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Abstract. We present results from an experiment similar to one per­
formed by Packard [24], in which a genetic algorithm is used to evolve
cellular automata (CAs) to perform a particular computat iona l t ask .
Packard examined the frequency of evolved CA rules as a function of
Langton's A par amet er [17]; he interpret ed t he results of his exper­
iment as giving evidence for two hypotheses: (1) CA rules that are
able to perform complex comp utat ions are most likely to be found near
"crit ical" Avalues (which have been claim ed to correlate with a phase
transition between ord ered and chaot ic behavioral regimes for CAs) ;
(2) Wh en CA rules are evolved to perform a compl ex comput at ion,
evolut ion will t end t o select rules with Avalues close to the critical val­
ues. Our experiment produced quit e different results , and we suggest
that the int erpretation of the original results is not correct. We also
review and discuss issues related to A, dyn ami cal-b ehavior classes, and
computation in CAs. The primary constructive results of our study
are the identification of the emergence and competition of comput a­
tional strategies, and the analysis of the central role of symmetries
in an evolut ionary system. In pa rticular, we demonstrat e how sym­
metry breaking can impede evolut ion toward higher computational
capability.
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1. Introduction

The notion of "computat ion at the edge of chaos" has at t racted considerable
at tent ion in t he st udy of complex systems and arti ficial life (see, for exa m­
ple, [4, 5, 15, 17, 24, 31]). T his notion is related to the broad quest ion of the
relationship between a computat ional system's ability for complex informa­
t ion processing and other measures of the system's behavior. In part icular ,
does the ability to perform nontrivial computation require t hat a system's
dynamical behavior be "near a t ransition to chaos"? Likewise, much atten­
tion has been given to the notion of "the edge of chaos" in the context of
evolut ion. In particular, it has been hypothesized th at when biological sys­
tems must perform complex computat ion to survive, the proc ess of evolut ion
under natural select ion tends to select such systems near a phase t ransit ion
from ordered to chaotic behavior [14, 15, 24].

In this paper , we reexamine one study that addressed these questions
in the context of cellular automata [24J. The results of th e original st udy
were interpreted as evidence that an evolut ionary pro cess in which cellular­
auto mata rules had been selected to perform a nontrivial computat ion
preferenti ally selected rules near t ransit ions to chaos . We show that
this conclusion is neit her supporte d by our experimental results nor consis­
tent with basic mathematical propert ies of the computation being evolved.
We also review and clar ify, in the context of cellular automata, not ions
relat ing to such terms as "computat ion," "dynamical behavior ," and "edge
of chaos ."

2 . C ellular automata an d d ynamics

Cellular auto mata (CAs) are discrete, spat ially ext ended dynamical systems
that have been st udied extensively as models of physical processes and as
computat ional devices [7, 11, 26, 30, 32]. In their simplest form , CAs consist
of spat ial lat t ices of cells, each of which, at t ime t , can be in one of k st ates.
We denote th e lat tice size or number of cells as N. A CA has a single fixed
rule, which is used to upd ate each cell; the rule maps from t he states in
a neighborhood of a cell- for exam ple, th e states of a cell and its nearest
neighb ors- to a single state, which is the update value for that cell. The
lat t ice begins with an initial configuration of local states and, at each t ime
step , t he states of all cells in the lattice are synchronously up dated. We
use the te rm "state" to refer to the value of a single cell-for example, a or
I- and "configuration" to mean the pattern of states over th e ent ire lat ti ce.

The CAs that we discuss in thi s paper are all one-dimensional, with two
possible states per cell (0 and 1). In a one-dim ensional CA, the neighborhood
of a cell includes the cell itself and some radius r of neighbo rs on eit her side
of the cell. All of the simulat ions will be of CAs with spat ially periodic
boundary condit ions (in other words, th e one-dimensional latt ice is viewed
as a circle, with the right neighb or of the rightmost cell being the left most
cell, and vice versa ).
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Figure 1: Two space-time diagrams for the binary-state Gacs­
Kurdyumov-Levin CA. N = 149 sites are shown evolving over 149
time steps, with time increasing down the page, from each of two
different initial configurations. In (a) , the initial configuration has a
density of Is of approximately 0.48; in (b), a density of approximately
0.52. By the last time step the CA has converged to a fixed pat tern of
(a) all Os and (b) all Is. In this way the CA has classified the initial
configurations according to their density.

T he equations of motion for a CA are often expressed in the form of a
rule table: a lookup table list ing each of the neighb orhood pat terns, and the
state to which the cent ral cell in that neighborhood is mapped. For example,
the following displays one possible rule table for a one-dimens ional, two-state
CA with radius r = 1. Each possible neighborhood 'T} is given , along with
the "output bit" s = 1>('T} ) to which the centra l cell is updated.

'T} 000 001 010 all 100 101 110 111
s a a a 1 a 1 1 1

In words, this rule says that for each neighbo rhood of three adjace nt cells,
th e new state is decided by a maj ority vot e among the three cells. To run the
CA, this lookup table is applied to each neighbo rhood in th e cur rent lat t ice
configuration, respect ing the choice of boundary condit ions, t o produce the
configuration at the next time st ep.

A met hod commonly used to examine the behavior of a two-st at e, one­
dimensional CA is the display of it s space-t ime diagram (a two-dimensional
picture that vertically strings together the one-dimensional CA lattice con­
figur ations at the successive t ime steps , with white squares corres ponding to
cells in state 0, and black squares corres ponding to cells in state 1). Two
such space-time diagrams, reproduced in Figure 1, show the actions of the
Gacs-Kurdyumov-Levin (GKL ) bin ary-state CA on two ra ndom initial con­
figur ations of different densit ies of Is [6, 8]. In both cases , the CA relaxes to
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a fixed pat tern over time-in one case, all as, and in the other case, all Is.
T hese patterns are, in fact , fixed points of the GKL CA. That is, once they
are reached, further applicat ions of the CA do not change t he pattern . We
will discuss the GKL CA in further det ail below.

CAs are of int erest as models of physical processes because, like many
physical systems, t hey consist of a large number of simple components (cells)
that are modified only by local interactions, bu t which, act ing together , can
produce global complex behavior. Like the class of dissipative dynamical sys­
tems, the class of one-dimensional CAs exhibit the full spect rum of dynamical
behavior: from fixed points, as seen in Figure 1, to limit cycles (periodic be­
havior), to unpredict able ("chaotic") behavior. Wolfram considered a coarse
classification of CA behavior in terms of t hese categories; he proposed the
following four classes with the intent ion of captur ing all possible CA behavior
[31] .

Class 1: Almost all initial configurations relax afte r a t ransient period
to the same fixed configuration (for example, all Is) .

Class 2: Almost all initi al configurat ions relax after a t ransient pe­
riod , either to some fixed point or to some temporally periodic cycle of
configurations, depending on the initial configuration.

Class 3: Almost all init ial configurations relax after a trans ient pe­
riod to chaotic behavior. (T he term "chaot ic" refers, in this paper, to
apparent ly unp redictable space-t ime behavior. )

Class 4: Some initi al configurat ions result in complex localized st ru c­
tures , somet imes long-lived.

Wolfram does not state th e requirements for membership in Class 4 any
more precisely than this. Thus, unlike the categories derived from dynamical
systems theory, Class 4 is not rigorously defined.

It should be pointed out that , on finite lat tices, there is only a finite
number (2N ) of possible configurat ions, so all rules ulti mately lead to periodic
behavior. Class 2 refers not to t his type of periodic behavior , but to cycles
with periods much shorter than 2N

.

3. Cellular automata and computation

CAs are of interest also as computational devices, both as th eoret ical to ols
and as pract ical, highly efficient parallel machines [26, 27, 30, 32].

"Comput at ion" has several possible meanin gs in the context of CAs. The
most common meaning is that a CA does some "useful" comput at ional t ask.
In that case, the rule is int erpreted as the "program," the initial configurat ion
is interpreted as the "input ," and the CA run s for some specified number of
t ime ste ps or unt il it reaches some "goal" pat tern-possibly a fixed point
pat tern . The final pattern is interpreted as t he "out put." An example of
this meaning is t he use of CAs to perform image-processing tasks [27].



Revisiting the Edge of Chaos 93

A second meanin g of computation by CAs is t hat a CA, given particular
initi al configurat ions, is capab le of universal comput ation. That is, given the
right initi al configurat ion, the CA can simulate a programmable computer­
complete with logical gates, t iming devices, and so on. Conway's Game of Life
[1] is such a CA; one const ruc tion for universal comput ation in the Game of
Life is given in [1]. Similar construct ions have been made for one-dimensional
CAs [21]. Wolfram speculated that all Class 4 rules have the capacity for
universal computation [31]; however , given t he informality of the definition
of Class 4 (not to mention t he difficulty of proving that a given rule is, or
is not , cap able of universal computat ion), thi s hypothesis is imp ossible to
verify.

A third meaning of computation by CAs involves the behavior of a given
CA on an ensemble of initial configurations , interpret ed as a kind of "int rin­
sic" computation. Such computation is not interpreted as the perform ance of
"useful" transformations of input to produce out put ; rather, it is measured
in terms of generic, st ructural computational element s such as memory, in­
formation production, inform ation t ransfer, logical operati ons, and so on. It
is important to emphas ize that the measur ement of such intrinsic computa­
t ional elements does not rely on a semant ics of utility (as do t he preceding
computation types ). That is, t hese elements can be detected and quanti­
fied without reference to any specific "useful" computation performed by the
CA- such as enhancing edges in an image or comput ing t he digits of 7f. This
notion of intrinsic computation is cent ra l to the work of Crutchfield , Hanson,
and Young [4, 12].

In general, CAs have the capacity for all kinds of both dynamical and
computati onal behaviors. For t his reason-in addit ion to t he computationa l
ease of simulating th em-CAs have been considered a good class of models
for use in the st udy of how dynamical behavior and computat ional ability
are related. Similar quest ions have been addressed in the cont ext of other
dynamical systems, including cont inuous-state dynamical systems (such as
iterat ed maps and differenti al equat ions) [4, 5], Boolean networks [14], and
recurr ent neur al networks [25]. We confine our discussion to CAs.

With this background in mind, t he broad quest ions presented in Section 1
can now be rephrased in the context of CAs, as follows.

• What properties must a CA possess to perform nontri vial computat ion?

