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A Phase Diagram
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Abstract. We construct a phase diagram for the possible dynamics of
one-dimensional, two-state, three-neighbor cellular automaton rules,
using a new parameter (in conjunction with the previously known
activity parameter). The new parameter 'estimates the average sensi­
tivity of rule outcome to small changes in neighborhood configuration.

1. Introduction

Cellular automata (CAs) are useful as a paradigm for the study of complex
dynamics in spatially extended systems with local interactions. Numerous
types of behavior have been observed , leading to several classifications fol­
lowing different criteria: spatiotemporal patterns [1, 2]; the act ion of rules
on n-step Markov measures [3]; and properties of the CA's limiting behavior
[4, 5] and state-transition grap hs [6, 7] .

In this paper we address the closely related question of the ordering of
the space of rules. We consider the family of simplest one-dimensional deter­
ministic rules, with two states per site (k = 2) and one neighbor on each side
(r = 1), typ ically referred to as elementary CAs. In particular, we define
and use a new parameter that is obtainable directly from the description of
a rule, to const ruct a two-parameter phase diagram of elementary CAs. This
parameter is independent of the act ivity parameter >. that appears in the
literature [8-11].

This study is complementary to those of Li and Packard [2] and of Langton
and coworkers [8-11 ], which we review in the following sect ion. We define
the new sensit ivity parameter in section 3, and show the phase diagrams in
sect ion 4. We discuss the results in section 5.

2. The structure of the CA rule space

For elementary CA rules, t here are 23 = 8 neighborhoods, and 28 = 256 ru les.
After left-right and zero-one transformations are considered, 88 independent
rules remain . Li and Packard [2] conducted an interest ing study of this family
of rules , which contains three maj or contributions. First , they proposed a
refinement of the four original classes of behavior defined by Wolfram [1]. The
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five Li-Packard Classes are: N (null) , homogeneous fixed points, equivalent to
Wolfram Class 1; F , nonhomogeneous fixed points; P, periodic global states;
L, locally chaotic regions separated by domain walls; and C (chaot ic), roughly
equivalent to Wolfram Class 3. Wolfram Class 4 rules may fit into different
Li-Packard Classes, according to the criterion that is used. In this paper we
primarily consider the Li-Packard Classes.

The second contribut ion of [2] was th e exploration of th e structure of
rule space, seen as an 8-dimensional hypercubic representation of the state­
transition table (STT) , which is a list of the outcomes of the 8 possible
neighborhoods. In this space, two rules are adjacent if t heir STTs differ
by only one bit . Li and Packard found a significant degree of clustering
according to class, and a reasonable (but far from perfect ) correlat ion be­
tween proximity in rule space and similarity of behavior. In addit ion, Li and
Packard identified hot bits in the STT: the out puts of neighborhoods (000)
and (111) are particularly important predictors of behavior- thi s was their
third contribut ion. When these out puts are (0,1), rules tend to be N, F , or
P ; when they are (1,0), rules tend to be P ; and when they are (0,0), rules go
from N to C. The importance of hot bits is explained in [2J in terms of th e
mean-field maps of th e rules.

It would be desirable to order rules in terms of simple global properties
of the STT, rather than in very high-dimensional spaces: 27 dimensions for
k = 3, r = 1; and 32 dimensions for k = 2, r = 2. An important rule­
based parameter has been used by Langton and coworkers [8-11J. There
app ears to be a correlat ion between dynami cal disorder and the activity pa­
rameter A (defined as the fraction of neighborhoods with an active (nonzero)
out put). However, numerical observatio ns of simultaneous first- and second­
order transit ions to chaos as A increases, and general fuzziness in activity­
complexity plots, suggest th at at least a second parameter is required to fully
describe the rule space (see especially [10]) . We propose such a parameter
in th e following sect ion. The effects are particularly dramatic for elementary
CAs, where A is almost useless as a predictor of behavior.

