
Complex Systems 7 (1993) 221-239

Universal Computation in Few-body Automata

Michael Biafore*
Department of Physics, Massachusetts Institute of Technology,

Cambridge, MA 02139, USA

Abstract. Few-body automata are a class of cellular automata. They
were developed specifically to investigate the possibility of implement­
ing a new generation of cellular automata machines that would use
dense arrays of nanometer-scale device-cells. In this paper, we try to
determine how many states per cell are required by few-body automata
in order to perform universal computation. We prove theorems de­
scribing the space, time, and state-set complexity of the simulation of
d-dimensional conventional cellular automata with N-body automata,
and show that there exist computation-universal 2-body automata re­
quiring 5.81 bits of state per cell for d = 1 and 2 bits per cell for
d = 2. These results suggest that physically-imposed restrictions on
the number of available bits per cell will not be an obstacle to cellular
automaton-like computation at nanometer scales.

1. Introduction

Responding to perceived limits to the continued downscaling of micropro­
cessor architectures [5, 11, 25], a number of device physicists [4, 15, 30, 31]
have proposed an alternative architecture based on cellular automata (CAs).
Specifically, these physicists envision dense arrays of nanometer-scale devices
communicating with one another via direct physical interactions rather than
through wired interconnections. The devices might consist of semiconduc­
tor heterostructures , molecular switches, or other nanometer-scale structures
capable of changing state in response to interactions with neighboring struc­
tures. For certain interactions among cells, the array might be made to
function as a CA in which each device acts as a single cell.

Researchers have proposed that devices be coupled via resonant quan­
tum tunneling [4, 13, 31], Coulomb interaction effects [21, 30], or soliton
switching in zr-conjugated polyenes [9]. If such proposals were ever realized,
the resulting CA machines would be unlike any that now exist [34, 35, 36].
The dynamics of the CA would no longer be determined by an arbitrarily
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definable lookup table; instead , it would be completely determined by the
particular physical interactions between cells [29] .

Few-body auto mata [7] are a class of CAs developed to investigate the
computational feasibility of such proposals. The geometric st ructure of a few­
body auto maton is defined so that it reflects certain unavoidable const raints
imposed by the finite range of the physical interactions between cells; their
computational structure places them in the class of lattice-gas [14, 17, 18] or
partitioning [27] CAs. In an N-body automaton, each neighborhood consists
of a cluste r of N cells-two cells are neighbors if and only if they are in the
same cluste r, just as the neighborhood of a hexagonal lat tice-gas consists of
the N = 6 sites incident on a given node of th e hexagonal lattice.

In this paper, we are prin cipally interested in establishing an upper bound
on the number of states required to attain computat ion universality in the
limitin g case N = 2. The importance of thi s limit has two sources. First , the
physics of two interacting devices is both the most accessible experimentally
and the most tractable th eoretically. Second , th e case of N = 2, where
each cell has only a single neighbor aside from itself, is th e most difficult
limit (from a computational perspective) in which to achieve comput ation
universality. Therefore, any upp er bounds we obtain on the number of states
required for N = 2 automati cally represent upper bounds for all N-body
automata with N :::: 2.

In addition, these bounds can be used to evaluate the practicality of
specific nanometer-scale devices as cells of a CA. The underlying physics
limits some of the prop osed coupling mechanisms (such as single-electron
tunneling[21]) to providing only a single bit per cell [7, 21, 30]; none of th em
can provide more th an a few bits per cell. Consequent ly, although one can
easily show that even 2-body CAs are capable of universal computation, t he
relevant question is, "How many bits per cell will be required"?

To address this question, in sect ion 3 we establish a general theorem
describing the efficiency with which a 2d-body automaton in d-dimensions can
simulate an arbit rary conventional CA. By applying this simulat ion theorem
to convent ional CA that are known to be computation-universal, we establish
the existence of a universal 2-body automaton requiring 5.81 bits per cell.
Finally, we show how 4-body automata can be systemati cally simulated by
2-body aut omata. Using th is technique, we obtain a computation-universal
2-body automaton requiring 2 bits per cell.

2. N-body CAs

To begin, we define explicitly what we will mean by "convent ional" (or "von
Neumann") CAs, and explain why th ey are not a satisfactory tool for ana­
lyzing the CA-like prop erti es of arrays of interacting devices.

