
Complex Syst ems 7 (1993) 131-153

Multimodal Deceptive Functions

Kalya n m oy D eb*
J effrey H orn

D avid E. Goldberg
Illinois Genetic Algorithm s Laboratory,

University of Illinois at Urbana-Champaign,
117 Transportation Building, 104 S. Mathews Avenue,

Urbana, IL 61801, USA

Abstract. This pap er presents a static analysis of deception in mul­
timodal funct ions. Deception in a bipolar function of unitation (a
function with two global optima and a number of decepti ve attrac­
tors) is defined, and a set of suffic ient conditions relat ing function
values is obtained. A bipolar decept ive function is also constructed
from low-order Walsh coeffic ients. Multimodal functions of bounded
deception are formed by concatenat ing several bipolar decept ive func­
tions. These functions offer a great challenge to global optimizat ion
algorithms (including genetic algorithms) because they are deceptive
and have a large number of attractors , of which only a few are global
opt ima. These function s also open doors for generalizing the notion
of decepti on, and allow us to better understand the importance of
deception in the study of genetic algorithms.

1. Introduction

Decepti ve problems raise quest ions about the fun damental pr inciple of ge­
net ic algorit hms (GAs). Mechanisms to solve these problems may provide
importan t insights regarding the mechanics of genetic algorit hms . To date,
t he st udy of decepti on in GAs has b een focused primaril y in three different
direct ion s: design of decepti ve fun cti ons [2, 3, 8, 14]; un derst anding the ef­
fect of decepti on in GA solut ions [5, 6, 7, 15, 16, 17, 18] and modification of
GAs to solve deceptive problems [4, 10, 11]. In all t he aforement ioned st ud­
ies , deception was assum ed in a uniglobal fun ct ion-s-a fun ct ion wit h a single
glob al op timum and a sing le deceptive attractor . It was observed that in a
fully deceptive uniglob al fun ct ion , the deceptive att ractor must be the com­
plement of the global op timum [17], and all low-order building blocks favor
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the deceptive attractor. Since low-order building blocks are not instances of
the global opt ima, t hese funct ions are difficult to solve using simple t ripart ite
GAs , often converging to the decept ive attractor. The analysis and solut ion
of these uniglobal deceptive pro blems have helped us underst and what prob­
lems are hard for GAs, and how GAs can be modified to solve such problems.
We take a further ste p along these lines, and introduce decept ion in fun ct ions
with multiple global optima and multiple deceptive at tractors .

Like uniglobal decept ive fun ctions, mult imodal deceptive funct ions are
designed so that low-order building blocks lead away from all global optima
and favor deceptive attractors. Since these funct ions have a numb er of de­
ceptive at tract ors rather t han one, the solut ion may now be att rac ted to one
of many deceptive attractors . In addit ion to the funct ions being decept ive,
th e multimodality of the fun ction space it self may cause difficulty in solving
th ese pro blems to globa l opt imality. This du al effect of decept ion and mul­
t imodality in such fun ct ions is likely to provide a sti ff challenge to simple
GAs. However , it is for pr ecisely such funct ions that st ochastic opt imizat ion
meth ods like GAs are likely candida tes for findin g any global solut ions at all.
Due to their populat ion-approach and implicit par allel pro cessing, GAs may
even be designed to allow mult iple global opt imal solut ions to coexist in t he
popu lation, thereby solving mult iple optimal solut ions simultaneously [12].
In this pap er , we int rodu ce the notion of decept ion in mult imod al funct ions,
construct multimodal deceptive funct ions, and discuss how GAs can be used
to solve these pro blems.

We introduce t he not ion of deception in multi modal funct ions by ana­
lyzing a bipolar funct ion of unitat ion. (A bipolar fun ctio n has two global
optima and a numb er of deceptive att ractors maximally far apart from bot h
global opt ima .) A set of sufficient condit ions for deception is found for an
arbitrary bipolar funct ion of uni t at ion by calculating schema average fitn ess
values. Thereafter , a bipolar deceptive function is const ruc ted from low­
order Walsh coefficients. Relations among Walsh coefficient s are found in
order to const ruc t a bipo lar deceptive fun ct ion and a par t ially bipolar de­
cept ive funct ion of any order. Multimodal deceptive funct ions of bounded
deception are const ructed by concatenating severa l bipolar deceptive func­
tions. T he multimodality of th e search space is illust rated by const ructing a
12-bit quadrimodal funct ion , and possible extensions to t he simp le GA are
discussed in regard to solving such problems to global optimality.

2 . B ipolar deceptive functions

In pr evious st udies of decept ion, funct ions with a single global opt imum and
a single decept ive attrac tor were considered . Though the decept ive attrac tor
and the local opt imum may not be ident ical in a fully deceptive problem [17],
we will consider t hem to be ident ical. In this sect ion, we int roduce the not ion
of deception in functions with more tha n one global optimum, and with more
t han one deceptive attractor. We call the former class of funct ions uniglobal
fun ct ions and the lat ter class of functions mult imod al fun ct ions. We define
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a bipo lar funct ion with two global optima and a numb er of decept ive at­
tractor s to find a sufficient condit ion for deception in a bipolar function .
Subsequently, we const ru ct massively multimodal deceptive functions using
bipolar deceptive functions.

A bip olar function is defined as having two global optima that are max­
imally far apart from each other, and a numb er of deceptive attractors th at
are maximally far apart from the global optim a in t he Hamming space. It has
been discussed elsewhere [3] that functions of unitation reduce the numb er of
independent function values in a funct ion, thus enabling easier manipulation
of funct ion values to find condit ions for decept ion. We consider even-sized
bipolar functions of unitat ion (recognizing that the analysis may be ext ended
to odd-sized bipolar functions). In a bipolar funct ion of unitation of size 2£,
there are only 2£ + 1 independent function values . The number of indepen­
dent function values is further reduced by considering a symmet ric bipolar
function of unitation, in which the funct ion values are symmet ric about uni­
t ati on u = f. This reduces t he numb er of independent function values to
£ + 1. Wi th out loss of genera lity, we consider a symmetric bipolar function
of uni tat ion having two global strings of uni tation u = 0 and u = 2£ re­
spect ively (maximally far apart from each other) , and a number of deceptive
attracto rs of un itation u = £ (max imally far apart from t he global optima).
Since t here are en strings of unitat ion u = £, the total numb er of decept ive

at tractors is en.Any two complimentary st rings may also be used as global
strings by transforming the function , as suggested elsewhere [8] . One char­
acterist ic of such a function is that wit h increasing problem size, the numb er
of decepti ve attractors increases exponent ially, but the numb er of global op­
t ima remains two. T hus, for large problem sizes, there are many at t racto rs,
of which only two are global opt ima. The massive multimodality of such
functions may cause difficulty in solving them to global optimality. If these
functions are deceptive, not only are there many non-global at t rac tors, but
low-order schema partitions guide the search away from the global solut ions.
This makes the functi ons even more difficult to solve to global optimality.

