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Abstract. This paper introduces terminal dynamics as a set of ordi­
nary differential equat ions which does not possess a unique solut ion,
due to violation of the Lipschitz condition at equilibrium points. Each
equilibrium point represents a terminal attractor that is approached
in finite time or a terminal repeller for which th e solut ion splits into
two equally probable branches. This property introduces elements of
stochasticit y th at are associated with th e random walk paradigm. A
relationship is established between th e original dynamical model and
the corresponding Fokker-Planck equation for probability density. A
new type of attractor that represents a stochast ic process is described .
The relevance of the terminal model to irreversibility in Newtonian
dynamics and to chaos theory is discussed.

1. Introduction

The governing equat ions of classical dynami cs may be derived from La­
grangian fun ctions, from vari ational pr inciples, or dir ectly from Newton's
laws of motion , and they may be pr esented in various equivalent forms. How­
ever , there is one mathematical restriction on all such forms : the differential
equat ions describing a dynami cal system

i = 1,2 , . . . ,n (1)

(2)

must satisfy the Lipschitz condit ion, which expresses that all the derivatives

I ;~:I < 00

must be bounded. This mathematical restriction guarantees the uniqueness
of the solut ion to (1) , subject to fixed initi al condit ions, and that uniqueness
has proved to be very important for the application of dynamical systems
to the modeling of energy transformations in mechanics, physics, and chem­
istry. However, attempts to exploit classical dynami cs for the applicat ion
of information processing to the modeling of biological and social behaviors
have exposed certain limitations of the approach, du e to det erminism and
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reversibility of solut ions. Mathematical and physical aspects of these limita­
tions, as well as the consequences of their removal, are discussed in [7- 17].
In this pap er we present a general st ructure for dynamical systems that does
not possess a uniqu e solution, due to violati on of condit ion (2) at equilibrium
points.

2. Terminal limit sets .

2.1 Terminal attractors and repellers

Terminal dynamics can be introduced as a set of nonlinear ordin ary differ­
enti al equat ions of the form

i = 1, 2, . .. , n (3)

in which

1;;:1< 00

and k < 1. Therefore,

1

0Xil- (k-l)( )IOVil
OXj - kv Xl ,··· , X n OXi ----+ 00

(4)

(5)

and the Lipschitz condit ion (2) is violated at all the equilibrium points

As in the classical case, t he equilibrium points are at t ractors if the real parts
of t he eigenvalues of the matrix

m = 11;;:11
are negative; that is, if

(6)

(7)

and they are repellers if some of the eigenvalues have posit ive real parts .
In order to emphasize the difference between classical and terminal equi­

librium points, we will begin with the simplest terminal dynamical syste m,
as follows.

at X ----+ 0

This equation has an equilibrium point at X

condition (2) is violated:

dx 1 - 2/3- = --X ----+ - 00
dx 3

(8)

0, at which the Lipschitz

(9)



Introduction to Terminal Dyn amics 61

u

u • 0 - REGULA R ATIRACTOR

Figure 1: Convergence to regular att ractor.

Because condit ion (7) is sat isfied, that is,

Re A -+ -00 < 0 (10)

(11)

this point is an attractor of "infinite" stability.
The relaxation t ime for a solut ion with the init ial condit ion x = Xo < 0

to this attractor is finite:

l
x~o dx 3 2/ 3

to = - - - = - Xo < 00
XO x 1/ 3 2

Consequently, this attrac tor becomes terminal. It represents a singular solu­
tion which is intersected by all the attracted transients (see Figures 1 and 2).

For the equa t ion

(12)

at x -+ 0

the equilibrium point x = 0 becomes a terminal repeller , as follows.

d± 1 -(2/ 3)- -+ - x -+ 00
dx 3

(13)

that is,

ReA -+ oo > O

(14)if x < 00

If th e initial condit ion is infinitely close to this repeller, the transient solut ion
will escape the repeller during a finite tim e period:

Jxo dx 3 2/ 3
to = x1/ 3 = 2"xo < 00

,,~o

whereas , for a regular repeller , the t ime would be infinite.
As an alternative to (8) and (12), one can consider a more general case,

k > O (15)
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Figure 2: Convergence to ter mina l at t ractor.



Introduction to Terminal Dynamics 63

(16)

for which the relaxation t ime for the attractor (or the escaping t ime for t he
repeller) is

{

-> 00 if k :::: 1

to = x~-k
if k < 1

l-k
As shown in the theory of differential equat ions, singu lar solut ions in equa­
tions

F(x , y, y') = 0

are found by eliminating y' from the system, as follows.

(17)

F(x ,y ,y') = 0
of
By' = 0 (18)

(19)

Hence, st at ic termina l at t ractors (if they exist in (17)) must be amo ng the
solut ions to syste m (18).

2.2 Physical Int erpretation of Terminal Attractors

As will be point ed out in the Conclusion to thi s pap er , t he mathemati cal
formalism of terminal dynamics follows from a more general st ructure of the
dissipation funct ion which allows the existence of smooth transition s from
st at ic to kinetic friction. It shou ld be emphas ized that th e behavior of the
solut ions around the equilibrium points in terminal dynamics is more "re­
alistic" than in classical dyn amics , because the act ual tim e of convergence
to equilibrium points is finite. However , in order to make it finite, the Lip­
schitz condition must be violated , because all the trajectories must int ersect
at the equilibrium point (see Figure 2). In classical dynamics , the Lipschitz
condit ion is not violated, and the infinit e t ime of convergence is accounted
for by "small dissipat ive forces" that are always present . In fact , terminal
dynamics incorporates these forces via the parameter k (see (3)), which can
be found through measurement of t he convergence t ime (see (16)).

