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Abstract. Time series based on couples of partitions, and a related
reduction algorithm, are used to develop indicators of complexity for
general one-dimensional processes with discretizable states. After in­
troducing the calculation scheme, we provide algorithms for some typ­
ical examples (cellular automata and iterated maps). Experiments
show the sensitivity of these indicators-to complexity in the intuitive
sense, and to hidden features distinguishing complexity from ordinary
randomness.

1. Rational partitions

The concept of a rational partition (r-partition) was introduced in [1], with
the purpose of estimating the complexity of objects or situations endowed , in
a broad sense, with a dynamics (cellular automata (CAs) , mappings, shifts,
patterns depending on a parameter, and so on) . The idea illustrated there
may be summarized in the following main points.

• Inasmuch as finite measurable partitions in probability spaces give a
frame to estimate (e.g., by Shannon entropy) the uncertainty about
an experiment , couples of partitions may be adapted to estimate the
nonsimilarity between two experiments.

• In order to stress such nonsimilarity, it is important to erase the com­
mon factors of partitions. This operation, which presents analogies
with the reduction to minimal terms of rational numbers, is called the
reduction process.

• If coupled partitions are dynamically related, the estimate of nonsim­
ilarity is also a measure of the emergence of novelty in the dynamical
process, which is more sensitive to local features than global indica­
tors (such as the Kolmogorov-Sinai entropy) . Moreover, the associated
algorithmic problems are computable, in principle.
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It is therefore plausible that a quantitative characterization of complexity
may be based on the r-partitions formalism. Such an approach is applied here
to one-dimensional discretizable systems. Through experiments on CAs and
quadratic maps, in particular, r-partitions are shown to provide simple and
efficient tools to study several nontrivial features of dynamical processes.

General considerations about the nature of complexity, and about the
relations between complexity and partitions, may be found in [1--;5], and will
be briefly discussed in the last section of this paper, with reference to actual
results. Only main notations and definitions shall be recalled now, in view
of applications. In doing so, clarifications on some combinatorial aspects of
r-partitions, which are interesting in themselves, will be explicated.

Let (M,M,fL) be a probability space, and 0: == {AI, .. . ,An} a finite
measurable partition of M into "atoms" AI, . .. , An. The set Z of all such
partitions constitutes a metric space . The distance p is given by

p(o:, (3) = H(o: I (3) +H((31 0:), (1.1)

where H(o: I (3) is the conditional entropy of 0: with respect to (3. Symbols V
and 1\ denote usual operations of product and intersection in Z (we shall also
use 0:(3 as equivalent to 0: V (3) . (For general information on ergodic theory
see, for example, [6-8] ).

The partial order 0: ::; (3 means that (3 refines 0: or, equivalently, that
the atoms of 0: are made up with atoms of (3: in such case 0: is called a
"factor" of (3. In particular, 0:' is a "dichotomic factor" of 0: if 0:' ::; 0: and
0:' has two atoms. Let D(o:) denote the totality of dichotomic factors of 0:.
If there are n atoms in 0:, then the nontrivial dichotomic factors in D(o:) are
2n - 1 - 1. Indeed, each atom A~k) of the factor O:k in D(o:) may be labelled
by a string of n binary digits, taking 1 in the jth place when Aj E A~k) (the
complementary string corresponds to the second atom A~k)). Thus, there are
2n strings or 2n - 1 dichotomic partitions, but the homogeneous strings of 1s
or Os correspond to the "unit" partition v, with the single atom M.

Obviously, D(o:) generates 0:, that is, VO:k = 0: for O:k E D(o:); but there
is a redundancy, in the sense that not all of these factors are necessary to
reproduce 0:. With some criterion to be specified, we want to select a subclass
E(o:) ~ D(o:) of dichotomic partitions, which will be called "elementary
factors." E(o:) has to be sufficiently large to generate 0:, but also essentially
restricted in order to reduce the redundancy of D(o:). Precisely, we say
that a criterion P extracting E(o:) from D(o:) is "good" if the following four
conditions are satisfied.

1. Universality: P works for every 0: E Z, defining E(o:).

2. Completeness: selected factors generate 0:, that is,

VkO:k = 0:, O:k E E(o:) (1.2)

If F(o:) denotes another arbitrary subcollection of E(o:) , for O:k E F(o:)
define 0:' = VO:k. From condition 1, E(o:') is also well defined. Of
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course , since a' is generated by F(a) , every ak E F(a) is also in D(a').
The third condition then follows.

3. "Self-compatibility": E(a') ~ F(a).

D(a) itself trivially satisfies conditions 1-3 , therefore a further condition is
required for an optimal reduction of redundancy.

