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Introduction to Terminal Dynamics

Michail Zak
Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA 91109

Abstract. This paper introduces terminal dynamics as a set of ordi-
nary differential equations which does not possess a unique solution,
due to violation of the Lipschitz condition at equilibrium points. Each
equilibrium point represents a terminal attractor that is approached
in finite time or a terminal repeller for which the solution splits into
two equally probable branches. This property introduces elements of
stochasticity that are associated with the random walk paradigm. A
relationship is established between the original dynamical model and
the corresponding Fokker-Planck equation for probability density. A
new type of attractor that represents a stochastic process is described.
The relevance of the terminal model to irreversibility in Newtonian
dynamics and to chaos theory is discussed.

1. Introduction

The governing equations of classical dynamics may be derived from La-
grangian functions, from variational principles, or directly from Newton’s
laws of motion, and they may be presented in various equivalent forms. How-
ever, there is one mathematical restriction on all such forms: the differential
equations describing a dynamical system

% = vi(@1, T2y .. ., ZTn) i=1,2,...,n (1)
must satisfy the Lipschitz condition, which expresses that all the derivatives

6'(},‘
oz j

<00 (2)

must be bounded. This mathematical restriction guarantees the uniqueness
of the solution to (1), subject to fixed initial conditions, and that uniqueness
has proved to be very important for the application of dynamical systems
to the modeling of energy transformations in mechanics, physics, and chem-
istry. However, attempts to exploit classical dynamics for the application
of information processing to the modeling of biological and social behaviors
have exposed certain limitations of the approach, due to determinism and
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reversibility of solutions. Mathematical and physical aspects of these limita-
tions, as well as the consequences of their removal, are discussed in [7-17].
In this paper we present a general structure for dynamical systems that does
not possess a unique solution, due to violation of condition (2) at equilibrium
points.

2. Terminal limit sets
2.1 Terminal attractors and repellers

Terminal dynamics can be introduced as a set of nonlinear ordinary differ-
ential equations of the form

& = vi(z1, Ty .. -, Tn) §=1,2:.:5n (3)
in which

B’Ui

72 < 00 4)
and k < 1. Therefore,

g_: = kv®V(zy,...,z,) S—Z:}—»oo if z; =0 (5)

and the Lipschitz condition (2) is violated at all the equilibrium points

As in the classical case, the equilibrium points are attractors if the real parts
of the eigenvalues of the matrix

6’Ui
are negative; that is, if
Re \; <0 (7

and they are repellers if some of the eigenvalues have positive real parts.

In order to emphasize the difference between classical and terminal equi-
librium points, we will begin with the simplest terminal dynamical system,
as follows.

&= —z'/3 (8)

This equation has an equilibrium point at z = 0, at which the Lipschitz
condition (2) is violated:

da 1
T _ _ 223

e ——o00 atz—0 9)
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Figure 1: Convergence to regular attractor.

Because condition (7) is satisfied, that is,
Re A = —00 <0 (10)

this point is an attractor of “infinite” stability.
The relaxation time for a solution with the initial condition z = 2o < 0
to this attractor is finite:

z—=0 dg 3 2/3
tg—:—-L mzimo < o0 (11)

Consequently, this attractor becomes terminal. It represents a singular solu-
tion which is intersected by all the attracted transients (see Figures 1 and 2).
For the equation

&= g'/3 (12)

the equilibrium point = 0 becomes a terminal repeller, as follows.

da 1
ﬁ — gr‘(z/?’) —o0 atz—0 (13)
that is,

Re A —00>0

If the initial condition is infinitely close to this repeller, the transient solution
will escape the repeller during a finite time period:

Zo

dzx 3 2/3 "
toz/ngio < o0 if z <00 (14)

e—0

whereas, for a regular repeller, the time would be infinite.
As an alternative to (8) and (12), one can consider a more general case,

t=4z* k>0 (15)
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Figure 2: Convergence to terminal attractor.
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for which the relaxation time for the attractor (or the escaping time for the
repeller) is

— 00 ifk>1

to weF (16)
= ifk<1
1-k

As shown in the theory of differential equations, singular solutions in equa-
tions

F(z,y,4) =0 (17)
are found by eliminating 3’ from the system, as follows.
oF
F(z,y,9)=0 5 =Y (18)

Hence, static terminal attractors (if they exist in (17)) must be among the
solutions to system (18).

2.2 Physical Interpretation of Terminal Attractors

As will be pointed out in the Conclusion to this paper, the mathematical
formalism of terminal dynamics follows from a more general structure of the
dissipation function which allows the existence of smooth transitions from
static to kinetic friction. It should be emphasized that the behavior of the
solutions around the equilibrium points in terminal dynamics is more “re-
alistic” than in classical dynamics, because the actual time of convergence
to equilibrium points is finite. However, in order to make it finite, the Lip-
schitz condition must be violated, because all the trajectories must intersect
at the equilibrium point (see Figure 2). In classical dynamics, the Lipschitz
condition is not violated, and the infinite time of convergence is accounted
for by “small dissipative forces” that are always present. In fact, terminal
dynamics incorporates these forces via the parameter k (see (3)), which can
be found through measurement of the convergence time (see (16)).

It can be shown that the mathematical concept of the terminal attractor
has other physical interpretations. One such interpretation is the energy-
cumulation effect, in which case one deals with the finite time of convergence
of a propagating wave rather than a motion of an individual particle. As an
example, consider a propagation of an isolated pulse in an elastic continuum
along the z axis. In general, the speed of propagation £ = A depends on
z. Suppose there exists a point z* such that A(z*) = 0. Then the time ¢*
during which the leading edge of the propagating pulse will approach x* is
expressed via the following integral.

