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Abstract. This paper presents a static analysis of deception in mul-
timodal functions. Deception in a bipolar function of unitation (a
function with two global optima and a number of deceptive attrac-
tors) is defined, and a set of sufficient conditions relating function
values is obtained. A bipolar deceptive function is also constructed
from low-order Walsh coefficients. Multimodal functions of bounded
deception are formed by concatenating several bipolar deceptive func-
tions. These functions offer a great challenge to global optimization
algorithms (including genetic algorithms) because they are deceptive
and have a large number of attractors, of which only a few are global
optima. These functions also open doors for generalizing the notion
of deception, and allow us to better understand the importance of
deception in the study of genetic algorithms.

1. Introduction

Deceptive problems raise questions about the fundamental principle of ge-
netic algorithms (GAs). Mechanisms to solve these problems may provide
important insights regarding the mechanics of genetic algorithms. To date,
the study of deception in GAs has been focused primarily in three different
directions: design of deceptive functions [2, 3, 8, 14]; understanding the ef-
fect of deception in GA solutions [5, 6, 7, 15, 16, 17, 18] and modification of
GAs to solve deceptive problems [4, 10, 11]. In all the aforementioned stud-
ies, deception was assumed in a uniglobal function—a function with a single
global optimum and a single deceptive attractor. It was observed that in a
fully deceptive uniglobal function, the deceptive attractor must be the com-
plement of the global optimum [17], and all low-order building blocks favor
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the deceptive attractor. Since low-order building blocks are not instances of
the global optima, these functions are difficult to solve using simple tripartite
GAs, often converging to the deceptive attractor. The analysis and solution
of these uniglobal deceptive problems have helped us understand what prob-
lems are hard for GAs, and how GAs can be modified to solve such problems.
We take a further step along these lines, and introduce deception in functions
with multiple global optima and multiple deceptive attractors.

Like uniglobal deceptive functions, multimodal deceptive functions are
designed so that low-order building blocks lead away from all global optima
and favor deceptive attractors. Since these functions have a number of de-
ceptive attractors rather than one, the solution may now be attracted to one
of many deceptive attractors. In addition to the functions being deceptive,
the multimodality of the function space itself may cause difficulty in solving
these problems to global optimality. This dual effect of deception and mul-
timodality in such functions is likely to provide a stiff challenge to simple
GAs. However, it is for precisely such functions that stochastic optimization
methods like GAs are likely candidates for finding any global solutions at all.
Due to their population-approach and implicit parallel processing, GAs may
even be designed to allow multiple global optimal solutions to coexist in the
population, thereby solving multiple optimal solutions simultaneously [12].
In this paper, we introduce the notion of deception in multimodal functions,
construct multimodal deceptive functions, and discuss how GAs can be used
to solve these problems.

We introduce the notion of deception in multimodal functions by ana-
lyzing a bipolar function of unitation. (A bipolar function has two global
optima and a number of deceptive attractors maximally far apart from both
global optima.) A set of sufficient conditions for deception is found for an
arbitrary bipolar function of unitation by calculating schema average fitness
values. Thereafter, a bipolar deceptive function is constructed from low-
order Walsh coefficients. Relations among Walsh coefficients are found in
order to construct a bipolar deceptive function and a partially bipolar de-
ceptive function of any order. Multimodal deceptive functions of bounded
deception are constructed by concatenating several bipolar deceptive func-
tions. The multimodality of the search space is illustrated by constructing a
12-bit quadrimodal function, and possible extensions to the simple GA are
discussed in regard to solving such problems to global optimality.

2. Bipolar deceptive functions

In previous studies of deception, functions with a single global optimum and
a single deceptive attractor were considered. Though the deceptive attractor
and the local optimum may not be identical in a fully deceptive problem [17],
we will consider them to be identical. In this section, we introduce the notion
of deception in functions with more than one global optimum, and with more
than one deceptive attractor. We call the former class of functions uniglobal
functions and the latter class of functions multimodal functions. We define
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a bipolar function with two global optima and a number of deceptive at-
tractors to find a sufficient condition for deception in a bipolar function.
Subsequently, we construct massively multimodal deceptive functions using
bipolar deceptive functions.

A bipolar function is defined as having two global optima that are max-
imally far apart from each other, and a number of deceptive attractors that
are maximally far apart from the global optima in the Hamming space. It has
been discussed elsewhere [3] that functions of unitation reduce the number of
independent function values in a function, thus enabling easier manipulation
of function values to find conditions for deception. We consider even-sized
bipolar functions of unitation (recognizing that the analysis may be extended
to odd-sized bipolar functions). In a bipolar function of unitation of size 2¢,
there are only 2/ + 1 independent function values. The number of indepen-
dent function values is further reduced by considering a symmetric bipolar
function of unitation, in which the function values are symmetric about uni-
tation w = £. This reduces the number of independent function values to
¢+ 1. Without loss of generality, we consider a symmetric bipolar function
of unitation having two global strings of unitation v = 0 and u = 2/ re-
spectively (maximally far apart from each other), and a number of deceptive
attractors of unitation u = ¢ (maximally far apart from the global optima).

Since there are (Qf) strings of unitation u = ¢, the total number of deceptive

attractors is (%f). Any two complimentary strings may also be used as global
strings by transforming the function, as suggested elsewhere [8]. One char-
acteristic of such a function is that with increasing problem size, the number
of deceptive attractors increases exponentially, but the number of global op-
tima remains two. Thus, for large problem sizes, there are many attractors,
of which only two are global optima. The massive multimodality of such
functions may cause difficulty in solving them to global optimality. If these
functions are deceptive, not only are there many non-global attractors, but
low-order schema partitions guide the search away from the global solutions.
This makes the functions even more difficult to solve to global optimality.