4. Effectiveness: there are no more factors in E(a) than atoms in a, or
card(E(a)) ~ n.

Note 1. There always exists at least one good class of elementary factors.
Take a single atom Ak and its complement M - Ak ; then, for k = 1, . .. , N
we obtain the family S(a) of factors (called "simple partitions" in [1]). It is
evident that S(a) satisfies all conditions for a good criterion P . This choice
seems to be natural for abstract probability spaces, that is, in the absence of
further characterizations.

Note 2. On the contrary, conditions 1-4 do not define a class of elementary
factors uniquely. Actually, such a freedom may be used to fit the features of
the particular model of interest.

Note 3. Optimal reduction does not mean complete elimination of redun­
dancy. In the example of simple factors shown in Note 1, for instance, n - 1
factors are sufficient to generate a. But this would introduce artificial asym­
metry and useless complexity in the definition of S(a).

Note 4. Condition 4 has been stated with partitions of one dimensional
objects in mind. It could be too restrictive, in general, for d-dimensional
spaces, where interesting classes with more than n dichotomic partitions
cannot be excluded . (On the contrary, however, special examples easily may
be built with less than n factors). A growth rate card(E(a)) proportional
to nl+c

, with 0 ~ c < 1, may satisfy all exigencies independently from the
dimension d. In the present paper, c = O.

If, is another partition, E(a I, ) will denote the sub collection of factors
in E(a) which are "prime" with " that is, such that ak 1\, = u. Clearly,

,1 ~ ,2 '* E(a 1,1) ~ E(a 1,2) (1.3)

For every a, {3, let (J = a 1\ {3. Classes E(a I (J), E({3 I (J), the sets of
elementary factors which are prime with the common factor (J, are therefore
well defined. Two partitions a' ~ a , {3' ~ {3 may be introduced by

{
a; : Vkak, ak E E(a I (J) (1.4)
{3 - Vj{3j, {3j E E({3 I (J)

We define a reduction process 1r on couples of partitions by

(a', (3') = 1r(a, (3) (1.5)

A certain analogy with the cancellation of common factors in rational num­
bers motivates the term "rational partitions" for reduced couples. The con­
sistency of the procedure is assured by the following theorem.



174 Alberto Albrigi and Mario Casartelli

Theorem 1. The reduction 7T is a projection in an invariant subset R C

Z x Z; that is, 7T2 = 7T.

Proof. Denoting (a', (3') = 7T(a ,(3), (a", (3") = 7T(ex', (3'), (7 = a 1\ (3, (7' =
a'I\(3', definition (1.4) implies that a" :::; a' :::; a, (3" :::; (3' :::; (3. Since (7' :::; (7,
from (1.3) we have

E(a' I (7') 2 E(a' I (7)

From the third condition on P, E(a') contains all factors ak E E(a I (7),
that is, E(a') 2 E(a I (7); but, since these factors are still prime with (7, it
holds that

E(a' I (7) 2 E(a I (7)

Therefore
E(a I (7) S;;; E(a' I (7) S;;; E(a' I (7')

which implies that a" ::::: ex', (3" ::::: (3' , that is, a" = a', (3" = (3'.•

Note that the definition of 7T given in the preceding theorem is slightly
more general than in [1], where the particular class of simple factors was used
from the beginning.

An entropy h; may be extended from Z to the space R of r-partitions,
a == (a~, a~) = 7T(al ' (2), by the function

(1.6)

where p is defined as in (1.1). This entropy represents a measure of the
effective difference, or "antisimilarity," between al and a2. Details of h; are
discussed in [1].

The main quantity we shall use to develop our complexity indicators is
a time series, based on distances between couples of partitions (reduced or
not) along the same "orbit" in a space Z of finite partitions.

More precisely, let S be a space of states q, T, S .. . , with a transformation
f : S --+ S, and let <I> be a correspondence S --+ Z. Defining Tf == T as the
induced transformation in Z, that is,

T(<I>(q)) = <I>(f(q)) (1.7)

if a O = <I>(qo) and ak = <I>(qk) == <I>(P(qo)), a.",k will be given for every integer
, "t ime delay" n by

(Of course, the case where n = 1 is of special importance.) Regarding the
criterion P, the choices of both Z and <I> are not uniquely defined: they
should reflect objective features of the dynamical processes, and the kind of
subjective interest the observer has it, respectively.
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The entropy which measures t he (possibly reduced) dist ance between o:k
and T no:k, that is, hr(a..,k), gives the time series we seek:

(1.8)

A whole class of numerical indicat ors may be defined on the time series in
(1.8); for example, the time average

(1.9)

or the power spectrum, which will be discussed in sections 3 and 4 with
reference to numerical experiments. We may also consider a "Lyapunov-like"
exponent L(T) ,

1 N
L (T ,T) = lim N L log(Rk/ R~)

N-oo k=l
(1.10)

where R2 = hr(,rr (Tko: ,{3k)' R"k = hr(7r (T k+To:,TT{3k)) and, for every k, {3k is
a part ition very near to T ko:.

