interactions led Griffith [2] to declare
that the analogy between them had “no practical value.” Nevertheless, sev-
eral compromises have been proposed [1, 2-4] that show the usefulness of the
analogy. The assumption of symmetry, and the specific form of the synaptic
coupling in a neural assembly, define what is generally known as the Hop-
field model. This model demonstrates the basic concepts and functioning of
a neural network, and serves as a starting point for a variety of models in
which many underlying assumptions are relaxed to meet some of the require-
ments of real systems. For example, the question of W;; being unequal to
Wj; in a neural system was addressed in a proposal by Little [3], who de-
fined a time-domain long-range order such that the corresponding anisotropy
introduces bias terms in the Hamiltonian relation, making it asymmetric to
match the neural Hamiltonian. That is, Little’s long-range order, with refer-
ence to neurons, corresponds to a time-domain—based long-time correlation
of the states; these time-persistent states of a neural network are equated
to the long-range (spatial) order in an Ising spin system. Little, therefore,
attempted to incorporate the asymmetric considerations in the neural inter-
actions via correlated time developments.

Little’s model, however, lacks the attributions of spatial correlation effects
(the spatial anisotropicity, depicting the state transition at one location being
correlated to some or all of such transitions in the previous location). Because
both temporal and spatial anisotropicity coexist in the neural state-transition
process, it is imperative to elucidate and incorporate a spatial persistency in
the proliferation dynamics of state transitions. It is the motive of the present
study to develop a stochastic model of the spatially anisotropic neurocellular
(interconnected) arrangement, for adoption in conjunction with the temporal
statistics of Little.

Problem definition

The problem posed in this paper refers to the modeling of the spatial an-
isotropy in interconnected neural arrangements. The relevant method of at-
tributing long-range order to neurons [3] is followed, except that it is referred
to spatial (orientational) anisotropy. To facilitate this approach, free-point
molecular dipole interactions are considered as an analogy, in place of mag-
netic spin interactions. Free-point molecular dipole interactions with partial
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anisotropy in spatial arrangement describe the nematic phase in a liquid
crystal. Hence, the present analysis equates neural statistics to those of a
nematic phase system, in concurrence with the assertion that “the living cell
is actually a liquid crystal” [6]. On the basis of the proposed spatial aniso-
tropy, the squashing action upon the input-output relation pertaining to the
dynamics of cellular automata is described appropriately by a stochastically
justifiable sigmoidal function.

It should be noted that Little’s approach in facilitating asymmetry in the
neural interconnection (via long-range time-correlation of state-transitional
events) follows basically (pseudo) thermodynamic considerations; the desired
temporal anisotropicity is achieved by introducing a bias-term in the Hamil-
tonian relation depicting the temporal dynamics of the state-transitions. The
present study is also based on the thermodynamics of the associated statis-
tics. This approach stochastically justifies the input-output response and in-
troduces a spatial (orientational) anisotropicity in the neural state-transition
process.

2. Free-point molecular dipole interactions

Suppose a set of polarizable molecules are anisotropic, with a spatial long-
range orientational order corresponding to the nematic liquid crystal in the
mesomorphic phase. This differs from an isotropic molecular arrangement,
as in liquid, in that the molecules are spontaneously oriented with their long
axes approximately parallel. The preferred direction or orientational order
may vary from point to point in the medium, but in the long range, a specific
orientational parallelism is retained.

In the nematic phase, the statistical aspects of dipole orientation in the
presence of an externally applied field can be studied via Langevin’s theory
with the following hypotheses.

1. The molecules are point-dipoles with a prescribed extent of anisotropy.

2. The ensemble average taken at an instant is the same as the time
average taken on any element (ergodicity property).

3. The characteristic quantum numbers of the problem are sufficiently
high that the system obeys the classical statistics of Maxwell-Boltzmann
(the limit of quantum statistics for systems with high quantum num-
bers). The present characterization of paraelectricity, therefore, differs
from spin paramagnetism, in which the quantum levels are restricted
to two values only.

4. The dipole molecules, in general, when subjected to an external electric
field E, experience a moment pp = apFE, where ap by definition
refers to the polarizability of the molecule. The dipole orientation
contributing to the polarization of the material is quantified as P =
N{ug), where N is the dipole concentration.
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Figure 1: Free-point dipole and its moments.