2.1 Defining bipolar deception

We modify the definition of deception in a uniglobal function to define de-
ception in a bipolar function. In a uniglobal deceptive function, a schema
partition is usually defined to be deceptive if the schema containing the
deceptive attractor is no worse than any other competing schema in the par-
tition [3]. In a bipolar function, there are two global solutions and a number
of deceptive attractors. In all schema partitions of order less than half the
problem size, all schemata containing global strings also contain a number
of deceptive attractors. In those partitions, there exist some schemata that
contain deceptive attractors only. For example, in a six-bit bipolar func-
tion, there are two global optima and (g) or twenty deceptive attractors. A
schema partition of order two contains four schemata, of which the schema
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with unitation zero (00xsxs#x) contains one of the global optima (000000) and
the schema with unitation two (11%##x) contains the other global optimum
(111111). Both these schemata, however, contain four different deceptive
attractors. For example, the schema of unitation zero contains the following
deceptive attractors: 001011, 001101, 001110, and 000111. Schemata of
unitation one 10s##* and Olx##* contain no global optima yet contain six
deceptive attractors each. For example, the former schema contains the fol-
lowing deceptive attractors: 100011, 100101, 100110, 101001, 101010, and
101100. Since in any schema partition many schemata contain one or more
deceptive attractors, the usual definition of schema partition deception can-
not be applied to a bipolar function. Thus, to define deception in a bipolar
function, we modify the usual definition of deception, as follows.

Definition 1. In a bipolar function, a schema partition is defined to be
deceptive if the schema (or schemata) containing the maximum number of
deceptive attractors is (or are) no worse than other competing schemata.

Note that this definition reduces to the usual schema partition deception in
the uniglobal case. In the case of uniglobal, fully deceptive functions, there is
only one global optimum and one deceptive attractor, and the deceptive at-
tractor is the complement of the global optimum [17]. Thus, in any schema
partition of such a function, there exists only one schema containing the
deceptive attractor. Since all other schemata do not contain the deceptive
attractor, the above definition requires that the schema containing the de-
ceptive attractor is no worse than any other schema, which is precisely the
definition of schema partition deception in the uniglobal case.

In bipolar functions, it is less obvious which schema has the maximum
number of deceptive attractors. To find out, we calculate the number of
deceptive attractors that are contained in a schema. In a bipolar function of
size 2/, a schema partition of order A contains schemata of unitation varying
from zero to A. Since all deceptive attractors contain £ ones and / zeros, it can
be shown that an order-A schema of unitation u contains (2e—,\) deceptive

l—u
attractors. Since this expression is maximum for v = |\/2]!, it is clear
that the schema of unitation u = |[A/2] contains the maximum number
of deceptive attractors. Thus, according to the above definition, a schema
partition of order A is deceptive, if schemata of unitation u = [A/2] are no
worse than other schemata in the schema partition.

With this definition of schema partition deception, we define a bipolar
deceptive function as a function where all schema partitions are deceptive.
An order-one schema partition has two schemata containing equal numbers of
deceptive attractors. Thus, both schemata in an order-one schema partition
have the same fitness. In the remainder of this section, we find a set of
sufficient conditions for deception by imposing bipolar deception in all schema
partitions.

IThe operator | | denotes the floor operator that calculates the greatest integer smaller
than the operand.
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2.2 Deception analysis

We define the fitness of a schema of order A and unitation u as f(u, A, 2£).
This schema has A fixed positions with u ones and A\ — u zeros, and has
20— )\ don’t care positions. Thus, this schema contains strings with unitation
varying from u to 2/ — A + u. According to this terminology, a string would
be represented as f(u, 2¢,2¢); however, we use f(u) to denote the quantity
simply. Recognizing that there are (22 A) strings of unitation i4u, we obtain
the schema fitness in terms of the function value of strings, as follows.

fu, X, 20) = 272 *>2§<2€ A) i+u) (1)

Since the bipolar function is symmetric about unitation u = ¢, we may write
that f(u) = f(2¢—wu). Using equation (1) and the symmetry of the function,
we observe a number of properties of this function.

Property 1. For a size-2¢ bipolar function of unitation with an axis of sym-
metry at u = £, schemata in a schema partition of order )\ are also symmetric;
or, in function notation,

flu, A\ 28) = f(A—u, A, 20) (2)

Proof. Using symmetry, and recognizing that (% ’\) = (%,Qf;’i Z) we rewrite

equation (1) as follows.

20—\ 20 — )\
flu, ), 20) =272 ’\)Z(% N >f(2€—u—z)

Introducing a new index j = 2{ — X\ — i, we observe that the limits of the
summation remain the same. Writing the right side of the above expression
in terms of the new index j proves Property 1. B

This property reduces the number of schema competitions to be investi-
gated in a schema partition. It suggests that for bipolar deception we must
only compare schemata of unitation u = [A/2] with schemata of unitation
0 <u < |A/2] —1 in each schema partition of order \.

Property 2. For a size-2¢ bipolar function of unitation with an axis of sym-
metry at u = ¢, the fitness of a schema of order A\ (where \ is even) and
unitation \/2 is the same as the fitness of a schema of order A + 1 and
unitation \/2.

Proof. We know that the fitness of a schema of order A and unitation v may
be written as the average fitness of schemata of order A+ 1 and of unitations
u and u + 1. For an even value of A\, we obtain

FOJ2,0,20) = [FO/2, A+ 1,20 + F(A/2 + 1, A + 1,20)]/2

Substituting u = A/2 in equation (2), we observe that f(A/2,A +1,2¢) =
f(A/241, A+ 1,2¢), which simplifies the right side of the preceding equation
to f(A/2, A+ 1,2¢). This proves Property 2. B
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Property 3. In a size-2¢ bipolar function of unitation with an axis of sym-
metry at u = ¢, if a schema partition of order \ (where )\ is odd) is deceptive,
the schema partition of order A — 1 is also deceptive.