Omitting the reduction process in (1.8- 1.10), analogous quantiti es are
defined in Z x Z , instead of in R: For instance, (1.8) is replaced by

Comp arisons between parameters referring to reduced and nonreduced
couples of partitions introduce a further type of parameter ; for example, an
amplificat ion factor for (1.8),

(1.11)

where ( I~) uses I~ ( O:k ) inst ead of In(O:k) in (1.9). The quantity in (1.11)
(and similar quant ities) will estimate, depending on the reduction process in
time (that is, on the rate of appearance or persist ence of equal factors), the
relevance of a certain type of similarity and memory during evolution.

The effect iveness of numerical experiments will be improved by consid­
ering different quantities simultaneously, since t here are situa t ions where a
single parameter produces ambiguous results. The fact that several param­
eters are required to characterize a single process is not incidental. It is
important that all of our parameters are implicit , t hrough time series such
as (1.8), in one single object , the part it ion orbit {Tko:}.

In Section 2 we shall describe the implementation of such an approach for
general one-dimensiona l models. It will be applied to CAs in Section 3 and,
in a different way, to maps on the interval in Section 4. Final comments are
given in Section 5.
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2. Algebra of one-dimensional partitions

As a measure space M , consider the finite segment [a,b) and, among all
parti tions, only ordinate part it ions generated by a (n + 1)tuple xo, XI, . . . , X n ,

where Xo == a < X l < . . . < X n - l < X n == b and

(2.1)

Every ato m is a connected set, a segment; and points in the kth atom precede
thos e in t he (k+1)t h. We want to introduce a class of elementary part itions
that reflects this st ructure as much as possible. Simple parti tions are not
best in this respect, since the complement M - Ak to Ak is not connected in
general. Consider , then, dichotomic parti tions defined by

(2.2)

This definition trivially satisfies all condit ions required for a good criterion P ,
as defined in Section 1. Element ary factors (2.2) have connected ato ms and
respect t he order of the original partition. Moreover , they are particularly
easy to handle: indeed, if 13 is another part it ion genera ted by {Yj} , the
int ersection a = 0: /\ 13 is generated by {Zkj} = {xd n {Yj}, as in Figure 1.
(For brevity, we shall omit references to t he obvious exceptions in treating
t he ext remes a and b). Order and connect ion make t he reduction process
particularly simple: E( 0: , a) consists of all facto rs in E( 0:) except those in
E(a), and the same is true for E(j3 ,a), thus the reduced partit ions 0: ' and
13' are generated by erasing all common points from {xd and {Yj} ' Since
a' == 0:' /\ 13' = t/ , the fact that 7r

2 = tt is t rivial in this case.
In the following, we shall be concerned with integer and discrete par­

titions; that is, for a lat ti ce with N + 1 sites {O, 1,2 , .. . ,N}, partitions
identifi ed by integers {ko == °< kl < k2 , . . . < k; == N} . This subclass
fits one-dimensional CAs and, in general , processes with a one-dimensional
discretizable state space.

Let f : S --> S be a dynamical process, and <PI : S --> Z a first map , as
sketched in Section 1. We shall introduce a second map <P2 (which associates
partitions to binary st rings) in order to implement , t hrough the composed
map <P = <P2 0 <PI, a computable procedure for the complexity parameters
(1.8- 1.11). The entire scheme is represented in Figure 2, where, as a "state,"
a string of alphabetical charac ters has been used.

The map <PI, which produces partitions

<PI : {configurati ons} --> Z

requires that st ates are explicitly specified, in connect ion with different dy­
namical processes; therefore, it will be introduced in subsequent sect ions.
Here we give t he (almost t rivial) map <P2 : Z --> {binary strings}.