• In particular , does a capacity for nontrivial computation (in any of t he
three senses previously describ ed) requir e t hat a CA be in a region of
rule space near a t ransit ion from ordered to chaot ic behavior?

• When CA rules are evolved to perform nontrivial computat ion, will
evolution tend to select rules near such a t ransit ion to chaos?

4. Structure of CA rule space

A numb er of st udies conducted during th e last decade have addressed our
first quest ion. We focus on Langton's empirical investigations of the second
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quest ion in terms of the st ructure of the space of CA rules [17J. The rela­
t ionship of the first two quest ions to th e third-evolving CAs- is describ ed
subsequent ly.

One of t he primary difficulties in understanding the st ructure of the space
of CA rules (and its relation to computational capability) is its discrete na­
ture. In contrast to the well-developed theory of bifur cations for cont inuous­
state dynamical systems [10], there appears to be lit tle or no geometry in
CA space, and no not ion of smoothly changing a CA to get another that
is "nearby in behavior." In an at tempt to emulate such a change, however ,
Langton defined a parameter , A, that varies incremental ly as single output
bits are turned on or off in a given rule table. For a given CA rule table, A is
computed as follows. For a k-state CA, one state, q, is ar bit ra rily chosen to
be "quiescent ." (In [17], all states obeyed a "st rong quiescence" requirement :
for any state s E {O, .. . , k - I }, t he neighborhood consist ing ent irely of state
s must map to s.) The A of a given CA rule is the fraction of nonquiescent
output states in th e ru le table. For a binary-state CA, if 0 is chosen to be
the quiescent st ate, t hen A is simply the frac t ion of output 1 bit s in the rule
table. Typically, th ere are many CA rules with a given Avalue. For a binary
CA, the numb er is st rongly peaked at A = 1/2 , due to th e combinatorial
dependence on the radius r and t he number of st ates k . It is also symmetric
about A = 1/ 2, due to the symmetry of exchanging Os and Is . Generally, as
A is increased from 0 to 1- (1Ik), t he associated CAs shift from those having
the most homogeneous rule tables to t hose having the most heterogeneous .

Langton performed a range of Monte Carlo samples of two-dimensional
CAs, in an attempt to characterize their average behavior as a funct ion of
A [17]. The notion of "average behavior" was intended to capture the most
likely behavior observed with a randomly chosen initial configuration for CAs
randomly selected in a fixed-Asubspace . His observat ion was th at the average
behav ior of rules passed through the following regimes, as A was increment ed
from 0 to 1 - (11k):

fixed point =} periodic =} "complex" =} chaotic.

That is, the average behavior at low A was for a rule to relax to a fixed point
after a relat ively short t ransient phase (see Figure 16 in [17], for example).
As A was increased, rules tended to relax to periodic pat terns, again afte r
a relatively short t ransient phase. As A reached a "crit ical value" Ac , rules
tended to have longer and longer transient phases. Addit ionally, the be­
havior in this regime exhibited long-lived , "complex" pat terns-nonperiodic,
but nonr andom. As A was increased furth er , th e average transient lengt h
decreased, and rules tended to relax to apparent ly random space-t ime pat ­
terns . The act ua l value of Ac depended on r , k, and t he actual path of the
CA found as A was incremented.

These four behavioral regimes roughly correspond to Wolfram's four
classes. Langton 's claim was that, as A was increased from 0 to 1 - (11k),
the classes were passed t hrough in t he order 1, 2, 4, 3. He noted that , as
A increases, "... one observes a phase transition between highly ordered and



Revisiting the Edge of Chaos 95

highly disordered dynamics, analogous to the phase transitio n between the
solid an d flu id states of matter." ([17], p. 13.) According to Langton, as A
is increased from 1 - (1/k) to 1, the four regimes will occur in the reverse
order, subject to some constraints for k > 2 [17]. For two-state CAs, there
are two values of Ac at which the complex regime will occur , since behavior
is necessarily symmetric abo ut A= 1/ 2.

How is Ac determined? Following standard practi ce, Langton used vari­
ous st at ist ics (such as single-site ent ropy, two-site mutual inform ation , and
transient length) to classify CA behavior. His addit ional step was to cor­
relate behavior with A via these statist ics. Langton 's Monte Carlo samples
showed that there was some corre lation between t he statist ics and A. But
the averaged statistics did not reveal a sharp t ransit ion in average behavior ,
a basic property of a phase transit ion in which macroscopic highly averaged
quantities do make marked changes. We note that Woot ters and Langton
[33] gave evidence that the t ransition region narr ows in the limit of an in­
creasing numb er of states. Their main result indicates that there is a sharp
transition in single-site ent ropy at Ac ~ 0.27, in one class of two-dimensional
infinite-state stochas t ic CAs.

The existence of a crit ical A, and the dependence of the crit ical region's
width on r and k, are less clear for finit e-st ate CAs. Nonetheless, Packard
empirically determined rough values of Ac for r = 3, k = 2 CAs by look­
ing at the difference-pattern spreading rate, r, as a functio n of A [24] . The
spreading rate is a measure of unpredict ability in spat iotempora l patterns,
and is thus one possible meas ure of chaot ic behavior [22, 31]. It is analogous
(but not identi cal) to the Lyapunov exponent for cont inuous-state dynamical
syste ms. In the case of CAs, it indicates t he average propagation speed of
inform ation t hrough space-t ime, though not the rat e of production of local
information.

At each A, a large number of rules was sampled, and r was est imated for
each CA. The average for r over the selected CA was taken as t he average
spreading rate at the given A (t he results are reproduced in Figure 2). At low
and high A, r vanishes; at intermediat e A, it is maxim al; and in the "critical"
A regions- centered about A~ 0.23 and A~ 0.83-it rises or falls gradually.
(Li et al. (see [20], App endix B) define Ac as the onset of nonzero r, and use
mean-field theory to est imate Ac in t erms of r for two-state CAs. The value
from their formula, set t ing r = 3, is Ac = 0.146, which roughly matches the
value for the onset of nonzero r seen in Figure 2.)

Though not shown in Figure 2, the variance of r is high for most values
of A. The same is true for single-site ent ropy and two-site mutu al inform a­
tion as a function of A [17] . In other words, the behavior of any part icular
rule at a given value of A might be very different from the average behavior
at that value. Thus, int erpret ation of t hese averages is somewhat problem­
atic . The preceding account of the behavioral struct ure of CA rule space
(as parameterized by A) is based on st atistics taken from Langton 's and
Packard's Mont e Carlo simulat ions. (Various problems in correlating A with
behavior will be discussed in Section 8; a detailed analysis of some of these
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Figure 2: A graph of the average difference-pattern spreading rate, "
of a large number of randomly chosen r = 3, k = 2 CAs, as a function
of A. (Adapted from [24], with the author's permission. No vert ical
scale was provided in the original.)

problems can be found in [3].) Other investigat ions of the st ruct ure of CA
rule space are reported in [19, 20].

It is claimed in [17J that .\ accurate ly predicts dynamical behavior only
when the space of rules is large enough. App arent ly, A is not intended to be
a good behavioral predictor for the space of elementary (r = 1, k = 2) CA
rules and possibly not for r = 3, k = 2 rules either).

5 . CA rule space and com putation

Langton (in [17]) hypothesized that a CA's computational capability is re­
lated to its average dynamical behavior , which .\ is claimed to predict .
In parti cular, he hypothesized t hat CAs capable of performing nontrivial
computation- including universal computat ion- are most likely to be found
in the vicinity of "phase t ransitions" between order and chaos; that is, near Ac

values. This hypothesis relies on a basic observat ion of computat ion theory,
that any form of computat ion requires memory (information storage) and
communication (information transmission) , and interaction between st ored
and transmit ted inform at ion . In addit ion, however, universal computation
requir es memory and communication over arbit rary dist ances in time and
space. Thus, complex computat ion requires significantly long transients and
space-t ime correlat ion lengths; in the case of universal computat ion, arbi­
t ra rily long transients and corr elations are required. Langton claimed that
these phenomena are most likely to be seen near Ac values- near "phase
transit ions" between order and chaos. T his int uit ion was behind Langton 's
not ion of "computation at the edge of chaos" for CA. (This should be con­
t rast ed with the analysis in [4, 5Jof computation at the onset of chaos and,
in parti cular , with the discussion, also in [4, 5J, of t he stru cture of CA space.)
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6. Evolving CA

T he empirical st udies that we have just describ ed addressed only the rela­
tionship between Aand the dynamical behavior of CA, as revealed by several
statist ics. T hey did not correlate A, or behavior, with an independent mea­
sure of computation. Packard [24] addressed this issue by using a genetic
algorithm (GA) [9, 13] to evolve CA rules to perform a particular computa­
tion. His exp eriment was meant to test two hypotheses: (1) CA rules able
to perform comp lex computations are most likely to be found near Ac val­
ues; and (2) when CA rules are evolved to perform a complex computation,
evolut ion will tend to select rules near Ac values.

6 .1 The computational t ask , and an example CA

Packard's experiment consisted of evolving two-st ate (s E {O, I} ) one­
dimensional CAs with r = 3. The comput ational t ask for the CA was to
decide whether or not the initial configuration consisted of more than half
Is. If so, the desired behavior for the CA was to relax , after some number
of t ime ste ps, to a fixed-point pat tern of all Is. If the initial configuration
consisted of less than half Is, the desired behavior for t he CA was to relax ,
after some numb er of t ime ste ps, to a fixed-point pattern of all Os. If the
initial configuration contained exactly half Is, then the desired behavior was
undefined. (This situation can be avoided in pract ice by requiring th at the
CA lattice be of odd lengt h.) Thus, the desired CA had only two invariant
pat terns, all Is or all Os. In the following, we denote t he density of Is in a
lat t ice configuration by P, t he density of Is in the configuration at time t by
p(t ), and the threshold density for classificat ion by Pc.

Does the Pc = 1/ 2 classificat ion task qualify as a nontrivial computation
for a small-radius (r « N) CA? Though the te rm "nontrivial" was not rigor­
ously defined in [17] or [24J , one possible definition might be any computation
for which the memory requirement increases with N (that is, any comp ut a­
t ion which corresponds to the recognition of a nonregular language), and in
which inform ation must be t ransmitted over significant space-t ime distances
(on the order of N). Under this definition, the Pc = 1/2 classificat ion task
can be thought of as a nont rivial computation for a small-radius CA. T he
effective minimum amount of memory required is proportional to log(N) , be­
cause the equivalent of a counter regist er is required to t rack the excess of Is
in a serial scan of the init ial pattern . And because t he Is can be dist ributed
throughout the lat t ice, information t ransfer over long space-t ime dist ances
must occur. This is suppor ted in a CA by the nonlocal interactions among
many different neighborhoods afte r some period of time.