Convent ional CAs [37] reside on a d-dimensional cartesian lattice. The
neighborhood of a given cell is defined to consist of the (21' + 1)d cells within
some radius r . (For example, in d = 2, th e case r = 1 gives the well-known
Moore neighborhood [35].) The next state of the cell t hen depends on an
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Figure 1: Time evolution of a conventional CA in one dimension.
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evolution operator 0 with domain Q (2r+l)d and range Q , where Q is the finite
set of stat es each cell may occupy.

Definition 2.1. On a d-dimensional rectangular lattice, a conventional CA
with radius r is a triple (0,Q,r ), where Q is the finite set of states that each
cell can occupy, r is the radius of the neighborhood and 0 : Q(2r+l)d -+ Q is
the local evolution operator.

That is, at t ime t + 1, the state at1.....,id of the cell with cartesian coor­
dinates (ill i2, ... ,id ) depends on its own state at time t and those of neigh­
boring cells, according to

at .. .
11 ,12 ,t 3 ,·" ,1d

a;l +1 ,i2,i3 ,...,i d

a~1 -1 1i 2 1i3 1 ,,, , id

a~l +r,i2,i3 , ,i d

at - r,i2 ,i3 , ,id

(1)

The spacetime diagram for a one-dimensional conventional CA with r = 1
is shown in Figure 1.

Unfortunately, conventional CAs are not a suitable model for th e applica­
tion proposed by device physicists, in which cells are coupled by real physical
interact ions (such as Coulomb dipole interactions [7, 30]). Note that CAs are
characterized by three discreteness properties:

1. Each cell can take on a finite number of states;

2. The state of each cell changes at discrete time intervals; and
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Figure 2: Genericprocesswith six input states and six output states.

3. The state of each cell at the subsequent time-step is completely deter­
mined by a well-defined (and usually small) subset of nearby cells, its
"neighbors ."

If we attempt to construct a conventional CA by simply arranging
nanometer-scale devices in a rectangular array, then it becomes extremely
difficult to retain properties 2 and 3. Because the cells are coupled by phys­
ical interactions, state transitions occur continuously rather than at con­
trolled, discrete time-intervals. Likewise, although the effect of distant cells
decreases with separation (for example, the Coulomb dipole potential [24]
falls off as rv 1/r2

) , in most cases the next state of each cell will depend on
a large, rapidly fluctuating set of cells. The resulting dynamics may be of
interest in its own right , but it has little in common with CAs (other than
its spatial discreteness) . Until we find a format to constrain the dynamics of
such device arrays so that they have all three forms of discreteness essential
to CAs, we will not be able to analyze their computational properties within
the framework of CAs theory.

For certain kinds of interactions between cells, we can obtain the required
constraints by imposing the structure of N -body automata.

Since we want to use physical interactions between cells to implement the
CA, our approach is to let the form of the interactions determine the form of
the CA, instead of adopting the definition of the conventional CA. Figure 2 is
a schematic representation of the most general possible physical interaction
between six entities. Fortunately, the interactions between devices are often
more tractable than the most general case.

If an interaction is not too singular when the interacting particles ap­
proach one another, and if it subsides quickly enough as they are separated
to infinity, then one can show rigorously that it is valid to view the complex
interaction process in Figure 2 as the composition of a number of indepen­
dent N-body interactions, as in Figure 3. Such interactions are said to be
regular [32]. For example, L. D. Fadeev [12] and Hepp [20] have shown that
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/\ \
Figure 3: Description of a regular physical interaction process by an
N-body diagram.

a scalar 2-body interaction is regular if it satisfies

lim r(3/2)-'V(r) = 0,
r--+O

and

(2)

(3)

Regular interactions are much more amenable to theoretical analysis , because
the diagrammatic and algebraic tools of many-body theory can then be ap­
plied. By restricting our at tention to those nanometer-scale devices that
have regular interactions, we can base our definition of few-body automata
on physical processes that take the form shown in Figure 3.