It can be shown that the mathematical concept of the ter minal attractor
has other physical interpret at ions. One such interpret ation is the energy­
cumulation effect, in which case one deals with the finite t ime of convergence
of a propagating wave rather t han a motion of an individual part icle. As an
example, consider a propagation of an isolat ed pulse in an elastic continuum
along the x axis. In general, the speed of propagation x = ), depends on '
x. Suppose there exists a point x* such that ),(x*) = O. Then the t ime t*
during which the leading edge of the propagating pulse will approach x* is
expressed via the following integral.

l
x --+x* dx

t* = Xo ),(x )

If ), can be presented in the form

), = (x* - X)k O<k < 1 (20)
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t hen this integral converges and, therefore, the time t* is finite. It is easily
verifiable that , in t his case, t he differenti al equation

:i:= (X* -X)k (21)

that describ es the dynamics of the pulse propagation has a terminal attractor
at x = x*. But if the leading and the tra iling edges of the prop agating pulse
approach the same point x* during finite tim e, t hen t he widt h of th e pulse
eventua lly will shrink to zero, and all the energy transported by the pulse will
be dist ribu ted over a drasti cally dimini shing length . Hence, the existence of
a terminal attractor in such models leads to an unbounded concentration of
energy in the neighborhood of the attractor.

Based upon this model, [2, 3] explain and describe the formation of a
supersonic snap at a free end of a filament suspended in a gravity field , and
the accumulation of shear strain energy at the soil surface in respon se to an
underground explosion. In these models, the free end of the filament and the
free surface of the soil serve as terminal attractors . Some terminal effects in
fluid dynamics are introduced and discussed in [15].

2.3 P eriodic ter m in al limit sets

Thus far , we have concent rated on static terminal attractors. We now demon­
st rate the existence of periodic terminal attractors. For that purpose, let us
consider a dynamical system separable in polar coordinates r, B, as follows.

f = r(R - r)1/3

B=w
(r :::; R) (22)

(23)

In th is case, di / dr --+ - 00 at r --+ R (compare with (9)) and, th erefore, t he
solut ions r = R,B= wt+ B(O) form a terminal limit cycle. Its basin is defined
by the condition r > O. For the solut ion with the initial condit ion ro < R
th e relaxation tim e is finite, as follows.

i
R dr iR dr 2to = < = -(R - ro)2/3 < 00

TO r(R - r)1/3 TO ro(R - r)1/3 3ro
(24)

It is easily demonst rated that a per iodic terminal repeller can be obtained
by chang ing the sign in th e right-hand side of (22).

The terminal analog of a chaotic attractor is introduced and discussed in
[13, 15].

2.4 U n predictab ility in t erminal dynamics

The concept of unpredict ability in classical dyn amics was introduced in con­
nection with the discovery of chaot ic motions in nonlinear systems. Such
motions are caused by the Lyapunov instability [4], which is characterized
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by a violat ion of the conti nuous dependence of solutions on the initial condi­
tions during an unboun ded t ime interval (t ---> (0) . That is why the unp re­
dict abili ty in such systems develops gradually. Indeed , if two initially close
tra jectories diverge exponent ially:

E = EOexp At O< A < oo (25)

(26)t ---> 00

then, for an infinitesimal initial dist ance EO ---> 0, th e cur rent distance E

becomes finite only at t ---> 00 . For this reason, the Lyapunov exponents
(the mean expo nent ial rate of divergence) are defined in an unb ounded t ime
interval , as follows.

a = lim (~) ln ~
t EO

In distri buted dynamical systems, describ ed by partial differenti al equa­
tions , there exists a st ronger inst ability (discovered by Hadamard). In the
course of this instabili ty, a cont inuous dependence of a solut ion on the ini­
tial conditions is violated during an arbit rarily small t ime period. Such a
"blowup" instabili ty is caused by a failure of hyperboli city and a transi­
tion to ellipt icity [2]. In t his sect ion we show that a similar type of blowup
inst abili ty t hat leads to "discrete pulses" of unpredictability can occur in
dynamical systems which contain termina l repellers.

Let us analyze the t ra nsient escape from the te rmina l repeller in the
equati on

Xo = x(O) (27)

assuming that Ixol ---> O. The solut ion to (27) reduces to the following.

x = ±t3
/

2 (28)

Hence, two different solut ions are possible for "almost the same" initial con­
ditions. The fund amental property of this result is that the divergence of the
solutions to (28) is charac terized by an unbounded par ameter , a.

(29)Ixol ---> 0(
1 2t 3

/
2

)

a = }l.rra t In2 1xol = 00

where to is an arbitrar ily small (but finite) positive quantity. In cont ras t to
(26), the rate of divergence in (29) can be defined in an arbit rarily small
time int erval , because the initi al infinit esimal dist ance between th e solu­
tions becomes finite during this inte rval. Thus, a terminal repeller represents
a drastically diminishing but infinitely powerful "pulse of unpredict abili ty"
which is "pumped" into th e dynamical system.

To illustrat e the unpredictability in such a non-Lipschitzian dynamics,
we turn to th e following equation.

j; - yx 1
/ 3 = 0 (30)
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where

y = cos wt

Assumi ng that x -. 0 at t -. 0, we obtain the regular solut ions

(
2 )3/2

X = ± 3w sinw t

and a singular solution (an equilibrium point)

x =O

During the first time period

7r
0 <t <2w

Michail Zak

(31)

(32)

(33)

(34)

equilibrium point (33) is a terminal repeller (because y > 0). Therefore,
within this period , solut ions (32) have the same property as solutions (28):
their divergence is charact erized by an unbounded rate a.

During the next tim e period

7r 37r
- < t < -
2w 2w

equilibrium point (33) becomes a terminal attractor (because y < 0), and
the system which approaches this attractor at t = 7rWremains motionless
until t > 37r /2w. After t hat point , the terminal at t ractor converts into the
te rminal repeller, and t he system escapes again.