. [FT dz
t=[ @ 19)

If A can be presented in the form

A=(z*-z)f O0<k<1 (20)



64 Michail Zak

then this integral converges and, therefore, the time t* is finite. It is easily
verifiable that, in this case, the differential equation

&= (a*—2)* (21)

that describes the dynamics of the pulse propagation has a terminal attractor
at z = z*. But if the leading and the trailing edges of the propagating pulse
approach the same point z* during finite time, then the width of the pulse
eventually will shrink to zero, and all the energy transported by the pulse will
be distributed over a drastically diminishing length. Hence, the existence of
a terminal attractor in such models leads to an unbounded concentration of
energy in the neighborhood of the attractor.

Based upon this model, [2, 3] explain and describe the formation of a
supersonic snap at a free end of a filament suspended in a gravity field, and
the accumulation of shear strain energy at the soil surface in response to an
underground explosion. In these models, the free end of the filament and the
free surface of the soil serve as terminal attractors. Some terminal effects in
fluid dynamics are introduced and discussed in [15].

2.3 Periodic terminal limit sets

Thus far, we have concentrated on static terminal attractors. We now demon-
strate the existence of periodic terminal attractors. For that purpose, let us
consider a dynamical system separable in polar coordinates r, 6§, as follows.

i=r(R—r)'3  (r<R) (22)
f=w (23)

In this case, dir/dr — —oo at r — R (compare with (9)) and, therefore, the
solutions r = R, § = wt+60(0) form a terminal limit cycle. Its basin is defined
by the condition > 0. For the solution with the initial condition ry < R
the relaxation time is finite, as follows.

& dr R dr 2
o= P _ i3 = 2 (R—ry)? o4
. /To r(R—r)l/3 = /TO ro(R—1)3 "~ 3rg (R—mo)” <00 (24)

It is easily demonstrated that a periodic terminal repeller can be obtained
by changing the sign in the right-hand side of (22).

The terminal analog of a chaotic attractor is introduced and discussed in
(13, 15].

2.4 Unpredictability in terminal dynamics

The concept of unpredictability in classical dynamics was introduced in con-
nection with the discovery of chaotic motions in nonlinear systems. Such
motions are caused by the Lyapunov instability [4], which is characterized
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by a violation of the continuous dependence of solutions on the initial condi-
tions during an unbounded time interval ({ — oco). That is why the unpre-
dictability in such systems develops gradually. Indeed, if two initially close
trajectories diverge exponentially:

e=¢expAt 0<A<o0 (25)

then, for an infinitesimal initial distance eg — 0, the current distance ¢
becomes finite only at ¢ — oco. For this reason, the Lyapunov exponents
(the mean exponential rate of divergence) are defined in an unbounded time
interval, as follows.

& = lisa (1)1ni t = o0 (26)
t €0

In distributed dynamical systems, described by partial differential equa-
tions, there exists a stronger instability (discovered by Hadamard). In the
course of this instability, a continuous dependence of a solution on the ini-
tial conditions is violated during an arbitrarily small time period. Such a
“blowup” instability is caused by a failure of hyperbolicity and a transi-
tion to ellipticity [2]. In this section we show that a similar type of blowup
instability that leads to “discrete pulses” of unpredictability can occur in
dynamical systems which contain terminal repellers.

Let us analyze the transient escape from the terminal repeller in the
equation

=z zy=2z(0) (27)
assuming that |zo| — 0. The solution to (27) reduces to the following.
r=%+t%2 40 (28)

Hence, two different solutions are possible for “almost the same” initial con-
ditions. The fundamental property of this result is that the divergence of the
solutions to (28) is characterized by an unbounded parameter, o.

<1 23/2

In

=lim [ >
o=lim |- N

> =00 |zo| — O (29)
t—to
where t is an arbitrarily small (but finite) positive quantity. In contrast to
(26), the rate of divergence in (29) can be defined in an arbitrarily small
time interval, because the initial infinitesimal distance between the solu-
tions becomes finite during this interval. Thus, a terminal repeller represents
a drastically diminishing but infinitely powerful “pulse of unpredictability”
which is “pumped” into the dynamical system.

To illustrate the unpredictability in such a non-Lipschitzian dynamics,
we turn to the following equation.

t—yz?=0 (30)
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where
y = coswt (31)
Assuming that z — 0 at t — 0, we obtain the regular solutions
2 3/2
= (B—w sinwt) B0 (32)
and a singular solution (an equilibrium point)
z=0 (33)
During the first time period
T
<t <o (34)

equilibrium point (33) is a terminal repeller (because y > 0). Therefore,
within this period, solutions (32) have the same property as solutions (28):
their divergence is characterized by an unbounded rate o.
During the next time period

L 3m

2w e 2w
equilibrium point (33) becomes a terminal attractor (because y < 0), and
the system which approaches this attractor at ¢ = mw remains motionless
until ¢ > 37/2w. After that point, the terminal attractor converts into the
terminal repeller, and the system escapes again.

It is important to notice that each time the system escapes the terminal
repeller, the solution splits into two symmetrical branches; therefore, the
total trajectory can be combined from 2" pieces, where n is the number of
cycles; that is, it is the integer part of the quantity (¢/27w). The nature
of this unpredictability is significantly different from the unpredictability in
chaotic systems.

Motion (32) resembles chaotic oscillations known from classical dynamics:
it combines random characteristics with the attraction to a center. However,
in contrast to classical chaos, motion (32) is driven by a failure of uniqueness
of the solution at the equilibrium point, and it has a well organized prob-
abilistic structure. Because the time of approaching the equilibrium point
z = 0 by solution (32) is finite, this type of chaos can be called terminal
[13-15].