Proof. By Definition 1 and Property 1, a deceptive schema partition of
order A implies that the schema of unitation u = |A/2] has a fitness better
than or equal to that of any other competing schemata of unitation 0 < u <
[A/2] =1 in the partition. Without loss of generality, we assume that we are
maximizing the function. For odd values of A, we assume that A = 2k + 1.
We write deception conditions for a schema partition of order A — 1, and
express the schema fitness value in terms of fitness of schemata of order A.

£k, 2k,20) > f(u,2k,20)
or,

Flk,2k+1,20) + f(k+1,2k +1,20)
> fu,2k+1,20) + f(u+1,2k + 1,2¢)

Using Property 1, we observe that two terms in the left side of the second
inequality are identical. Using the conditions for deception of a schema parti-
tion of order 2k+1, we obtain f(k,2k+1,20) > f(u,2k+1,2¢) for 0 < u < k.
This proves Property 3. B

Property 3 suggests that if an odd-order schema partition is deceptive, the
immediate lower order schema partition is also deceptive. This reduces the
total number of schema partitions to be investigated for deception. Thus, to
find conditions for a bipolar deceptive function, we simply consider deception
in odd-order schema partitions. Assuming A = 2k + 1, we observe that we
need to impose the condition that for any schema partition of order 2k + 1
satisfying 1 < k < £—12 the fitness of a schema of unitation k is greater than
or equal to that of any other competing schema of unitation 0 <u <k — 1,
as follows.

Fk, 2k +1,20) > f(u, 2k +1,20) (3)

We assume that function values are non-negative. A schema of unitation u’
contains strings of unitation varying from u’ to 20 — 2k — 1 + v’

20—2k—1+u' 22—k —1

S, 2k +1,20) = 220" 3~ ( o )f(z'). (4)
et i—u

Since the schema under consideration is an odd-order schema, the summation
in the right side of equation (4) involves an even number of terms. Figure 1

shows that strings that are contained in a schema are binomially distributed

2Order-one schema partitions are not interesting, since both schemata in an order-
one schema partition contain an equal number of deceptive attractors and have identical
fitness.
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Typical fitness distribution

Schema of unitation Schema of unitation k

. : | IBinomial coefficients
u’ k : C202k-1+w 20-k-1

Eg_k_*_u' ‘ | Diff. in Binomial coeff.=0

| |
0 l-k+u'-1 ¢ 20
Unitation

Figure 1: The fitness function and the corresponding binomial coef-
ficients for two schemata are shown. The difference in the binomial
coefficients between these two schemata are also shown.

with a maximum occurring at unitation u =f—k+u' —1landu =£{—k+u'.
We write the fitness of a schema of unitation & in the same manner:

f(]{), 2%k +1, 2@) — 9—(20-2k-1) 22§:~1 <2£ —— 2k — 1>f(z) (5)

i=k i~k

This schema contains strings of unitation varying from k to 2¢ — k — 1. The
maximum number of terms occur at unitation u = ¢ — 1 and u = £ (as
shown in figure 1). For the function to be bipolar deceptive, the right side
of equation (5) must be greater or equal to the right side of equation (4) for
all valuesof 1 <k</—1land 0< v/ <k-—1.

Initially, we confine our analysis to schemata of unitation 1 < v’ < k —
1, but we shall subsequently extend this analysis to schema of unitation
zero. We observe that equations (4) and (5) are average values of a fitness
distribution weighted by a binomial distribution located differently along the
unitation axis (as depicted in figure 1). The fitness distribution is symmetric
about u = ¢, as assumed. Since the deceptive attractor is assumed to be the
second-best string, the best string among all strings that are contained in
schemata of unitation 1 < v/ < k — 1 is the string of unitation £ or ¢ — 1.
In equation (4), the maximum value of the binomial coefficient occurs at
u = {—k+u'—1 and at u = /—k+/. In equation (5), it occurs at u = £—1 and
at u = £. Defining d(/, k) = 22621 [f(k, 2k + 1,20) — f(u/, 2k + 1, 2¢0)], we
impose the condition d(u/, k) > 0 for bipolar deception. Using equations (4)
and (5), we calculate and plot the difference in the binomial coefficients for
each unitation in figure 1. We observe that the total number of negative
terms in that distribution is the same as that of the positive terms.
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In an earlier study [3], a set of sufficient conditions was obtained for an
arbitrary uniglobal function of unitation. Here, we form a symmetric bipolar
function with function values satisfying those conditions, and analyze bipolar
deception in that function. We rewrite those conditions for a function of size
¢ having global optima at unitation zero and the deceptive attractor—also
the second-best string—at unitation ¢, as follows.

Primary optimality condition:
f(0) > f(€)
Primary deception condition: ©)
O > f0)+ £(1) - f(€—-1)
Secondary deception conditions:
f@) > f(5) for[£/2]<i<fl—landl—-i<j<i

The primary optimality condition specifies that the string of unitation zero
is better than the string of unitation ¢. The primary deceptive condition
establishes deception in order ¢ — 1 schemata. The secondary deception
conditions imply that a string of unitation u > [£/2] is better than any
string of unitation as small as £ — u.

We write the quantity d(u, k) as the sum of two quantities—d; (v, k) for
the strings of unitation from £ — k + v’ to £ — 1, and da(u’, k) for the rest
of the strings. We observe that the total number of positive and negative
terms in each quantity is the same. Using equations (4) and (5), the positive
and negative terms in the quantity d;(u/, k) may be grouped as strings of
unitation varying from ¢ — k/2 — u//2 to £ — 1, and as strings of unitation
varying from ¢ — k +u' to £ — k/2 —u'/2 — 1. (This scenario is also shown in
figure 1.) The index for the negative terms can be rewritten in terms of the
index for the positive terms, as follows.

bW k)= S [(262312_ 1>‘<2€;_2]:[ 1)} 7

=tk )2—u! /2
X[f() = f(2l —k+u —1—1)

The term inside the first bracket is positive for all values of the summation
index, and the secondary deception conditions reveal that the quantity in the
second bracket is non-negative for all values of the summation index. Thus,
di(u', k) is greater than or equal to zero.