2.1 D efining bipolar deception

We modify the definition of deception in a uniglobal function to define de­
cept ion in a bipolar function. In a uniglobal deceptive functio n, a schema
partitio n is usually defined to be decept ive if the schema containing the
decepti ve attractor is no worse than any other compet ing schema in the par­
t it ion [3]. In a bipolar function , there are two global solut ions and a number
of deceptive at t ractors. In all schema parti t ions of order less than half the
problem size, all schemata cont aining global st rings also cont ain a number
of deceptive at t ra ctors. In those partitions, t here exist some schemata that
cont ain decept ive attractors only. For example, in a six-bit bipolar func­
tion, there are two global optima and (~) or twenty deceptive at t ractors . A
schema partit ion of order two contains four schemata, of which the schema
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with uni tation zero (00****) contains one of t he global opt ima (000000) and
t he schema with unitat ion two (1h ***) contains th e other globa l opt imum
(1111 11) . Both these schemata , however , contain four different deceptive
attrac tors. For example, the schema of unitat ion zero contains the following
decept ive attractors: 001011 , 001101 , 001110, and 000111. Schemata of
unitation one 10**** and Oh*** contain no global optima yet contain six
decept ive attractors each. For example, the former schema contains the fol­
lowing deceptive at trac tors: 100011 , 1001 01 , 100 110, 10100 1, 101010, and
101100. Since in any schema par t ition many schemata contain one or more
deceptive attractors , t he usual definit ion of schema part it ion deception can­
not be applied to a bipolar funct ion. T hus, to define decept ion in a bipolar
function, we modify t he usual definition of decept ion, as follows.

D efinit ion 1. In a bipolar function, a schema partition is defined to be
deceptive if the schema (or schemata) containing the maximum number of
deceptive attractors is (or are) no worse than other competing schemata.

Note that thi s definit ion reduces to the usual schema par t ition deception in
the uniglobal case . In the case of uniglobal, fully decept ive functions, there is
only one global opt imum and one decept ive at t ractor, and t he deceptive at­
t ractor is the complement of the global opt imum [17]. Thus, in any schema
partit ion of such a function, there exists only one schema containing the
deceptive attractor. Since all other schema ta do not contain the deceptive
at tractor, the above definition requires that the schema containing the de­
cept ive att ractor is no worse than any oth er schema, which is precisely the
definition of schema par tition deception in the uniglobal case.

In bipolar functions, it is less obvious which schema has t he maximum
numb er of deceptive attractors . To find out, we calculate t he numb er of
deceptive at tractors th at are contained in a schema. In a bip olar function of
size 2£, a schema partit ion of order A contains schemata of unitation varying
from zero to A. Since all deceptive attractors contain £ ones an d £ zeros, it can
be shown that an order-A schema of uni tation u contains Ct::) deceptive

attractors . Since this expression is maximum for u = LA/ 2J1 , it is clear
t hat the schema of uni tation u = LA/2J contains t he maximum number
of decepti ve attractors. Thus, according to the above definition, a schema
partition of order A is deceptive, if schemata of unit ation u = LA/ 2J are no
worse than other schemata in the schema par ti tion.

With this definitio n of schema par ti tion deception, we define a bipolar
deceptive function as a function where all schema partitions are deceptive.
An order-one schema partit ion has two schemata containing equal numb ers of
deceptive at t rac tors. Thus, both schemata in an order-one schema part ition
have the same fitness. In t he remainder of t his sect ion, we find a set of
sufficient condit ions for deception by imposing bipolar deception in all schema
par ti tions.

1The opera tor l J denotes the fl oor operato r that calculates th e great est int eger smaller
than the operand.
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(1)

2.2 D eception analysis

We define the fitness of a schema of order A and unit ation u as ](u, A, 2£).
This schema has A fixed posit ions with u ones and A - u zeros, and has
2£- A don 't care posit ions. Thus, t his schema contains st rings with unitation
varying from u to 2£ - A+ u. According to this terminology, a st ring would
be represent ed as ] (u,2£, 2£); however, we use ] (u) to denote the quantity
simply. Recognizing that th ere are el~>') st rings of unitation i +u, we obtain
the schema fitness in terms of the function value of st rings, as follows.

] (u, A,2£) = 2- (2l - >' )~>. C £ ~ A) ] (i + u)

Since the bipolar function is symmetric about unitation u = £, we may write
that ] (u) = ](2£-u) . Using equa tion (1) and the symm etry of th e funct ion,
we observe a number of propert ies of this function.

Property 1. For a size-2£ bipolar function of unitation with an axis of sym­
m etry at u = £, schemata in a schema parti tion oforder A are also symmetric;
or, in function notation,

] (u, A, 2£) = ] (A - u , A, 2£) (2)

P ro of. Using symmetry, and recognizing that el~>') = (2:~~~J we rewrite
equat ion (1) as follows.

] (u, A, 2£) = T (2l - >' )2~>' (2£2~ ~ ~ i)] (2£ - u - i)
Introdu cing a new index j = 2£ - A - i, we observe tha t the limits of the
summation remain the same. Writing the right side of t he above expression
in terms of the new index j proves Property 1. •

This property reduces t he number of schema competitions to be invest i­
gated in a schema partition. It suggest s t hat for bipolar deception we must
only compare schemata of unitat ion u = LAj2J with schemata of unitat ion
o::; u ::; LA/ 2J - 1 in each schema parti tion of order A.

P roperty 2 . For a size-2£ bipolar function of uni tation with an axis of sym­
metry at u = £, the fitness of a schema of order A (where A is even) and
unitation A/2 is the same as the fitn ess of a schema of order A + 1 and
unitation A/ 2.

P roof. We know that the fitness of a schema of order A and unitat ion u may
be writ ten as the average fitness of schemata of order A+ 1 and of unitations
u and u + 1. For an even value of A, we obtain

](A /2 , A, 2£) = [](Aj2 , A + 1,2£) + ] (A/2 + 1, A + 1, 2£)]/ 2

Substi tu ting u = A/2 in equa t ion (2), we observe that ] (A/2 , A + 1,2£)
] (A/ 2+ 1, A+ I , 2£), which simplifies the right side of the preceding equat ion
to ] (A/ 2, A + 1,2£). This proves Property 2. •
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Property 3. In a size-2£ bip olar function of unitation wit h an axis of sym ­
m etry at u = £, if a schema parti tion of order A (where A is odd) is decep tive,
the schema partition of order A-I is also deceptive.