Nevertheless, the spacetime structure in Figure 3 is still too irregular in
space, time , and number of interacting entities to be regarded as a CA. If
we discretize the times and places at which interactions take place, how­
ever, we obtain the uniform spacetime structure shown in Figure 4-that of
a one-dimensional, 2-body automaton. This should be contrasted with the
spacetime diagram of the one-dimensional conventional CA shown in Fig­
ure 1. Note that in a 2-body automaton, cells interact in pairs-the next
state of each cell depends on its own current state and , on alternate time
steps, the state of its left or right neighbor . All 2-body automata have this
spacetime structure, only the particular rule f) : (aL a~+l) ---. (a~+l , a~+l)
which maps the states of the two cells at time t into those at t + 1, varies.

Now that we have a qualitative idea of what few-body automata are ,
we can give a definition that is formal enough to let us prove our simula­
tion theorem. Very general definitions of few-body automata are possible,
because one can vary several parameters: the number N of cells clustered
together at each step, the shape of the clusters, and the temporal periodicity
of the spacetime pattern. We restrict ourselves to the most straightforward
definition.

In d dimensions, we consider only clusters which are hypercubes with two
cells per side, so that N = 2d

• Furthermore, as in Figure 4, we consider only
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t 0+ 1

.................... cluster of CO

t o

Figure 4: The time evolution of a 2-body CA in one dimension is
identical to that of a one-dimensional latt ice gas.

the case where the spatial periodicity is two-that is, afte r two time steps,
t he cells are again clustered in the same way. In figure 4, t he clusters are the
pairs of cells entering and emerging from the evolut ion operator (j .

On th e even time steps, we will denote th e collection of all clusters by Co ,
and on the odd steps by Cl . The clusters of COand Cl consist of d-dimensional
cubes with two cells along each edge; that is,

and

Cl - {C2 · 12' 1 2' l li k E Z}- 1.1+ I 1.2+ ,. '" l.d+ ,

where

(4)

(5)

denot es the d-dimensional cube of cells whose corner closest to the origin
lies at rectangular coordinate (iI , i2, .. . , i d ) . It is important to note that the
clusters of Cl are offset by (1, 1, . . . , 1) relat ive to the cluste rs of Co. At each
time step, the rule V maps the state of all 2d cells of a cluster into a new
state for all 2d cells. In general, the new stat e of each cell depends on the
previous state of all cells in the cluster.

Definition 2.2. A d-dimensional 2d-body CA is a pair (V,Q), where Q is
the finite set of states that each cell can occupy, and the automorphism
V :Q2d--+ Q2d

is a local evolution operator which updates each cluster of 2d

cells belonging to the clusterings COand Cl .

In d = 1, this definition simply reproduces th e 2-body automaton shown
in Figure 4; in d = 2, it defines th e class of 4-body automata shown in
Figure 5.
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Figure 5: Four-body CA with 2 x 2 cluster neighborhoods. Clusters
of COare shown as dashed squares; clusters of C1 are solid; the cells
are shown as dotted boxes.
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2.1 Simulation by contraction CAs

We will show that any d-dimensional convent ional CA (U,Q,r) can be sim­
ulated by a 2d-bo dy auto maton (U, Q). T he simplest way to prove this is
to introduce an auxiliary form of CA, the contraction CA, and first prove
that any convent iona l CA can be simulated by a cont raction CA. Then we
complete the proof by showing t hat any cont ract ion CA can be simulated by
a 2d-body CA.

Cont raction CAs are a str aightforward generalizat ion to higher dimen­
sions of the one-way auto mata introduced by Culik [2]. Their sole function
here is to systematically compress neighborhood volume, from the (2r + l )d
cells of a convent ional CA with radius r, to t he 2d cells available to a 2d-body
CA, trading off an increase in the size of the state set for a reductio n in the
volume of the neighborhood [22].

Definition 2.3 . A d-dimensional cont ract ion cellular auto maton is a pair
(U, Q), where Q is the state set and U : Q2d

--+ Q is the local evolution
operator,

at .. .
tl,1.2 ,1.3 , .. ·,1,d

a11+ l ,i 2,i 3,..· ,id

a~1 1i2 +1 Ii3 1 ... ,i d

at + l,i2+ 1,ia, ... ,id

t
a i l + lh+l ,iJ +l ,...,id+ 1

(7)
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Figure 6: Comparison of the neighborhoods of the open cell in (a)
conventional CAs (r = 1 as shown), and (b) contraction CAs for
d = 1,2,3.