To show that da(u’, k) > 0, we use the symmetry of the function; reflect
the strings of unitation from ¢ to 2¢ — k — 1 at u = ¢; and compare them
with strings of unitation varying from v’ to £ — k + v’ — 1. The number of
positive and of negative terms in dy(u/, k) is the same, and for each binomial
coefficient in the positive terms there exists an identical binomial coefficient
in the negative terms. For each binomial coefficient in the quantity da(v/, k),
we compare the corresponding function values that contribute positive and
negative values. For example, we compare the function values of strings of
unitation ¢ (positive contribution), with that of unitation ¢ — k + v’ — 1
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(negative contribution), and so on. Secondary deception conditions allow
the positive terms to be greater than the corresponding negative terms up
to unitation (¢ + k —u' + 1)/2 for the positive terms. Since no relationship
among function values of strings of unitation smaller than £/2 is imposed in
the sufficient conditions, nothing can be concluded, apparently, about terms
of unitation smaller than (¢ + k — «’ + 1)/2 and up to k. However, the
binomial coefficients for strings of unitation smaller than ({ + &k — v/ + 1)/2
and up to k are very small in comparison to the binomial coefficients for
strings of unitation greater than or equal to (£ + k — u' + 1)/2 and up to
£. In addition, there are more binomial terms for unitation greater than
or equal to (£ + k —« + 1)/2 than there are for unitation smaller than
(l+k—u'+1)/2. On the other hand, the primary deceptive condition suggests
that f(0) cannot be arbitrarily large. Thus, the sufficient conditions imply
that the net positive quantity for functions satisfying secondary deception
conditions cannot be smaller than the net negative quantity. In other words,
we may write do(w', k) > 0. Combining our analyses, we may write that
d(v', k) > 0.

We now compare schemata of unitation k& with schemata of unitation zero
in all schema partitions of order 1 < k < £ — 1. A schema of unitation zero
contains only one string of unitation zero. Thus, using the schema fitness
expressions given in equation (4), we combine the function value for the string
of unitation zero with only one term of the function value for the string of
unitation one, and write separately:

2%-2k-11(0,2k 4 1,20) (8)

20—2k+1 2 —9% —1 )
- O+ sl e-k-ns+ X (%)
i=2
We rewrite equation (5) in the same manner, except that in this case, we
separate one term each of the function values of unitation £ — 1 and ¢:

921 ¢k Ok 1 1,26) (9)

—tre-n+ 0+ | (32T -1 e+ e

2—k—1
3 5 (215 . 2k 1>f(i)
i=hil,e—1 i—k
The primary deception condition establishes that the quantity inside the
first bracket of equation (9) must be greater than the quantity inside the
first bracket of equation (8). The analysis carried out in the previous para-
graphs follows for the rest of the terms in both equation (8) and (9). Thus,
any odd-order schema partition is deceptive in a bipolar function satisfying
the sufficient conditions. Because an odd-order schema deception implies
deception in the immediately smaller even-order schema partition, the argu-
ment follows for all permissible schema partitions, and the function is bipolar
deceptive.
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3. Construction of bipolar deceptive functions

We have shown that the sufficient conditions for an arbitrary deceptive func-
tion of unitation of size £ with one global optimum and one deceptive attrac-
tor are sufficient for maximal deception in a bipolar symmetric function of
size 2¢ with identical function values in the range 0 < u < £. We define a pa-
rameter folded unitation, e =| u—£ |, and observe that the bipolar symmetric
function expressed in folded unitation may be identically represented by the
function of unitation with one global optimum and one deceptive attractor.

Thus, a bipolar deceptive function may be easily constructed from a
uniglobal function of unitation by using the idea of folded unitation. We
assume that the uniglobal, fully deceptive function is represented by g(u)
with unitation u varying from zero to ¢, and that the function has a global
solution at u = ¢ and a deceptive attractor at © = 0. We then construct a
bipolar deceptive function f(u) requiring f(u) = g(e). The bipolar function
f(u) has two global optimal strings of v = 0 and u = 2¢, and (zf) deceptive
attractors of u = £. The analysis in subsection 2.2 shows that if the uniglobal
function of unitation g(u) is fully deceptive, the bipolar function of unitation
f(u) constructed from g(u) is bipolar deceptive.

In the following, we construct a bipolar deceptive function of unitation
from a uniglobal, fully deceptive trap function.

3.1 A folded-trap function

The condition of deception of a uniglobal trap function is found elsewhere
[2]. A trap function is a function of unitation with a global optimum and
a deceptive attractor located maximally far apart from the global optimum.
Without loss of generality, we consider that the global optimum and the
deceptive attractor are strings of unitation ¢ and zero respectively, and have
function values equal to b and a respectively. The function value reduces
as the unitation increases, and the string of unitation z has a function value
equal to zero. The function value increases thereafter until the function value
is b at u = £. We write this function as follows.

g(u)z{ 8(z—u), ifu<z

7~ (u—2), otherwise
We construct a 2/-bit, symmetric bipolar function of unitation f(u) (a

folded-trap function), by using the function in equation (10), g(u), and im-
posing f(u) = g(e). Elsewhere [3], a deception condition for a fully deceptive
trap function has been found by using the conditions of equation (6). Using
the same conditions, we obtain a sufficient condition for the 2£-bit, bipolar
deceptive folded-trap function, f(u):

a_ 2-1/(L-2)

->—" = 11

b 2—-1/z 1)
Figure 2 shows a 10-bit folded-trap function with a = 0.95, b = 1.00, and
z = 3. These parameter values satisfy the above condition. The schema

(10)
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Function values, f(u)
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Figure 2: A 10-bit folded-trap function plotted versus unitation. The
schema average function values for schemata of order one to nine are
also shown. The function is bipolar deceptive.

average function values of schemata of order one to nine are also shown. The
figure shows that all schema partitions are bipolar deceptive.