Equations (30) and (31) can be presented in autonomous form, as follows.

z = yz/? (30a)
¥ =-wz+y(l—y*—27 (31a)
=wy+2(1—-1y2-2%) (31b)

If one takes into account that the last two equations have periodic attractors,

Yy = coswt z = —sinwt
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Although the structure of (30a), (31a), and (31b) in general resembles the
structure of the Lorentz or Rossler attractors, the violation of the Lipschitz
condition is important for the appearance of nondeterministic solutions. In-
deed, if (30) is replaced by the following,

T =yzx (30b)
then the solution to the system (30a), (31a), and (31b)
z = ggel "1 /w)sinwt zo =2z(0) at t — oo

becomes periodic.

2.5 [Irreversibility of terminal dynamics

Classical dynamics describes processes in which time ¢ plays the role of a pa-
rameter: it remains fully reversible, in the sense that the time-backward mo-
tion can be obtained from the governing equation by time inversion, t — —t.
(This means that classical dynamics cannot explain the emergence of new
dynamical patterns in nature.) However, there exists a class of phenomena
for which past and future play different roles, and time is not invertible: by
definition (the second low of thermodynamics), irreversibility is introduced
into thermodynamics by postulating the increase of entropy. As stressed by
Prigogine (1980), irreversible processes play a fundamental constructive role
in the physical world; they are the basis of important coherent processes,
which appear with particular clarity on the biological level.

In this connection, let us compare the dynamical behavior of solutions in
small neighborhoods of classical and terminal repellers, respectively:

=1 (35)
and
& =S (36)
The solution to (35),
T4 = z0€" (37)
which describes an escape from a classical repeller, is reversible because
u_ = zpe " (38)

is a possible motion describing a convergence to a classical attractor z = 0.
The solution to (36),

2 3
= =t 39

- (3 ) (#9)
is irreversible because the time-backward motion

oo =1— <§t>3 (40)
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does not exist (z has imaginary value).

This mathematical formalism expresses deeper roots of the irreversibility
of terminal dynamics, which can be understood if one turns to the solution
of (30) and (31). This solution consists of regular and singular parts. When
the regular solution (32) approaches the equilibrium point z = 0 (33) (in
finite time), it switches to the singular solution z = 0, and this switch is
irreversible.

3. Probabilistic structure of terminal dynamics

As shown in [16], the terminal version of Newtonian dynamics is different
from its classical version only within drastically diminishing neighborhoods of
equilibrium states and, therefore, it contains classical mechanics as a special
case. This means that terminal dynamics is not always unpredictable and
irreversible: in some domains it is identical with classical dynamics. However,
in this section our attention will be concentrated on effects specific to terminal
dynamics and, in particular, on its probabilistic structure.

The fundamental difference between the probabilistic properties of termi-
nal dynamics and those of stochastic or chaotic differential equations should
be emphasized. The randomness of stochastic differential equations is caused
by random initial conditions, random force, or random coefficients; in chaotic
equations, small (but finite!) random changes of initial conditions are ampli-
fied by the mechanism of instability. However, in both cases the differential
operator itself remains deterministic. In contrast, randomness in terminal
dynamics results from the violation of the uniqueness of the solution at equi-
librium points; therefore, the differential operator itself generates random
solutions.

3.1 A terminal model of the random walk process

Random walk is a stochastic process in which changes occur only at fixed
times. In this section we introduce a terminal dynamics that describes this
process.

We begin with the following dynamical system.

138 VY 0 sinwt ~ = Const, w = Const, a = Const (41)

a

T = ysin

At the equilibrium points

PR SRS ' LT (42)

Vw

it can be verified that the Lipschitz condition is violated:
0t/0r — 00  atz — T, (43)
If z =0 at ¢ = 0 then, during the first period

™
t< — 44
0< <w (44)
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the point zp = 0 is a terminal repeller because sinwt > 0; the solution at
this point splits into two branches (positive and negative) whose divergence
is characterized by the unbounded parameter o (see (29)). Consequently, =
can move with equal probability in the positive or the negative direction. For
the sake of concreteness, we assume that it moves in the positive direction.
Then the solution approaches the second equilibrium point z; = wa/\/w at
11
t* = —arccos |1 — M M} (45)
w 21/3 v

in which B is the Beta function.
It can be verified that the point z; will be a terminal attractor at t = ¢;

if
th <7m/w
that is, if
B(l 1)
Y 373
b = ——21/3—\/5 (46)

Therefore,  will remain at point z; until it becomes a terminal repeller;
that is, until ¢ > ¢;. At that point, the solution splits again: one of the
two possible branches approaches the next equilibrium point z; = 27a/\/w,
while the other returns to the point g = 0, and so forth. The periods of
transition from one equilibrium point to the next are the same length, and
are given by (45).

It is important to notice that these transition periods ¢t* are bounded only
because of the failure of the Lipschitz condition at the equilibrium points.
Otherwise they would be unbounded, because the time of approaching a
regular attractor is infinite (as is the time of escaping a regular repeller).

Thus, the evolution of z prescribed by (41) is totally unpredictable: it has
2™ different scenarios, where m = E(t/t*); whereas any prescribed value of =
from (42) will appear eventually. This evolution is identical to random walk,
and the probability f(z,t) is governed by the following difference equation.

s 1 T 1 e
t4—)=zflz—-—t)+= —t 4
f<x’+w) 2f<x \/u7’>+2f<x+\/a’> (47)
For a better physical interpretation, we assume that

7r—‘z<<L T (48)

Vw

that is,
w — 00

where L and T are the total length and the total time period of the random
walk.
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Setting
s%ao £ — 0 (49)
we arrive at the Fokker-Planck equation:
of (z,t) 1 _,0%f(z,t
f(xi ) =—D28 f(.T, ) D2=7TO{2 (50)

ot 2 0x?

The unrestricted solution of (50), given the initial condition that random
walk starts from the origin z =0 at t =0, is

flot) = == e (55 (51)
= ———tp |~
/(2r D) 2D%
This solution qualitatively describes the evolution of the probability distri-
bution for dynamical equation (41). It is worth noticing that one should turn
to difference equation (47) for the exact solution, because w < co.
Equation (47) can be presented in operator form, as follows.