Let 0: = {O, kl , k2 , . . . , kj , . . . .k« == N } be an ordered partition of N
discrete sites . Because of its order, the left endpoints of ato ms are sufficient
to identify the partition through a st ring having 1 at sites 0, kl , . . . , kn - l ,
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Figure 1: From the top: two partitions of a segment , a and (3; their
product , 'Y = a(3; their intersect ion, (J' = a /\ (3; the resulting reduced
a' and (3'
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h lo lo 011101010 i1 10[~0[01jJQ]

8 1

Figure 2: For two strings SA and SB of alphabetical cha racters, the
projections a = <1> l (SA) and a = <1>2(a ), 13 = <1>l (SB) and i3 = <1>2(13),
that is, a = <1> (SA) and i3 = <1>(SB), where <1> = <1>2 0 <1>1. a and 13 are
par ti tions of a segment equivalent to those of Figure 1.



Time Series of Rational Partitions 179

and 0 elsewhere. The length mj of A j is kj - kj - 1 for j < n, and kn - kn - 1 +1
for An. In this way, the invertible map <I>2 is made explicit .

Thi s representation is particularly suitable for the algebra of reduction.
For every a and (3, th e string 'if = <I>2(0') (where 0' = a /\ (3 ) will be given
by the logical AND function on (i = <I>2(a) and iJ = <I>2((3) . (Since <I>2 is
invertible, strings such as (i = <I>2(a ) will be denoted hereafter by the same
symbol a , when no confusion is likely.) Therefore,

0' = a AND (3

Consistently, we have

a ' = a AND NOT 0' = a AND NOT (3

(3' = (3 AND NOT 0' = (3 AND NOT a

a(3 = a OR (3

(2.3)

(2.4)

(2.5)

(2.6)

(Note th at the definition of 0' is not st rictly necessary to define a' and (3' ).
Such logical functions on binary strings make explicit the operative scheme
of Figur es 1 and 2. The probability measure associate d with every ato m is
assumed by default to be proportional to the number of its sites . Of course,
other measures are conceivable in connect ion with particular exigencies.

The reduct ion procedure we have just sketched is not shift invariant ,
because of th e "reference" of the fixed ext remes 0 and N . This seems in con­
trast to th e dynamics of systems using periodic boundary condit ions. Once
again we stress that th e correspondence between states and a cert ain parti­
tion space should reflect the point of view of th e observer. While periodic
bound ary condit ions in dynamics constitute a tool to simulate infinite sys­
tems, fixed bound aries for configurations correspond to a plausible exigency
in looking at them in a non-shift-invariant way. Such exigencies are not in­
compat ible and , moreover, the influence of bound aries becomes very small
quantitat ively as N grows.

Therefore, even if a corrected shift-invariant reduction on toroidal lat tices
is conceivable, we think that t he present approach is not only the simplest
but , in a sense, the most natural one.

3. CAs and complexity parameters

CAs, with their wide, nontrivial variety of dynamical behaviors, provide an
ideal scheme for our approach to complexity. They may be defined as a t riple
{K, L , R} , where K is a finite alphabet, L is a lattice (states are therefore
points in K L) , and R : K L --+ K L is a "rule" determining at discrete t imes
t , t + 1, t + 2, .. ., t he evolut ion from one state to another [1O- 14J . Rules are
local in the sense that the element of K in the site p of L at t ime t + 1
depends only on the neighbor of 2r + 1 sites p - r ,p - r + 1, . . . ,p + r at
tim e t . Such a locality is naturally fitt ed by a parallel computation scheme
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but, due to the simplicity of th e reduction pro cess in one dimension, th e use
of a serial computer did not constitute a serious obstacle to the experiments
below.

We shall assume, by default , t he following map c1>1 from KL to a partition
space Z : if M is a finite subset of L (a hypercube, say) the collection of
homogeneous connected subsets of M is a partit ion of M . In th e case of
one-dimensional L , M is t he string we discussed in Section 2: when the same
symbol of K is located in consecut ive cells kj , ... , kj +m, the corresponding
places belong to the same atom A j of length m + 1 in the par tition a of M
(see Figure 2). This correspondence is quite natural when K = 2 (a binary
alph abet) . More sophisticated correspondences are conceivable; even with
larger alphabets, however, c1>1 is something of a meaningful approximation of
degree O.

In cont rast to c1>2, c1>1 is not invertibl e: states obtained by permutations in
K , or states which coincide only in M , are proj ected into the same partition.
This dependence of Z on th e choice of M is quite natural, considering that,
in concrete calculat ions, CAs are finite and the real object under observation
is M with periodic boundary conditions. The choice of a site as the origin
specifies c1>1 completely. As we pointed out in section 2, the influence of this
border condition is very small, and it decreases as M grows.