Packard cited a k = 2, r = 3 rule const ructed by Gacs, Kurdyumov, and
Levin [6, 8], which purportedly performs this task. T he Gacs-Kurdyumov­
Levin (GKL ) CA is defined by the following rule.

If Si(t) = 0, then Si(t + 1) = ma jority [Si (t ),Si-l(t) , Si-3(t)]

If Si (t ) = 1, t hen Si(t + 1) = major ity [Si(t),Si+l(t) , Si+3(t)]
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where Si(t) is the state of site i at time t . In words, t his rule says that for each
neighborhood of seven adjacent cells, if the state of the central cell is 0, then
its new state is decided by a majority vote among itself, its left neighb or ,
and the cell three sites to the left . Likewise, if th e state of the central cell
is 1, then its new state is decided by a majority vote among itself, its right
neighb or , and the cell three sites to the right .

Figure 1 gives space-time diagrams for th e actio n of the GKL rule on
two init ial configurations: with P < Pc, and with P > p. , Although the CA
event ually converges to a fixed point, it can be seen that there is a transient
phase during which a spatial and temporal transfer of information about
local neighborhoods takes place; t his local information interacts with other
local information to produce the desired final st ate. Stated crudely, the GKL
CA successively classifies "local" densit ies, with the locality range increasing
with tim e. In regions where th ere is ambiguity, a "signal" is propagated.
This is seen as either a checkerboard pattern propagated in both spatial
directions or a vertical white-to-black boundary. These signals indicate that
the classification is to be made at a larger scale. Note that both signals locally
have P = Pc; as a result, the signal patterns can propagate, since the density
of patterns with P = Pc is not increased or decreased under the rule. In a
simp le sense, this is the CA's "st rategy" for performing the computational
task.

It has been claimed that the GKL CA performs the Pc = 1/ 2 task [18]; in
fact , this is t rue only to an approximation. The GKL rule was not developed
for the purpose of performing any part icular computational task, but as part
of st udies of reliable computation and phase transit ions in one spatial dimen­
sion. (The goal in the comput at ion st ud ies, for example, was to find a CA
whose behavior is robust to small errors in the rule's update of the configura­
tion.) It has been proved that the GKL rule has only two attracting patterns ,
all Is or all Os [6]. Attracting patterns in this context are those invariant pat­
terns which return to the same pattern when slight ly perturbed. It turns out
that the basins of attraction for the all-l and all-Opat terns are not precisely
the init ial configurations wit h p > 0.5 or p < 0.5, respectively. On finite lat­
tices t he GKL rule does classify most init ial configurations according to t his
criterion, bu t on a significant number the "incorrect" attractor is reached.
(The terms "attractor" and "bas in of attraction" are used here in the sense of
[6] and [12]. This differs substantially from t he not ion used, for example, in
[34], where "attractor" refers to any invari ant or t ime-per iodic pattern, and
"bas in of attraction" refers to that set of finite lat tice configurations relaxing
to an attractor.)

One set of experimental measures of the GKL CA's classificat ion perfor­
mance is displayed in Figure 3. To make t his plot , we ran the GKL CA on
500 rand omly generated init ial configurations close to each of 21 densities
p E [0.0,1.0]. The fraction of correct classifications was then plotted at each
p. The rule was run either until a fixed point was reached or for a maximum
number of time steps equa l to 10 x N . This was done for CA with three
different lattice sizes: N E {149, 599, 999}. Note t hat approximate ly 30% of
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Figure 3: Experimental performance of the GKL rule as a function
of p(O ) for the Pc = 0.5 task. Performance plots are given for three
lat tice sizes: N = 149 (the size of the lat tice used in the GA runs),
599, and 999.

the initial configurations with p ~ Pc were rnisclassified. All the incorrect
classificat ions are made for init ial configurat ions with P ~ p. . In fact , the
worst performances occur at P = Pc. The error region narrows with increasing
lat tice size.

The GKL rule table has A = 1/2, not A = Ac . Given that it appears
to perform a comp ut ational tas k of some complexity, at a minimu m it is a
deviation from the "edge of chaos" hypothesis for CA computation. The
GKL rul e's A = 1/ 2 puts it right at the center of the "chaot ic" region in
Figure 2. This may seem puzzling, because the GKL rule clearly does not
produce chaotic behavior during either its t ransient or asymptot ic epochs­
far from it , in fact. However , t he A parameter was intended to correlate with
"average" beh avior of CA rules at a given A value. Recall that '"Y in Figure 2
represents an average over a large number of randomly chosen CA rules and,
though not shown in that plot , the variance in '"Y for most A values is high .
Thus, as previously mentioned, the behavior of any particular ru le at its A
value might be very different from the average behavior at that value .

More to t he point , we expect a Avalue close to 1/2 for a rule that performs
well on the Pc = 1/2 task. This is the case primar ily because the task is
symmet ric with respect to the exchange of Is and Os. Suppose, for example,
that a rule t hat carri es out the Pc = 1/ 2 t ask has A < 1/ 2. This implies
that there are more neighborhoods in the rule table that map to output bit
othan to out put bit 1. This, in turn , means that there will be some initi al
configur at ions with p > Pc on which th e act ion of the rule will decrease the
numb er of Is, which is the opposite of the desired act ion. However , if t he
rule acts to decrease the numb er of Is on an init ial configuration with p > Pc,
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it risks producing an intermediate configuration with P < Pc, which then
would lead (und er the original assumption that the rule carries out th e task
correctly) to a fixed point of all Os, misclassifying the initial configuration. A
similar argument holds in the other direction if the rule's A value is greater
than 1/2. This informal argument shows that a rule with A i- 1/2 will
misclassify certain initial configurations. Generally, the further away from
A = 1/2 that the rule is, the greater the numb er of such init ial configurations .
Such rules may perform fairly well, classifying most init ial configurations
correct ly. However, we expect any rule that performs reason ably well on the
thi s task-in the sense of being close to the GKL CA's average performance
shown in Figure 3- to have a A value close to 1/2.

This analysis points to a problem with using t he Pc = 1/2 task as an
evolutionary goal for the st udy of the relationship between computation and
A. As shown in Figure 2, for an r = 3, k = 2 CA the Ac values occur at
roughly 0.23 and 0.83; one hypothesis that was to be test ed by Packard's
original experiment is that the GA will tend to select ru les close to these
Ac values. But for the p-classification t asks , the range of A values required
for good performance is simply a function of the t ask and, specifically, of p. ;
For example, th e underlying 0-1 exchange symmetry of the Pc = 1/2 task
implies that if a CA exists that can perform the task at an acceptable level,
then it has A~ 1/2. Though this does not direct ly invalidate the adaptat ion
hypothesis or claims about A'S correlation with average behavior , it presents
problems for the use of p-classification tasks to gain evidence about a generic
relation between A and comput ational capability.

6.2 T he or ig inal experiment

Packard used a GA to evolve CA rules to perform the Pc = 1/2 task [24].
His GA began with a randomly generated init ial population of CA rules.
Each ru le was repr esented as a bit string containing the output bits of the
rule t able. That is, the bit at position 0 (i.e., the leftmost position) in the
string is the state to which the neighborhood 0000000 is mapped, the bit
at position 1 in the string is t he state to which the neighborhood 0000001
is mapp ed, and so on. The initial population was randomly generated, but
it was constrained to be uniformly distribut ed across A values between 0.0
and 1.0.

A given .CA rule in the population was evaluated for ability to perform
the classification t ask by choosing an init ial configuration at random, running
the CA on that initial configuration for some specified number of time steps ,
and measuring th e fraction of cells in the lat t ice th at had th e correct state
at the final time step. (For initial configurations with P > Pc, the correct
final state for each cell is 1, and for initial configurations with P < Pc, the
correct final state for each cell is 0.) For example, if th e CA were run on
an initial configuration with P > Pc and at the final time step the lat t ice
contained 90% Is, the CA's score on that initial configuration would be 0.9.
The fitnes s of a rule was simp ly the rule's average score over a set of init ial
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configurat ions. For each rule in the populat ion, Packard generated a set of
init ial configurat ions that were un iformly distributed across p values from a
to 1.

Act ua lly, a slight variation on this method was used in [24]. Instead of
measuring the fract ion of correct states in the final latti ce, the GA measured
the fraction of correct states over configurations from a small numb er n
of final time steps [23]. This prevent ed the GA from evolving rules that
were tempor ally periodic; for example, those with patterns th at alternated
between all as and all Is. Such rul es obtained higher than average fitness at
early generat ions by often landi ng at the "correc t" ph ase of the oscillat ion for
a given init ial configuration. On the next time step the classificat ion would
have been incorrect . In our experiments we used a slight ly different method
to address this problem, which is explained in subsect ion 7.1.

Packard's GA worked as follows. At each generation

1. The fitness of each rule in the population was calculated,

2. The popul at ion was ranked by fitness,

3. Some fraction of the lowest fitness rules were removed ,

4. The removed rules were replaced by new rules formed by crossover and
mutation from the remaining rules.

Crossover between two st rings involves randomly selecting a posit ion in the
st rings and exchanging parts of t he st rings before and after that position.
Mutation involves flipping one or more bits in a string, with some low prob­
ability.' A diversity-enforcement scheme was also used to prevent the popula­
tion from converging too early and losing diversity [23]. If a rule was formed
that was too close in Hamming dist ance (i.e., the numb er of matching bits)
to exist ing rules in the population, its fitness was decreased.