It is important to noti ce that each t ime the system escapes the terminal
repeller, the solution splits into two symmetrical branches; therefore, t he
to tal t ra jectory can be combined from 2n pieces, where n is the numb er of
cycles; that is, it is the integer part of the quantity (t/27rw ). The nature
of this unpredict ability is significant ly different from the unpredictability in
chaotic syste ms.

Motion (32) resembles chaotic oscillations known from classical dynamics:
it combines random characterist ics with the attraction to a cente r. However ,
in cont rast to classical chaos, motion (32) is driven by a failure of uniqueness
of the solution at the equilibrium point, and it has a well organized prob­
abilist ic st ructure . Because the t ime of approaching the equilibrium point
x = 0 by solution (32) is finite, this type of chaos can be called terminal
[13- 15].

Equations (30) and (31) can be present ed in aut onomous form, as follows.

x = yx1
/
3 (30a)

if = - wz + y( l - y2 - z2) (31a)
i = wy+ z (1 -y2 - z2) (31b)

If one takes into account that the last two equations have periodic at t ractors,

y = cos wt z = - sin wt
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Although the struct ure of (30a) , (31a) , and (31b) in genera l resembles the
st ructure of the Lorentz or Rossler attracto rs, the violation of the Lipschitz
condit ion is important for the appearance of nond eterministic solut ions. In­
deed, if (30) is replaced by the following,

x = yx

then the solutio n to th e syste m (30a) , (31a), and (31b)

x = xoe(-l/w )sinwt Xo = x( O) at t ---> 00

becomes periodic.

(30b)

2.5 Irreversibility of terminal dynamics

Classical dynamics describ es processes in which time t plays the role of a pa­
rameter: it remains fully reversible, in the sense t hat the time-backward mo­
tion can be obtained from the governing equation by t ime inversion , t ---> -d ,
(This means th at classical dynamics cannot explain the emergence of new
dynamical patterns in nature.) However , there exist s a class of phenomena
for which past and future play different roles, and time is not invert ible: by
definition (the second low of thermodyna mics), irreversibility is introduced
into thermodynamics by postulating the increase of ent ropy. As st ressed by
Prigogine (1980), irreversible processes play a fund amental const ructive role
in the physical world; they are the basis of important coherent processes,
which appear with parti cular clarity on t he biological level.

In t his connect ion, let us compare t he dynamical behavior of solut ions in
small neighborhoods of classical and ter minal repellers, respectively:

X=x

and

The solut ion to (35),

which describes an escape from a classical repeller, is reversible because

-tu.: = xoe

(35)

(36)

(37)

(38)

is a possible motion describing a convergence to a classical attrac tor x = O.
The solution to (36),

(39)

is irreversible because the tim e-backward motion

(40)
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does not exist (x has imaginary value).
This mathematical formalism expresses deeper roots of the irreversibility

of terminal dynamics, which can be understood if one turns to t he solution
of (30) and (31). This solut ion consists of regular and singular parts. Wh en
th e regular solut ion (32) approaches t he equilibrium point x = 0 (33) (in
finite t ime) , it switches to the singular solut ion x =0, and t his switch is
irreversible.

3. P robabilistic st r ucture of term in a l dynamics

As shown in [16], the terminal version of Newtonian dynamics is different
from its classical version only within drasti cally diminishing neighborhoods of
equilibr ium states and, therefore, it contains classical mechanics as a special
case. This means that terminal dynamics is not always unp redict able and
irreversible: in some domains it is identical with classical dynamics. However ,
in this sect ion our attent ion will be concentrated on effects specific to terminal
dynamics and , in particular , on its probabilistic st ruct ure .

The fundament al difference between the prob abilist ic properties of termi­
nal dynamics and those of stochast ic or chaotic differential equat ions should
be emphasized. The randomness of stochast ic differenti al equat ions is caused
by rand om init ial condit ions, random force, or random coefficients; in chaot ic
equations, small (but finite!) random changes of init ial conditions are ampli­
fied by the mechanism of inst ability. However, in bot h cases the different ial
operator itself remains deterministic. In cont rast, rand omness in terminal
dynamics result s from the violation of the uniqueness of t he solution at equi­
librium points; therefore, the differenti al opera tor itself generates ran dom
solut ions.

(41)I' = Const , w = Const , a = Const

3.1 A t erminal model of the random walk process

Random walk is a stochastic process in which changes occur only at fixed
t imes. In this sect ion we int roduce a terminal dynamics t hat describes t his
process.

We begin with the following dynamical system.

x = I' sin1/ 3 .;wx sin wt
a

At the equilibr ium poin ts

7rma
Xm = .;w m = .. . ,-2, - 1, 0, 1,2 , ...

it can be verified that the Lipschitz condit ion is violat ed:

(42)

ax/ax -+ 00 at x -+ X m (43)

If x = 0 at t = 0 then, dur ing th e first period

0 < t < ~
w

(44)
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the point Xo = °is a termin al repeller because sinwt > 0; the solut ion at
this point splits into two branches (positive and negati ve) whose divergence
is characterized by the unbounded parameter (J (see (29)). Consequent ly, x
can move with equal probability in the positive or the negat ive direction. For
the sake of concreteness, we assume that it moves in the positive direction.
Then the solut ion approaches th e second equilibr ium point X l = na]vw at

[
B (11) ]1 3'3 CY wt" = - arccos 1 _ vw

W 21/ 3 ry
(45)

in which B is the Beta function.
It can be verified that the point Xl will be a terminal attrac tor at t = t i

if

t l :S 7r/w

that is, if

1 > B ( ~ , ~ ) v0
CY - 24/ 3

(46)

Therefore, X will remain at point Xl until it becomes a terminal repeller;
that is, until t > t l . At that point , the solut ion spli ts again: one of the
two possible branches approaches th e next equilibrium point X 2 = 27rCY / VW,
while the other returns to the point Xo = 0, and so forth. The periods of
transition from one equilibrium point to the next are the same length, and
are given by (45).