We have shown a way to construct a bipolar deceptive function from a
uniglobal, fully deceptive function. We extend this analysis to find a set of
sufficient conditions for an arbitrary bipolar function.

3.2 An arbitrary bipolar function

In this subsection, we rewrite the conditions of equation (6) for an arbitrary
bipolar function. In an arbitrary bipolar function, all function values of
strings of a particular unitation may not be equal; therefore, we modify the
conditions using the maximum and minimum function values of strings of
identical folded unitation. For example, the primary optimality condition
requires that f(0) be greater than f(¢). There is one string of unitation zero
and there are (zf) strings of unitation /. In order to impose the primary

optimality condition for all strings of unitation £, we require that f(0) be
greater than the maximum function value of strings of unitation ¢. Using
this principle, we may rewrite primary and secondary deception conditions.
Assuming that the global optima are strings of unitation 0 and 2¢ and that
deceptive attractors (which are also the second-best strings in the search
space) are strings of unitation £, we denote min f(u) and max f(u) to be the
minimum and maximum function values of strings of folded unitation w3

3In other words, min f(u) is the minimum function value of all strings of unitation u
and 2¢ — u, and max f(u) is the maximum function value of all strings of unitation u and
20 —u.
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and using the conditions of equation (6), we obtain sufficient conditions for
a bipolar deceptive function, as follows.

Primary optimality conditions:
f(0) > max f(¢), min f(¢) > max f({—1)
Primary deception condition:
min f(¢) > f(0) + max f(1) — min f(¢ — 1) (12)
Secondary deception conditions:

min f(i) > max f(j)
for [¢/2] <i<f—landl—i<j<i

Since the deceptive attractors are the second-best strings, the primary
optimality condition contains the additional condition that min f(£) >
max f(¢ — 1). It is interesting to note that these conditions do not imply
any restrictions on the minimum value of strings of folded unitation varying
from one to [#/2]. The conditions of equation (12) are used to construct an
arbitrary bipolar deceptive function in the appendix.

4. Bipolar deceptive functions using Walsh coefficients

We have found a set of sufficient conditions for a bipolar deceptive function
of unitation. We may also construct a bipolar deceptive function of unitation
using low-order Walsh coefficients, following the method used elsewhere [8]
to construct a uniglobal deceptive function. Constructing a function from
Walsh coefficients provides an easier way to calculate schema fitness values,
thereby simplifying the deception analysis. We took the harder way first, to
obtain a general set of sufficient conditions for deception. In this section, we
find a relationship among low-order Walsh coefficients in order to construct
a deceptive bipolar function of unitation, and use the sufficient conditions of
equation (6) to obtain the same relationship for bipolar deception.

We use the notation of Section 3 to represent a schema fitness value and
a function value, and assume that all Walsh coefficients of the same order
are identical. The fitness of a schema of order A and unitation u is written
as follows [8].

A
f(ua A 26) = Z wﬂ/}fi(u’ >‘) (13)

where w; is the Walsh coefficient for order 7, and the term 1)} represents the
sum of all the evaluations of order 7 Walsh functions defined for any schema
of unitation u and order \:

& fu\ [A—u

o = (%) (1Y) (14)
=0 4 1==7

A function of size 2¢ may be constructed from equation (13) by substituting

A = 2{. Recognizing that we are interested in a symmetric bipolar function

with an axis of symmetry at u = ¢, and using the above equation, we observe
the following property for any function of unitation.
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Property 4. If in a function of unitation of size 2¢ all odd-order Walsh
coeflicients are zero, the function is symmetric about unitation .

Proof. Using equation (14) and substituting A = 2/, it is a straightforward
matter to show that ¥}(2¢ — u,2¢) = (—1))!(u, 2¢). Using this equation, we
calculate the difference in function values d(u) = f(u) — f(2¢ — w):
2-1
du)=2 > wi(u,20)
=13,

Setting all odd-order Walsh coefficients to be zero, we obtain d(u) = 0,
implying that f(u) = f(2¢ — u) for all values of 0 < u < ¢ — 1. Thus, the
function is symmetric about u = ¢. B

We assume that only zeroth, second, and fourth order Walsh coefficients
are nonzero. The order-zero Walsh coefficient represents the average of all
function values. Using equation (13), we write the schema average fitness of
a schema of order A and unitation v in terms of three Walsh coefficients (wy,
wa, and wy):

Flu, A, 20) = wo + ws [(Ag“) —u(A—u) + (;ﬂ (15)

175003 - (oo ()

4.1 Optimality and deception conditions

In this subsection, we find optimality and deception conditions for a bipolar
deceptive function in terms of three Walsh coefficients. We then find a set of
these coeflicients which satisfies all optimality and deception conditions.

The bipolar function is symmetric at unitation uw = ¢. Thus, using Prop-
erty 1, we need to consider only ¢ optimality conditions. The optimality
conditions impose that f(0) > f(u) for 1 < u < £. Substituting function
values from equation (15) and simplifying, we obtain

Optimality conditions:

wy > —wy [u? —2ul+ 202 —30+2]/3 forl<u</ (16)

The deception conditions may be obtained by imposing the condition that

a schema of order A and unitation | A/2] is no worse than any other competing

schema. It has been shown in the previous section that the deception in all

odd-order schema partitions implies bipolar deception in a function. Thus, we

impose deception in odd-order schema partitions only. Assuming A = 2k+1,

we impose the conditions for deception: f(k,2k + 1,2¢) > f(u,2k + 1, 2¢) for

1<k<f-1and0<u<k-—1. Using equation (15) and simplifying, we
obtain

Deception conditions:
wy < —wy [(2k — 2u)? — 8k —4u+4] /12 for 1<k <l-1, (17)
0<u<k-1
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Figure 3: The bound on the ratio ws/wy is plotted with £. Any value
of the ratio between the two solid lines constitutes a bipolar deceptive
function of unitation. The upper bounds for this ratio are also shown
for partially bipolar deceptive functions of unitation to order 2¢ — 3
and ¢. The lower limit is the same in all cases.