Proof. By Definit ion 1 and Property 1, a deceptive schema partit ion of
order A implies that the schema of unitation u = LA/2J has a fitn ess bet ter
th an or equal to t hat of any other competing schemata of unitation 0 :::; u :::;
LA/2J- 1 in the partition. Without loss of genera lity, we assume that we are
maximi zing t he funct ion. For odd values of A, we assume that A = 2k + 1.
Vife write deception condit ions for a schema partit ion of order A- I , and
express th e schema fitness value in ter ms of fitness of schemata of order A.

f (k ,2k,2£);::: f (u ,2k ,2£)

or ,

f (k , 2k + 1,2 £) + f (k + 1, 2k + 1,2£)

;::: f(u , 2k + 1,2£) + f (u + 1, 2k + 1,2£)

Using Property 1, we observe that two terms in the left side of the second
inequality are ident ical. Using the condit ions for deception of a schema parti­
t ion of order 2k + 1, we obtain f (k , 2k + 1,2£) ;::: f (u , 2k + 1,2£) for 0 < u :::; k .
This proves Prop erty 3. •

Propert y 3 suggests that if an odd-order schema partit ion is deceptive, th e
immediate lower order schema part ition is also decept ive. This reduces the
total numb er of schema partit ions to be investigated for deception. Thus, to
find condit ions for a bipolar deceptive function, we simply consider deception
in odd-order schema par t it ions . Assuming A = 2k + 1, we observe that we
need to impose the condi tion t hat for any schema part it ion of order 2k + 1
satisfying 1 :::; k :::; £_12 the fitness of a schema of uni ta tion k is greater th an
or equal to that of any other competing schema of unitation 0 :::; u :::; k - 1,
as follows.

f(k , 2k + 1, 2£) ;::: f(u , 2k + 1, 2£) (3)

We assume that function values are non-negative. A schema of un itation u'
contains strings of uni tation varying from u' to 2£ - 2k - 1 + u':

2l-2k - l+u ' ( 2£ 2k )
f (u' , 2k + 1,2£) = T (2l-2k - l ) i~' ~_ u'- 1 f( i ). (4)

Since the schema under considera t ion is an odd-order schema, the summation
in t he right side of equa t ion (4) involves an even number of terms. Figure 1
shows that st rings that are contained in a schema are binomially dist ribu ted

20 rder-one schema par ti tions are not interesting, since both schemat a in an order­
one schema par ti tion contain an equal number of decept ive attracto rs and have identical
fitness.
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Figure 1: The fitness funct ion and the corresponding binomial coef­
ficients for two schemata are shown. The difference in the binomial
coefficients between these two schemat a are also shown.

with a maximum occurring at unit ation u = £- k +u' - 1 and u = £- k +u'.
We write the fitness of a schema of uni tati on k in th e same manner:

(5)

This schema contains strings of uni tation varying from k to 2£ - k - 1. The
maximum number of terms occur at uni tation u = e- 1 and u = £ (as
shown in figure 1). For the function to be bipolar deceptive, the right side
of equat ion (5) must be greater or equal to the right side of equat ion (4) for
all values of 1 ::::: k ::::: £ - 1 and 0 < u' < k - 1.

Initially, we confine our analysis to schemata of unitation 1 ::::: u' ::::: k ­
1, but we shall subsequent ly extend this analysis to schema of uni tation
zero . We observe that equa t ions (4) and (5) are average values of a fitness
distribu tion weighted by a binomial dist ribu tion located different ly along the
unitat ion axis (as depict ed in figur e 1). The fitness distribution is symmet ric
about u = e, as assumed. Since the deceptive attractor is assumed to be the
second-best st ring, the best st ring among all st rings that are cont ained in
schemata of uni tation 1 ::::: u' ::::: k - 1 is t he st ring of uni t at ion £ or £ - 1.
In equation (4), the maximum value of th e binomial coefficient occurs at
u = £- k+u' - 1 andat u = £- k+u' . In equat ion (5), it occurs at u = £- 1 and
at u = £. Defining d(u' , k) = 22€- 2k- l [J(k , 2k + 1, 2£) - j (u' , 2k + 1,2£)], we
impose the condit ion d(u' , k) ;::: 0 for bipolar deception. Using equations (4)
and (5), we calculate and plot the difference in the binomial coefficients for
each uni t ation in figur e 1. We observe tha t the total number of negat ive
terms in that dist ribut ion is the same as that of the positive terms.
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(6)

In an earlier study [3], a set of sufficient condit ions was obtained for an
arb itrary uniglobal funct ion of unitation. Here, we form a symmetric bipolar
function with function values satisfying those condit ions, and analyze bipolar
deception in t hat funct ion. We rewrite t hose condit ions for a function of size
£ having global opt ima at unitat ion zero and the decept ive attractor-also
t he second-best st ring-at unitat ion £, as follows.

P rim ary optimality cond ition:
j (O) > j(£)

P r im ar y deception conditio n :
j(£) > j(O) + j(l) - j(£ - 1)

Seconda r y decep t io n co n d itions:
j (i) 2:: j (j ) for 1£/ 21 :5: i :5: £ - 1 and £ - i :5: j < i

T he primary opt imality condit ion specifies that the st ring of unit ation zero
is bet ter than the string of uni tat ion e. The pr imary deceptive condit ion
establishes deception in order £ - 1 schemata. T he secondary decept ion
condit ions imply that a st ring of un itation u 2:: 1£/ 21 is bet ter than any
st ring of unitation as sma ll as £ - u .

We write the quant ity d(u',k) as t he sum of two quanti ties-e-d, (u',k) for
th e st rings of uni tat ion from £ - k + u' to £ - 1, and d2 (u' , k) for t he rest
of the st rings. We observe t hat the total numb er of posit ive and negat ive
terms in each quant ity is the same. Using equations (4) and (5), the positive
and negative terms in t he quanti ty d1(u',k) may be grouped as st rings of
unitat ion varying from £ - k/2 - u'/ 2 to £ - 1, and as st rings of unit ation
varying from £- k + u' to £- k/2- u' / 2 - 1. (This scenario is also shown in
figure 1.) The index for t he negative te rms can be rewritten in terms of the
index for the posit ive terms, as follows.

d1 (u',k ) = I: [(2£ ~~k- 1) _(2£ ~~k,- 1)]
i=f-k/2-u' / 2 t k t u

x [j (i) - j(2£ - k + u' - 1 - i)]

(7)

The term inside t he first bracket is posit ive for all values of the summat ion
index, and the secondary deception condit ions reveal that the quant ity in the
second bracket is non-negative for all values of the summat ion index. Thus,
d, (u', k) is greater than or equal to zero.