T he results from Packard 's experiment are displayed in Figure 4. The
two histograms display the observed frequency of ru les in the GA population
as a function of A, with rules merged from a numb er of different runs. The
top graph gives this data for the initial generation; the rules are uniform ly
dist ributed over A values. The middle graph gives the same data for the final
generation-in this case, aft er the GA has ru n for 100 generat ions. The rules
now cluster around the two Ac regions, as can be seen by comparison with t he
difference-pattern spreading rate plot , reprint ed at the bottom of th e figure.
Note that each individual run produced rules at one or the other peak in the
middle graph , so when the runs were merged together , both peaks appear
[23]. Packard interpret ed t hese results as evidence for the hypoth esis t hat,
when an ability for complex computation is required , evolut ion tends to select
ru les near the t ransit ion to chaos. Like Langton, he argues that this result
intui t ively makes sense, because "rules near the t ransit ion to chaos have t he
capability to select ively communicate informat ion with complex struct ures
in space-t ime, thus enabling computation" [24] .
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Figure 4: Results from Packard's original experiment on GA evolu­
tion of CA for the Pc = 1/2 classification t ask. The top two figures
are populations of CA at generat ions a and 100, respect ively, ver­
sus >.. The bot tom figure is Figure 2, reprodu ced here for reference.
(Ada pted from [24], wit h the author 's permission. )
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7. New experiments
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As the first step in a st udy of t he reliabili ty of the se general conclusions, we
carried out a set of experiments similar to thos e th at we have just describ ed.
We were unable to obtain precise details of some of the original experiment 's
parameters, such as the exact population size for t he GA, the mutation rate,
and so on. As a result, we used what we felt were reasonable values for these
parameters. We carri ed out a numb er of parameter sensit ivity tests which
indicated that varying the parameters within small bounds did not change
our qualit ative results.

7 .1 D et a ils of our experiments

In our experiments, as in the original, the CA rules in the population all had
r = 3 and k = 2. Thus, the bit strings that repres ented the rules were of
length 22r H = 128. The size of this search space is huge- the number of pos­
sible CA rules is 2128

. The tests for each CA rule were carr ied out on lattices
of lengt h N = 149 with periodic boundary condit ions. The population size
was 100, which was roughly the populati on size used in the original experi­
ment [23]. The init ial population was generated at random, but constrained
to be uniformly distributed among different), values. A rule's fitness was es­
t imated by running the rule on 300 randomly generated initial configurations
that were uniformly distributed over P E [0.0, 1.0]. Exactly half t he initi al
configurat ions had P < Pc, and the other half had P > Pc.

Exact symmetry in the init ial configurations at each genera t ion was nec­
essary to avoid early biases in the ), of selected rules. If 49%, say, of the
initi al configurations had P < Pc, and 51% had P > Pc, rules with ), close to
1 would obtain slight ly higher fitness than rules with), close to 0, because
rules with), close to 1 would map most init ial configurations to all Is. A rule
with , say, ), ~ 1 would in this case classify 51% of t he initi al configurat ions
correct ly whereas a ru le with ), ~ a would classify only 49% correctly. But
such slight differences in fitness have a large effect in the init ial generation,
when all rules have fitness close to 0.5, because the GA selects t he 50 best
rules, even if they are only very slightly bet ter than the 50 worst rules. Thi s
biases the represent ative rules in the early population. And th is bias can
persist well into the later generations.

We allowed each rule to run for a maximum numb er M of iterations,
where a new M was selected for each rule from a Poisson distribut ion with
mean 320. This is the measured maximum amount of t ime for the GKL CA
to reach an invariant pattern over a large number of init ial configurat ions on
lat t ice size 149.1 A rule's fitness was its average score- the fraction of cell

1It may not be necessary to allow the max imum numb er of ite rations to vary. How­
ever, in some early tests with smaller sets of fixed initi al configurat ions, we found the
same prob lem that Packard reported [23J: if M was fixed, then period-2 rules evolved
that alternated between all Os and all I s. These rules adapted to the sma ll set of init ial
configurations and t he fixed M by landing at the "correct" pat tern for a given initial con­
figuration at t ime step M, only to move to the opposite pat tern and wrong classificati on
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states correct at t he last iteration-over the 300 initial configurat ions. We
termed this fitness function proport ional fitn ess, to contrast with a second
fitness funct ion- perform ance fit ness- which we describ e subsequent ly. A
new set of 300 init ial configurations was generated every generation; at each
generation, all the rules in the population were tested on this set. Notice
t hat this fitness function is stochastic-the fitness of a given rule may vary a
small amount from generation to generation depending on the particular set
of 300 initial configurations used in testing it .

Our GA was similar to Packard's: t he fraction of new st rings each new
generation-the "generation gap"-was 0.5. In other words , once the popu­
lation was ordered according to fitness, the top half of the popul ation- th e
set of "elit e" st rings- was copied without modification into the next gener­
at ion. To GA practiti oners more familiar with nonoverlapping generat ions ,
t his may sound like a small genera t ion gap. However , testing a rule on 300
"t raining cases" does not necessarily provide a very reliable gauge of what
the fitness would be over a larger set of t ra ining cases; our selected gap was
a good way of makin g a "first cut ," and allowing rules that survived to be
tested over more initial configurat ions. As a new set of initi al configura t ions
was produced every generation, ru les that were copied without modification
were always retested on t his new set . If a rule performed well and thus sur­
vived over a large number of generations , then it was likely to be a genuinely
better rule than those t hat were not selected , since it had been tested with a
large set of init ial configurat ions. An alternat ive method would have been to
test every rule in every genera t ion on a much larger set of init ial configura­
t ions bu t , given the amount of computer time involved, t hat met hod seemed
unnecessarily waste ful. Too much effort , for example, would have gone into
testing very weak rules, which could safely be weeded out early using our
method.

The remaining half of the pop ulation for each new generation was created
by crossover and mutation from the previous generat ion' s popu lation. (This
method of producing non-elite st rings differs from that in [24], where the non­
elite st rings were formed from crossover and mutation among t he elite st rings
only, rather than from t he ent ire population. We observed no statistically
significant differences in our t ests using the latter mechanism, other than
a modest difference in t ime scale.) Twenty-five pairs of parent rules were
chosen at random with replacement from the ent ire previous pop ulation. For
each pair , a single crossover point was selected at rand om, and two offspring
were created by exchanging the subparts of each parent before and after the
crossover point . The two offspring then underwent mutation, which consisted
of flipping a randomly chosen bit in the string. The number of mutations for
a given st ring was chosen from a Poisson distribution with a mean of 3.8 (this
is equivalent to a per-bit mutation rate of 0.03). Again , to GA practitioners
this may seem to be a high mutat ion rate, bu t one must take into account
that half the populat ion was copied without modification at every generat ion.

at tim e step M + 1. T hese rules performed very poorly when tested on a different set of
initial configurat ions--evidence for "overfit t ing."
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7.2 Results of the proportional-fitness experiment
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We per formed 30 runs of the GA with t he parameters describ ed above, each
with a different random-number seed. On each run t he GA was iterated for
100 generations. We found t hat running the GA longer (up to 300 genera­
tions) did not result in improved fitness. The results of this set of runs are
displayed in Figure 5. Figure 5(a) is a histogram of t he frequency of rules in
the initi al populati ons as a function of A, merging the rules from all 30 init ial
populations ; thus, the total number of rules represented in thi s histogram is
3000. The A bins in this histogram are those that were used by Packard, each
of width 0.0667. Packard 's highest bin contained only rules with A = 1 (that
is, rules that consist of all Is). We have merged this bin with the immediat ely
lower bin .

The initial populati ons consisted of randomly generat ed rules uni formly
spread over the A values between 0.0 and 1.0. The mean and best fitness
values for each bin are also plotted. These are all near 0.5, which is to be
expected for a set of randomly genera ted rules under this fitness function.
The best fitnesses are slightly higher in the very low and very high A bins,
because rules with output bits that are almost all Os (or Is) correct ly classify
all low density (or all high density) initial configurat ions. In addit ion, such
CAs obtain small partial credit on some high density (low density) initial
configurations and, thus, have fitnesses sight ly higher than 0.5.

Figure 5(b) shows t he histogram for t he final genera t ion (100), merging
rules from the final generations of all 30 runs. Again , the mean and best
fitness values for each bin are plotted. In the final generat ion the mean
fitnesses are all near 0.8. The except ions are the cent ral bin (with a mean
fitness of 0.72) and the leftm ost bin (with a mean fitness of 0.75). The
leftmost bin cont ains only five rules- each at A ~ 0.33, right next to the
bin 's upp er A limit . The st andard deviations of mean fitness for each bin
(not shown in the figure) are all approximately 0.15- except for the leftmost
bin , which has a standard deviation of 0.20. The best fitnesses for each bin
are all between 0.93 and 0.95- except for the leftmost bin, which has a best
fitness of 0.90. Under this fitness function the GKL rule has fitness ~ 0.98;
the GA never found a rule with fitness above 0.95.

The fitness function is sto chastic: a given rule might be assigned a differ­
ent fitness each time t he fitness function is evalua ted. The standard devia­
t ion for a given rule under the present fitness scheme is approximate ly 0.015.
This indicat es that the differences among the best fitnesses plotted in the
hist ogram are not significant , except for that in the leftmost bin .

The lower mean fitness in the cent ra l bin is due to t he fact t hat the rules
in that bin predominantly come from non-elite rules generated by crossover
and mutation in the final generation. This is a combinatorial effect : the
density of CA rules as a functi on of A is very highly peaked about A = 1/2.
(We will return to thi s "combinatorial drift " effect.) Many of the rules in the
middle bin have not yet undergone select ion and, thus, tend to have lower
fitnesses than rules that have been selected in the elite . Thi s effect disappears
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Figure 5: Results from our experiment with propor t ional fitness. His­
togram (a) plots the frequencies of ru les merged from t he init ial gen­
erations of 30 run s as a function of A. Following [24], the z-axis is
divided into 15 bins of length 0.0667 each. T he rules with A = 1.0 are
includ ed in the right most bin . Histogram (b) plot s the frequencies of
rules merged from the final generati ons (generation 100) of these 30
run s. In each histogram the best and mean fitnesses are plot t ed for
each bin. (The y-axis int erval for fitnesses is also [0,1]).
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Figure 6: Histogram including only the elite rules from the final gen­
erat ions of the 30 runs with the proport ional-fitness function.

in Figure 6, which includes only the elite rules at generat ion 100 for the 30
runs: the difference in mean fitness disapp ears and the height of the cent ral
bin is decreased by half.

The results presented in Figure 5(b) are st rikingly different from the re­
sults of Packard 's experiment. In the final genera t ion histogram in Figure 4,
most of the rules clustered around A ~ 0.23 or A ~ 0.83. In Figure 5(b),
however , there are no rules in these Ac regions. Rather , t he rules clust er
much more closely around A = 1/2- with a ratio of variances of 4 between
t he two distributions. Recall that this clustering is what we would expect
from the basic 0-1 exchange symmet ry of the Pc = 1/ 2 task.