It is imp ort ant to noti ce th at these t ransition periods t * are bounded only
because of the failur e of th e Lipschitz condit ion at th e equilibrium points.
Otherwise they would be unbounded, because the time of approaching a
regular attractor is infinite (as is the tim e of escaping a regular repeller) .

Thus, th e evolut ion of X prescrib ed by (41) is totally unpredict able: it has
2m different scenarios, where m = E(t /t* ); whereas any prescrib ed value of X

from (42) will appear eventually. This evolut ion is identical to random walk ,
and t he probabili ty f (x , t) is governed by the following difference equat ion.

For a better physical interpret ation, we assume that

(47)

7r CY
- «L
VW

that is,

W ----t oo

r « T (48)

where L and T are the total length and the total t ime period of the random
walk.
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t* --+ 0 (49)

we arrive at th e Fokker-Planck equat ion:

of(x ,t) = ! D202 f(x ,t)
at 2 ox2

(50)

The unr est ricted solut ion of (50), given the initial condition that rand om
walk starts from the origin x = 0 at t = 0, is

1 ( x2

)f (x ,t) = J exp - D2
(27rD 2t ) 2 t

(51)

This solution qualitatively describes the evolution of the prob ability distri­
but ion for dynamical equation (41). It is worth noticing that one should turn
to difference equation (47) for the exact solution , because w < 00.

Equation (47) can be present ed in operator form , as follows.

where Et and Ex are the shift operators

(52)

Etf(x ,t) = f(x, t + T) Exf(x , t) = f( x + h,t) (53)

Utili zing t he relationships between the shift operators and the different ial
operator D ,

a
D t = -at

a
D x = ­ax (54)

(55)

we can transfer from (47) to (50) if w --+ 00 (that is, if T , h --+ 0).
For further analysis it will be more convenient to modify (41) as follows.

;j; = i sink(v:x) sinwt

assuming that

k = _l_
2n+ 1

n --+ 00 (56)

where n is an integer. This replacement does not change the qualit ative
behavior of dynamical system (55): it changes only its quanti tative behavior
between the crit ical points, such that we have explicit cont rol over the period
of t ransition from one critical point to another. Indeed, given that

lim sin1/2 n+l X = sgn sin X
n-oo
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we obtain the solut ion for x which is valid between crit ical points x(m) and
x (m+1 ) :

x = 1 (1- coswt )
w

(57)

(58)

(59)

It is evident that th e distances between th e equilibrium points will not
dep end upon the step m:

h
_ _ _ 7ram _ 7ra (m - 1) _ 7ra

m - X m Xm- l - vw vw - vw
The period of transition from th e (m - 1)st to the mth crit ical point follows
from (57) and (58):

r = ~ arccos (1 _h;)< :

which means that

(60)

because it should not exceed the period between the conversions of terminal
attractors into te rminal repellers (and vice versa) .

3.2 Multidimensional systems

The results presented in the previous sections can be genera lized to mul­
tidimensional dynamics. For that purpose, consider the following terminal
dynamical system.

. . k (vw "\'T ) . tX i = {ism ~ L... i j X j smw

assuming that

Ti j = Canst (61)

(62)Iij = Tj i , r., > 0, I~~~ ~~~ I > 0,

that is, th at ITij I is a symm etric positive-definite matrix; and where k is de­
fined as in (56). Properties (62) prov ide st ability (if sinw t < 0) or instability
(if sin wt > 0) of syst em (61) at the terminal equilibrium points Xi:

(63)

(64)

where

).. . _ 7rai
, - f:.VW

mi is the number of steps made by t he variable X i , and fJf:. /fJTi j is a cofactor
of the element Ti j .
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After one step of a variable X i, th e corresponding value of mi will change
to mi + 1 or mi - 1 with th e same pro bability. Thus, the length of a step hi
made by the variable Xi will have 2n equally prob able values:

(65)

depend ent on 2n combinations of th e signs of f3ij in (65).
Denoting each of these combinat ions by q (q = 1, 2, .. . , 2n ) , and int ro­

du cing a shift operator E, for each variable X;:

Eif(t, Xl> . . . , Xi,· ·· , Xn ) = f (t , Xl , ·· ·, Xi + 1, . .. , xn ) (66)

(67)

we arr ive at th e following govern ing equat ion for the joint prob ability density
of the solution to (61).

(e, - T n~TI E: iq) f = 0

where hiq is a particular value of hi t aken from (62) at a part icular q.
It follows from (67) that with increase of n the dynamics of (61) becomes

less and less predict ab le. For n = 2, (67) reduces to

[Et - ~ (E~1l E;21+ E h12E h
22 + E h13E h23+ E h14E h24)] f = 0 (68)

where
1r

hu = - h14 = LJ.VW (a IT22 - a2T12)

1r
hl2 = - h13 = LJ.VW (a IT22+ a2Td

1r (69)
h21 = -h24 = LJ.VW (a2Tu - a 1T12 )

1r
h22 = - hn = LJ.VW (a2Tu + alTd

If w -. 00 (that is, if hi j , t * -. 0), (68) t ra nsforms into a two-dimensional
Fokker-P lanck equat ion, as follows.

o f 1 ( 02f 02f 02f )
ot = "2 D u ox? + D l 2 OXIOX2 + D22ox~ (70)

where

o., = ~2 (aiTJ2 + a~T;2 )

21rT12 2 2
D l 2 = ~(aIT22 + a 2Tu)

D 22 = ~2 (a~T;1 + aiT;2)

(71)
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We should point out that all th e coefficients Di j in (67)-which governs
the evolut ion of the probability density f -are uniquely defined by the fully
deterministic parameters T;j of the original dynamical system (61).