To show that d2(u' , k) 2:: 0, we use the symmetry of the function; reflect
the st rings of un itat ion from £ to 2£ - k - 1 at u = £; and compare th em
wit h st rings of uni tation varying from u' t o £ - k + u' - 1. The numb er of
posit ive and of negat ive te rms in d2 (u' , k) is the same, and for each binomial
coefficient in the positive terms there exists an ident ical binomial coefficient
in the negative terms. For each binomial coefficient in the quanti ty d2 (u' , k),
we compare the corres ponding funct ion values that cont ribute posit ive and
negative values . For example, we compare th e funct ion values of st rings of
un itation £ (pos it ive cont ribut ion) , with that of unit at ion £ - k + u' - 1
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(negative cont ribut ion) , and so on. Second ary decept ion condit ions allow
the posit ive terms to be greater than the corresponding negative terms up
to uni tation (£+ k - u' + 1)/2 for the positive terms. Since no relationship
among funct ion values of st rings of uni tation smaller than £/2 is imp osed in
the sufficient condit ions, nothing can be concluded, appa rent ly, about terms
of un itation smaller t han (£ + k - u' + 1)/2 and up to k. However , the
binomial coefficients for st rings of uni tat ion smaller than (£ + k - u' + 1)/2
and up to k are very sma ll in comparison to the binomial coefficients for
st rings of unitation greater than or equa l to (£+ k - u' + 1)/2 and up to
e. In addit ion, there are more binomial terms for unitation greater than
or equa l to (£ + k - u' + 1)/ 2 th an there are for uni tation smaller than
(£+k -u'+ 1)/ 2. On the other hand, t he prim ary deceptive condit ion suggests
that f( O) cannot be arbitrarily large. T hus, th e sufficient condit ions imply
t hat t he net positive quantity for functions satisfying secondary deception
cond it ions cannot be smaller th an t he net negative quantity. In other words,
we may writ e d2 (u' ,k) 2: O. Combining our analyses, we may write th at
d(u' , k) 2: O.

We now compare schemata of unitation k with schemata of uni tation zero
in all schema part it ions of order 1 :S k :S £ - 1. A schema of unit ation zero
contains only one st ring of uni ta tion zero. Thus, using t he schema fitn ess
expressions given in equat ion (4), we combine t he function value for the st ring
of unitat ion zero with only one term of the function value for the string of
unit at ion one, and write separately:

22i-2k-l f (O , 2k + 1, 2£) (8)

= [1(0) + f (l )J+ 2(£- k - l )f (l ) + 2i~+l e £ ~ ~k2- 1) f (i )

We rewrite equation (5) in the same manner , except th at in t his case, we
separate one term each of the function values of unit ation £ - 1 and £:

22i- 2k-l f(k , 2k + 1, 2£) (9)

= [1(£ - 1) + f (£)]+ [e£~"; 1) - 1] [1(£ - 1) + f( £)]

2i- k-l (2£ - 2k - 1)
+ L . f( i)

i=k;iii,i-l 2 - k

The primary deception condit ion establishes that the quantity inside t he
first bracket of equation (9) must be greater than the quantity inside the
first bracket of equat ion (8). The analysis carr ied out in t he previous para­
graphs follows for t he rest of the terms in both equat ion (8) and (9) . T hus,
any odd-order schema parti tion is deceptive in a bip olar function sat isfying
the sufficient conditions. Because an odd-order schema deception implies
deception in the immediately smaller even-order schema parti tion, the argu­
ment follows for all permissible schema partitions, and the function is bipolar
deceptive.
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3. Construction of bipolar d eceptive functions

We have shown that the sufficient condi tions for an arbit ra ry decept ive func­
tion of unita tion of size £ with one global optimum and one deceptive attrac­
tor are sufficient for maximal deception in a bipolar symmetric function of
size 2£ with ident ical funct ion values in th e range 0 ~ u ~ f. We define a pa­
ramete r folded unitation, e =1u-£ I, and observe that the bipolar symmetric
function expressed in folded unit ation may be identically represented by the
function of unitation with one global optimum and one deceptive attractor.

Thus, a bipo lar deceptive function may be easily const ructed from a
uniglobal function of unitation by using th e idea of folded unitation. We
assume th at the uniglobal , fully decept ive funct ion is represented by g(u)
with unitat ion u varying from zero to £, and that the function has a global
solut ion at u = £ and a deceptive at t ractor at u = O. We then construct a
bipo lar decept ive funct ion f (u ) requiring f (u) = g(e). The bipolar function
f (u) has two global optimal strings of u = 0 and u = 2£, and en deceptive
attractors of u = f. The analysis in subs ection 2.2 shows that if the un iglobal
function of unitation g(u) is fully deceptive, the bip olar function of un it ation
f (u) constructe d from g(u) is bipolar deceptive.

In the following, we construct a bipolar deceptive funct ion of unit ation
from a uniglobal, fully deceptive trap funct ion.

3.1 A folded-trap function

(10)
oth erwise{

~(z - u) ,
g(u)= _b (U- z )

l -z '

The condition of deception of a uniglobal tr ap funct ion is found elsewhere
[2]. A t rap function is a function of unitation with a global optimum and
a deceptive at tractor located max imally far apart from the global optimum.
Without loss of generality, we consider that the global optimum and the
deceptive at tra ctor are st rings of uni tation £ and zero respectively, and have
function values equal to b and a respectively. The function value reduces
as the unitation increases, and the st ring of unit ation z has a funct ion value
equal to zero . The function value increases thereafter until th e function value
is b at u = f. We write this function as follows.

if u ~ z

We construct a 2£-bit , symmetric bipolar function of unitation f (u) (a
folded-trap function) , by using the function in equat ion (10), g(u), and im­
posing f(u) = g(e). Elsewhere [3], a deception condit ion for a fully deceptive
t rap funct ion has been found by using the condit ions of equat ion (6). Using
th e same condit ions, we obtain a sufficient condit ion for the 2£-bit , bipolar
decept ive folded-t rap function, f(u):

~ > 2 - 1/(£ - z) (11)
b 2 - 1/ z

Figure 2 shows a lO-bi t folded-trap function with a = 0.95, b = 1.00, and
z = 3. These parameter values sat isfy the above condit ion. The schema
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Figure 2: A lO-bit folded-trap function plotted versus unitation. The
schema average function values for schemata of order one to nine are
also shown. The function is bipolar decept ive.

average fun ction values of schema ta of order one to nine are also shown. The
figure shows that all schema parti tions ar e bip olar deceptive.

We have shown a way to construct a bipolar decept ive funct ion from a
uniglobal, fully decept ive funct ion. We ext end this analysis to find a set of
sufficient condit ions for an arbit rary bipolar function.