One rough similarity between the results of the two experiments is t he
presence of two peaks centered around a dip at A ~ 0.5- a phenom enon
which we will explain shortly, and which is a key to underst anding the GA 's
beh avior on thi s problem. Nonetheless, there are significant differences, even
within t his similarity. As was already not ed in Packard's experiment , the
peaks are in bins cente red about A ~ 0.23 and A~ 0.83, bu t in Figure 5(b) ,
the peaks are very close to A = 1/2, being cent ered in t he neighboring bins­
t hose with A ~ 0.43 and A ~ 0.57. Thus, the rat io of original to current
peak spread is roughly a factor of 4. Addi tionally, in the final-generation
histogram of Figure 4, the two highest bin populations are roughly five times
as high as the centra l bin , whereas in Figure 5(b) the two highest bins are
roughly three tim es as high as the centra l bin . Fin ally, the final-generation
histogram in Figure 4 shows the presence of rules in every bin ; in Figure 5(b),
there are rules in six of th e central bins only.

As in Packard 's experiment, we found that on any given run the popu­
lat ion was clustered about one or the other peak but not both. (Thus , in
the histograms that merge all run s, two peaks appear.) This is illustrated in
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Figure 7, which displays histograms from the final generations of two indi­
vidual runs. In one of these runs, the populat ion clust ered to the left of the
cent ral bin and in the other run it clustered to the right of the cente r. The fact
that different runs resulted in different clustering locations was our reason
for performing many runs and merging the results , rather than performing
a single ru n with a much larger population- the latter method might have
yielded only one peak. In other words, independent of the population size,
a given run will be driven by (and the population organized around) t he fit
individu als that appear ear liest . Thus, examining an ensemble of individual
runs reveals addit ional details of the evolut ionary dynamics.

The asymmet ry in the heights of the two peaks in Figure 5(b) results
from a small stat ist ical asymmetry in the results of the 30 runs. In 14 runs,
the rules clustered at the lower A bin , and in 16 runs, the rules clustered at
the higher A bin . This difference is not significant, but it explains the small
asymmet ry in the peak heights.

We exte nded 16 of the 30 runs to 300 generat ions, and found that the basic
shape of the histogram does not change significant ly (just as the fitnesses do
not increase).

7. 3 Effect s of drift

The results of our experiments suggest t hat an evolutionary process modeled
by a genetic algorithm tends to select rules with A~ 1/ 2, for the Pc = 1/2
task. This is wha t we had expected, given our prior theoretical discussion
concerning this task and its symmetries. We postpone until the next sect ion
a discussion of the curious feature near A = 1/ 2 (the dip surrounded by
two peaks). In this section, we focus on the larger-scale clustering in that A
region.

To und erst and that clustering we need to underst and the degree to which
the select ion of rules close to A= 1/ 2 is due to an intrinsic selection pressure,
and the degree to which it is due to "drift ." By drift we refer to the force that
derives from the combinatorial aspects of CA space as explored by random
select ion ("genetic drift" ), combined with the effects of crossover and muta­
tion. The intrinsic effect of random selection with crossover and mutation is
to move the population, irrespective of any selection pressure, to A = 1/2.
This is illustrated in Figure 8 by a histogram mosaic . These histograms show
the frequencies of the rules in the population as a function of A, for every 5
generations. Rules were merged from 30 runs in which selection according
to fitness was turned off-that is, the fitnesses of the rules in the pop ulat ion
were never calculated, and at each generat ion t he selection of the elite group
of strings was performed at random. Otherwise, the runs remained the same
as previously. Because there is no fitness-based selection, dr ift is the only
force at work. Under the effects of random select ion, crossover, and muta­
tion , by the tent h generat ion t he population has largely drifted to the region
of A = 1/2, and t his clust ering becomes increasingly prono unced as the run
cont inues.
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Figure 8: No-selection mosaic. Rul e-frequency-versus-A histograms,
given every five generat ions, for populations evolved under t he ge­
neti c algorit hm with no select ion (that is, the fitness function was not
calculated and the select ion of elite rules was perform ed at random).
Each histogram was merged from 30 runs; each run had a populati on
of 100 rules. The generation number is given in the upper left corne r
of each histogram.

This drift to >.. = 1/2 is related to the combinatorics of the space of bit
strings. For binary CA rules with neighborhood size n (= 2r + 1), this space
consists of all 22n binary strings of length 2n . Denoting the subspace of CAs
with a fixed X and n as CA(>" ,n), we point out that the size of the subspace
is binomially distribut ed with respect to >.. , as follows.

ICA(>..,n) 1= C;;n)
The distribution is symmet ric in >.. and tight ly peaked about >" = 1/2, with
variance ex 2- n

. Thus, the vast majority of rules are found at >.. = 1/ 2. The
steepness of the binomial distribution near its maximum gives an indication
of the magn itude of th e drift "force." Note that the last histogram in Figure 8
gives the GA's rough approximation of this distribut ion.

Drift is thus a powerful force moving the population to cluster around
>.. = 1/2. For comparison, Figure 9 gives the rule-frequency-versus-A his­
tograms for the merged populat ions from 30 runs of our proportional-fitn ess
experiment, for every five generations. (A similar mosaic plotting only the
elite strings at each generation looks qualitatively similar.) The last his­
togram in th is figure is the same as th e one that was displayed in Figure 5(b).

The histograms in Figure 9 look roughly similar to th ose in Figure 8, up
to generation 35. The primary difference in generat ions 0- 30 is that Figure 9
indicates a more rapid peaking about >" = 1/2. The increased speed of move­
ment to the center is presumably due to the addit ional evolut ionary pressure
of proportional fit ness. At generation 35, a new feature appears. The peak
in the center has begun to shrink significant ly and the two surro unding bins
are beginning to rival it in magn itude. By generation 40 the right-of-center
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Figure 9: Proportional-fitness mosaic. Rule-frequency-versus-A his­
tograms, given every five generat ions, merged from the 30 GA runs
with proport ional fitness. Each run had a population of 100 rules.

bin has exceeded the central bin, and by generation 65 t he histogram has
developed two peaks surrounding a dip in the center . The dip becomes in­
creasingly pronounced as the run cont inues, but stabili zes by genera t ion 85
or so.

The differences between Figures 8 and 9, over all 100 generations, show
that the population's st ructure in each generation in Figure 9 is not solely
due to drift . Ind eed, after generat ion 35, the distinctive features of the
populati on indicate new, qualitatively different , and unique properties due
to the selection mechanism . The two peaks represent a symmetry breakin g
in the evolut ionary pro cess-the rules in each ind ividu al run initially are
clustered around A = 1/2 , but move to one side or the other of the cent ra l
bin by about generation 35. We discuss the causes of thi s symmet ry breaking
in the next subsect ion.

7.4 Evolutionary mechanisms: symmetry breaking and the dip at
A = 1/2

At thi s point we move away from questions related to Packard 's experiment,
and concentra te on the mechanisms involved in producing our results. Two
major questions must be answered: Why are there significant ly fewer rules
in the central bin than in the two surrounding bins, in the final generation?
What causes the symm etry breaking that begins near genera tion 35 (as seen
in Figure 9)?

The answers (in the briefest terms) obtained by detailed analysis of the
30 GA runs, are as follows. The course of CA evolut ion under our GA
falls roughly into four "strategy" epochs. Each epoch is associated with
an innovation discovered by the GA for solving the problem. Though th e
absolute time at which these innovations appear in each run varies somewhat,
each run essent ially passes through the four epochs in succession. The epochs
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are shown in Figure 10 (which plots the best fitness, the mean fitness of the
elite st rings, and the mean fitness of the populatio n, versus generat ion, for one
typical run of the GA). The beginnings of epochs 2 through 4 are indicated
on the best-fitness plot. Ep och 1 begins at generation O.

Epoch 1: Randomly generated rules

The first epoch starts at genera t ion 0, when the best fitness in the initi al
generat ion is approximately 0.5 and the A values are uniformly dist ributed
between 0.0 and 1.0. No rule is much fitt er than any other rule, though rules
with very low and very high A tend to have slightly higher fitness , as shown
in Figure 5(a) . Th e st rategy in t his epoch- if it can be called a strat egy at
all-derives from only the most elementary aspect of the task. Rules either
specialize for P > Pc configurat ions by mapping high-density neighborhoods
in the CA rule table to 1, or specialize for P < Pc configurations by mapping
low-density neighborhoods to O.

Epoch 2: Discovery of the two halves of the rule table

The second epoch begins when a rule is discovered for which most neigh­
borho od patterns in the rule table t hat have p < Pc map to 0, and most
neighbor hood patterns in the rule table that have p > Pc map to 1. Un­
der t he coding scheme we have used , this is rough ly correlated with the left
and right halves of the ru le table: neighborhoods 0000000 to 0111111, and
1000000 to 1111111, respectively. Such a st rategy is (presumably) easy for
the GA to discover, due to the tendency of single-point crossover to preserve
cont iguous sect ions of the rule table. It differs from the accidental st rategy
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of epoch 1 in that there is an organization to the rule table: out put bits are
roughly assoc iated with densities of neighborhood pat terns. It is the first
significant attempt at distinguishing init ial configurations with more Is than
Os, and vice versa . Und er our fitness function, th e fitness of such rules is,
approximately, between 0.6 and 0.7, which is significant ly higher th an the
fitness of th e init ial rand om rules. Thi s innovation typically occurs betwee n
generat ions 1 and 10; in t he run displayed in Figure 10 it occurred in gen­
era t ion 2, and can be seen as t he steep rise in the best-fitn ess plot at that
genera t ion. All such rules tend to have>. close to 1/ 2. There are ma ny pos­
sible variations on these rules, with similar fitness, so such rules-all close
to >. = 1/ 2- begin to dominate in the population . This fact , along with the
natural tendency for the population to drift toward >. = 1/ 2, is the cause of
the clustering around >. = 1/2 seen by generation 10 in Figure 9. For t he
next severa l generat ions th e population tends to explore sma ll var iations on
this broad strategy. This can be seen in Figure 10 as the leveling off in the
best-fitness plot between genera t ions 2 and 10.