5. In an anisotropic system such as the liquid crystal, there is a perma-
nent dipole moment ppg, the direction of which is assumed along the
long-axis of a nonspherical dipole configuration. Consequently, two or-
thogonal polarizability components exist, namely ag, along the long
axis and ag, perpendicular to this long axis.

3. The order parameter

The dipole moments in an anisotropic molecule are depicted in Figure 1. Pro-
jecting along the applied electric field E, the net induced electric polarization
moment is

g = pppcosf + (ag, cos’ 0 + ag, sin’ ) E
= pppcosd + (Aagcos®d + ag,)E (3.1)

where Aag is a measure of anisotropicity.

The corresponding energy of the polarized molecule in the presence of an
applied field E is constituted by (i) the potential energy Wpg due to the
permanent dipole, given by

Wpg = —ppp - E = —pupgF cosf (3.2)
and (ii) the potential energy due to the induced dipole given by
Wie = —3(ae, cos’ 0 + ag, sin® §) E* (3.3)

Hence, the total energy is equal to Wr = Wpg + W;g. Furthermore, the
statistical average of ug can be specified by

< ) _ fp,Eexp[—WpE/kBT] dQ
BB = T exp[~ W, /ksT] dQ)

(3.4)
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where df? is the elemental solid angle around the direction of E. That is,
dw = 27 sin(6) df. By performing the integration of (3.4) using (3.1),

(ug) = ppe(cosb) + (Aag(cos®8) + ag,)E (3.5)

where the quantity (cos? ) varies from 1 (for randomly oriented molecules)
to 1 (for the case where all the molecules are parallel, or antiparallel, to the
field E). On the basis of these limits, the following parameter is defined.

5% = 3(cos? ) — 3
=0  (for (cos?6) = 1)
=1 (for {cos? ) = 1) (3.6)

Definition. The parameter S°, which is bounded between 0 and 1 under the
conditions of equation (3.6), represents the “order parameter” of the system

[6].

Appropriate to the nematic phase, S specifies the long-range orienta-
tional parameter pertaining to a liquid crystal of rod-like molecules, as fol-
lows. Assuming that the distribution function of the molecules is cylindrically
symmetric about the axis of preferred orientation, S° defines the degree of
alignment: for perfectly parallel (or antiparallel) alignment S° = 1, while for
random orientations S° = 0. In the nematic phase, S° has an intermediate
value that is strongly temperature-dependent.

S% = 0 refers to an isotropic statistical arrangement of random orien-
tations, such that for each dipole pointing in one direction, there is (sta-
tistically) a corresponding molecule pointing in the opposite direction (see
Figure 2). In the presence of an external electric field E, the dipoles expe-
rience a torque and tend to polarize along E, so that the system becomes
slightly anisotropic; eventually, under a strong field (E), the system becomes
totally anisotropic with S° = 1.

4. Collective stochastic response of neurons under activation

By means of the analogy to a random, statistically isotropic dipole system,
the graded response of neurons under activation was modeled previously by
the authors [8], applying the concepts of Langevin’s theory of dipole polar-
ization. The continuous graded response of neuron activity (corresponding
to the stochastic interaction between incoming excitations that produce true,
collective, nonlinear effects) was elucidated in terms of a sigmoidal function,
specified by the Langevin function L(Ao;) where A = (3/kgT, with 3 be-
ing the scaling factor and o; depicting the neural state-vector. Explicitly,
L(z) = coth(z) — 1/z. Further, kgT depicts the Boltzmann energy corre-
sponding to the (pseudo) temperature, 7'

In the present considerations, neurons are specifically depicted as similar
to the nematic phase of liquid crystals, and are assumed to possess an inher-
ent, long-range spatial order. In other words, it is suggested that 0 < S° < 1
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Figure 2: Types of disorders in spatial free-point molecular arrange-
ments: (a) Completely ordered (total anisotropy); Parallel and an-
tiparallel arrangements. (b) Partial long-range order (partial aniso-
tropy): Nematic phase arrangement. (c) Total absence of long-range
order (total isotropy): Random arrangement.

49
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is a more valid order function for the neural assembly than S° = 0. In terms
of §° = 3(cos?6) — %, the term (cos®@) should correspond to a value be-
tween % and 1 (justifying the spatial anisotropy), rather than the lower limit,
namely 3.