4 . Stochastic attractors in t erminal dynamics

All the dynamical systems considered thus far exhibit an unrestricted ra ndom
walk. As a result , the joint probab ility density of their solutions vanishes at
t -+ 00. In this sect ion we will describe a new phenomenon- an at t raction of
the solut ion to a stationary stochastic process whose joint density function
is uniquely defined by the par ameters of the origina l dynamical system.

4. 1 One-dimensional restricted random walk

We begin with t he following one-dimensional dynamical system,

x = "(sink(v: sin x) sinwt

which has the following equilibr ium points:

(72)

* ( 7rCX )X m = arcsin VWm m = ... , -1, -1 , 0, 1, 2, ... (73)

It is clear that the distances between these points depend upon the num­
ber of steps m :

b-« = xm - Xm- l = arcsin (~m) -arcsin [~(m - 1)]
We introduce a new variable, y.

y = sin x

Thus,

(74)

(75)

* 7rCX * * 7rCX
Ym = VWm Ym - Ym-l = VW (76)

and (76) becomes identical to (58). This means that the probab ility as a
function of Y satisfies th e following equat ion.

However , in contrast to x in (52), Y is bounded:

lyl = [sin z ] ~ 1

The solution of (77), sub ject to the boun dary condit ion (78) , is

*f = f(t ,y)

(77)

(78)

(79)
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t herefore, the solut ion to the original prob lem (i.e., to equation (72)) is

f = j[t,y(sin x)Jlcos x l (80)

For a bet ter physical interpretation of (80), we consider a limit case where

,;w --> 00

t hat is,

T , hm --> 0

Thus, (77) transfers to the Fokker-P lanck equation

of = ~D2a2 f
at 2 ay2

with the boundary condit ions

(81)

(82)

afl = afl = 0
ay y=1 ay y= l -

Subj ect to initi al condit ions

f (O , y) = <p(y)

the solution to (82) is

<p(y) ~ 0 and I I<p(y) dy = 1

(83)

(84)

Iyl < 1 (85)

11 n7r
an = 2 - 1 <p(z) COS 2 (z + 1) dz

therefore,

n = 1, 2, ... (86)

1
f (t ,y) --> 2 at t --> 00 , Iyl ::::: 1 (87)

Returning to the original variable x, we obtain (in place of (87))

f (x ) = 0.51y' l = 0.5cos x

(x) = 0

7r 7r
- - < X <-

2 2

otherwise

(88)

Hence, any solution that originates within the interval

7r 7r
- - < X < -

2 2
(89)

always approaches stat ionary stochastic process (88), which plays the role of
a stochast ic attractor.
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We emphas ize th at this is a phenomenon t hat does not exist in th e classi­
cal version of nonlinear dynamics. Unlike the situation for chaotic attrac tors,
t he probability density can be uniquely controlled by the parameters of the
original dynamical syste m, and the limit st ochast ic process does not depend
up on the initial condit ions if they are withi n the basin of attraction.

The preceding results were obtained under the assumption of (80), which
allowed us to replace the original difference equat ion (77) with different ial
equat ion (82). But if ..;w is finite and, therefore, st eps (74) also are finite,
t he solut ion to (72) in some cases can overcome the barri er of (88) and, after
a slow diffusion, event ually approach the "universal" attractor

j = 0 (90)

We investigat e such a possibility in detail. Turning to condit ion (60),
which synchronizes the conversions of terminal at t ractors into t erminal re­
pellers (and vice versa) , we assume that the following condit ion is violated.

•
at hm < s.; (91)

Invoking (73), we conclude that if

1

7r • I ·2 -hm «s; (92)

then the solut ion to (72) can surpass th e barrier Ixl = 7r/ 2, and escape region
(89). Conversely, if

1

7r • I ·- - h >h2 m m (93)

then this solutio n will be trapped within t he region

(94)

Qualit atively, the solution to (72) under condit ion (93) behaves as solu­
tion (88), representing a stochast ic att ractor. Clearly, (72) has an infinit e
number of such attractors, with basins

(95)n = . .. , - 2, - 1,0, 1, 2, . . .
7rn 7r(n + 2)
2 <x< 2

Under condit ion (92), thi s solut ion will penetrate the barriers and diffuse
t hrough all the basins (95), approaching the at t ractor (90).

Now we may genera lize (72) by requiring that its solut ion have a stochas­
t ic attractor with a prescrib ed density function j(x) , with t he only restri c­
tions being that

j (x ) = 0 forlz ] > N N<oo and J~ f(x) dx = 1 (96)
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Based upon (88) , we arr ive at the following equat ion in place of (72) .

X = I sink [~p(x)]sinwt p(X) =2 [XNf(~)d~- 1 (97)

In fact , introducing a new variab le y (compare with (75)):

y =p(x ) y(-N) = -1 y(N ) = 1

we obtain , in place of (88) ,

f (x ) = ~Iyll = ~ dp
2 2dx

We have not yet discussed the fact that the solut ion to (82) must satisfy
the constraint

tlf(y)dy = 1

in addit ion to boundary condit ions (83). To illustrate tha t this constraint
does not overdetermine the solution, we integrate (82) over y , as follows.

11of 011 D211 of- dy = - f dy = - - dy = a
- l ot at -1 2 _l OY

that is,

[11f dy = Const

This means th at if the initi al condit ions satisfy this constraint , then the
solution will satisfy it automatically.

4.2 Multidimensional restricted random walk

In order to illustr ate the existence of sto chastic attractors in multid imen­
sional systems, we consider the following two-dimensional case.