Each cell has a neighborhood consisting of the 2d cells having coordinates
equal to or one greater than the corresponding coordinate of the cell. For
d = 1,2 and 3, the neighborhoods for contraction CAs are contrasted with
those for conventional CAs in Figure 6.

Lemma 2.1. Any d-dimensional CA (U,Q,r) can be simulated by a d­
dimensional contraction cellular automaton (U',Q'). The simulation can
be performed in the same amount of space with a slowdown of at most 2r,
and employs IQ'I = E~:l IQljd states per cell.

For concreteness, we present the construction for the case d = 2 and
r = 1; generalization to any d ~ 1 and r ~ is straightforward.

First, Q' is enlarged to include the tensor products of Q needed to encode
a contracted representation of the (2r + 1)d cells in the conventional CA
neighborhood.

2r
, - (2d) ( (2r )d ) _ U ·dQ = QU ® i= l Q U .. . U ® i= l Q - QJ

j=l

(8)

Since r = 1 and d = 2 in Figure 7, the only new states introduced into Q'
are e x f x a x b, f x g x bx c, . . . E Q4. The product symbols will henceforth
be omitted for the sake of brevity.

By construction, the local evolution rule U' has two distinct parts. First,
it performs a sequence of contraction steps after which each cell is in a state
encoding the states of all (2r + 1)d cells of a neighborhood of (U, Q,r). In a
single additional step, U' then simulates the action of U on that neighbor­
hood.

For example, in the lower left corner of Figure 7, the local evolution
operator U' acts at time to to produce the contracted state efab at time to+1.
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Figure 7: Simulat ion of an arbit rary two-dimensiona l CA by a two­
dimensional contraction CA.
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After U' has been applied to all neighborhoods, the neighbors of the corner
cell are in the states efab, fgbc, ijej, and jkfg. These cells contain enough
information for U' to produce th e contracted state ijk x efg x abc E Q9,
which summarizes an entire 3 x 3 neighborhood of cell f at to. (That is,
the accumulate d neighborhood information is not centered around the cell
originally in state a, but around the cell originally in state f. ) But instead
of recording th e state of th e neighborhood in an element of Q9, we let U' be
defined to simulate U on that neighborhood, e.g.,

(

ef ab )
U' {J:j = U(j,e,g,i ,j,k,a,b,c) = 1'.

j k fg

(9)

In the general case, 2r - 1 applications of U' are required to contract
the state information of the (2r + l)d neighbors of a cell of (U, Q,r) into
the 2d- cell neighborhood of (U' ,Q/). Since an additional application of U'
is required to simulate U on th at neighborhood , the simulation proceeds at
a rate 2r t imes slower than the convent ional CA being simulated. The net
effect is that an exact simulation of (U,Q,r) is performed, except for a com­
putationally unimportant drift of the simulat ed configurat ion with velocity
(- r, - r, . . . , -r) per simulated step. •

The principal cost of simulation manifests itself not in the slowdown, but
in the number of states IQ'I required to simulate (U, Q,r). From (8), we see
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(10)when d, r 2: 1, IQI 2: 2,

that IQ'I= 2::;:1 IQljd . Unless both rand IQI are small integers, IQ' I, which
is bounded below by

IQ'I > l exd lnlQldx,

grows rapidly.

3. Simulation by N-body scattering automata

Theorem 3.1. Any d-dimensional CA (U,Q,r) can be simulated by a 2­
phase, 2d-body cellular automaton (V,Q) . The 2d-body cellular automaton
takes 2r steps to simulate each step of (U,Q,r), needs at most 2d times as
much space, and employs IQI= 2::;:1IQljdstates.

As in the previous section, the const ruction is given explicitly for d = 2,
such that the generalizat ion to any d 2: 1 is clear. Because Lemma 2.1
assures us that there exists a contraction CA (U', Q') that simulates any CA
(U, Q,r) , it suffices to first construct the 2d- body CA (V,Q) from (U', Q'),
and then show that (V,Q) can simulate any finite volume V of (U', Q') using
a volume no larger than 2dV .