Epoch 3: Growing blocks of Is or Os

The next epoch begins when the GA discovers either of two new strategies.
T he first st rategy is to increase t he size of a sufficient ly large block of ad­
jacent or nearly adjacent Is; the second strategy is to increase t he size of a
sufficiently large block of adjacent or nearly adjacent Os.

Examp les of th ese two strategies are illustrated in Figures 11 and 12.
These figures give space-time diagr ams from two rules that marked the be­
ginning of t his epoch in two different runs of the GA. Figure 11 illustrates t he
act ion of a rule discovered at genera t ion 9 of one run. This rule has >. ~ 0.41,
which means that the rule maps most neighbo rhoods to O. It s st ra tegy is to
map init ial configurations to mostly Os- the configurations it produces have
P < Pc, unless the initi al configuration contains a sufficient ly large block of
Is, in which case it increases the size of that block. Figure l1(a) shows how
the rule evolves an initi al configuration with P < Pc to a final lat t ice with
most ly Os. This produces a fairly good score. Figure l1 (b) shows how the
rule evolves an initi al configuration with P > p.: The initial configuration
contains a few sufficient ly large blocks of adjacent or nearly adjacent Is, and
th e size of these blocks is quickly increased to yield a final lattice with all Is
for a perfect score. The fitness of t his rule at generation 9 was ~ 0.80.

Figure 12 illust ra tes the act ion of a second rule, discovered at generat ion
20 in anot her run. This rule has >. ~ 0.58, which means that t he rule maps
most neighborhoods to 1. It s st rategy is the inverse of t he previous rule.
It maps init ial configurations to mostly Is unless the initial configuration
contains a sufficiently large block of Os, in which case it increases the size
of that block. Figure 12(a) illust rates this for an init ial configuration with
P < Pc; here a sufficient ly large block of Os appears in t he initi al configuration
and is increased in size, yielding a perfect score. Figure 12(b) shows the act ion
of the same rule on an initi al configuration with p > Pc. Most neighborhoods
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Figure 11: Space-time diagrams of one epoch-3 rule with A """ 0.41
that increases sufficient ly large blocks of adjacent or nearly adjacent
Is. Both diagrams have N = 149 and are iterate d for 149 time steps
(the t ime displayed here is shorter than the actual time allotted under
the GA). In (a), p(O) """ 0.40 and p(148) """ 0.17. In (b), p(O ) """ 0.54
and p(148) = 1.0. Thus, in (a) the classification is incorrect, but
partial credit is given; in (b) it is correct.

148

are mapped to 1 so the final configuration contains mostly Is, yielding a
fairly high score. The fitness of this rule at generation 20 was ~ 0.87.

The general idea behind these two strategies is to rely on stat ist ical fluc­
tuati ons in the initi al configurations. An initial configurat ion with P > Pc is
likely to contain a sufficient ly large block of adjacent or nearly adj acent Is .
A rule like t he one illust rat ed in Figure 11 t hen increases t his region 's size
to yield the correct classificati on . This holds similarly for rules like t he one
illustrat ed in Figure 12, with respect to blocks of Os in initi al configurat ions
with p < Pc. In short, t hese st rateg ies are assuming that the presence of a
sufficient ly large block of Is or Os is a good predictor of p(O ).

Similar st rategies were discovered in every run ; they typically emerged
by generat ion 20. Any single st rategy increased blocks of Os or blocks of Is ,
but not both. These st ra tegies resu lt in a significant jump in fitness: typical
fitnesses for the first inst ances of such st rategies range from 0.75 to 0.85.
This jump in fitness can be seen in the run of Figure 10 at approximately
generation 10, and is marked as t he beginning of epoch 3. This is the first
epoch in which a substant ial increase in fitness is associated with a symme­
t ry breakin g in the population. T he symmetry breaking involves deciding
whether to increase blocks of Is or blocks of Os. T he GKL rule is perfectly
sym metric with respect to the increase of blocks of Is and Os. The GA on
the other hand tends to discover one or the other st rategy, and the one tha t
is discovered first tends to take over t he popul ation , moving the population
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Figure 12: Space-time diagrams of one epoch-3 rule with A ~ 0.58
that increases sufficient ly large blocks of adjacent or nearly adjacent
Os. In (a), the initial configuration with p ~ 0.42 maps to a correct
classification pattern of all Os. In (b) , the initial configurat ion with
p ~ 0.56 is not correctly classified (p( 148) ~ 0.75), but partial credit
is given.

),'s to one or t he other side of 1/ 2. The causes of the symmetry breaking are
explained following the descrip tion of epoch 4.

Typically, t he first instances of epoch-3 st rategies have a numb er of prob­
lems . As shown in Figures 11 and 12, t he rules often rely on part ial credit
to achieve fairly high fitness on st ructurally incorrect classificat ion. They do
not get perfect scores on many initial configurations , and they often make
mistakes in classificat ion. Three common types of classification erro rs are
illustrat ed in Figure 13. Figure 13(a) illustrates a rule increasing a too-small
block of Is and thus misclassifying an initial configur at ion with P < Pc. Fig­
ure 13(b) illustrates a rule that does not increase blocks of Is fast enough
on an initi al configuration with P > Pc, leaving many incorrect bits in the
final lat tice. Figure 13(c) illustrates t he creation of a block of Is that did
not appear in an init ial configuration with p < Pc, ult imately leading to a
misclassification . The rules that produced these diagrams come from epoch
3 in various GA runs.

The increase in fitness seen in Figure 10 between generations 10 and 20
or so is due to furt her refinements of the basic st rategies, which correct these
problems to some exte nt .

Epoch 4: Reaching and staying at a m aximal fitness

In most runs, the best fitness is at its maximum value of 0.90 to 0.95 by
generation 40 or so. In Figure 10 this occurs at approximately generatio n 20,
and is marked as the beginning of epoch 4. The best fitness does not increase
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Figure 13: Space-time diagrams illustrating three types of classifica­
tio n errors committed by epoch-3 ru les: (a) growing a block of Is in
a sea of P < Pc, (b) growing blocks of Is too slowly for an init ial
configurat ion wit h P > Pc (the correct fixed point of all Is does not
occur until it eration 480), and (c) generating a block of Is from a sea
of p < Pc and growing it so that p > Pc (t he incorrect fixed point of
all Is occurs at iteration 180). The initial configuration densities are
(a) p(O) ~ 0.39, (b) p(O ) ~ 0.59, and (c) p(O) ~ 0.45.
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Figure 14: Space-time diagrams of one epoch-4 rule with A R:! 0.38
that increases sufficiently large blocks of adjacent or nearly adjacent
Is. In (a), p(O ) R:! 0.44; in (b), p(O ) R:! 0.52. Both initial configurations
are correctly classified.

significant ly aft er this; the GA simply finds a number of variations of the best
st rategies, which all have roughly the same fitn ess. When we extended 16 of
t he 30 runs to 300 generations , we did not see any appreciable increase in
the best fitness.

The act ions of t he best rules from generat ion 100 of two separate ru ns
are shown in Figur es 14 and 15. The space-time diagrams on the left in
each figure are for init ial configurations with P < Pc, and the diagrams on
the right are for init ial configurat ions wit h P > p. : The rule illustr ated in
Figur e 14 has A ~ 0.38; its st rategy is to map initial configurat ions to Os
unless there is a sufficient ly large block of adjacent or nearly adjacent Is,
which if present is increased. The rule shown in Figur e 15 has A = 0.59 and
has the opposite st rategy. Each of these ru les has fitn ess ~ 0.93. They are
better t uned versions of th e ru les in Figur es 11 and 12.

Symmetry b reaking in epoch 3

Not ice t hat the A values of t he rules that have been describ ed are in the bins
cente red around 0.43 and 0.57 rat her than 1/2. In fact , it seems to be much
easier for th e GA to discover versions of the successful strategies close to
A = 0.43 and A = 0.57 than to discover them close to A = 1/ 2, though some
instances of the lat ter rules were found. Why is this the case? One reason is
that rules with high or low A work well by speci alizing. T he rules with low A
map most neighborhoods to Os and then increase sufficiently large blocks of
Is when they appear. Ru les with high A specialize in th e opposit e dir ect ion .
A rule at A = 1/2 cannot easily specialize in this way. Another reason is that
a successful ru le that grows sufficiently large blocks of (say) Is must avoid
creating a sufficient ly large block of I s from an initial configurat ion with less
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Figure 15: Space-time diagrams of one epoch-4 rule with A ~ 0.59
that increases sufficiently large blocks of adjacent or nearly adjacent
Os. In (a), p(O ) ~ 0.40; in (b), p(O ) ~ 0.56. Both init ial configurat ions
are correctly classified.

than half Is. Doing so will lead it to increase the block of Is and produce
an incorrect answer, as was seen in Figure 13(c). An easy way for a rule
to avoid creat ing a sufficiently large block of Is is to have a low A. T his
ensures t hat low-density init ial configurations will quickly map to all Os, as
was seen in Figure 14(a). Likewise, if a rule increases sufficiently large blocks
of Os, it is safer for the rule to have a high A value so it will avoid creating
sufficiently large blocks of Os where none existed. A rule close to A = 1/ 2
will not have t his safety margin , and may be more likely to inadvertently
create a block of Os or Is that will lead it to a wrong answer. A final feat ure
that cont ributes to t he difficulty of finding good ru les with A = 1/ 2 is the
combinatorially large numb er of rules there. In effect, the search space is
much larger, which makes th e global search more difficult. Locally, about
a given adequate rule at A = 1/2 , t here are many rules close in Hamming
dist ance, and thus reachable via mutation, that are not markedly better than
the given rule.

Once the more successful versions of the epoch-3 st rategies are discovered
in epoch 4, their var iant s spread in t he population , and t he most successful
rules have A on the low or high side of A = 1/2. This explains the shift from
the clust ering around A = 1/ 2, as seen in generations 10-30 in Figure 9,
to a two-peaked dist ribut ion that becomes clear around generation 65. The
rules in each run cluster around one or the ot her peak , spec ializing in one
or the ot her way. We believe t his type of symmetry breaking may be a key
mechanism that determines much of the population dynamics and the GA's
success-or lack thereof-in optimization .