Xl = 11sink [v0sin(Xl + X2 )] sin wt

X2 = 12sink [v0 sin(Xl - X2)] sin wt

Denoting

Xl + X2 = Ul

Xl - X2 = U2

we can int roduce a dynamical system

Ul = , ; sinkv0 sin Ulsin wt

U2 = , ; sinkv0 sin U2 sin wt

(98)

(99)

(100)

(101)
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that has th e same criti cal points
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. . 71'm
sin UI, sm U2 = vw m = ... , -2, - 1, 0, 2, . . . (102)

and, therefore, the same probability distribution of the solut ion as the original
dynamical system.

Equations (100) and (101) have the form of (72) and, therefore, their
formal solutio ns follow from (SS):

71'ml 71' (ml + 2)
- 2- < uI< 2 , ml = " ·, - 1, 0, 1, 2, ,, .

otherwise (103)

! (U2 ) = 0.51coSU21

! (U2) = 0

71'm2 71'(m2 + 2)
- 2- < U2 < 2 ' m2 = . .. , -1 ,0 ,1 , 2, .. .

otherwise (104)

However, not all of these solut ions are stable. Applying stability condit ions
(see [17]) to linearized versions of (9S) and (99) yields

COSXI - COS X2 < 0

that is,

cos XI COS X2 < 0 (105)

COS XI < 0 COS X2 > 0

therefore, the solut ions are stable if

ml = ... , - 7, - 3, 1, 5, 9, . . . m2 = ..., - 5, - 1, 3, 5, 7, . .. (106)

in (103) and (104). Returning to t he original variables, we obtain

! ( XI , X 2) = 0.5Icos(xl + X2) COS(XI - X 2) I (107)

(l OS)

Solution (107) represents a stat ionary stochastic process which attracts all
solutions with initial condit ions within area (lOS). Each pair m l and m2
from sequences (106) defines a corresponding stochastic at t ractor with joint
density (107) . Clearly, t hose solut ions for which ml and m2 do not belong to
(106) are unstable and, eventua lly, will be attracted to one of the sto chastic
attractors (l OS).

Turning to an n-dimensional dynamical system, we confine ourselves by
the use of the special form

. . k [vw ( )]. tXi = Ii sm --;;-Pi Yi sm w (109)
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where
n

Yi = L: T;jx j
j=l

T;j = Const
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(110)

We assume that

dPi {_>0 for IY11< Ni N i < 00
dYi - 0 for /Yil> N,

(111)

and that t he Ti j form a symmetric posit ive-definite matrix, that is, that
condit ions (62) are satisfied.

Based upon condit ions (62) and (111), we conclude that syste m (109)
is locally stable (or locally unstable, depending upon the sign of sin wt ),
and that it synchronizes the conversions of terminal attractors into terminal
repellers (and vice versa).

Exploiting (97), we find that the solution to (109) has t he following den­
sity functions, in te rms of the variables Yi.

n

f(Y1 , . " ,Yn) = IIp;(Yi)
i = l

I dp
P = -

dy
(112)

In terms of the variables Xi, the joint density of the solution is
n

f (X1, . . . , xn) = II p;(Yi). det ITij l
i = l

where Yi is expressed via Xi by (110).

(113)

(114)

4.3 Examples

1. We begin with the following prob lem: Find a dynamical syste m whose
solut ion is attracted to a stochastic process with the normal density

f (x ) = z (X- J.L) = _ 1 _ e(x - Il-)2/ (2,,2)

(J (J-/27f
where J.L and (J are the mean and the standard deviat ion, respectively, and
z(y) is the standard normal density function.

To apply (97), we must first modify (114), because it does not sat isfy
restri ction (96). We introduce a truncated standard normal density funct ion

-( ) _ { z(y) if lyl < N N
z Y - 0 if lyl > N, < 00

(115)

Then, with reference to (97), we obtain

x= I' sink
[ :w erf (X;;;)] sinwt erf(y) = 5rr l z(u)du (116)

Thus, (116) represents a dynamical system whose solut ion is attracted
to a stochastic process with density function (115). For sufficient ly large N ,
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it will approximate a Gaussi an process , with /1- and (J as the mean and the
standard deviat ion, respect ively.
2. Let us assume that the density f( x) of a desired stochastic pro cess is
characterized by /1- = /1-0 , (J = /1-1, and higher cent ra l moments /1-r. Ut ilizing
the Cram-Charlier series expansion [20]

where

1 00 (X- /1-)f (x ) = - L Cr z(r) - -
(J r=O (J

(117)

Co = 1 C1 = C2 = 0

1
C5 = - 51(/1-5 - 10/1-6)

and

z(r) = drz(y)
dyr

and applying (97), we obtain

1 1
C3 = - 31/1-3 C4 = 41(/1-4 - 3) (118)

1
C6 = 51 (/1-6 - 15/1-4+ 30) and so forth

(119)

{ N VW [ - ( X -/1-) 00 ( X -/1-) ] }:i; = -ysin" - a- erf V2(J +~ Crzr- 1
-(J- sinw t (120)

Hence, the solut ion to dynamical system (120) is attracted to a stochastic
process whose density function is characterized by the moments /1-r.
3. In this exam ple we pose the following problem: Find a dynamical system
whose solutions Xi(t) are attracted to a stochastic process characterized by
the column of means and the matrix of moments

M Xi = /1-i i , j = 1,2 , .. . ,n (121)

We can find an ort hogonal transformation

n

Yi = "Ii + L T;j(xj - /1-j )
j= l

such that

(122)

M Yi = "Ii = 0 (123)

where Yi are non-corre lated standard normally distribu ted variables.
Combining (109), (110) , and (116) we obtain

n

Yi = L T;j(xj - /1-j)
j= l

(124)
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Some comments concerning the stability of (124) must be made. Since
Tij is an orthogonal mat rix , it does not satisfy conditions (62). However, the
real parts of the eigenvalues of Ti j are

or R eAi = cos 'Pi > 0
7r

for 0 < If) < ­
- y 2 (125)

where 'Pi are the angles of rot at ion of the coordinate axes. Because

d -
-d erf (Yi) > 0

Yi
for lyl < N, (126)

(t hat is, condit ion (111) is sat isfied) , display (124) (when linearized with
respect to its equilibr ium points) has eigenvalues whose real parts are all
positive (if sinwt > 0 ) or negative (if sinwt < 0). This synchronizes conver­
sions from terminal at tractors to terminal repellers (and vice versa) .