3.2 An arbitrary bipolar function

In this subsect ion, we rewrite the condit ions of equat ion (6) for an arbit rary
bip olar function. In an arbit rary bipolar function , all function values of
st rings of a par t icular unitation may not be equal; t herefore , we modify the
cond it ions using the maximum and minimum fun ct ion values of strings of
identical folded unit at ion . For exam ple, the primary optimality condit ion
requi res that j (O ) be greater than j(e) . T here is one st ring of unit at ion zero
and there are enstrings of uni tati on e. In ord er to imp ose the pr imary
optimality condit ion for all st rings of unitation e, we require th at j(O) be
great er than t he maximum function value of st rings of un it at ion e. Using
this pr inciple, we may rewrite pr imary and seconda ry decept ion conditions.
Assuming that the global opt ima are strings of unitation 0 and 2ean d tha t
decept ive attractors (which are also the second-best strings in the search
space) are st rings of unit ation e,we denote min j(u) and max j (u) to be the
minimum and maximum funct ion values of st rings of folded unitation U ,3

31n other words, minj(u) is the minimum function value of all strings of unitation u
and 2£- u, and max j(u) is the maximum function value of all strings of unitation u and
2£ - u .
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and using t he condit ions of equation (6), we obtain sufficient condit ions for
a bipolar deceptive funct ion , as follows.

Prim ary op t imality co n ditions :
f (O ) > max f (£), minf(£) > maxf(£ - 1)

Primary dec eption condition:
min f (£) > f (O ) + maxf(l ) - minf(£ - 1) (12)

Secondary d eception con d it ions :
minf(i ) ~ maxf(j )

for f£/ 2l ::; i ::; £ - l and £ - i ::; j < i

Since the deceptive att ractors are the second-best st rings , t he primary
opti mality condit ion contains t he additional condit ion that min f (£) >
maxf(£ - 1). It is inter est ing to note that these condit ions do not imply
any restrict ions on the minimum value of strings of folded unitation varying
from one to l£/2J. The condit ions of equat ion (12) are used to construct an
arb itrary bipolar decept ive funct ion in t he append ix.

4. Bipolar deceptive functions using Walsh coefficients

We have found a set of sufficient condit ions for a bipolar decept ive funct ion
of un itation. We may also construct a bipolar decept ive function of un itat ion
using low-order Walsh coefficients, following the met hod used elsewhere [8]
to const ruct a uniglobal deceptive function. Const ruct ing a function from
Walsh coefficients provides an easier way to calculate schema fitn ess values,
thereby simplifying the deception analysis. We too k the harder way first , to
obt ain a general set of sufficient conditions for deception. In this sect ion, we
find a relationship among low-order Walsh coefficients in order to const ruct
a deceptive bipolar funct ion of unit ation, and use t he sufficient condit ions of
equat ion (6) to obtain the same relationship for bipo lar decept ion .

We use the notation of Sect ion 3 to represent a schema fitness value and
a funct ion value, and assume that all Walsh coefficients of the same order
are identical. The fitness of a schema of order A and uni tation u is written
as follows [8].

x
f (u,A, 2£) = L Wi7/;;(U,A)

i= O

(13)

(14)

where Wi is t he Walsh coefficient for order i , and the term 7/;; represents t he
sum of all the evaluations of order i Walsh functions defined for any schema
of unitat ion u and order A:

7/;; (u, A) = IJ- l )j (u) (A =u)
j = O J ~ J

A function of size 2£ may be constructed from equation (13) by subst itut ing
A = 2£. Recognizing that we are interested in a symmetric bipolar function
wit h an axis of symmetry at u = £, and using the above equat ion, we observe
the following property for any function of unit ation .
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(16)

Property 4. If in a function of unit ation of size 2£ all odd-ord er Walsh
coefficients are zero, the function is symmetric about unitation e.
Proof. Using equation (14) and substituting A = 2£, it is a straightforward
mat t er to show that 'l/J~(2£ - u, 2£) = ( - I)i'l/J~(u, 2£). Using this equation, we
calculate the difference in function values d(u) = f(u ) - f(2 £ - u):

2l- 1

d(u) = 2 L Wi'l/J;(U, 2£)
i = 1,3, ...

Setting all odd-order Walsh coefficients to be zero, we obtain d(u) = 0,
implying that f(u) = f(2 £ - u) for all values of 0 ~ u ~ £ - 1. T hus, the
function is symmetric about u = e. I

We assume that only zeroth, second, and four th order Walsh coefficients
are nonzero. The order-zero Walsh coefficient represents the average of all
funct ion values. Using equat ion (13) , we write th e schema average fitness of
a schema of order A and unit at ion u in terms of three Walsh coefficients (wo ,
W2, and W4):

f (u , A, 2£) = WO+ W2 [c; u) -U(A -U) + (~)] (15)

+W4 [C~ u) - uC;u) + (~)c;u) - (~) (A - u) + (~) ]

4. 1 Opt imali ty and decept ion conditions

In this subsect ion, we find optimality and deception cond it ions for a bip olar
deceptive function in terms of three Walsh coefficients. We then find a set of
these coefficients which satisfies all opt imality and deception conditions .

The bipolar funct ion is symmet ric at uni t at ion u = e. Thus, using Prop­
erty 1, we need to consider only £ optimality conditions. The optimality
condi tions imp ose th at f (O ) > f (u) for 1 ~ u ~ e. Substi tuting function
values from equation (15) and simplifying , we obtain

Optimali ty conditions:
W2 > - W4 [u2 - 2U£ + 2£2 - 3£ + 2] / 3 for 1 ~ u ~ £

The decept ion condit ions may be obtained by imposing the cond it ion that
a schema of order A and unitation lA/2J is no worse th an any other compet ing
schema. It has been shown in the previous sect ion that the deception in all
odd-order schema partitions implies bipol ar decept ion in a function . Thus, we
imp ose deception in odd- order schema parti ti ons only. Assuming A = 2k + 1,
we imp ose the condit ions for deception: f(k ,2k + 1, 2£) 2: f (u, 2k + 1, 2£) for
1 ~ k ~ £ - 1 and 0 ~ u ~ k - 1. Using equation (15) and simplifying, we
obtain

D ecept ion conditions:
W2 ~ -W4 [(2k - 2U)2 - 8k - 4u + 4] / 12 for 1 ~ k ~ £ - 1, (17)

O~u ~k-l
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Figure 3: The bound on the ratio W2/W 4 is plotted with e. Any value
of the ratio between the two solid lines constitutes a bipolar deceptive
function of unitation. The upper bounds for this ratio are also shown
for partially bipolar decept ive funct ions of unitation to order 2£ - 3
and e. The lower limit is the same in all cases.