How does t he preceding analysis of the symmet ry breaking jib e with the
argument , given ear lier, th at the best rules for the Pc = 1/2 task must be
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close to A = 1/2? None of the rules found by t he GA had a fitness as high
as 0.98-the fitness of the GKL rule, whose A is exactly 1/2. That is, the
evolved ru les make significantly more classificat ion erro rs than the GKL rule
and, as will be seen below, the measured fitness of the best evolved rules is
much worse on larger lat tice sizes, whereas the GKL rule's fitness increases
with increasing lat t ice sizes. To obtain the fitness of the GKL rule a numb er
of careful balances in the rule table must be achieved. This is evident ly very
hard for the GA to do, especially in light of the symm etr ies in the task and
their suboptimal breaking by the GA.

7.5 Performance of t he evolved rules

Recall that the prop ortional fitness of a rule is t he fraction of correct cell
states at the final time step, averaged over 300 init ial configurations. This
calculat ion of fitness gives a rule partial credit for getting some final cell
states correct. However , the act ual task is to relax to eit her all Is or all
Os, depending on the initi al configurat ion. In order to measure how well the
evolved rules act ua lly perform the task, we define the perform ance of a rule
to be the fraction of t imes the rule correctly classifies initi al configurations,
averaged over a large number of initi al configurat ions. In t his case, credit is
given only if t he init ial configuration relaxes to exactly the correct fixed point
after some numb er of t ime steps. We measured t he performance of each of the
elite rules in the final genera t ions of the 30 runs , by test ing each rule on 300
randomly generat ed initial configur at ions that were uniformly distribut ed in
the int erval 0 :::; p :::; 1, and letting the rule iterate on each init ial condit ion for
1000 time steps. Figure 16 displays the mean performance (diamo nds) and
best performance (squares) in each A bin. T his figure shows that while t he
mean performances in each bin are much lower th an the mean fitnesses for
the elite rules shown in Figure 6, the best perform ance in each bin is roughly
the same as the best fitness in that bin. (In some cases the best performance
in a bin is slightly higher than the best fitness shown in Figure 6. Th is is
because different sets of 300 init ial condit ions were used to calculate fitness
and performance. This difference can produce small variations in the fitness
or performance values.) The best performance we measured was ;:::; 0.95.
Under this measure the performance of the GKL rule is ;:::; 0.98. Thus the
GA never discovered a rule that performed as well as the GKL rule , even
up to 300 generat ions. In addit ion, when we measure the performance of
the fitt est evolved rules on larger lat ti ce sizes, their performances decrease
significant ly, while that of the GKL rule remains roughly the same.

7.6 Using performance as the fitness criterion

Can the GA evolve bet ter-performing rules on this task? To find out , we
condu cted an addit ional experiment in which performance (as defined in the
previous sect ion) was the fitness crite rion . As in the previous experiments, at
each generation each rule was tested on 300 init ial configurat ions that were
uniformly dist ributed over density values. However , for this experiment , a
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Figure 16: Performances of the final generation elite rules (merged
from the 30 runs using the proportional fitness function). The mean
and best performances in each bin are plotted on the same histogram
as that in Figure 6.

ru le's fit ness was defined as the fraction of init ial configurat ions that were
correc tly classified. An initial configur ation was considered to be incorrect ly
classified if any bits in t he final lattice were incorrect . Aside from this modi­
fied fitness function, the GA remained the same as in the pro portional-fitness
exp eriments . We performed 30 runs of the GA for 100 generations each. The
results ar e given in Figure 17, which gives a histogram plotting the frequen­
cies of t he elite ru les from generation 100 of all 30 runs, as a function of A.
The shape of the histogram again has two peaks centered aro und a dip at
A = 1/ 2. This shape results from the same symmetry-breaking effect that
occurred in the proportional-fitn ess case; these runs evolved essentially the
same st rategies as the epoch-3 st rategies described previously. The best per­
formances found were ~ 0.95; these are comparable to the best performances
in the proportional-fitness case.

T he performanc e of one of the best rules evolved with performance fitness
is plotted as a funct ion of p(O ) in Figur e 18, for lat t ice sizes of 149 (the lat tice
size used for testing the rules in t he GA runs), 599, and 999. T his rule has
A~ 0.54, and its strategy is simil ar to that shown in Figure 15: it increases
sufficiently large blocks of adjacent or nearly adjacent Os. We used the same
pro cedure to make these plots as describ ed for Figure 3. The performance,
according to this measure, is significantly worse than that of the GKL rule
(see Figure 3), especially on larger lat t ice sizes. The worst performances for
the larger lattice sizes are centered slight ly above p = 1/ 2. On such initial
configurations the CA should relax to a fixed point of all Is, but more detailed
inspect ion of these results revealed that on almost every initial configuration
with p slightly above 1/2 , the CA relaxed to a fixed point of all Os. This
is a result of t he rule's strategy of increasing "sufficient ly large" blocks of
Os: the appropriate size to increase was evolved for a lattice with N = 149.
With larger lat t ices, the probabili ty of such blocks in init ial configurat ions



Revisiting the Edge of Chaos 121

e . . ~o o o o <>

~ ~

J
-

I

'"., 0.75:;...
'§
.9

0.5....
0
e
0
°fl

0.25~...
u,

o
o 0.25 0.5

A

0.75

• Best performance
o Mean performance

Figure 17: Results from our experiment with performance as the
fitness criterion. The histogram plots the frequencies of elite rules
merged from the final generat ions (generat ion 100) of 30 runs in which
the performance-fitness function was used.

with p > 1/2 increases, and the closer the p of such initial condit ions to
1/ 2, the more likely such blocks are to occur. ' In the CA we tested with
N = 599 and N = 999, such blocks occured in most init ial configurations
with p slight ly above 1/ 2, and these initial condit ions were always classified
incorrectly. This shows that keeping the lat tice size fixed dur ing GA evolution
can lead to overfitting for the particular lattice size. We plan to experiment
with lat t ice-size variation during evolution in an attempt to prevent such
overfitting.

7.7 Adding a diversity-enforcement mechanism

Our description of the four epochs in the GA's search explains t he results
of our experiment, but it does not explain the difference betwee n our results
and those of Packard 's expe riment reported in [24J. One difference between
our GA and the origin al was the inclusion in the original of a diversity­
enforcement scheme that penalized newly formed rules th at were too similar
in Hamming distanc e to exist ing rules in the population . To test the effect
of such a scheme on our results, we included a similar scheme in one set
of experiments. In our scheme, every time a new st ring is created through
crossover and mutation, the average Hamming dist an ce between t he new
st ring and t he elite st rings- the 50 st rings that are copied un changed-is
measured. If this average distance is less than 30% of t he st ring length (here
38 bits), th en the new st ring is not allowed in th e new popul ation . New
st rings cont inue to be created t hrough crossover and mutation until 50 new
strings have met this diversity crite rion. We note that many other diversity­
enforcement schemes have been developed in the GA literature; one example
is "crowding" [9].
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Figure 18: Perform ance of one of t he best rules evolved using perfor­
mance fitness, plotted as a functi on of p(O). Performance plots are
given for three lat t ice sizes: 149 (the size of the lat ti ce used in the
GA run s), 599, and 999. Thi s rule has >. ~ 0.54.

The results of this experiment are given in Figure 19. The histogram in
that figure represents the merged rules from the ent ire population at genera­
t ion 100 of 20 ru ns of the GA, using the proportional-fitness funct ion and our
diversity-enforcement scheme. The histogram in t his figure is very similar to
that in Figure 5(b). T he only major difference is t he significantly lower mean
fitness in the middle and leftm ost bins, which results from t he increased re­
quirement for diversity in t he final non-elit e population. We conclude that
the use of a similar diversity-enforcement scheme was not the factor respon­
sible for the difference between the results in [24] and our results.

7.8 Differences between our results and the original experiment

As shown in Figure 5(b), our results are st rikingly different from those re­
ported in [24] . These experimental results, along wit h the theoretical argu­
ment that the most successful rules for this task should have >. close to 1/ 2,
lead us to conclude t hat Packard 's interpr etation of his results (as giving
evidence for the two hypotheses concern ing evolut ion, computation, and >')
is not correct . However , we do not know what accounts for the differences
between our results and those obtained in the original experiment. We spec­
ulat e that t he differences are due to addit ional mechanisms in the GA used
in Packard 's experiment , which were not reported in [24]. For example, the
original experiment included a numb er of addit ional sources of randomness,
such as the regular injection of new ran dom rules at various >. values and a
much higher mutat ion rate than that in our experiment [23]. These sources
of randomness may have slowed the GA's search for high-fitness rules, and
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Figure 19: Results from our experiment in which a diversity­
enforcement mechanism was added to the GA. The histogram plots
the frequencies of rules merged from the ent ire populat ion at genera­
tion 100 of 20 runs with the diversity-enforcement scheme.

prevented it from converging on rules close to A = 1/2. Our experimental re­
sults and theoretical analysis give strong reason to believe t hat the clustering
close to Ac seen in Figure 4 is an art ifact of mechanisms in the par t icular GA
that was used, rather than a result of any computat ional advantage conferred
by the Ac regions.

Although the results were very different , there is one qua litative simi­
lari ty: the rule-frequency-versus-A histograms in both cases contained two
peaks separated by a dip in t he cente r. As we have noted, the two peaks
in our histogram were closer to A = 1/ 2 by a factor of 4, bu t it is possible
t hat Packard 's original results were due to a mechanism similar to either the
epoch- l sensitiv ity to initial configuration and population asymmetry abo ut
A = 1/ 2, or the symmet ry breaking we observed in epoch 3. Perhaps these
were combined with additional forces, such as addit ional sources of random­
ness, that kept rules far away from A = 1/2. Unfortunately, the best and
mean fitnesses for the A bins were not reported in [24]. As a consequence
we do not know whet her the peaks in t he original histo gram contained high­
fitness rules, or even if they contained rul es that were more fit than rules in
other bins. Our results , and the basic symmetry in th e problem, suggest th at
they did not.

8. G eneral d iscussion

8.1 What we have shown

The results reported in t his pap er have demonstra ted th at Packard 's results
are not reproduced by our experiments . We conclude that the original ex­
periment does not give firm evidence for the hypotheses it was meant to test:
first , that rules capable of performing complex computation are most likely
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to be found close to Ac values; second, that when CA rules are evolved by a
GA to perform a nontri vial computation, evolut ion will tend to select rules
close to Ac values .