Using a standard nomenclature [10,11]' we shall refer to elementary cel­
lular automata (ECAs) wit h K = 2 and r = 1, and to totalistic cellular
auto mata (TCA22s) with K = 2 and r = 2. The consistency and reliability
of the finite approximation to infinite CAs may be checked by varying N .
Figures and Tables refer to N = 100, but experiments have been performed
systematically up to N = 2 X 103 , and in some cases up to N = 105. The
number of iterations (another crucial parameter when long period cycles are
involved), has been chosen to be some ten times N , after th e transient. As
initi al conditions, we considered simple initial conditions (SIC) , a string of
"white" cells with a single "black" cell; and random initial conditions (RIC),
black and white cells randomly distributed in the string.

There are qualitative features directly reflected, through c1>1 , in the behav­
ior of the time series In(ak). For instance, if a certain state is an attractor
(that is, if th e CA settles down in a steady state after a transient) , thi s
implies th e annihilat ion of In(ak)' Also, periodicity has an immediate inter­
pretation. Moreover, since similarity is prop erly measured both in amplitude
and in time behavior by th e entropy hT> the n-periodic onset of similar, not
identical, patterns (hereafter called "n-pseudo periodicity" or "PP-n" ) may
also be shown by Fourier analysis. An example of such pseudoperiodic be­
havior is given by ECA 60 in Figure 3. Note that a direct inspection of
patterns becomes extremely difficult when M is large.

It is quite plausible that pseudop eriodicity is meaningful for complexity ;
it is related to the "difficulty in describing" the behavior of a syst em, in th e
sense of actually performing a full characterizat ion of its main features. Such
a difficulty, in general , remains distinct from the "difficulty in forecasting,"
which consists of th e mean amount of information needed to know the future
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~.

Figure 3: Configurations of typical CAs in Wolfram 's class 3. Left col­
umn, EIC ; right column, RIC. From the top: TCA2242, ECA 30, ECA
60, and T CA22 2, with L = 100 (horizontal) and N = 80 (vert ical).
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state. In this sense, complexity and randomness are not synonymous, th e
latter possibly being an aspect of th e former.

Thus, there is a range of features that could contribute to a classification
of CAs into classes of complexity. We shall only tentatively indicate such a
classification, which overlaps only partially the qualit ative scheme prop osed
by Wolfram [1O-12J. Indeed, for our purposes, classes 1, 2, and 4 of Wolfram
are tr ivial (that is, simple, not complex) because, after a finite transient , th ey
all decay into a steady configuration (in some cases the null configuration
made up of identical symbols), or into cycles with a short period. But even
in trivial cases, reduction may prove useful. Consider, for instance, ECA
13 (Figure 4): in the transient, before the stable final configuration, t he
reduction not only amplifies the distances (as they are a priori known), it also
shows th at there are alternatively one or two erased boundaries, a qualitative
feature that could escape visual inspection . We are primarily interested in
Wolfram 's class 3, which presents a wider range of complex situations.

A possible distin ction from randomness generally implies the onset of a
structure which is increasingly complex, inasmuch as it is increasingly difficult
to describe . To check the expected sensitivity of our parameters to th ese
qualit ative features, we used as a reference a completely random system
(RS), that is, a special case of a probabilistic CA, where every site of L
evolves according to a probability distri bution on K , typicallyequiproba bility
(Figure 5). RS has no memory, since its states are completely independent .
Figur e 5 shows experimental results for the evolution of RS for RIC (SIC are
meaningless for RS) , and Figure 6 th e evolution of In(ak), both in nand
in Z x Z . Figure 7 gives the corresponding power spectra . We assume by
default that n = 1. The ratio of the time-averaged values gives the mean
amplification A due to the reduct ion process. For RS, A = 1.6 ± 0.1, a
value which experiments prove to be largely independent of N in the ran ge
N = 102 to 105 • The numb er of iterations varies, in typ ical experiments ,
from 103 to 104 , with a convergence of time averages th at is increasingly
bet ter for large N .

As an account of this typ e of analysis, the values of typical CAs from
Wolfram 's class 3 are shown in Table 1, whose entries refer to the asymptot ic
behaviors of systems in Figures 3 and 5. A qualitative similarity emerges, for
inst ance, between TCA 2242 and RS. Power spectra (Figure 8) confirm chaot ic
behavior. The set of these data suggest the classification of TCA2242 very
near to RS, in a class of highly chaotic CAs. Nevert heless, t he Lyapunov­
like quantity (1.9) for TCA2242, plotted against the time delay T (Figure 9),
approaches a limit (which is precisely the same as th at of RS) only for great
T, presumably when orbits are correlate d. (We don 't report the diagrams for
RS, since they obviously do not depend on T). In other words, the Lyapunov­
like parameter gives an excellent insight into the response of the system
evolution to small perturbations of init ial condit ions. This gives evidence
of a hidden structure compatible with random configurations of patterns
(Figure 3a). There is therefore the possibility of a sharper distinction between
RS and systems th at behave chaotically with regard to configurati ons.
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Figure 4: Top, configurat ions of ECA 13 wit h EIC; bottom, reduced
(upper diagram) and nonreduced (lower diagram) distances.
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Figure 5: Configurations of R S with L = 100 (horizontal) and N = 80
(vert ical).
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Figure 6: Ti me behavior of In,k for RS of Figure 3, in the reduced
(upper diagram) and nonreduced (lower diagram) cases.
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o 100 200 300 400 500