B~ (B + E)| f=0 (52)

where E; and F, are the shift operators

Ef(z,t) = f(z,t+7)  Euf(z,t) = f(z +h,t) h=% (53)

Utilizing the relationships between the shift operators and the differential
operator D,

E{ — e'r'ng E; — eTth -Dt — % Dz = % (54)

we can transfer from (47) to (50) if w — oo (that is, if 7, A — 0).
For further analysis it will be more convenient to modify (41) as follows.

& = ysin® (?m) sinwt (55)

assuming that

4
T oan+1

where n is an integer. This replacement does not change the qualitative
behavior of dynamical system (55): it changes only its quantitative behavior
between the critical points, such that we have explicit control over the period
of transition from one critical point to another. Indeed, given that

lim sin/?"* X = sgnsin X

n—oo
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we obtain the solution for z which is valid between critical points z™ and
(m+1).
z :

z= 1(1 — coswt) (57)
w
It is evident that the distances between the equilibrium points will not
depend upon the step m:
mam  ma(m—1) 7o
Vw Vo o Jw

The period of transition from the (m — 1)st to the mth critical point follows
from (57) and (58):

(58)

hm =Tm — Tm—1 =

it = L] arccos (1 - h—m> <z (59)
w v w
which means that
§ > whm (60)

because it should not exceed the period between the conversions of terminal
attractors into terminal repellers (and vice versa).

3.2 Multidimensional systems

The results presented in the previous sections can be generalized to mul-
tidimensional dynamics. For that purpose, consider the following terminal
dynamical system.

i‘i =% sink (

assuming that

f Zﬂjxj) sinwt  T;; = Const (61)

Tll T12

T’ij = /I’jinll > 07 T12 CZ'!22

>0, ... (62)

that is, that |T};| is a symmetric positive-definite matrix; and where k is de-
fined as in (56). Properties (62) provide stability (if sinwt < 0) or instability
(if sinwt > 0) of system (61) at the terminal equilibrium points Z;:

¥ i O0A
j; ! OT;
where
A= A= det|Ty (64)

T AVe
m; is the number of steps made by the variable z;, and OA/0T;; is a cofactor
of the element Tj;.
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After one step of a variable z;, the corresponding value of m; will change
to m; + 1 or m; — 1 with the same probability. Thus, the length of a step h;
made by the variable z; will have 2" equally probable values:

e oA
/\z Zl iﬂz] 8Tz] ﬁij =1 (65)
=
dependent on 2" combinations of the signs of f;; in (65).
Denoting each of these combinations by ¢ (¢ = 1,2,...,2"), and intro-
ducing a shift operator E; for each variable z;:
Bt miye ooy Bige v o) = FUb B v0 09 8s F Lyoans ) (66)

we arrive at the following governing equation for the joint probability density
of the solution to (61).

(Et — g~ 22 f[ E{"’") f=0 (67)
g=11i=1

where h,, is a particular value of h; taken from (62) at a particular g.
It follows from (67) that with increase of n the dynamics of (61) becomes
less and less predictable. For n = 2, (67) reduces to

1
[Et _ Z(E{luEgm 4 Eh12Eh22 A EhlaEhza s Eh14Eh24) f =0 (68)

where

T
hi1 = —hyy = m(alTQ? — agTiz)

T
hio = —hiz = m(angz + a2T12)

(69)

hoi = —hoy = A\/—(O‘?TH — a1Th)
hyg = —hay = (aeT11 + a1 Tho)

A\/_
If w — oo (that is, if hy;,¢t* — 0), (68) transforms into a two-dimensional
Fokker-Planck equation, as follows.

of 1 2f 0*f 0%f
Ul = D2
o~ 2 (D 1522 T Dgy o, T Png (70)
where
D= %(amz +a3T)
2
D12 = 7TA212 (angz + OtzTu) (71)

Dy; = —(a3TH + 4 T3)

™
Al
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We should point out that all the coefficients D;; in (67)—which governs
the evolution of the probability density f—are uniquely defined by the fully
deterministic parameters T;; of the original dynamical system (61).

4. Stochastic attractors in terminal dynamics

All the dynamical systems considered thus far exhibit an unrestricted random
walk. As a result, the joint probability density of their solutions vanishes at
t — o0o. In this section we will describe a new phenomenon—an attraction of
the solution to a stationary stochastic process whose joint density function
is uniquely defined by the parameters of the original dynamical system.

4.1 One-dimensional restricted random walk

We begin with the following one-dimensional dynamical system,
i = ysin® (? sin a:) sinwt (72)
which has the following equilibrium points:

* T«
m = i ——— =...7—,_1, 71,2,...
a arcsin (\/a_)m> m 1 0 (73)

It is clear that the distances between these points depend upon the num-
ber of steps m:

*

e = T — Ty = ATCSIN <7r_\/a&m> — arcsin [%(m - 1)] (74)
We introduce a new variable, y.
y=sinz (75)
Thus,

* TCQ * * yige%
= ——m

Ym \/u—) Ym = Ym—1 = ﬁ

and (76) becomes identical to (58). This means that the probability as a
function of y satisfies the following equation.