To determine an appropriate squashing function for this intermediate
range of (cos? ) (between 1 and 1, or, for 0 < S° < 1), the quantity (cos®6)

3
is replaced by (% + 3—111) in defining the order parameter S°. Hence,

31 1 1
O _ oy —p—=
2=3(3+3) -3 (1)

where ¢ — oo and ¢ = % set the corresponding limits of S = 0 and S° =1,
respectively.

Resorting again to statistical mechanics, ¢ = % refers to dichotomous
states if the number of states are specified by (2¢ + 1). For the dipoles
or neural alignments, it corresponds to the two totally discrete anisotropic
orientations (parallel or antiparallel). In a statistically isotropic, randomly
oriented system, however, the number of possible discrete alignments would
approach infinity, as dictated by ¢ — oo.

For the intermediate (2¢ + 1) number of discrete orientations, the extent
of dipole alignment to an external field (or, correspondingly, the output re-
sponse of a neuron to excitation) would be decided by the probability of a
discrete orientation being realized. It can be specified by [9]

+q m m
m=—q g exp(—x)
Lq (z) = +q z >

m=—1 exp(%x)

= <1 + 2iq> coth [(1 4 %}) x] - 2—1qcoth (%qm) (4.2)

Equation 4.2 is a modified Langevin function and is also known as the
Bernoulli function. The traditional Langevin function L(z) is the limit of
Ly(z) for ¢ — co. The other limiting case, namely ¢ = 3 (which exists for
dichotomous states), corresponds to Ly/s(z) = tanh(z).

Thus, the sigmoidal function F'(z) that decides the neural output response
to an excitation has two bounds. With F(z) = tanh(z), it corresponds to
the assumption that there exists a total orientational long-range order in
the neural arrangement. As previously discussed by the authors [8], F(z) =
tanh(z) has been conventionally regarded as the squashing function for neural
nets purely on empirical considerations: the input-output nonlinear relation
being S-shaped (which remains bounded between two logistic limits, and
follows a continuous monotonic functional form between those limits). In
terms of the input variable o; and the gain/scaling parameter A of an ith
neuron, the sigmoidal function specified as the hyberbolic tangent function
is tanh(Ao;). The logistic operation that compresses the range of the input so
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that the output remains bounded between the logical limits is also specified
alternatively by an exponential form F(z) = 1/[1 4 exp(—z)], with z = Ac;.

The adoption of the hyperbolic tangent or the exponential form in neu-
ral network analyses has been purely empirical, with no justifiable reasoning
attributed to their choice (except for their being sigmoidal). Hence, the
authors developed statistical-mechanics—based considerations (as applied to
the state vector of a neural unit) to elucidate a justifiable sigmoidal function
[8]. As a result, by analogy with particle dynamics (wherein the collective
response is attributed to nonlinear dependence of forces on positions of parti-
cles), the corresponding statistics due to Maxwell-Boltzmann were extended
to neural response to describe the stochastic aspects of the neural state vec-
tor o;. Hence, as elaborated by the authors in [8], the Langevin function
L(\o;) was derived as the sigmoid representing the neural input-output re-
sponse with A = §/kgT, where § is a scale factor and kgT represents the
pseudo-Boltzmann energy, as before.

Pursuant to the discussion of Equation (4.2), L(z) = Ls—(z) specifies
the system in which the randomness is totally isotropic; that is, it is implicit
that the anisotropicity is zero. This refers to an extensive situation, assuming
that the neural configuration poses no spatial anisotropicity or long-range
order whatsoever. Likewise, the intuitive modeling of F(z) = tanh(z) (as
commonly adapted) depicts a totally anisotropic system wherein the long-
range order S° attains 1. In other words, tanh(z) = L, ,1/2(z), with the
dichotomous discrete orientations (parallel or antiparallel) being specified by
(2¢+1) — 2.

In the nematic phase, neither of the functions just discussed (namely,
tanh(z) and L(z)) is commensurable, since a partial long-range order (de-
picting a partial anisotropicity) is imminent in such systems. Thus, with
1

5 < g < oo, the true sigmoid of a neural arrangement (with an inherent

nematic, spatial long-range order) should be L,(z).

Remark. It can be concluded that the conventional sigmoid (namely, the
hyperbolic tangent or its variations) and the Langevin function [8] consti-
tute the upper and lower bounds, respectively, of the state-vector squashing
characteristics of a neural unit. The relevant considerations of the foregoing
discussions are summarized in Table 1.