Let Q = Q'. By Definition 2.3, each cell in (U', Q') belongs simultaneously
to 2d neighborhoods , whereas (by definit ion 2.2) each cell in (V, Q') can
belong to only a single neighborhood at any given t ime. Therefore, t he
init ial state of (V, Q') must contain at least 2d copies of the init ial state of
(U',Q'), and so requires a volume of at least 2dV (see Figure 8 for d = 2 and
Figure 9 for d = 1). Since the same argument holds at each subsequent step
of the simulation of (U',Q') by (V, Q') , the local evolution operator

(11)

must be constructed to produce 2d copies of the value that U' would produce
on the same input; that is,

(

a~"X2,X3, ... ,Xd )

U' :

a~l +l ,X2+1 ,X3+1 p.. ,Xd+ 1

(12)

(

at )Xl,X2 ,X3 , .. · ,Xd

U' :

a~,+1 ,X2+1 ,X3+1,... ,Xd+1

From Figures 8 and 9, we see that in fact a volume of 2dV is both nec­
essary and sufficient. As indicated by the dashed boxes in Figure 9, the
2d-fold copies of the simulated configuration of (U', Q') shift at the rate
of (1/2, 1/2, . . . , 1/2) per operation of Vi after 2T steps of simulat ion, th e



Universal Computation in Few-body Automata

Figure 8: Simulation of a contraction CA by a 2-phase, 2d-body scat­
tering CA, for d = 2.
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simulated configuration must be read relative to the translated origin at
(T,T, . .. ,T).

Because Lemma 2.1 asserts that there exist s a contraction CA (U',Q')
that simulates any CA (U, Q,r) with slowdown 2r and IQ'I = 2:;:1 IQIjd , it
follows that there exists a 2d-body CA (0,Q' ) that simulates any (U, Q,r )
with the same number of states and the same slowdown, in a volume 2d times
larger. •

4. Small universal 2-body CAs

In the introduction to this paper, we emphasized the importance of finding
numerical bounds on the minimum number of bits per cell required to perform
universal computation in a few-body CA. Fabricators of CA device arrays can
use these bounds to assess the feasibility of using various physical couplings
between device-cells without losing the potential for universal computation.
Coupling mechanisms that are physically incapable of supporting enough bits
per cell to be universal must be abandoned or, at best, redirected toward
special-purpose applications. Two of the most stringent cases, with clusters
of sizes N = 2 and N = 4, occur for d = 1 and 2, respectively (N = 3
does not occur on a square lattice) . If we apply Theorem 3.1 to conventional
computation-universal CAs having small neighborhood radii and small state
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x

Figure 9: Simulation of a one-dimensional contraction (that is, one­
way) CA by a 2-body CA.

sets, we can set an upp er bound on th e number of bits per cell required.
For d = 1 (N = 2), Figure 9 explicit ly shows how th e final stage of the
simulation proceeds. The numb ers of bits per cell required to simulate various
conventional CAs are discussed subsequent ly and summarized in Tables 1
and 2.

From the t ime von Neumann first introduced his two-dimensional, self­
reproducing CA with 29 states, researchers have attempted to reduce both
the state count IQI and the neighborhood radius r of computation-universal
rules [3, 8, 10, 22] . The earliest work focused on decreasing the number of
states in von Neumann 's CA; Codd [10] reduced IQI from 29 to 8; Banks [3]
later reduced IQI to 4. Theorem 3.1, implies that by simulating th e von
Neumann, Codd , and Banks const ructions we obtain 4-body automata that
are computation-universal and require log21Q'I = 19.43, 12.00, and 8.02 bits
per cell, respectively.

Banks also discovered a rule in d = 2 th at , like Conway's well-known
"Life" rule, has the fewest possible states, IQI = 2, the smallest possible
radius, r = 1, but is st ill demonstrably computation-universal. The 4-body
CAs that simulate these rules each require just 3.32 bits per cell. Togeth er
with Margolus's one-bit version of Fredkin 's universal billiard ball model
(which was, however, implemented from the star t as a 4-body CA) [27], the
Banks and Conway rules represent th e smallest possible conventional CAs
and constitute the smallest known universal CAs in d = 2.

In cont rast, th e problem of minimizing IQI while retaining universality for
d = 1 remains open. A. R. Smith [22, 23] has proven a series of theorems on
the simulati on of (m,n)-Turin g machines' by one-dimensional conventional
CAs. By applying his theorems to the small (6,6) - and (4, 7)-Turing machines

IThat is, Turing machines employing m tape symbols and n head states.
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I (d = 2) Rule ~ Universal Ilog2lQ '1 I
von Neumann [8, 37] 29 1 y 19.43
Codd [10] 8 1 y 12.00
Banks [3] 4 1 y 8.02
Conway ("Life") [6] 2 1 y 3.32
Banks [3] 2 1 y 3.32

Table 1: Simulation of two-dimensional conventional CAs by 4-body
CAs.