The parameters ws and wy can take any algebraic sign. First, we assume
that wy is positive. Considering all conditions in equation (16), we observe
that the critical condition occurs for u = ¢. Substituting v = £ in equa-
tion (16), we obtain ws/wy > —(¢ — 1)(¢ — 2)/3. Furthermore, we observe
from equation (17) that the critical condition occurs for k = ¢—1 and u = 0.
Substituting these values in equation (17), we obtain ws/wy < —(¢ — 2)%/3.
Combining these two conditions, we write the conditions for bipolar decep-
tion of a function of unitation as follows.

~(£—1)(¢~2)/3 < wp/wy < ~(£~2)°/3. (18)

Since wy is assumed positive, the above condition implies that w, is negative.
Next, we consider that wy is negative. Finding the critical conditions of
equations (16) and (17), we observe that there are no w, and wy that satisfy
these critical conditions. Thus, a bipolar function as given in equation (15)
with negative wy is not possible. Figure 3 shows the lower and upper bound of
the ratio wy /wy in solid lines. The figure depicts that the range of permissible
values of this ratio is small.

In figure 4, we have plotted a bipolar deceptive 10-bit function of unita-
tion. In addition to the function values, fitness of schemata in all schema
partitions of order one to nine are also shown. In this function, the lower and
upper limit of the ratio ws/wy are —4 and —3, respectively. The function is
constructed with wg = 0.4350960, w, = —0.0248397, and w4 = 0.0080128, so
that the ratio wy/wy is —3.1 and all function values are nonnegative. The
figure depicts that the schema of unitation equal to half of its order is no
worse than any other schema in the partition. However, both schemata in the
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Figure 4: A 10-bit bipolar deceptive function is plotted with unitation.
This function is constructed with wg = 0.4350960, wy = —0.0248397,
and ws = 0.0080128. Fitness of schemata of all schema partitions is
also shown.

order-one schema partition have the same fitness value. It may be observed
that this function satisfies all properties of a bipolar function, as previously
discussed.

4.2 Partially bipolar deceptive functions

The equation (17) may be used to find conditions for a partially bipolar
deceptive function of unitation to any order. A function is defined to be
partially bipolar deceptive to an order p, if all schema partitions of order less
than p are deceptive. For a partially bipolar deceptive function, the opti-
mality conditions must hold. Deception conditions may be found depending
on the parity of p. If p is odd, equation (17) must be used for all values of
2k+1 < p. It is interesting to note that the right side of equation (17) varies
quadratically with k. Denoting the right side of equation (17) by 7(u, k),
we obtain r(u,k + 1) — r(u, k) = —w4[4(k — u) — 3]/12. Since u < k, the
right side of that inequality is monotonically decreasing with respect to k.
Thus, the critical condition occurs for 2k +1 = p. Substituting k = (p—1)/2
and u = 0 in equation (17) and using optimality conditions, we obtain the
following bound on the ratio wy/wy for a partially bipolar deceptive function
of unitation to an odd order p.

—(£—1)(£—2)/3 < wa/wy < —(p — 3)*/12 (19)

If p is even, a similar analysis may be performed using equation (15). As-
suming p = 2k, we obtain the general condition of deception, wy < wy(4k*+
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4u® —8ku—12k+8)/12. For a partially bipolar deceptive function to order p,
the critical case occurs for 2k = p and u = 0. The bound of the ratio wa/ws
for a partially bipolar deceptive function of unitation to an even order p is

—(l—-1)(-2)/3 <wa/ws < —(p—4)(p—2)/12. (20)

The upper bounds of wy/wy for partially bipolar deceptive functions to
order 2¢ — 3 and ¢ are shown in figure 3. The lower bound is governed by
the critical optimality condition and holds for a partially bipolar deceptive
function to any order. Thus, as the order of deception increases, the range
of the ratio wq/w, for a partially bipolar deceptive function decreases.

4.3 Deception from sufficient conditions

We can use sufficient conditions found in the Section 2.2 (equation (6)) to
investigate deception in the function given in equation (15). There are three
conditions to be satisfied.

Primary optimality condition: Imposing the condition f(0) > f(£) in
equation (15), we obtain the inequality we/wy > —(¢ — 1)(£ — 2)/3,
which is the lower bound of ws /w4 found previously.

Primary deception condition: Imposing the primary deception condition,
we obtain the inequality wo/wy < —(£—2)?/3, which is the upper bound
of wy /wy found previously.

Secondary deception conditions: In order to investigate the secondary
deception conditions, we first calculate the unitation u* for which the
function is the minimum, by calculating the slope of the function and by
setting the slope to zero. Since the function is quartic to the unitation,
the derivative of the function is cubic, and there are three values of
unitation for which the slope is zero. We know that one of them is at
u = £ and that the other two lie symmetrically on either side of u = /.
Differentiating equation (15) once with respect to u, we obtain

82—(:) = 4(u — £) [3w + wa[(u — £ — 3¢+ 2)] (21)
This equation reveals that one of the roots of the equation df(u)/0u =
0 is u* = £, and other two roots are symmetrically placed about u = £.
These two roots are u* = £ =+ \/ (1.5 — 1) — 1.5we/wy. Substituting
the bounds of ws/w4 from equation (18), we observe that minimum
u* ~ 0.292¢. Since there is no change in slope for function values in
the intervals [0,u*] and [u*, ], we need to compare only the schemata
of unitation ¢ — u to the schemata of unitation w. Calculating the
difference in function values f(u) — f(£ —u), and setting the difference
to be greater than or equal to zero, we obtain

wo/wy < —[0% —30+2—2u(f —u)]/3 (22)
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Secondary deception conditions require this for all values of u in the
interval [£/2] < wu < £— 1. The critical condition occurs for u = ¢ — 1.
Substituting this value of u, we obtain wy/wy < —(£—1)(¢—4)/3. The
right side of this inequality is always greater than —(¢ — 2)?/3. Thus,
secondary deception conditions are always satisfied.