Thus, the solut ion to the dynamical system is attracted to a stochas­
t ic process with the probabilistic st ructure prescribed in (121) if the init ial
condit ions are within the basin of attraction IYil < N i .

5. Self-organization in terminal dynamics

A dynamical system is considered self-organizing if it acquires a coherent
structure without specific int erference from the outs ide. In this section we
show that termin al dynamics possesses a powerful too l for self-organizat ion,
based on the possibility of coupling between the original dynamical system
and its own associated prob abili ty density dyn amics.

We begin with dynamical system (116) , represented in the form of (41).

x = -ysin" (v::Y)sin wt (127)

T he probability density function f(y , t) satisfies (50), as follows.

of
ot -N '5,.y'5,. N (128)

It s solutio n (subject to boundary and initial condit ions (83) and (84),
respectively) , is given by (85). In terms of x, thi s solution is

{
1 ~ 1 3 2 2t n7r [ - ( x )]} (X)f.(x , t) = "2 +~ ane- 27r

a n COS 2 erf V20- z -;; (129)

where z is defined by (114) and (115).
In all the preceding cases, the parameter 0- was prescribed in advance,

denoting the variance of the stat ionary density

f .(x) = z (~) at t ---+ 00 (130)



Introdu ction to Terminal Dynamics 81

Let us assume that t he parameter (J depends upon moments of the current
density (129)- for instance,

(J2 = (J~ - Var(x) (Jo = Const (131)

where

Var (x) = J~ x2f.(x, t ) dx (132)

We point out immediately that t he t ime scale t' of changing (J is defined
by (129), and has the order

(133)

Because t he time scale til of changing x in (127) has the order til rv IIvw -> 0
(see (46)) and, therefore,

t' » t" (134)

the vari able (J can be considered as a slowly changing parameter in (127)
(but not in (129)!).

Thus, dynamical system (127) is guided by t he probabili ty density via the
parameter (J . This parameter is obt ained from (131), after the subst itut ion
of (131) in the integrand. For the final stationary state (t -> 00), we obtain
(from (131) and (132))

Var (x) = (J2= (J~ - Var( x)

hence,

(135)

at t -> 00 (136)

Therefore, the solut ion to dynamical syst em (127) approaches a stochastic
attractor with t he probability density z(xl((Jo /V2)) . We stress that this
attractor has not been "stored" in the prescribed coefficients of (127): the
dynamical system "found" it as a result of coupling with its "own" probabili ty
equat ions.

In t he general case, paramete rs of dynamical syst em (109) can be coupled
with moments of probability density (113) to lead to new self-organizing
architectures.

6. Discussion and co nclusion

6.1 R elevance of terminal dynamics to the determinism of
Newtonian dynamics

Classical dynamics describ es pro cesses in which the future can be derived
from the past , and in which the past can be traced from the future by t ime
inversion, t -> <t, Because of such determinism and reversibility, classical
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dynamics becomes fully predictable and, therefore, cannot explain the emer­
gence of new dynamical patterns in nature (as nonequilibrium thermodynam­
ics can). This major flaw in classical dynami cs has attracted the attention
of many outstanding scientists (Gibbs , Planck, and Prigogine, among others;
see [19]).

Considering the governing equat ions of classical dynamics,

d oL
dt Oqi

st. en
i = 1,2 , . .. , n (137)

(where L is the Lagrangian, qi,qi are the generalized coordinates and veloc­
ity, and R is the dissipation function), we should recall that the struc t ure of
R(qi" . . ,qn ) is not prescribed by Newton 's laws: some addit ional assump­
tions must be made in order to define it . The "natural" assumption (which
has been never challenged) is that these functions can be expanded in Taylor
series with respect to equilibrium states qi = O. Clearly, this requires t he
existence of t he derivative

at qi -+ 0

A departure from that cond itio n is prop osed in [15], where the following
dissipation function is introduced.

I I
k+l

1 or
R = - LQi L - 'qj

k + 1 i j oqj

in which

(138)

k= - p - < 1
p + 2

p» 1 (139)

where p is a large odd number . By select ing large p, we can make k close to
1, so t ha t (138) is almost identical to the classical assumption (when k = 1)
everywhere excluding a small neighborhood of t he equilibrium point qj = 0;
whereas , at that point ,

(140)

Thus, the Lipschit z condition is violated; the friction force Fi = -(OR/Oqi)
grows sharply at the equilibrium point , and t hen it gradually approaches its
"classical" value. This effect can be interpreted as a mathematical represen­
tation of a jump from st atic to kinetic frict ion, where the dissipation force
does not vanish with th e velocity.

It appears that this "small" difference between the frict ion forces at k = 1
and k < 1 leads to fund amental changes in Newtonian dynamics. In order
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(141)

to demonstrate this, we consider the relationship betwen the total energy E
and the dissipation function R.

dE 8R
- = - Lqi-. = -(k+1)R
dt i 8qi

Within a small neighborhood of an equilibrium state (where the potential
energy can be set to zero) , the energy E and the dissipation function R have
the respective orders

at E --+ 0 (142)

at E --+ 0, A = Const

Hence, the asymptotic form of (141) can be presented as

dE = AEk+1/2
dt

(143)

(144)

If A> 0 and k < 1, the equilibrium state E = 0 is an attractor where the
Lipschitz condition (!dE/dE! --+ 00 at E --+ 0) is violated. Such a terminal
attractor is approached by the solution originated at E = tlEo > 0, in finite
time, as follows.

fa dE 2tlE{1-k)/2
to = JMo AE{k+1)/2 = (l_

o
k)!A I < 00

Clearly, this integral diverges in the classical case k ::::: 1, where to --+ 00 .