(76)

B 55, + ;)] f(6,4) = 0 (77)

However, in contrast to z in (52), y is bounded:
ly| = |sinz| < 1 (78)
The solution of (77), subject to the boundary condition (78), is

f=f(t,y) (79)
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therefore, the solution to the original problem (i.e., to equation (72)) is

f = flt,y(sin2))| cosal (80)
For a better physical interpretation of (80), we consider a limit case where
Vw — 00 (81)
that is,
T, hm — 0

Thus, (77) transfers to the Fokker-Planck equation
af 1 _,0%f
=D 82
ot 2 Oy? 22)
with the boundary conditions

of)  _of

=~ =0 (83)

y=1 y=1—

Subject to initial conditions

f0,9)=0y) ¢y)>0 and / 11 oly)dy =1 (84)

the solution to (82) is

1 oo
fty) =5+ Y ane P 0s By 1)yl <1 (85)
n=1
1
an=2/ go(z)cos%ﬁ(z-i-l)dz n=12... (86)
1
therefore,
1
f(t’y) e ?2' at t — oo, |y| <1 (87)

Returning to the original variable z, we obtain (in place of (87))

f(z) =0.5]y/| = 0.5cosx —g L L g (88)

(z)=0 otherwise

Hence, any solution that originates within the interval

/0 ™
—§<£L'<§ (89)

always approaches stationary stochastic process (88), which plays the role of
a stochastic attractor.
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We emphasize that this is a phenomenon that does not exist in the classi-
cal version of nonlinear dynamics. Unlike the situation for chaotic attractors,
the probability density can be uniquely controlled by the parameters of the
original dynamical system, and the limit stochastic process does not depend
upon the initial conditions if they are within the basin of attraction.

The preceding results were obtained under the assumption of (80), which
allowed us to replace the original difference equation (77) with differential
equation (82). But if \/w is finite and, therefore, steps (74) also are finite,
the solution to (72) in some cases can overcome the barrier of (88) and, after
a slow diffusion, eventually approach the “universal” attractor

F=0 (90)

We investigate such a possibility in detail. Turning to condition (60),
which synchronizes the conversions of terminal attractors into terminal re-
pellers (and vice versa), we assume that the following condition is violated.

'y=whm—€2, ekl at hm<;7/m (91)

Invoking (73), we conclude that if
3 = Fm| < (92)

then the solution to (72) can surpass the barrier |z| = /2, and escape region
(89). Conversely, if

*

> B (93)

7'r *
3~

then this solution will be trapped within the region
o] <[5 = (o)

Qualitatively, the solution to (72) under condition (93) behaves as solu-
tion (88), representing a stochastic attractor. Clearly, (72) has an infinite
number of such attractors, with basins

s PG oo ok T S L W (95)
2 2
Under condition (92), this solution will penetrate the barriers and diffuse
through all the basins (95), approaching the attractor (90).

Now we may generalize (72) by requiring that its solution have a stochas-
tic attractor with a prescribed density function f(z), with the only restric-
tions being that

f@)=0fora| >N N<oo and [ JIVV f@)dz=1  (96)
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Based upon (88), we arrive at the following equation in place of (72).

& = ysin® [ﬂp(x)] sinwt  p(z) = 2/1 f&de -1 (97)
a -N
In fact, introducing a new variable y (compare with (75)):

y=px) y-N)=-1 yNN)=1
we obtain, in place of (88),

_1 o _1dp

We have not yet discussed the fact that the solution to (82) must satisfy
the constraint

/_llf(y)dy=1

in addition to boundary conditions (83). To illustrate that this constraint
does not overdetermine the solution, we integrate (82) over y, as follows.

1
[aw=gliv=7| &

dy =20
6
that is,

1
/ f dy = Const
-1

This means that if the initial conditions satisfy this constraint, then the
solution will satisfy it automatically.
4.2 Multidimensional restricted random walk

In order to illustrate the existence of stochastic attractors in multidimen-
sional systems, we consider the following two-dimensional case.

= sin® [\/5 sin(z; + zz)] sinwt (98)
&g = 7y, sin® [\/a_J sin(z; — xg)] sin wt (99)
Denoting
1+ X2 =
Ty — Tp = Up
we can introduce a dynamical system

= v} sin® \/wsin u; sinwt (100)

Uiy = 75 sin® \/w sin ug sin wt (101)
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that has the same critical points

sinul,sinuzz% m=...,—-2,—-1,0,2,... (102)
and, therefore, the same probability distribution of the solution as the original
dynamical system.

Equations (100) and (101) have the form of (72) and, therefore, their
formal solutions follow from (88):

2
f(u1) = 0.5|cosu | %<u1<m2—+—),m1=...,—1,0,1,2,...
flu) =0 otherwise (103)
2
f(ug) = 0.5|cosus| 7TTm2<'u.2<7T(—m22i—),m2=...,—1,0,1,2,...
fluz) =0 otherwise (104)

However, not all of these solutions are stable. Applying stability conditions
(see [17]) to linearized versions of (98) and (99) yields

cosxy —coszy <0 coszicoszy < 0 (105)
that is,
cosz; <0 coszg >0

therefore, the solutions are stable if
my=...,—7,-3,1,5,9,... mo=...,—5—-1,3,57,... (106)

in (103) and (104). Returning to the original variables, we obtain

f(z1,z2) = 0.5|cos(z1 + z2) cos(zy — z2)| (107)
2 2
7rm1<x1+z2<7r(m1+ ) 7rm2<$1_x2<7r(m2+ )
2 2 2 2
(108)

Solution (107) represents a stationary stochastic process which attracts all
solutions with initial conditions within area (108). Each pair m; and my
from sequences (106) defines a corresponding stochastic attractor with joint
density (107). Clearly, those solutions for which m; and m, do not belong to
(106) are unstable and, eventually, will be attracted to one of the stochastic
attractors (108).

Turning to an n-dimensional dynamical system, we confine ourselves by
the use of the special form

&; = 7y sin® @pi y;) | sinwt (109)
o
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where

yvi=> Tyz; Ty = Const (110)
=1

We assume that

%{>0 for |y1| < N;
dyz =0 for |y,| = Ni

and that the Tj; form a symmetric positive-definite matrix, that is, that
conditions (62) are satisfied.

Based upon conditions (62) and (111), we conclude that system (109)
is locally stable (or locally unstable, depending upon the sign of sinwt),
and that it synchronizes the conversions of terminal attractors into terminal
repellers (and vice versa).