Thus, the bipolar function obtained from the low-order Walsh coefficients
given in equation (15) is bipolar deceptive. These calculations have shown
how the set of sufficient conditions for deception of equation (6) may be
used to find deception conditions or investigate deception in any bipolar
function.

5. Multimodal functions from bipolar functions

Previously, we derived conditions among problem parameters to construct a
bipolar deceptive function. In this section, we describe a way to construct
multimodal functions of bounded deception from bipolar deceptive functions,
and discuss the difficulty of solving these problems.

A multimodal function of bounded deception may be constructed by con-
catenating a number of bipolar deceptive functions. An ¢-bit deceptive mul-
timodal function to order £ may be obtained by adding m bipolar deceptive
functions of size k:

F(z) = i_n: fi(=:) (23)

where ;s are substrings of size k such that Uz, = z. Functions f; are
bipolar deceptive functions of size k. Without loss of generality, we assume
that all subfunctions are the same, and z;’s are nonoverlapping substrings.
Because each bipolar function has two global attractors and (llj? J) deceptive

attractors, there are a total of [2 + (Lk% J)]m attractors, of which only 2™ are

global attractors. As the size and the number of bipolar functions increase,
the number of deceptive attractors increases exponentially. Figure 5 shows a
quadrimodal deceptive function constructed from two six-bit bipolar decep-
tive folded-trap functions in which @ = 0.7, b = 1.0, and z = 2.# Since these
values satisfy the condition of equation (11), the folded-trap function with
two global strings 000000 and 111111 is bipolar deceptive. This function is
then transformed using a technique suggested elsewhere [8] to construct a
double-trap function with global strings 010101 and 101010. The left half of
Figure 5 shows the location of all attractors in the decoded parameter space
of two subfunctions. For each subfunction, there are (g) or 20 deceptive
attractors, each of which is three bits away from both global strings. Thus,
there are a total of (20 + 2)? or 484 attractors, of which only four are global
attractors. The global attractors are shown by the largest filled circles in the

4Note that six bits is the minimal size bipolar deceptive function allowed by our
definition.
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Figure 5: A 12-bit quadrimodal function is shown. The figure captures
the multimodality of the function by showing all attractors of the top
three function values. Function values for a fixed substring 010101 in
the second subfunction are also shown.

figure. The next-best solutions are strings with one global substring and one
deceptive substring. There are a total of 4 x 20 or 80 such, each of which is
shown by a medium-sized filled circle in the figure. The remaining 20 x 20
or 400 optima consist of one deceptive attractor from each subfunction, and
are shown by the smallest filled circles. If more subfunctions are added, the
numbers of deceptive attractors and global optima increase exponentially.
For example, with three subfunctions, there would be a total of 22% or 10,648
attractors, of which only 23 or 8 would be global attractors. The right half of
Figure 5 shows the 12-bit function F(z) for a fixed substring 010101 in the
second subfunction, as z; is varied from zero to 63 in its decoded parameter.
All 20 deceptive attractors and two global attractors are shown.

These functions offer a stiff challenge to any optimization method simply
because of their multimodality. Many traditional optimization methods will
perform poorly in these functions because there are many optima, and most
of them are not global. Many restarts may be necessary to find a global solu-
tion. In stochastic search techniques (such as genetic algorithms), deception,
along with multimodality, may cause difficulty in finding the global solu-
tion(s) of such functions. Because low-order building blocks do not guide the
search in the right direction, the combination of the low-order building blocks
may not form the necessary higher-order building blocks. This may cause
GAs to converge to one of the deceptive attractors. However, this problem
may be solved if proper population sizing is adopted [9]. Because all schema
partitions of order lower than the subfunction size (k) are deceptive, GAs
must play at least 2f-armed bandits in order to solve these problems success-
fully, and there must be enough room for GAs to do so. Furthermore, the
population must be large enough to statistically evaluate a building block
correctly and detect the smallest difference in schema fitness in the midst of



Multimodal Deceptive Functions 149

collateral noise [13]. With such a population size, the schemata containing
the global solutions may win a schema partition competition and continue
to be expressed in the population. With multiple copies in the population,
recombination operators should be able to mix these building blocks together
to form a global solution.

Multimodal deceptive functions offer a greater challenge to GAs if the
objective is not to find one global optimum but to find all (or as many as
possible) global optima simultaneously. GAs with a niching technique have
been found to create stable subpopulations around distinet optima in multi-
modal function optimization [1, 12]. Niching is introduced by degrading an
individual’s objective function value by a factor dependent on the number
of neighbors measured in some space. Similar techniques may be used to
form stable subpopulations around each global optimal solution. One char-
acteristic of this type of niching is that if it is tuned so that two optima do
not participate in degrading each other’s objective function value, two sepa-
rate niches will be formed around each optima. In that case, the steady-state
number of individuals in a niche is directly proportional to its objective func-
tion value. On the other hand, if two optima participate in degrading each
other’s objective function value, then only the optimum with higher objec-
tive function value remains at the steady-state. This apparently may cause
difficulty in the solution. Setting a small niche size may allow distinct niches
to be formed around each optimum. Because the number of attractors are
many, this may require a large population size to accommodate all niches in
the population. In contrast, if a large niche size is used, multiple global op-
tima may be included in a single niche. This may cause competition among
global optima and may result in the solution of only a few global optima.
Other niching methods may be necessary to alleviate these problems. Nev-
ertheless, single or multiple global solutions using GAs would be a first step
towards solving this difficult class of functions, and may provide important
insights into the complex mechanics of genetic algorithms.

6. Conclusions

The idea of deception has been extended to multimodal functions. A bipolar
function has been defined as a function with two global attractors and a num-
ber of deceptive attractors maximally far apart from the global attractors.
The deception in a bipolar deceptive function has been defined, and a set of
sufficient conditions for a bipolar deceptive function has been found. It has
been observed that a bipolar function may be constructed from a uniglobal,
fully deceptive function by the notion of folded unitation.