[ (d = 1) Rule ~ Universal I log2 lQ'1I
Smith [23] 7 3 y 17.07
Smith [23] 11 2 y 13.98
Smith [23] 18 1 y 8.42
Lindgren et al. [26] 4 2 y 8.41
Albert et al. [2] 14 1 y 7.71
Lindgren et al. [26] 7 1 y 5.81

W!S7 ' Wl 24 3 1 - 3.58
W flO 2 1 - 2.58

Table 2: Simulation of one-dimensional conventional CAs by 2-body
CAs.

that Minsky [28] has shown to be universal, Smith has produced universal
one-dimensional CAs with neighborhood radii r = 1, 2, and 3.

Theorem 4 .1. (Smit h [23]) For any TUring machine with m symbols and n
states, there exists a one-dimensional CA (U,Q,r ) with IQI = max (m, n) +1
and r = 3 that simulates it in real-time.

For t he (6,6)-Thring machine of [28], Theorem 4.1 yields a convent ional
CA with IQI = 7, r = 3. Applying Theorem 3.1 yields a 2-body CA with
IQ' I = 137, 256, or log2 lQ'1= 17.07 bits per cell.

Theorem 4. 2. (Smith [23]) For any TUring machine with m symbols and
n states, there exists a one-dimensional CA (U,Q,r) with IQI = m + nand
r = 2 that simulates it in real-time.

For the (4,7) -Thring machine of [28], Theorem 4.2 yields a convent ional
CA with IQI = 11, r = 2. Applying Theorem 3.1 yields a 2-body CA with
IQ'I = 16,104 , or log2lQ'1 = 13.98 bits per cell.

Theorem 4.3 . (Smith [23]) For any TUring machine with m symbols and
n states, there exists a one-dimensional CA (U,Q,r ) that simulates it in 2
times real-time and has IQI = m + 2n and r = 1.
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For t he (4, 7)-Turing machine of [28], Theorem 4.3 yields a convent ional
CA with IQI = 18, r = 1. Applying Theorem 3.1 yields a 2-body CA with
IQ' I = 342, or log21Q'I = 8.42 bit s per cell. Culik et al. [2J have reduced
t he st ate set to IQI = 14 with r = 1; the resulting universal CA yields
a universal 2-body CA with IQ'I = 210, or log21Q'I = 7.71 bits per cell.
Recently, Lind gren and Nord ahl [26] have st rengthened Theorems 4.2 and
4.3.

Theorem 4.4. (Lindgren and Nordahl [26]) For any Turing machine with
m symbols and n states, there exists a one-dimensional CA (U,Q,r ) that
sim ulates it in 2 times real-tim e and has IQI = m + n + 2 and r = 1.

Applying Theorem 4.4 to the (4, 7)-Turing machine of [28] would only
reduce the state set to IQI = 13, bu t Lindgren and Nordahl reduce this
further to IQI = 7 and r = 1, by simulating the Turing machin e head with
composite objects propagating in a periodic background. Applying Theorem
3.1 to their const ruction yields a universal2-body CA requiring just 5.81 bits
per cell.

Smaller upper bounds on the required number of bits per cell in d = 1
have not yet been obtained, but several members of Wolfram class 4, widely
conjectured to be universal , require fewer than 5.81 bits per cell. The two
r = 1 rules, W157 and w124 (where W: denotes the k-ary rule with Wolfram
code c [38]), both have IQI = 3, and would therefore yield log2 lQ' / = 3.58
bits per cell if t heir universality could be established. At the ext reme limit,
if a binary CA with r = 1, such as Wolfram rule 110, is universal [26, 38],
the amount could be reduced to 2.58 bits per cell.

Because we are primarily interested in minimizing N for universal N ­
body CAs, we can obtain 2-body CAs with even fewer st ates by applying the
contraction operation within the 2 x 2 clusters of universal 4-body CAs (see
Figure 10). It is not difficult to see that the following assert ion is true .