The motion described by (143) has a singular solution E == 0, and a regular
solution

[
1 2/{1-k)

E = tlE61-k)/2+ "2 A(l - k)t] (145)

In a finite time, the motion can reach the equilibirum and switch to the
singular solution E == 0, and this switch is irreversible.

The coefficient k can be found from experimental observations of the time
to. In order to illustrate this, we consider a plane-incompressible flow, with
a stream function 'ljJ and the constitutive law

_ (82'ljJ _ 82'ljJ) k+l
(Jxy - P,l 8y2 8x 2 (146)

where (Jxy, v x, and v y are viscous stress and Cartesian projections of velocity.
Based upon the relationship between the rate of change of the kinetic energy
and the dissipation function, we obtain

P 8 [(8'ljJ)
2

(8'ljJ)2] (8
2'ljJ

8
2'ljJ)k+1

-- f - + - dx dy = -P,l f - - - dx dy
2 8t Jv 8x 8y Jv 8y2 8x2

(147)

where p is density, P,l is viscosity, and V is the volume occupied by the fluid.
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Suppose that 7J;(t, x , y) can be represented as a product 7J; = ,(i;(t )i[;(x , y).
Then (147) reduces to the ordinary different ial equat ion with respect to
cp(t) = ,(i;2(t ), as follows.

(148)

and

Equ ation (148) describ es the dampin g of the fluid motion due to viscous
st ress (146). The equilibrium state represents a terminal attractor which is
approached in a finite t ime:

CPo = cp(O) (149)

Equation (149) allows one to evaluate k and VI from experimental measure­
ments of to.

In conclusion, we st ress again that all t he new effects of terminal dynamics
emerge within drastically dimini shin g neighborhoods of equilibrium states ,
which are the only domains where the governing equations are different from
the classical mod els.

6 .2 R el evance to chaos

One of the cent ra l problems of Newtonian dynamics is the explanation of the
fact t hat a motion that is described by fully determinist ic governing equations
can be random. To discuss this, let us consider the exponential growt h of a
variable a ,

0 < >- <00 (150)

Clearly, the solut ion with infinit ely close initial condition

a = a +c: c: -> O (151)

will remain infinitely close to the original solution,

if e -> 0, t < 00 (152)

during all bounded t ime intervals. This means that random solut ions can
result only from random initial condi tions when c: in (151) is small but finite,
rather than infinitesimal. In other words, classical dynamics can explain am­
plifications of random mot ions , but cannot explain t heir origin. According
to the terminal modification of Newtonian dynamics, random motions are
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generated by unstable equilibrium states at which dissipation forces do not
vanish with velocities, tha t is, at which t he Lipschit z condit ion is violat ed.
We recall th at the evolut ion of these random motions amplified by the mech­
anism of instability can be pred icted by th e use of th e st abilization principle
discussed in [4- 6].

Because of the finite precision with which initial conditions are known,
terminal equilibrium points can be incorporated into classical dyn amics in
the following way. Let us consider a first-order dynamical equat ion,

v+ av = O (153)

and assume t hat the vari able v can be observed with a finite error

(154)

where Va is a representative value of v characterizing th e scale of motion.
The actual t ime of approaching the attractor

(155)

is finite:

1 IvaIt 1 = - In - < 00
a v.

(156)

A terminal version of (156) that describ es the same process,

(157)

has a solution which, at k -> 1, is infinit ely close to th e solut ion of (153)
everywhere, except in a small neighborhood of the at t rac tor v = O. The time
of app roaching this at t rac tor is

(158)
1

t2 = a( l - k)2

Equating t 1 from (20) and t2 from (22), we find the order of an "equivalent"
value of k,

(159)

Thus, the fact that dynamical parameters cannot be observed or measured
with infinite precision is mathematically formalized by introducing terminal
equilibrium points; the paramete r k < 1 is defined by the relative error v.lva.
The termin al version of dynamical system (1),

[ (V.)k-l]Xi = Vi 1 + (1 - k) v~ (160)
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allows us to explain t he appearance of random solut ions without random
inputs within the framework of different iable dynamics. However , additi onal
terms in (160)(such as dissipation forces (138» cannot be interpreted as
physical quantit ies, because t hey are not invariant with respect to coordinate
transformations. This fact emphas izes a computational origin of "classical"
chaos, in contras t to a physical origin of terminal chaos.

6.3 Conclusion

We have discussed a new mathematical model for nonlinear dynamics­
terminal dynamics. In this model, the dissipation function is reshap ed, such
that the time of approaching equilibrium points becomes theoret ically finite
due to violation of t he Lipschitz condit ion. As a side effect of this pr operty,
terminal dynamics becomes irreversible and probabilist ic.

We have given special attent ion to well organized terminal dynamical
syste ms that are driven by a global rhythm, generated by a periodic attractor.
Such systems have a relatively simple probabilistic st ruct ure based upon a
random-walk paradigm; they are more appropriate for describ ing evolutions
in biological and social syst ems, in which the coupling between variables is
more flexible and, therefore, can be modeled by probabilistic relationships.

It appears that the terminal model, applied to Newtonian dynamics, can
provide a mathematical formalization of t he fact that dynamical parameters
cannot be observed with infinite precision in real physical systems; hence,
all the equilibrium points are actually t erminal. This formalizat ion makes
Newtonian dynamics irreversible, and it provides a formal mathematical ex­
planation for the appearance of random solut ions in chaot ic systems.
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