As we argued theoret ically, and as our experimental results suggest , the
most successful rules for performing a given p-classification t ask will be close
to a par ticular value of A that depends on th e particular Pc of the task. Thus,
for this class of comput ational tasks, the Ac values associated with an "edge
of chaos" are not correlated with the ability of rules to perform the task.

The results that we have presented do not disprove the hypothesis that
computational capability can be corre lated with phase transitions in CA ru le
space . Indi vidu al CAs have been known for some time to exhibit phase
transit ions with the requisite divergence of corre lation lengt h required for
infinite memory capacity [2]. Indeed, a corre lation between computational
capability and phase transitions has been noted for other dynamical systems.
In the context of cont inuous-state dynamical systems, it has been shown that
there is a direct relationship between the intrinsic computational capability of
a process and the degree of randomness of that process at the phase transit ion
from order to chaos. Computational capabi lity was quantified in terms of the
stat ist ical complexity, a measur e of the amount of memory of a process, and
via the detect ion of an embedded computat ional mechanism equivalent to
a st ack automaton [4, 5]. More generally, the computational capac ity of
evolving systems may very well require dynamical properties characterist ic
of phase t rans itions, if they are to increase their complexity. We have shown
only that the published experiment al support cited for hypoth eses relating
Ac and computational capability in CA was not reproduced .

In the remaind er of this section, we ste p back from par ticular experiments
and discuss in more general terms the ideas that mot ivated these studies.

8.2 A, dynamical behavior, and computat ion

As not ed in sect ion 4, Langton presented evidence that, given certain caveats
regarding the radi us r and numb er of states k, there is some correlation
between A and the behavior of an "average" CA on an "average" initial
configuration [17]. Behavior was characterized in te rms of such quant ities as
single-site ent ropy, two-site mutu al inform ation, difference-pat tern spreading
rate, and average transient length. The correlation is qui te st rong for very low
and very high A values , which predict fixed-point or short -period behavior.
However , for intermedi at e A values, th ere is a large degree of variation in
behavior. Moreover, th ere is no precise correlat ion between these A values
and the locat ion of a behavioral "phase transit ion," other than that describ ed
by Wootters and Langton in the limit of infinite k [33] .

These remarks, and the experimental results in [17], are concerned with
the relationship between A and the dynamical behavior of CAs-they do
not directly address the relationship between A and computational capabil­
ity of CAs. The bas ic hypoth esis was that A correlates with computational
capability, in the sense that rules capable of complex (and in particular ,
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universal) computation must be , or at least are most likely to be, found near
Ac values. As far as CAs are concern ed, the hypoth esis was based on the in­
tuit ion that complex computation cannot be supported in the short -period or
chaotic regimes because phenomena such as long t ransients and long space­
t ime correlation, necessary to support complex comput ation , apparent ly oc­
cur in "complex" (nonperiodic , nonchaot ic) regimes only. Thus far , there has
been no experimental evidence corre lat ing A with an independent measure
of computation . Packard 's experiment was intended to address th is issue,
as it involved an independent measure of computation-performance on a
par ticular complex computational task- but, as we have shown, it did not
prov ide evidence for the hypot hesis linking Ac values with comp ut at ional
ability.

One problem is that these hypoth eses have not been rigorously formu­
lated. If the hypot heses put forth in [17] and [24] are interpreted to mean
that any ru le performing complex computation (as exemplified by t he P = 1/ 2
task) must be close to Ac , then we have shown them to be false with our argu­
ment that correct performance on the p = 1/ 2 t ask requir es A = 1/ 2. If the
hypotheses are concerned instead with generic, statist ical properties of CA
rule space-the "average" behavior of an "average" CA at a given A- th en
the notion of "average behavior" must be better defined. Add it ionally, more
appropriate measures of dynamical behavio r and computational capability
must be formulated, and the not ion of the "edge of chaos" must also be well
defined.

The argument that complex computat ion cannot occur in chaot ic regimes
may seem intui tively correct , but there is a t heoret ical framework and st rong
experimental evidence to the contrary. Hanson and Crutchfield [3, 12] have
developed a meth od for filtering out chaotic "domains" in the space-time
diagram of a CA, sometimes revealing "part icles" that have the nonperiodic,
nonchaot ic properties of structures in Wolfram's Class 4 CA. In other words ,
with t he application of the appropriate filter , complex structures can be un­
covered in a space-time diagram that, to the human eye (and to the stat ist ics
used in [17] and [24]) appears to be complete ly random. As an extreme ex­
ample, it is conceivable that such filters could be applied to a seemingly
chaot ic CA and reveal that the CA is act ually implementing a universal
computer (with glider guns implementing AND, OR, and NOT gates, and so
on). Hanson and Crut chfield 's results strikingly illust rate the fact t hat ap­
parent complexity of behavior- and apparent computat iona l capability-can
depend on t he implici t "filter" imp osed by one's chosen stat ist ics.

8 .3 What kind of comput ation in C A do we care about?

In th e previous sect ion, the phrases "complex computation" and "computa­
t ional capability" were used somewhat loosely. As was discussed in sect ion 3,
t here are at least three different interpretat ions of the not ion of computat ion
in CAs. The notion of a CA being able to perform a "complex computation"
such as the Pc = 1/ 2 task, where th e CA performs the same computation
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on all initial configurations, is very different from the notion of a CA being
capable of simulating, und er some special set of initial configurations, a uni­
versal computer . Langton's speculations regarding the relationship between
dynamical behavior and computat ional capability seem to be more concerned
with the lat ter than the former, though they imply th at the capability to sus­
tain long transients , long corre lation lengths, and so on, is necessary for both
notions of computation.

If "computat ionally capable" is taken to mean "capable, under some ini­
t ial configurations, of un iversal computation," then one might ask why this
is a particularly important property of CAs on which to focus attent ion. In
[17], CAs were used as a vehicle to study th e relationship between phase t ran ­
sitions and computat ion, with an emphasis on universal computation. But
for those wishing to use CAs as scient ific models or pract ical computational
to ols, a focus on the capacity for univer sal computation may be misguid ed.
If a CA is being used as a mod el of a natural pro cess (e.g., t urbulence) , then
it is of limited interest to know whet her or not th e CA is, in principle, capa­
ble of universal computation (especially if universal computation will arise
only under some specially engineered initial configurations that t he natural
process is ext remely unli kely ever to encount er). To understand emergent
computat ion in natural phenomena as modeled by CAs, one should try to
und erstand what computation the CA does "int rinsically" [3, 12]' rather than
what it is capab le of doing "in principle" (and only under some very special
initial configurations) . Thus, understanding t he condit ions under which a
capacity for universal computation is possible will not be of much value in
underst anding the natural syst ems mod eled by CAs.

T his general point is neither new nor deep. Analogous arguments have
been put forward in the context of neur al networks, for example. Wh ile
many const ructions of universal computation in neural networks have been
made (e.g., [29]), some psychologists (e.g., [28]) have argued that th is has
lit t le to do with understanding how brains or minds work in the natural
world.

Similarly, if one wishes to use a CA as a parallel computer for solving a
real problem-such as face recognition-it would be very inefficient , if not
pract ically impossible, to solve the problem by (say) programming Conway's
Game of Life CA to be a universal computer that simulates the act ion of
the desired face recognizer. Thus, understan ding the condit ions under which
universal computat ion is possible in CAs is not of much practical value either.

In addit ion, it is not clear that anything like a dr ive toward universal
computational capabilit ies is an import ant force in the evolut ion of biological
organisms . It seems likely that subst ant ially less computat ionally-capable
properties playa more frequent and robust role. Thus, asking under what
condit ions evolut ion will create ent it ies (including CAs) that are capable
of universal computation may not be of great imp ortance in understanding
natural evolutionary mechanisms.

In short, it is math ematically import ant to know that some CAs are , in
pr inciple, capable of universal computat ion . But we argue th at this is by no
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means the most scient ifically int erest ing propert y of CAs. More to the point ,
this property does not help scient ists much in und erst anding the emergence
of complexity in nature, or in harnessing the computational capabilities of
CAs to solve real problems.

9. Conclusion

The main purpose of t his st udy was to examine and clarify the evidence for
various hypotheses related to evolut ion, dynamics, and t he computationa l
capability of cellular automata. As a result of our study we have identified a
numb er of evolut ionary mechanisms, such as th e role of combinatorial drift ,
and the role of symmet ry. We have also found that th e breaking of the
goal task's symmetries in th e early generations can be an imp ediment to
further optimization of individu als in the population. Symm etry breaking
results in a kind of suboptimal speciation in a pop ulation th at is stable (or
at least metastable) over long t imes. The symmetry-breaking effects we have
describ ed may be similar to symmet ry-breaking phenomena that emerge in
biological evolut ion, such as br ain hemispheric dominance and hand edness,
or the breaking of the spherical symmetry of a blastula which results in
bilateral symmetry. It is our goal to develop a more rigorous framework
for understanding th ese mechanisms in the context of evolving CAs. We
believe that a deep understandin g of these mechanisms in th is relatively
simple context can yield insights for understanding evolut ionary processes in
genera l, and for successfully app lying evolut ionary computation methods to
complex problems.

T hough our experiments did not repro duce the results reported in [24]'
we believe that Packard's original st rategy of using GAs to evolve computa­
t ion in CAs is an imp ortant idea. In addit ion to its potential for the st udy
of various theoret ical issues, it has a practical potenti al that could be sig­
nificant . As previously mentioned, CAs are increasingly being studied as a
class of efficient parallel comput ers; the main bot t leneck in applying CAs
more widely to parallel computation is progmmming--in genera l, it is very
difficult t o program CAs to perform complex t asks . Our results suggest that
th e GA has promise as a method for accomplishing such programming au­
tomat ically. In order to test further the GA' s effectiveness when compared
with other search met hods, we performed an addit ional experiment, compar­
ing the performance of our GA on th e Pc = 1/2 task with the performance
of a simple steepest-ascent hill-climbing method. We found t hat the GA
significant ly outperformed hill climbing, reaching much higher fitnesses for
an equivalent numb er of fitness evaluations. This gives some evidence for
the relative effectiveness of GAs when compared with simple gradient ascent
methods for programming CAs. Koza [16J has also evolved CA rules using
a very different type of repr esentation scheme; the relationship between rep­
resent ation and GA success on such tasks is a topic of substant ial practical
interest.
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