Figure 7: Power spectra of In,b in t he reduced (top) and nonreduced
(bottom) cases, for R S of Figures 5-6.



186 Alberto Albrigi and Mario Casartelli

200018001500140012001000

1.0

o.0 LLL.LJ....J---L-LL..LI.--L...J-LL.L...Ll.---l-LL.L.L--L...J---L-LL..LL.J

800

1.5

2.0

0 .5

o 100 200 300 400 500

Figure 8: Top, time behavior of In,k referring to reduced (upper dia­
gram) and nonreduced (lower diagram) partit ions for TC A2242 wit h
ErC; bottom, power spectrum corresponding to the reduced diagram.
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[J£J (In) I (I~) I A I Power Spectra I
RS RIC 1.0131 1.6018 1.5811 Random

TCA2242 EIC 1.0115 1.6140 1.5956 Random
RIC 1.0133 1.6152 1.5940 Random

ECA 30 EIC 0.9451 1.3939 1.4749 Random
RIC 0.9435 1.3931 1.4765 Random

ECA 60 EIC 0.6047 1.8029 2.9815 PP-2
RIC 0.8931 1.5710 1.7590 Random

TCA222 EIC 1.1346 1.1346 1 PP-2
RIC 1.1196 1.1196 1 PP-2

I Rule

Table 1: Values of indicators for RS and typical CAs in Wolfram 's
class 3 (see Figure 3).

Figure 9: Lyapunov-like exponents versus t ime delay T for TCA2242,
reduced (lower diagram) and nonreduced (upper diagram). Asymp­
tot ic values are t he same as those of RS.
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In contrast to TCA2242, diagrams of ECA 30 exhibit the emergence of
a structure that is detectable also by visual inspection (Figure 3b) . Table 1
begins to give different values, while configurat ions (which we do not repro­
duce) analogous to those in Figure 8 would not exhibit relevant differences;
on the cont rary, diagrams such as those of Figure 9 would indicate a longer
delay T to correlate. ECA 30 remains a highly random syst em, although a
structured one.

A further step toward a structured behavior is given by ECA 60 (Fig­
ure 10), which is sensit ive to initial conditions: SIC give behaviors that are
quasip eriodic , as st ressed both by power spectra and amplification factors;
on the contrary, RIC still keep a certain degree of chaos. Similar features
are exhibited by ECA 22, which Grassberger [2] notes for its nonstandard
geometry.

We omit a full report of numerical experiments with increasing N (from
100 to 2000), stress ing only that the fractal st ructure ofthe CA configurations
with SIC is faithfully detected by our parameters (see Figure 11, and note
that t he power spectra show a typical cascade of peaks).

Finally, in Table I we report the case of TCA 222, a CA extremely stable
both for SIC and RIC. Note the amplificat ion factor , whose value depends on
th e fact th at successive partit ions never overlap. The regularity of patterns
is matched by the pseudoperiodic character of the spect ra .

Regarding experiments with various typ es of probabilisti c noise, we men­
tion only the fact that there exist correlations between the influence of noise
on evolut ion and the response of complexity parameters. In other words , in
add it ion to the qualitative indications obtained in the analysis of determin­
ist ic systems, we can get indications on their robustness under the influence
of a random pert urbation. For instance, TCA222 proves to be highly robust .

To achieve confidence about a process, independent ly from visualization,
the simultaneous consideration of a whole set of parameters is required. Pat­
terns of values such as tho se in Table 1 confirm, on the one hand , that a
single parameter may be misleading or meaningless but , on th e other , that
the t ime series developed with the partition generation described in Section
1 implicitly contains an ext remely rich set of qualitat ive and quantitative
information, largely sufficient to characterize the process.