5. Hamiltonian of the neural arrangement with spatial

long-range order

In general, the anisotropicity of a disorder leads to a Hamiltonian that can
be specified in two ways as follows.
(a) Suppose the exchange Hamiltonian is given by

H ==Y Wy, S2ST + Wy, SYSY + W,,S757) (5.1)

where Wy, Wy, and W,, are diagonal elements of the exchange matrix W
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Lg—o(z) = sgn(z)

Table 1: Types of spatial disorder in neural configuration, and sigmoidal functions of the nonlinear input-output squashing characteristics
of a neural assembly.
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(with the off-diagonal elements being zero). If Wy, = W, = 0 and W,, # 0,
it is a symmetric anisotropy (with dichotomous states as in the Ising model).
Note that the anisotropy arises if the strength of at least one of the exchange
constants is different from the other two. If Wy, = W, # 0 and W,, =0, it
corresponds to an isotropic xy model; if Wy, = W, = W,,, it is known as
the isotropic Heisenberg model.

(b) Given that the system has an anisotropicity due to partial long-range
order, as in the nematic phase representation of the neural arrangement, the
corresponding Hamiltonian is

H=-WY S5 +H, (5.2)

where H, refers to the anisotropic contribution, which can be specified by an
inherent constant h? related to the order parameter S°, so that

H=-3 3 WySiS;— Y hiS; (5.3)

While the interactions W;; are local, H refers to an extensive quantity
corresponding to the long-range orientational (spatial) interconnections in
the neural arrangement.

6. Spatial persistence of synaptic transmission in the nematic
phase representation of neural arrangement

The nematic phase modeling of the neural arrangement specifies a long-range
spatial anisotropy, which may pose a persistence (or, preferably, a directional
routing) of the synaptic transmission. Pertinent analysis would be similar
to the time-domain persistence in neural firing patterns demonstrated by
Little [3].

Considering (2g+ 1) possible spatial orientations (or states) pertaining to
M interacting neurons as represented by ¥(«), the probability of obtaining
the state ¥(¢'), having started with a preceding ¥(a)m spatial intervals (z),
can be written in terms of a transfer matrix [3] as

V(o )T5; % () (6.1)

where ¥(a) can be expressed in terms of (2¢ + 1)™ orthonormal eigenvec-
tors 9, (with eigenvalues A.) of the operator T'y;. Each ¥, has (2¢ + 1)M
components, one for each configuration a:

(2¢+1)M

V(o) = ; 9,(c) (6.2)

Hence,

(U(e) ITar] ¥(@)) = 3 A () () (6.3)



54 D. De Groff, P. S. Neelakanta, R. Sudhakar, and F. Medina

Analogous to Little’s time-domain persistent order analysis [3], it is of
interest to find a particular state «; after m spatial steps, having commenced
at an arbitrary spatial location in the neural topology. The probability of
obtaining the state oo after [ spatial steps, given oy after m spatial steps
from the commencement location, can be written as [3]:

T, 2) =T(o1) I'(av) (6.4)

which explicitly specifies no spatial correlation between the states a; and as.
However, if the maximum eigenvalue Ay.x is degenerate, the above factoriza-
tion of I'(a1, arp) is not possible and there will be a spatial correlation in the
synaptic transmission behavior. Such a degeneracy in spatial order can be
attributed to any possible transition from isotropic to anisotropic nematic
phase in the neural configuration. That is, should there be a persistent or
orientational linkage/interaction of neurons in the path of synaptic transmis-
sion, degeneracy may set in. In the spin system, a similar degeneracy refers
to the transition from a paramagnetic to a ferromagnetic phase. In a neu-
ral system, considering the persistence in the time-domain, Little [3] observes
that long-range time-ordering is related to short-term memory considerations
as dictated by intracellular biochemical process(es).

7. Discussions

In essence, the possibility has been proposed of a long-range spatial order
prevailing in neural arrangement, so that a persistence in random synaptic
signal proliferation (partially oriented in a specific direction) could exist. The
following inferences result.

1. Because random asymmetry in synaptic coupling is a physiological re-
ality, it refers implicitly to the existence of spatial anisotropy in neu-
ral interactions with a persistent long-range order; this spatial long-
range order in neural arrangement mimics the nematic phase orienta-
tions of liquid crystals. Neural interactions can therefore be regarded
as analogous to an electric dipole interaction model pertaining to the
anisotropic (random) collection of molecular free-point dipoles.