The parameters W2 and W 4 can take any algebraic sign. First , we assume
that W 4 is positive. Considering all condit ions in equation (16), we observe
that t he critical cond it ion occurs for u = e. Substituting u = i! in equa­
tion (16), we obtain WdW4 > - (i! - 1)(i! - 2)/3. Furthermore, we observe
from equat ion (17) that the crit ical condit ion occurs for k = i! - 1 and u = o.
Subst ituting t hese values in equation (17), we obt ain W 2/W4 ::; - (1! - 2)2/3 .
Combining these two condit ions, we writ e th e conditio ns for bipolar decep­
t ion of a function of un itation as follows.

- (i! - 1)(i! - 2)/ 3 < W2 /W4 ::; - (i! - 2? / 3. (18)

Since W4 is assumed posit ive, the above condition implies that W 2 is negative.
Next , we consider that W4 is negati ve. Finding the crit ical condit ions of
equations (16) and (17), we observe that there are no W2 and W4 that sat isfy
these crit ical condit ions. Thus, a bipolar funct ion as given in equation (15)
with negat ive W 4 is not possible. Figure 3 shows t he lower and upper bound of
the ratio W 2/W 4 in solid lines. The figure depicts that the range of permissible
values of this rat io is small.

In figure 4, we have plot ted a bip olar deceptive lO-bit function of unita­
tion. In add it ion to t he function values, fitness of schemata in all schema
partitions of order one to nine are also shown. In this funct ion, the lower and
upper limit of t he ratio W2 /W4 are - 4 and -3, respectively. T he funct ion is
constructed with WQ = 0.4350960, W2 = -0.0248397, and W 4 = 0.0080128, so
t hat the ra t io W dW4 is -3.1 and all function values are nonnegative. The
figure depicts that the schema of unitation equal to half of its order is no
worse than any other schema in the par t ition. However , both schemata in the
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Figure 4: A lO-bit bipolar deceptive function is plot ted with unitation.
This function is constructed with WQ = 0.4350960, W2 = - 0.0248397,
and W 4 = 0.0080128. Fitness of schemata of all schema partit ions is
also shown.

order-one schema par ti t ion have the same fitness value. It may be observed
that this function sa t isfies all pro perties of a bip olar function, as previously
discussed.

4.2 P artially bipolar deceptive functions

The equation (17) may be used to find condit ions for a par t ially bipolar
deceptive func t ion of uni tation to any order. A function is defined to be
part ially bipolar deceptive to an order p, if all schema part itions of order less
than p are decept ive. For a par t ially bip olar deceptive functio n, th e opti­
mality condit ions must hold . Deception condit ions may be found depending
on the pari ty of p. If p is odd, equat ion (17) must be used for all values of
2k + 1 < p. It is interesting to note t hat th e right side of equat ion (17) varies
quadrat ically with k. Denoting the right side of equation (17) by r (u , k) ,
we obtain r( u , k + 1) - r(u , k) = -w4[4(k - u) - 3]/ 12. Since u < k , the
right side of that inequalit y is monotonically decreasing with respect to k.
Thus, the critical condition occurs for 2k +1 = p. Substituting k = (p - 1)/ 2
and u = 0 in equat ion (17) and using opt imality condit ions, we obtain the
following bound on the rat io W dW4 for a partially bip olar deceptive function
of uni tation to an odd ord er p.

- (£ - 1)(£ - 2)/ 3 < W dW4 ::::: - (p - 3)2/12 (19)

If p is even, a similar analysis may be performed using equa tion (15). As­
suming p = 2k , we obt ain the general cond it ion of deception , W 2 ::::: w4(4k2 +
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4u2- 8ku - 12k +8)/ 12. For a partially bipolar deceptive funct ion to order p,
the crit ical case occurs for 2k = P and u = O. The bound of the ratio Wd W4
for a part ially bipolar deceptive function of unit ation to an even order p is

- (£ - 1)(£ - 2)/ 3 < WdW4 :::; - (p - 4)(p - 2)/12. (20)

The upper bounds of W2 /W4 for par tially bipolar deceptive functions to
order 2£ - 3 and £ are shown in figure 3. The lower bound is governed by
the crit ical optimality condit ion and holds for a parti ally bipolar deceptive
funct ion to any order. Thus , as t he order of decept ion increases, the range
of th e ratio W2/W4 for a partially bipolar decept ive funct ion decreases.

4.3 Deception from sufficient conditions

We can use sufficient cond it ions found in t he Section 2.2 (equation (6)) to
investigate decept ion in the function given in equation (15). There are three
condit ions to be satisfied.

Primary optimality condition: Imposing the condit ion f( O) > f (£) in
equa t ion (15), we obtain the inequality Wd W4 > - (£ - 1)(£ - 2)/3,
which is the lower bound of WdW4 found previously.

Primary deception condit ion: Imposing the pr imary deception condit ion,
we obtain the inequality W2 /W4 < _(£-2)2/3 , which is the upp er bound
of W2 /W4 found previously.

Se condary dec eption condit ions : In order to invest igat e t he secondary
decepti on condit ions, we first calculate the unitat ion u* for which the
funct ion is the minimum , by calculating the slope of the function and by
setting the slope to zero. Since the funct ion is quart ic to the unitat ion ,
the derivative of the function is cubic, and there are three values of
unitat ion for which the slope is zero. We know that one of t hem is at
u = £ and t hat the ot her two lie symmetrically on either side of u = £.
Different iatin g equation (15) once with respect to u , we obtain

af(u) [ 2]--a;;- = 4(u - £) 3W2+W4[(U - £) - 3£ + 2] (21)

This equation reveals that one of the roots of the equa t ion a f (u) / au =
ois u* = £, and other two roots are symmetrically placed about u = e.
These two roots are u* = £ ± )(1.5£ - 1) - 1.5W2/W4' Substitut ing
the bounds of WdW4 from equat ion (18), we observe that minimum
u* ~ 0.292£. Since there is no change in slope for function values in
the intervals [0,u*Jand [u* ,£], we need to compare only th e schemata
of uni tat ion £ - u to the schemata of un it ation u . Calculat ing the
difference in function values f(u) - f(£ - u) , and set ting the difference
to be greater than or equal to zero, we obtain

WdW4:::; _ [£2 - 3£ + 2 - 2u(£ - u )Jl3 (22)
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Secondary deception condit ions require this for all values of u in th e
interval I£/2l ::::: u ::::: £ - 1. The critical condition occurs for u = £ - 1.
Substituting this value of u, we obtain W d W 4 ::::: - (£-1)(£- 4)/3. The
right side of thi s inequality is always greater than -(£ - 2)2/ 3. Thus,
secondary decept ion conditions are always sat isfied.

Thus, the bipolar funct ion obtained from the low-order Walsh coefficients
given in equation (15) is bipolar deceptive. These calculations have shown
how the set of sufficient conditions for deception of equat ion (6) may be
used to find deception cond ition s or invest igate deception in any bipol ar
funct ion.