Assertion 4.1. Any 4-body cellular automaton (0, Q) can be sim ulated by
a 2-body cellular automaton (U, 0), at the cost of a slowdown of 2 and
augmentation of the state set 10 1= 21QI .

5. Induced complexity measure

We can also use Theorem 3.1 to define a simple measure of th e complexity
of a CA rule. Several mathematically plausible measures have been sug­
gested previously (see [2] and references therein) . Probably the most com­
mon approach [23], often used implicitly, has been to adopt the product
C(r,k) = (r + l)dk (of the number of neighbors and the numb er k == IQI of
st ates) as a measure of the complexity of (U,Q,r ).

Since the 2-body CA is perh aps t he simplest form that physical computa­
t ion can take, we adopt it as a "canonical form" for CAs; instead of t rying to
directly compare the complexity ofrules with var ious IQI and r , we first apply
the simulation theorem (Theorem 3.1), and then compare the complexity of
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Figure 10: Simulation of a 4-body CA by a 2-body CA.

the resulting canonical forms. However , we still need an addit iona l assump­
tion to give us a physically plausibl e means to weigh the relative import ance
of r and IQI. Following the Feynm an-Toffoli conjecture that only a finite
amount of computation can occur in a finite volume of space-t ime [16, 33],
we will assume that the spatial density of bits that are physically available
to any simulator is some finite p.

For convenience, we define the unit of volume to be 1/ p, so that each cell
can then be used to represent a single bit of st ate; if more than one bit of
state is required, composite cells must be const ructed. If k distinct states
are required, a configuration of 1l0g2 k1cells must be used to encode the k
states.

If we use this system to simulate an arbit rary CA, via the const ruction
in Theorem 3.1, a spati al volume of at least 2dlog2 (2::;: l IQljd) cells will
be required to have access to enough bits to represent the states for the
simulation. In addit ion, the simulat ion will t ake 2r t imes as long to run as
the rule being simulated. Thus, the physical simulation of any (r, k)-rule in
d = 1, for example consumes a volume of space-t ime tha t is a factor

(13)

larger than that consumed by the original rule . We can take thi s space-t ime
"dilut ion factor " Vas a measur e of the complexity C(r,k) of a CA rule.

If we approximate the sum by the corresponding integral, we can writ e

(

e2r ln k _ 1) (k2r
- 1)

V (r ,ln k) = 4rlog2 In k = 4rlog2 ~ . (14)

Fur ther simplificat ion of t his expression is obtained by considering some rea­
sonable limits. For r 2: 1 and k 2: 2, k2r » 1 and In]k2r

- 1) :::::: 2r In k »
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Figure 11: Plot of the exact expression (13), for the dilution function
D(r, log2 k), with r E (1,10) and log2(k) E (0,9).

In In k; therefore,

(15)

The graph of the exact expression V(r, In k) = 4r log2 (2::;:=1 enIn k) is plotted
as a function of r and In k in Figure 11.

The approximation V ~ 8r 2log
2k is accurate even for small values of

rand k. In addition, the measure V(r, In k) possesses a simple physical
interpretation, in terms of the Feynman-Toffoli conjecture.

6. Summary

By applying Theorem 3.1 to universal conventional CAs, we have obtained
an upper bound on the number of bits per cell required for universal compu­
tation when only two-body interactions are permitted. The smallest upper
bound that we have established, based on a conventional CA constructed by
Lindgren and Nordahl [26], is 5.81 bits per cell. If the hypothesized univer­
sality of Wolfram rules 357 and 824 [38] can be proven, the upper bound can
immediately be reduced to 3.58 bits per cell. If any binary CA with r = 1
(such as rule 110) can be shown to be universal (there is some debate about
this possibility; compare [26] with [38, p.31]), then the upper bound can be
reduced to 2.58 bits per cell.

For d = 2, we have shown how to construct a computation-universal 2­
body CA that requires 2 bits per cell. This requirement can probably be met
by many of the proposed schemes for computing with nanometer-scale arrays .
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The construction of a computation-universal 2-body CA that requires only
a single bit per cell rem ains an open problem.

The search for compact yet computation-universal, CA rules has provided
an intriguing t heo retical challenge since von Neumann 's pioneering contribu­
t ion [37]. With t he advent of dense CA-like device arrays, t he search may
soon take on practi cal impor tance as well.
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