4. One-dimensional maps

The approach described in the previous sect ion may be applied to iterated
maps in th e interval , that is, syst ems of th e form X n+l = f (xn ) . For definite­
ness, we shall refer to the well known case of the quadratic map

(4.1)

with
Xn E [0,1], 0 < tt < 1

For tt < 0.25, 0 is a fixed-point attractor; for 0.25 :::; tt < 1 there is an
increasingly rich variety of dynamical behaviors. In particular , a "period
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Figure 10: Diagrams corresponding to those of Figure 8, for ECA 60
with EIC. Only the reduced distances are plotted.
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Figure 11: Power spectr a for ECA 60 with N = 200, 400, and 800
(from the top down).



Time Series of Rational Partitions 191

doubling" phenomenon occurs at certain /1k culminating in a limit value
/100 = 0.892486418 .... When /1 overpasses /100' orbits move chaotically on
a fractal attractor. The value /100 is related to universal features of one­
dimensional maps, in the sense that the reduction factor associated with
consecutive bifurcations,

8 - /1n - /1n-l
n-
, /1n+l - /1n

for n ---+ 00 tends to a constant 8 independent of the details of the function f.
For reviews of these facts (for example, regarding the successive dependence
of the regime of motion on /1), there is an extensive bibliography, but [15-20]
give a sufficient overview. We perform a comparison between such features
and the results of an analysis performed with the complexity parameters of
the previous section. In particular, we look at possible correlations between
the appearance of a strange attractor and the complexity of the trajectory.

To regain the formalism of one-dimensional partitions, the range of the
quadratic map (that is, the unit interval I = [0,1]) will be divided into
M equal subintervals, or cells; then, considering an N-points segment of
trajectory {xo, ... , xN-d, a cell will be labeled as black if at least one Xj

there falls in it , otherwise it will remain white. We obtain a configuration
of black or white cells that, as a CA configuration at a fixed time, may be
projected by <PI into a partition space. The successive segment of trajectory
{XN, . .. ,X2N-d defines a second configuration, and so on. There is therefore
a sequence of configurations (and partitions) that depend on the trajectory
and the parameters M and N . The analysis may proceed as for CAs, keeping
in mind that the true time step has become the length N of every segment
of the trajectory. As noted in [1], this approach applies to every iterative
process whose range is bounded and may be discretized.

Clearly, if /1 is such that the orbit lies on a finite attractor of period
P :S N, then there is a steady set of black subintervals, and the configura­
tions (or the associated partitions) remain identical during evolution; there­
fore complexity parameters are O. If P > N, successive configurations in
general differ, but they repeat periodically with a period that cannot be
larger than the minimal common multiple between P and N (it depends also
on the discretization M). In this case, complexity remains at a low degree,
and numerical experiments shall only confirm a behavior that is completely
known. Only in the case when P» N , and the observation time is not ad­
equately long, should one notice a progressive onset of apparently aperiodic
(but not really chaotic) behavior.

If the trajectory becomes aperiodic (as happens when /1 overpasses /100)'
the chaotic behavior of the trajectory of the strange attractor will correspond
to an irregular sequence of configurations (however, in general , not a random
sequence with probability 0.5 for each cell). For these reasons , an analysis of
the complexity parameters should reveal the onset of a strange attractor for
/1 ---+ /100 from below, and it should give a qualitative estimate of the behavior
of the attractor for /1 > /100 ' Numerical experiments have been performed
with this conceptual background.
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Figure 12: Top: time behavior of In,k for nonreduced (left) and re­
duced (right) cases,with J.L = _892486418. Bottom: the corresponding
power spectra.

Figures 12-14 show the reduced distances and the corresponding power
spectra for three values of J.L . In Figure 12, J.L = .892486418 (an approximation
of the ideal J.Loo obtained by dropping the tenth decimal digit ). Evidently,
there is st ill a quasiperiodic behavior due to the fact that (since J.Loo is ap­
proximat ed from below) th e tr ajectory lies on a P-periodic attractor, even if
P is very large. The same happ ens in Figure 13 with J.L = 0_892486418118,
while in Figure 14 (J.L = 0.892486418119) a clear passage to chaotic behavior
appears. The sensit ivity of our parameters allows us; therefore, to dist in­
guish between two values of J.L t hat differ at t he twelfth decimal digit . The
reported figures refer to M = 105 , N = 104 , and iterations up to 1200 config­
urations (that is, 1.2 x 107 points in the orbit) . A typical run for these values
of th e parameters takes about one hour on a VAX 3900. (Of course, these
estimates easily could be impr oved by increasing the magnit ude of M and
N , compatibly with computer features.) Even if th e sequence of partitions
obtained for th ese mappings is formally th e same as the one produced by a
CA, the dynamical process is intrinsically different . One consequence of this
difference, for inst ance, is that in th e present case it is not possible to repli­
cate th e computation of the Lyapunov-like exponents . In fact, t he clarity of
the results is such th at a further analysis would be useless.