5. Multimodal fun ct ion s from bipolar functions

Previously, we derived conditions among problem parameters to construct a
bipolar deceptive funct ion. In this sect ion, we describe a way to const ruct
multimodal functions of bounded decept ion from bipolar deceptive functions ,
and discuss the difficulty of solving these problems.

A multimodal function of bounded decept ion may be constructed by con­
catenating a number of bipolar deceptive functions. An i-bit deceptive mul­
timodal function to order k may be obtained by adding m bipol ar deceptive
functions of size k:

m

F(x) = 2:.fi(Xi)
i=l

(23)

where x;'s are substrings of size k such that U~lXi = x . Functions Ii are
bipolar deceptive functions of size k . Without loss of genera lity, we assume
that all subfunctions are the same, and x;' s are nonoverlapping subst rings .
Because each bipo lar function has two global attractors and ( lk~2J) decept ive

attractors , there are a total of [2 + (lk~2J)]m attractors, of which only 2mare
global attractors . As t he size and the number of bipo lar functions increase,
the number of deceptive attractors increases exponentially. Figure 5 shows a
quadrimodal deceptive function constructed from two six-bit bipo lar decep­
tive folded-trap funct ions in which a = 0.7, b = 1.0, and z = 2.4 Since these
values satisfy the condition of equat ion (11), the folded-trap function with
two global strings 000000 and 111111 is bipo lar deceptive. This function is
then transformed using a technique suggested elsewhere [8] to construct a
double-trap functio n wit h global strings 010101 and 101010. T he left half of
Figure 5 shows the location of all attractors in the decod ed parameter space
of two subfunctions. For each subfunction, there are (~) or 20 decept ive
attractors, each of which is three bits away from both global st rings. Thus,
t here are a total of (20 + 2)2 or 484 attractors, of which only four are global
attractors . The global attractors are shown by the largest filled circles in th e

4Note that six bits is t he minimal size bipol ar deceptive function allowed by our
definition .
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Figure 5: A 12-bit quadrimodal function is shown. The figure captures
the multimodality of the function by showing all attractors of the top
three function values. Funct ion values for a fixed substring 010 10 1 in
the second subfunction are also shown.

figure. The next- best solutions are st rings with one global subst ring and one
deceptive subst ring. There are a total of 4 x 20 or 80 such, each of which is
shown by a medium- sized filled circle in the figure. The remaining 20 x 20
or 400 optima consist of one decept ive attrac tor from each subfunction, and
are shown by the sma llest filled circles. If more subfunctions are added, t he
numb ers of decept ive attrac tors and global opt ima increase exponent ially.
For exam ple, with three subfunctions, there would be a tot al of 223 or 10,648
attractors, of which only 23 or 8 would be global attractors. T he right half of
Figure 5 shows the 12-bit funct ion F(x) for a fixed substring oioroi in the
second subfunction, as Xl is varied from zero to 63 in its decoded parameter.
All 20 deceptive attractors and two global attrac tors are shown.

These functions offer a st iff cha llenge to any optimizat ion method simply
because of their multi modality. Many trad it ional opt imizat ion methods will
perform poorly in these functions because there are many opt ima , and most
of t hem are not global. Many restarts may be necessary to find a global solu­
tion . In stochast ic search techniques (such as genet ic algorithms) , deception ,
along with mult imodality, may cause difficulty in finding the global solu­
tion(s) of such functions. Because low-order building blocks do not guide the
search in the right direction, the combination of the low-order bui lding blocks
may not form th e necessary higher-order building blocks. This may cause
GAs to converge to one of the decepti ve att ractors. However , this problem
may be solved if proper popul ation sizing is adopted [9]. Because all schema
par titi ons of order lower t han the subfunct ion size (k) are deceptive, GAs
must play at least 2k-armed bandits in order to solve these problems success­
fully, and there must be enough room for GAs to do so. Fur thermore, the
pop ulat ion must be large enough to statist ically evaluate a building block
correct ly and detect the smallest difference in schema fitness in the midst of
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collatera l noise [13]. With such a population size, t he schemata containing
the global solutions may win a schema parti tion competition and cont inue
to be expressed in the popul at ion . With mult iple copies in the population ,
recombination operators should be able to mix t hese building blocks together
to form a global solut ion.

Mult imodal deceptive funct ions offer a greater challenge to GAs if the
object ive is not to find one global optimum but to find all (or as many as
possible) global optima simultaneously. GAs with a niching technique have
been found to create st able subpopulat ions around dist inct opt ima in mult i­
mod al function opti mizat ion [1, 12]. Niching is introdu ced by degrading an
individual 's object ive function value by a factor dependent on the number
of neighbors measured in some space . Similar techn iques may be used to
form stable subpopulations around each global optimal solution. One char­
acterist ic of this type of niching is that if it is tuned so that two optima do
not participate in degrading each other 's objective funct ion value, two sepa­
rate niches will be formed around each optima. In that case, the steady-state
number of individuals in a niche is direct ly proport ional to its obj ective func­
tion value. On the other hand, if two optima par t icipate in degrading each
other 's object ive function value , t hen only the opt imum with higher objec­
t ive function value remains at t he steady-state . This apparent ly may cause
difficulty in the solut ion. Set t ing a small niche size may allow dist inct niches
to be formed around each opt imum. Because the number of at t ractors are
many, this may require a large populat ion size to accommodate all niches in
t he population. In cont ras t, if a large niche size is used, multiple global op­
t ima may be included in a single niche. This may cause competit ion among
global opt ima and may result in the solut ion of only a few global optima.
Ot her niching methods may be necessary to alleviate these prob lems. Nev­
ertheless, single or mult iple global solutions using GAs would be a first step
towards solving this difficult class of functions, and may provide import ant
insights into t he complex mechanics of genet ic algorit hms.

6. Conclusions

T he idea of decept ion has been ext ended to mult imodal funct ions. A bipolar
function has been defined as a function with two global attractors and a num­
ber of decept ive attrac tors maximally far apart from the global at t ractors .
T he decepti on in a bipolar deceptive funct ion has been defined, and a set of
sufficient condi t ions for a bipolar deceptive funct ion has been found. It has
been observed t hat a bipolar function may be const ructed from a uniglobal,
fully decept ive func t ion by the not ion of folded unitati on.

A bipolar deceptive function of unitation has also been const ructed from
low-order Walsh coefficients. It has been observed that non-zero Walsh co­
efficients of order zero, two, and four are sufficient to const ruct a bipolar
decept ive function of unitat ion. Relations among th ese Walsh coefficients
have also been found for a par tially bipolar decept ive function of un itat ion
to any order. T he set of sufficient condit ions found previously has been used
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to find t he same relati onship among these Walsh coefficients for a bip olar
deceptive function of uni tation.