Exploiting (97), we find that the solution to (109) has the following den-
sity functions, in terms of the variables y;.

N; < o0 (111)

dp
F@1s- - Yn) le () = (112)
Y
In terms of the variables z;, the joint density of the solution is
fl@y, ..., z0) = [ Pi(wi). det T3] (113)
i=1

where y; is expressed via z; by (110).

4.3 Examples

1. We begin with the following problem: Find a dynamical system whose
solution is attracted to a stochastic process with the normal density

= (BTN elz—1)?/(20%)
f(z) —z( ) o\/iF (114)

a

where p and o are the mean and the standard deviation, respectively, and
2z(y) is the standard normal density function.

To apply (97), we must first modify (114), because it does not satisfy
restriction (96). We introduce a truncated standard normal density function

A(y) = {g(y) ii {g{ y % N <o (115)

Then, with reference to (97), we obtain
& = ysin® [\/aerf (
V20

Thus, (116) represents a dynamical system whose solution is attracted
to a stochastic process with density function (115). For sufficiently large N,

)]sinwt ert(y =—/ Hu)du (116)
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it will approximate a Gaussian process, with p and o as the mean and the
standard deviation, respectively.

2. Let us assume that the density f(z) of a desired stochastic process is
characterized by p = po,0 = p1, and higher central moments p,.. Utilizing
the Gram-Charlier series expansion [20]

1,28 T —
e 5(r) “)
f(=z) Urgcrz ( = (117)
where
1 1
=1 ca=c=0 C3=—§,u3 C4——‘I([.L4—3) (118)

1 1
cs = —§(u5 — 10pu6) ce = a(us — 15p4 + 30) and so forth
and

1)
™ =
z = (119)

and applying (97), we obtain

& = ysin® {N—a—\/a [e?f (“’”\/_5:) 1.5 4 e (”U;“ﬂ } sinwt  (120)

r=3

Hence, the solution to dynamical system (120) is attracted to a stochastic
process whose density function is characterized by the moments .
3. In this example we pose the following problem: Find a dynamical system
whose solutions z;(t) are attracted to a stochastic process characterized by
the column of means and the matrix of moments

We can find an orthogonal transformation

vi =1+ 2 Tiszs — 1y) (122)
J=1
such that
UL 1 ifi=k
Myi=m=0  op=2 % 0uliTu= ik={0 ofiLk (123)

j=1¢=1

where y; are non-correlated standard normally distributed variables.
Combining (109), (110), and (116) we obtain

n

&; = v; sin® {ﬂ(;f (ﬂﬂ sin wt Yi = Tii(x; — 1 124
9 S 7 ,; (5 — pg) (124)
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Some comments concerning the stability of (124) must be made. Since
T;; is an orthogonal matrix, it does not satisfy conditions (62). However, the
real parts of the eigenvalues of T;; are

RXi=1 or R\ =cosp; >0 for0 << g (125)
where ; are the angles of rotation of the coordinate axes. Because

e erf (y;) >0  for [y < V; (126)
ay;

(that is, condition (111) is satisfied), display (124) (when linearized with
respect to its equilibrium points) has eigenvalues whose real parts are all
positive (if sinwt > 0 ) or negative (if sinwt < 0). This synchronizes conver-
sions from terminal attractors to terminal repellers (and vice versa).

Thus, the solution to the dynamical system is attracted to a stochas-
tic process with the probabilistic structure prescribed in (121) if the initial
conditions are within the basin of attraction |y;| < N;.

5. Self-organization in terminal dynamics

A dynamical system is considered self-organizing if it acquires a coherent
structure without specific interference from the outside. In this section we
show that terminal dynamics possesses a powerful tool for self-organization,
based on the possibility of coupling between the original dynamical system
and its own associated probability density dynamics.

We begin with dynamical system (116), represented in the form of (41).

& = ysin® (?y) sinwt  y=erf (%) (127)

The probability density function f(y,t) satisfies (50), as follows.

of ma?d?
8—{‘,0:78_3,/{ ~N LPEN (128)

Its solution (subject to boundary and initial conditions (83) and (84),
respectively), is given by (85). In terms of z, this solution is

:ct)—{ +Zan —gmla’n’t osn [erf <\/_a>]}(f) (129)

where % is defined by (114) and (115).
In all the preceding cases, the parameter o was prescribed in advance,
denoting the variance of the stationary density

fulz) =3 (;) at t — 0o (130)
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Let us assume that the parameter ¢ depends upon moments of the current
density (129)—for instance,

o* = op — Var(z) oo = Const (131)

where

N
Var(z) = /Naszf*(x,t) dz (132)
We point out immediately that the time scale ¢’ of changing o is defined
by (129), and has the order
1
t'~ e (133)
Because the time scale t” of changing z in (127) has the order t” ~ 1/4/w — 0
(see (46)) and, therefore,

t >t (134)

the variable o can be considered as a slowly changing parameter in (127)
(but not in (129)!).

Thus, dynamical system (127) is guided by the probability density via the
parameter o. This parameter is obtained from (131), after the substitution
of (131) in the integrand. For the final stationary state (¢ — o), we obtain
(from (131) and (132))

Var(z) = 0® = o2 — Var(z) (135)
hence,
ot = %0'(2) at t — oo (136)

Therefore, the solution to dynamical system (127) approaches a stochastic
attractor with the probability density Z(z/(co/v/2)). We stress that this
attractor has not been “stored” in the prescribed coefficients of (127): the
dynamical system “found” it as a result of coupling with its “own” probability
equations.

In the general case, parameters of dynamical system (109) can be coupled
with moments of probability density (113) to lead to new self-organizing
architectures.