2. With a prescribed anisotropicity, the disordered system of neurons can
be specified by an order parameter S°, such that 0 < S° < 1, where
S defines the degree of alignment in the preferred direction. For a
perfectly parallel (or antiparallel) polarization, S° = 1; for isotropically
random orientations, S° = 0.

3. With the limits of S° being 0 and 1, the corresponding anisotropic
order function is defined by S° = 2(1 + 3—1(1) — 3, where ¢ — oo and
q= % are the factors corresponding to the lower and upper limits of
S0, respectively.



A Liquid-Crystal Model for Neural Networks 55

4. The nonlinear neural response with a squashed output for a given input
is normally specified by a sigmoidal function. For ¢ = % (or S° = 1),
the hyperbolic tangent function and its variations are conventionally
adapted as the sigmoid, despite the fact that the relevant neural config-
uration refers only to an extensive upper limit, being totally anisotropic
with parallel (or antiparallel) arrangement of neural cells. For ¢ — oo
(or S° = 0), the Langevin function L(z) = coth(z) — 1/z has been
demonstrated elsewhere by the authors [8] as a stochastically justifi-
able sigmoid to represent the neural disorder system (in place of the
hyperbolic tangent function). However, L(x) represents only the other
extreme of the order parameter, namely S° = 0 (corresponding to a
totally isotropic random configuration of the neural cells).

Hence, the present work suggests that in a true representation of the
neural arrangement, wherein there is a nematic phase attribution of
the neuron with a long-range spatial order, it may be necessary to
consider the factor ¢ being such that % < g < 0o, which prescribes a
partial anisotropy to the neural system. As a consequence, the synaptic
transmission across the partially disordered, interconnected neural cells
corresponds to a persistent, directional proliferation. That is, a spa-
tial persistence of neural transmission consistent with a nematic phase
modeling holds true.

5. The relevant sigmoid for the partial (anisotropic) disorder situation has
been indicated in the present work as Lq(z), known as the modified
Langevin function or the Bernoulli function. The limiting cases of ¢ —
oo and g = % correspond to the lower and upper bounds, respectively,
of the squashing characteristic of the neural response.

6. By modeling the neural system as a partially anisotropic spatial order,
the corresponding transfer matrix depicting the neural interactions au-
tomatically becomes asymmetric; therefore, the question of artificially
imposing the restriction of bidirectional symmetry (that is, W;; = W)
on the weighting factor (of the interconnections) does not arise. The
relevant criticisms posed thereof (such as Griffith’s [2]) are therefore
avoided.

7. With anisotropicity in the spatial arrangement, the corresponding Hamil-
tonian has an anisotropic contribution in portraying the extensive be-
havior of the neural interactions.

8. Further, by considering a partial (spatial) anisotropicity, the state tran-
sitions at any given neural sites ¢ and j (both ¢ and j falling in the
preferred direction/orientation) would exhibit a correlation. It refers
to a degeneracy in the spatial order and the existence of the nematic
phase.
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This correlation, if it exists, stipulates a spatial persistence in synaptic
transmission, analogous to a long-range time-ordering that may exist
in the neural system as observed by Little [3], or in the Ising model of
ferromagnetic phase subjected to an external field.

8. Conclusion

It has been proposed that, in addition to the time-domain persistent long-
range order (as conceived by Little [3]), there is a spatial long-range order
coexisting in the neural system, with the neural activity assuming a ne-
matic phase. The physiological aspect of asymmetry in synaptic coupling
and the corresponding bidirectional asymmetry in the neural interactions
is viewed therefore as due to considerations of both temporal and spatial
anisotropy. The temporal anisotropy refers to persistent time correlations
in the firing characteristics associated with the cells, and the spatial aniso-
tropy provides a preferential routing of neural activity across the assembly of
neurons. Hence, the complex dynamic activities in cellular automata corre-
spond to the joint spatiotemporal long-range persistent behavior of intercon-
nected neurons. Furthermore, the weighted sum of the neural inputs directed
anisotropically at a cell (both spatially and temporally) constitutes the ar-
gument of a nonlinear activation function. This function is shown as the
Bernoulli function consistent with basic thermodynamic considerations.
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