Awaiting an implementation of the present approach on a parallel ma­
chine, we did not perform numerical exper iments that, in the same spirit ,
would have given a further interesting characterizat ion of the geomet rical
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Figure 13: Same diagrams as in Figure 12, with J-L = .892486418118.

complexity of the maps. For instance, an attractor could, in principle, be
explored by the comparison between the partition of the whole range of the
map, and the partition of a subrange [a,1 - a] enlarged up to [0,1]. The
scale factor in the enlargement would play the role of the time step in previ­
ous computations. Such a procedure, which should reflect the self-similarity
prop erties of the attractor, does not in principle present any difficulty; but
it has stro ng bounds in the high resolution required in the computation, and
in the lengthening segments of trajectories to consider in order to have a
comparable occupation of the diminishing cells.

5. Conclusions

We have tested, in a number of nontrivial situations, the efficiency of com­
plexity parameters based on the r-parti t ions formalism, with the following
results.

• There is a good correspondence between the indications ext racted from
our indicators and the intui tive sense of complexity when present (e.g.
at visual inspection).

• In the absence of an intui tive tendency, complexity parameters are
useful in indicatin g hidden features, such as quasiperiodicity, false re­
lationship to chaotic behavior, and the existence of internal memory
between states.
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Figure 14: Same diagrams as in Figure 12, with J-L = .892486418119.

• The possible dist inction between rand omness as difficulty in forecasting
(related to the mean uncertainty of the process variables, for which dy­
namical entropy is an excellent indicator) , and complexity as difficulty
in describing (relat ed to the full characterizat ion of a process, even if
it is deterministic), is faithfully pointed out .

Such results emerge from the whole set of parameters, confirming that
complexity cannot be reduced to a single index. As frequent ly stressed (see,
for example, [4]), the necessity of a multiparameter analysis should be seen
not as a weakness of th e theory, but as a consequence of th e richness of
perspectives contained in the term "complexity." In thi s sense, th e fitness
of the partition-space formalism to such mult iparameter study is in itself a
good result. (It is noteworthy that all th e parameters that we have considered
substantially depend on only one class of objects, t ime series in the spaces of
(possibly reduced) par ti tions.) This fitness may be understood on the basis
of the following considerations.

In a dynamical process, there are two possible sources for complexity:

• a "t imelike" source , that is, algorithmic features of sequences. It is
this aspect (historically the most relevant for the genesis of ideas about
complexity-see [5]) that appears when one explores the compressibility
of a sequence of characters, or other features related to the degree of
dynamical regulari ty; and
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• a "spacelike" source, that is, complexity of configurations (or, more
generally, states) in a given space . In this sense, for inst ance, three­
dimensional sets are intrinsically more complex objects than one-dimen­
sional sets . In the simplest case of a sequence of characters, such a
spacelike source reduces to possible outco mes from a finite probability
space (the alphabet). This is very different from t he case when the
evolving sequence is constituted by (possibly st ructured) patterns, as
for CAs.

Moreover, complexity may depend on interactions between t hese two
facets of the prob lem.

Of course, our spacelike source may be analyzed (in many cases) by
met hods invented to st udy our t imelike source, for example, t hrough a dig­
italizat ion (reduction to a bit map) of configurat ions. But it is not clear
whet her such methods may be satisfactory in every case-for inst ance, when
the "shapes" of many dimensional sets are involved, with both their metric
and topological feat ures.

Since t hese two asp ects arise , in some sense, in all characterizat ions of
complexity, a computable sensitivity to both of them would provide a weak
but meaningful approach to quantitative estimation. ("Weak" in t he sense
that such a sensitivity does not direct ly face the problem of determining the
intrinsic difficulty of certain tasks, as in more formalized (but, generally, not
computable) approaches.) An appreciable feature of the met hods we have
presented is that the object of measurements (that is, the t ime series on
which various parameters are built), is synt het ically linked on the one hand
to the Shannon entropy in Z and, on the other, to t he dynamical features of
the process (in other words, to the complexity of the state space and to t he
time evolut ion law).

This implies, conversely, that the analysis cannot be completely auto­
mated. The necessity of preadapt ing the formalism to each definite prob­
lem appears from the very beginning, when one chooses t he correspondence
<P = <P2 0 <PI , defining the partit ion space. In such a preliminary procedure,
the concrete features of the model (one-dimensiona lity, for example) play an
important role. In this instance, exploiting one-dimensionality permitted an
easy implementation of the reductio n algorithm. The extension of t he for­
malism to two-dimensional models, which is in progress [21, 22], will give
new evidence for this aspect.
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