6. Discussion and conclusion

6.1 Relevance of terminal dynamics to the determinism of
Newtonian dynamics

Classical dynamics describes processes in which the future can be derived
from the past, and in which the past can be traced from the future by time
inversion, t — —t. Because of such determinism and reversibility, classical
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dynamics becomes fully predictable and, therefore, cannot explain the emer-
gence of new dynamical patterns in nature (as nonequilibrium thermodynam-
ics can). This major flaw in classical dynamics has attracted the attention
of many outstanding scientists (Gibbs, Planck, and Prigogine, among others;
see [19]).

Considering the governing equations of classical dynamics,

d 8L 9L OR
G 9 " 5g gg - bZeom (137)

(where L is the Lagrangian, g;, ¢; are the generalized coordinates and veloc-
ity, and R is the dissipation function), we should recall that the structure of
R(Gi, - ..,qn) is not prescribed by Newton’s laws: some additional assump-
tions must be made in order to define it. The “natural” assumption (which
has been never challenged) is that these functions can be expanded in Taylor
series with respect to equilibrium states ¢; = 0. Clearly, this requires the
existence of the derivative

< 00 at ¢; — 0

0’R
0q; 04;

A departure from that condition is proposed in [15], where the following
dissipation function is introduced.

P k+1
T
‘L . 1
k+1Z (L8
in which
=2 21 p»i (139)
p+2

where p is a large odd number. By selecting large p, we can make k close to
1, so that (138) is almost identical to the classical assumption (when k = 1)
everywhere excluding a small neighborhood of the equilibrium point ¢; = 0;
whereas, at that point,

2
‘aR —o00 atg —0 (140)

04; 9g;

Thus, the Lipschitz condition is violated; the friction force F; = —(0R/9¢;)
grows sharply at the equilibrium point, and then it gradually approaches its
“classical” value. This effect can be interpreted as a mathematical represen-
tation of a jump from static to kinetic friction, where the dissipation force
does not vanish with the velocity.

It appears that this “small” difference between the friction forces at k =1
and k£ < 1 leads to fundamental changes in Newtonian dynamics. In order
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to demonstrate this, we consider the relationship betwen the total energy E
and the dissipation function R.

dE OR
— ==Y dir=—(k+1)R (141)
dt Z,L: g aq,
Within a small neighborhood of an equilibrium state (where the potential
energy can be set to zero), the energy E and the dissipation function R have
the respective orders

E~g, R~gt  atE—0 (142)
Hence, the asymptotic form of (141) can be presented as

dE

5 = AEFY?  at E— 0, A= Const (143)
If A>0and k < 1, the equilibrium state ' = 0 is an attractor where the

Lipschitz condition (|dE/dE| — co at E — 0) is violated. Such a terminal

attractor is approached by the solution originated at £ = AEy > 0, in finite

time, as follows.

o dE 2AESP/?
0= Jum, ABEDE = T R4 <% (144)

Clearly, this integral diverges in the classical case k > 1, where ty — oo.
The motion described by (143) has a singular solution F = 0, and a regular
solution

g , I 2/(1-k)
E= [AEO + A - Ryt (145)

In a finite time, the motion can reach the equilibirum and switch to the
singular solution F = 0, and this switch is irreversible.

The coefficient & can be found from experimental observations of the time
to. In order to illustrate this, we consider a plane-incompressible flow, with
a stream function 1 and the constitutive law

i A _ %
Ozy = H1 (8—:(!2—%) vz—-a—y,vy——%, k<1 (146)

where 04y, v, and v, are viscous stress and Cartesian projections of velocity.
Based upon the relationship between the rate of change of the kinetic energy
and the dissipation function, we obtain

P 8 8’1/1 2 3"/} 2 B 621ﬁ 02110 k+1
5& - {(&) - (6_y> ] dzdy = —,ul/v (8_y2 - w) da:dy
(147)

where p is density, u; is viscosity, and V' is the volume occupied by the fluid.
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Suppose that ¥(t, z,y) can be represented as a product ¢ = D) d(z,y).
Then (147) reduces to the ordinary differential equation with respect to

©(t) = P2(t), as follows.

45 = —71/190k (148)

2T 2 7\ k+1
[ (2220 sy
v \0y? 0Ox?
(91/7 = % > = Const v = —;
/V (£> + (55) } dz dy
Equation (148) describes the damping of the fluid motion due to viscous

stress (146). The equilibrium state represents a terminal attractor which is
approached in a finite time:

and

e "
to= ——— = (0 149
0 (1 — k) @0 = ¢(0) (149)
Equation (149) allows one to evaluate k and v; from experimental measure-
ments of tg.

In conclusion, we stress again that all the new effects of terminal dynamics
emerge within drastically diminishing neighborhoods of equilibrium states,
which are the only domains where the governing equations are different from
the classical models.

6.2 Relevance to chaos

One of the central problems of Newtonian dynamics is the explanation of the
fact that a motion that is described by fully deterministic governing equations
can be random. To discuss this, let us consider the exponential growth of a
variable a,

a=aqe  0< A<oo (150)
Clearly, the solution with infinitely close initial condition
a=a+e -0 (151)
will remain infinitely close to the original solution,
|6 — o] =ee® =0 ife—0,t<o0 (152)

during all bounded time intervals. This means that random solutions can
result only from random initial conditions when € in (151) is small but finite,
rather than infinitesimal. In other words, classical dynamics can explain am-
plifications of random motions, but cannot explain their origin. According
to the terminal modification of Newtonian dynamics, random motions are
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generated by unstable equilibrium states at which dissipation forces do not
vanish with velocities, that is, at which the Lipschitz condition is violated.
We recall that the evolution of these random motions amplified by the mech-
anism of instability can be predicted by the use of the stabilization principle
discussed in [4-6].