A bipolar deceptive function of unitation has also been constructed from
low-order Walsh coefficients. It has been observed that non-zero Walsh co-
efficients of order zero, two, and four are sufficient to construct a bipolar
deceptive function of unitation. Relations among these Walsh coefficients
have also been found for a partially bipolar deceptive function of unitation
to any order. The set of sufficient conditions found previously has been used
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to find the same relationship among these Walsh coefficients for a bipolar
deceptive function of unitation.

Multimodal functions of bounded deception have been constructed from
bipolar deceptive functions. These functions offer a stiff challenge to op-
timization methods because of their multimodality. For genetic algorithms,
the difficulty comes not only from the multimodality, but also from the inher-
ent deception of the functions. However, with proper population sizing, GAs
may be able to solve these problems to global optimality. Furthermore, GAs
with a niching technique may be used to find all or a number of global opti-
mal solutions simultaneously. It is for precisely such functions, rather than
simple unimodal functions, that population-based stochastic search methods
such as genetic algorithms can outperform traditional methods of global op-
timization. Furthermore, the attempt to find one or more global solutions
using GAs may improve our understanding of genetic algorithms.

The door has been opened for generalizing the definition of deception
for application to more general types of problems. The attempt to define
deception in a more general framework may give us a broader picture of the
importance of deception in the study of genetic algorithms.
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Appendix
A.1 An arbitrary bipolar deceptive problem

In an arbitrary bipolar deceptive function, we recognize that the strings of
identical unitation may not have identical function value. In order to design
an arbitrary bipolar deceptive function, we first choose the minimum ( fmin)
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and maximum (fmax) function value of strings of every unitation so that
they satisfy the conditions of equation (12). Thereafter, we assign the other
strings a random function value in the range [fiin, fmax)-

We design a six-bit arbitrary bipolar deceptive function with the following
minimum and maximum function value of strings of different unitation.

Unitation
0 and 6 1 and 5 2 and 4 3

fmin fmax fmin fmax fmin fma.x
1.0 00| 03|05 ]| 08| 09| 09

It is a straightforward matter to show that above values satisfy the condi-
tions of equation (12). There are two global optima (strings 000000 and

111111) and (g) or 20 deceptive attractors (all strings of unitation three).
The function values for all 2% or 64 strings are shown in the following listing.

000000 1.000 011000 0.619 100101 0.900 101110 0.624

100001 0.792 100110 0.900 110011 0.722
000001 0.057 100010 0.539 101001 0.900 110101 0.676
000010 0.162 100100 0.520 101010 0.900 110110 0.800
000100 0.018 101000 0.560 101100 0.900 111001 0.553
001000 0.252 110000 0.509 110001 0.900 111010 0.617
010000 0.279 110010 0.900 111100 0.793
100000 0.094 000111 0.900 110100 0.900

001011 0.900 111000 0.900 011111 0.269
000011 0.500 001101 0.900 101111 C€.300
000101 0.645 001110 0.900 001111 0.723 110111 0.283
000110 0.599 010011 0.900 010111 0.612 111011 0.000
001001 0.655 010101 0.900 011011 0.574 111101 0.110
001010 0.787 010110 0.900 011101 0.625 111110 0.227
001100 0.675 011001 0.900 011110 0.785
010001 0.725 011010 0.900 100111 0.694 111111 1.000
010010 0.709 011100 0.900 101011 0.614
010100 0.678 100011 0.900 101101 0.678

The schema average fitness values of a number of schemata are calculated
and shown in the following table.

Schemata containing maximum number of
deceptive attractors

Order-two schema partitions

00 (4) 0.605 11%**x (4) 0.618 Olxxkx (6) 0.705 10%*xx (6) 0.676

Order-three schema partitions

000%** (1) 0.485 111%** (1) 0.525 001*** (3) 0.724 010%** (3) 0.713
O11x*x (3) 0.697 100*** (3) 0.667

101**x (3) 0.684 110%%* (3) 0.711
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Order-four schema partitions

0000%* (0)
0001** (1)
0010%* (1)
0100%* (1)
1000%* (1)

0.430
0.540
0.648
0.653
0.581

0111%x*
10115k
1101%x
1110%x*
1111%%

Order-five schema partitions

00000* (0)
00001* (0)
00010% (0)
00100% (0)
01000% (0)
10000 (0)

0.529
0.331
0.331
0.453
0.502
0.443

01111%
10111%
11011%
11101%
11110%
11111%

(1) 0.645 0011** (2) 0.800 0101%* (2) 0.773
(1) 0.625 0110 (2) 0.748 1001*x (2) 0.754
(1) 0.665 1010*%x (2) 0.743 1100*x (2) 0.758
(1) 0.517
(0) 0.533
(0) 0.527 00011* (1) 0.750 10001% (1) 0.719
(0) 0.462 00101* (1) 0.843 10010 (1) 0.710
(0) 0.542 00110% (1) 0.788 10011 (1) 0.797
(0) 0.309 00111% (1) 0.812 10100% (1) 0.730
(0) 0.451 01001* (1) 0.804 10101x (1) 0.757
(0) o0.614 01010% (1) 0.789 10110% (1) 0.789
01011* (1) 0.756 11000% (1) 0.705
01100 (1) 0.759 11001* (1) 0.811
01101* (1) 0.737 11010% (1) 0.888
01110*% (1) 0.762 11100% (1) 0.726

153

For every schema the number of deceptive attractors that it contains is shown
The two rightmost
columns show the schemata containing the maximum number of deceptive
attractors. The table shows that in any schema partition the schemata con-
taining the maximum number of deceptive attractors are no worse than any
schemata that do not contain the maximum number of deceptive attractors.
The schema average fitness of other schema partitions may also be calculated
to show that the function is bipolar deceptive.

in parentheses, followed by its average fitness value.