Mult imodal functions of bounded deception have been constructed from
bipolar deceptive functions. These functions offer a st iff challenge to op­
t imization methods because of t heir multimodality. For genet ic algorit hms,
the difficulty comes not only from t he multimod ality, but also from th e inher­
ent deception of the functions. However , with prop er popu lation sizing, GAs
may be able to solve these problems to global optimality. Fur thermore, GAs
with a niching technique may be used to find all or a number of global op ti­
mal solut ions simultaneously. It is for precisely such functions, rather tha n
simp le unimodal functions , that population-based stochastic search methods
such as genetic algorithms can outperform trad it ional methods of global op­
timization. Furthermore, the at te mpt to find one or more global solutions
using GAs may improve our understanding of genetic algorit hms.

The door has been opened for generalizing the definition of deception
for applicat ion to mor e general types of problems. The at temp t to define
deception in a more general framework may give us a broader picture of the
importance of deception in t he study of genetic algorithms.
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Appendix

A.I An arbitrary bipolar deceptive problem

In an arbitrary bipolar deceptive function, we recognize th at the st rings of
identical unitatio n may not have identical function value. In order to design
an arbit rary bipolar deceptive funct ion, we first choose the minimum (frnin )
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and maximum (fmax) fun ction value of st rings of every uni t ation so that
t hey satisfy the condit ions of equat ion (12). T hereafter , we ass ign the ot her
st rings a random funct ion value in the range [Imin , fmax ]'

We design a six-bit arbitrary bipo lar deceptive fun cti on with the following
minimum and max imum function value of st rings of different unitation .

Unitation

oand 6 1 and 5 2 and 4 3

f min I f max f min I fmax f min I f max
1.0 0.0 I 0.3 0.5 I 0.8 0.9 I 0.9

It is a st raight forward matter to show that above values satisfy the condi­
t ions of equat ion (12) . There are two global optima (strings 000000 and

1111 11) and (~) or 20 decepti ve attractors (all strings of uni tat ion thr ee).

The fun ction values for all 26 or 64 st rings are shown in the following listing.

000000 1.000 011000 0 .619 1001 01 0 .900 101110 0 .624
1000 01 0. 792 100 110 0 . 900 110011 0 . 722

000 00 1 0 .057 100010 0. 539 101001 0 .900 110101 0 .676
000010 0 .162 100100 0 .520 101010 0 .900 110 110 0 .800
000100 0 .018 101000 0 .560 101100 0.900 111001 0 .553
00 1000 0.252 110000 0.509 110001 0 .900 1110 10 0 .617
010000 0.279 110010 0 .900 111100 0 .793
100000 0 .094 000111 0 .900 110100 0.900

001011 0 .900 111000 0.900 011111 0 .269
000011 0 .500 001101 0. 900 101111 0 .300
000 101 0 .645 001110 0. 900 001111 0 .723 110111 0 .283
000110 0. 599 010011 0 .900 010111 0 .612 111011 0 .000
001001 0 . 655 010101 0 . 900 0110 11 0. 574 111101 0 . 110
00 1010 0 . 787 010110 0.900 011 101 0 .625 11111 0 0 .227
001100 0. 675 011001 0 .900 0111 10 0. 785
01000 1 0 .725 0110 10 0. 900 100111 0 .694 111 111 1 . 000
0100 10 0 .709 011100 0 . 900 101011 0 .614
010100 0 .678 100011 0 .900 101101 0 .678

T he schem a average fitness values of a number of schemata are calculated
and shown in the followin g tab le.

Schemata containing maximum number of
de c ept i ve attractors

Order -two schema part i tions --- - - - - ------- - ------ - - - - -------- - ------- - - ----- - - -------
00•••• (4) 0.605 11•••• ( 4 ) 0 . 618 01.... (6) 0 .705 10 . ... (6) 0 . 676

Order-thre e schema part it ions - - - - - - - - - - - - - - - - - - - - - - - - - ----- --- - - - - - - - - - - - ---- --- ----

00 0'" (1) 0 .485 111'" (1) 0 .525 00 1'" (3) 0. 724 010'" (3 ) 0 .713
011' " (3) 0 . 697 100'" (3) 0. 667
101* " (3) 0 . 684 110' " (3 ) 0. 7 11



Multimodal Deceptive Functions

Order-four s chema part i tions - - - - - - - - - - - - - - - - - - - - - - --- - - - - - - - --- -- - - - - - - - - ----- - - - - - -
0000** (0) 0 .430 011 1** ( ll 0 .645 00 11** ( 2) 0 .800 0101 ** (2) 0 . 773
00 0 1** (ll 0 .540 10 11 ** ( ll 0 .625 0110** (2) 0 . 748 100 1** ( 2 ) 0 . 754
00 10** ( ll 0 . 648 110 1** ( ll 0 . 665 101 0* * (2) 0 .743 11 00** (2) 0.758
0 100** ( ll 0 . 653 111 0** ( ll 0 . 517
1000** ( ll 0 . 58 1 111 1* * (0) 0.533

Orde r - f i ve schema part i t ions - --- ----- - - - - - - --- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ---- - - - -
00000* (0) 0.529 0 11 11* (0) 0.527 000 11* ( 1) 0.750 10001 * (1) 0 .719
00001* (0 ) 0.331 101 11 * (0 ) 0 .462 00101 * (1) 0. 84 3 10010* (1) 0 .710
0001 0* (0 ) 0 . 331 11011* (0 ) 0.542 00110* ( ll 0.788 100 11* (1) 0 . 797
00100* (0) 0 .453 11101* (0 ) 0 .309 00111 * (ll 0 .812 10 100* (1) 0 .730
0 1000* (0) 0 .502 111 10* (0) 0 . 451 01001* ( ll 0. 804 101 01 * ( ll 0 . 757
10 00 0* (0) 0 .443 11111* (0) 0. 614 010 10* ( 1) 0 . 789 10 11 0* ( ll 0. 789

0 10 11* (1) 0 .756 11000* ( ll 0 . 705
0 1100* (1) 0 . 759 1100 1* ( 1) 0 . 8 11
0 11 0 1* (1) 0 .737 11010* (1) 0 . 888
0 11 10* (ll 0.762 11 100* (1) 0. 726
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For every schema the number of decept ive at t rac tors t hat it cont ains is shown
in parentheses, followed by its average fitn ess value. T he two rightmost
columns show the schemata containing the max imum numb er of deceptive
at tracto rs . The table shows that in any schema part ition t he schemata con­
taining the maximum number of decept ive at tractors are no worse than any
schemata that do not contain the maximum number of decept ive attractors .
T he schema average fitness of other schema part it ions may also be calculated
to show that the function is bipolar deceptive.