Because of the finite precision with which initial conditions are known,
terminal equilibrium points can be incorporated into classical dynamics in
the following way. Let us consider a first-order dynamical equation,

v+av=0 (153)
and assume that the variable v can be observed with a finite error
|ve] < vo (154)

where vg is a representative value of v characterizing the scale of motion.
The actual time of approaching the attractor

o] < [v.| (155)
is finite:
T S| B (156)
« Vs

A terminal version of (156) that describes the same process,

b+ aw {1 +(1—k) (:—O)k_lJ =0 (157)

has a solution which, at ¥ — 1, is infinitely close to the solution of (153)
everywhere, except in a small neighborhood of the attractor v = 0. The time
of approaching this attractor is

_ 1
~a(l-k)e?

Equating ¢; from (20) and ¢, from (22), we find the order of an “equivalent”
value of &,

ty (158)

oo s (159)

Vo
In |—

Vs

Thus, the fact that dynamical parameters cannot be observed or measured
with infinite precision is mathematically formalized by introducing terminal
equilibrium points; the parameter k < 1 is defined by the relative error v. /vo.
The terminal version of dynamical system (1),

Vs

B = v [1 +(1—k) (U—O)H] o > v; (160)
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allows us to explain the appearance of random solutions without random
inputs within the framework of differentiable dynamics. However, additional
terms in (160)(such as dissipation forces (138)) cannot be interpreted as
physical quantities, because they are not invariant with respect to coordinate
transformations. This fact emphasizes a computational origin of “classical”
chaos, in contrast to a physical origin of terminal chaos.

6.3 Conclusion

We have discussed a new mathematical model for nonlinear dynamics—
terminal dynamics. In this model, the dissipation function is reshaped, such
that the time of approaching equilibrium points becomes theoretically finite
due to violation of the Lipschitz condition. As a side effect of this property,
terminal dynamics becomes irreversible and probabilistic.

We have given special attention to well organized terminal dynamical
systems that are driven by a global rhythm, generated by a periodic attractor.
Such systems have a relatively simple probabilistic structure based upon a
random-walk paradigm; they are more appropriate for describing evolutions
in biological and social systems, in which the coupling between variables is
more flexible and, therefore, can be modeled by probabilistic relationships.

It appears that the terminal model, applied to Newtonian dynamics, can
provide a mathematical formalization of the fact that dynamical parameters
cannot be observed with infinite precision in real physical systems; hence,
all the equilibrium points are actually terminal. This formalization makes
Newtonian dynamics irreversible, and it provides a formal mathematical ex-
planation for the appearance of random solutions in chaotic systems.

Acknowledgments

The research for this paper was carried out at the Jet Propulsion Laboratory,
California Institute of Technology. Support for this research came from Agen-
cies of the U.S. Department of Defense, including the Innovative Science and
Technology Office of the Strategic Defense Initiative Organization, through
an agreement with the National Aeronautics and Space Administration. This
research was also supported in part by the U.S. Army/ASAS Project Office,
(Task Order RE-232/#3). The manuscript was expertly prepared by Annie
Aroyan.

References

[1] Zak, M., “Uniqueness and Stability of the Solution of the Small Perturbation
Problem of a Flexible Filament with a Free End,” PMM (Moscow), 39 (1970)
1048-1052.

(2] Zak, M., “On the Failure of Hyperbolicity in Elasticity,” Journal of Elasticity,
12(2) (1982) 219-229.



Introduction to Terminal Dynamics 87

(11]
(12]

(13]

Zak, M., “Cumulative Effect at the Soil Surface Due to Shear Wave Propa-
gation,” Journal of Applied Mechanics, 50 (1983) 227-228.

Zak, M., “Deterministic Representation of Chaos in Classical Dynamics,”
Physics Letters A, 107TA(3) (1985) 125-128. Also pages 57-60 in Chaotic Os-
cillations: Theory and Applications, edited by Tomasz Kapitaniak (Singapore,
World Scientific, 1992).

Zak, M., “Closure in Turbulence Theory Using Stabilization Principle,”
Physics Letters A, 118(3) (1986) 139-143.

Zak, M., “Analysis of Turbulence in Shear Flows Using the Stabilization Prin-
ciple,” Mathematics and Computer Modeling, 12(8) (1989) 985-990.

Zak, M., “Terminal Attractors for Associative Memory in Neural Networks,”
Physics Letters A, 133(1,2) (1988) 18-22.

Zak, M., “Terminal Attractors in Neural Networks,” Neural Networks, 2(3)
(1989) 259-274.

Zak, M., “Non-Lipschitzian Dynamics for Neural Net Modeling,” Applied
Mathematics Letters, 2(1) (1989) 69-74.

Zak, M., “Spontaneously Activated Systems in Neurodynamics,” Complex
Systems, 3 (1989) 471-492.

Zak, M., “Weakly Connected Neural Nets,” Applied Mathematics Letters, 3(3)
(1990) 131-135.

Zak, M., “Creative Dynamics Approach to Neural Intelligence,” Biological
Cybernetics, 64(1) (1990) 15-23.

Zak, M., “Terminal Chaos for Information Processing in Neurodynamics,”
Biological Cybernetics, 64 (1991) 343-351.

Zak, M., “An Unpredictable Dynamics Approach to Neural Intelligence,”
IEEE FExpert, (August 1991) 4-10.

Zak, M., “The Problem of Irreversibility in Newtonian Dynamics,” Interna-
tional Journal of Theoretical Physics, 2 (1992) 333-392.

Zak, M., “Irreversibility and Creativity in Neurodynamics,” International
Journal of Computers and Electrical Engineering (1993) (in press).

Zak, M., “Terminal Model of Newtonian Dynamics,” International Journal
of Theoretical Physics, 1 (1993) 159-190.

Lichtenberg, A. J., and M. A. Lieberman, Regular and Stochastic Motions
(New York, Springer-Verlag, 1983).

Prigogine, 1., From Being to Becoming (San Francisco, Freeman, 1980).

Korn, A., and T. Korn, Mathematical Handbook (New York, McGraw-Hill,
1968).