3. The sensitivity parameter

A simple explanation for th e fact th at A works (when given enough neighbors
and dimensions), is that in most cases it should be a reasonable predictor
of the asymptotic density of active sites. By a simple combinatorial argu­
ment , when A '" 1/2, more global states are available, and the evolut ion
is more complex; this argument ignores questions of broken ergodicity and
accessibility of states. As A moves away from 1/2, fewer stat es are available,
until A = 0 or 1, at which points only homogeneous states become accessible.
There are clear except ions to this argument , caused by stro ng correlations
such as gliders or domain formation. A notorious example is the identi ty
rule (known as elementary rule 204), which is very simple although A = 1/2.
We not e that values A, 1 - A are considered to be dynami cally equivalent;
therefore , activity plots are usually folded about A = 1/2.
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An independent parameter that could be used to discriminate between
rules with equal A should take into account the sensi tivity of rules to changes
in one or more sites . Wolfram Classes 3 and 4 are known to be much more
sensit ive than Classes 1 and 2 [12]. We define an average sensit ivity param­
eter J.l (to the same order of approximation used to define A) as the average
over all sites of all neighborhoods of change in output induced by change in
site value, as follows.

J.l = _1 2: 2:1 aso I
nm n m asm '

where the sums are over all possible neighborhood configurations n and over
th e states Sm of all m bits in each neighborhood configurat ion, and where So

is the output of neighborho od configuration n .
The quantity laso /asml E (0,1) is relat ed to the Boolean derivative for

CAs [13], and to t he discrete metric introduced by Robert [14] for discrete
iterati ons. While Vichniac [13] hint ed at th e relation between th e Boolean
derivative and complexity, the overall parameter related to rule behavior that
we introduce in this paper is new. It is true th at Wolfram [1] and Packard
[15] have used the m easured average spreading rat e resulting from a single
site change. However, th eir parameter (,) is not obtainable a priori from
the STT , and it is used as a measure , not a predictor, of complexity. Two
bounds for J.l are easily verified: 0 :::; J.l :::; 1/2, and A/ 3 :::; J.l :::; A (the latter
only for elementary CAs). It is possible to have a rule with high A and fairly
low u; but not the reverse. In the same way that A est imates the asymptotic
density of act ive sites, J.l estimates the sensit ivity to small configurational
changes, if all neighborhoods are equally prob able. In some respects J.l is
fairly crude, as it does not differentiate between central and peripheral bits.
For example, J.l for the ident ity rule is fairly high, even th ough the rule does
not allow transmission of information.

We show values of A and J.l for the 88 independent elementary CA rules
in Table 1. These values will be used to construct phase diagrams in th e
following sect ion. We use the standard notat ion for rule numbering [1], which
is to give the decimal equivalent of the STT.

4 . T he phase d iagrams

We have used Table 1 in conjunct ion with [2] to construct Figur e 1, which
shows schematically th e parameter domains for each Li-Packard Class. The
space of act ivity-sensitivity values contains 11 points, which is more than
activity alone (5), but fewer than th e STT rule space (256). As discussed
in Section 3, the parameter space has been folded about A = 1/2 . We note
that , while some overlap occurs , the domains for each class are nicely convex
and connected. Near A = 1/2, disorder seems to increase with sensit ivity. All
elementary rules have been included; some violate the definition of A, which
requires a quiescent state, j (OOO ) = O. This is corrected in Figure 2.
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(A, p,) Rules

(0,0) 0

(1/8, 1/8) 1, 2, 4, 8, 32, 128

(1/4, 1/6) 3, 5, 10, 12, 34, 136, 160

(1/4, 1/4) 6,9,18, 24,33, 36, 40, 72,130,132

(3/8, 5/24) 7, 11, 13, 14, 19, 35, 42, 50, 76, 138, 140, 162, 168, 200

(3/8, 7/ 24) 25, 26, 28, 37, 38, 44, 56, 62, 74, 94, 110, 122, 152, 164

(3/8, 3/8) 22, 41, 73, 104, 134, 146

(1/2, 1/ 6) 15, 51, 170, 204

(1/2, 1/4) 23,27, 29,43, 46, 58,77,78,126,142,172,178,184,232

(1/ 2, 1/3) 30, 45, 54, 57, 60, 90, 106, 108, 154, 156

(1/2, 1/2) 105, 150

Table 1: Activity (>') and sensitivity (J.L ) parameters, and independent
elementary CA rules with the given values of >. and J.L .

To clarify the diagram, we eliminate from it all nonquiescent rules and a
few exceptional rules, as follows.

• Chaotic rules with low p, (18, 126): according to [2], as both rules have
j(OOO) = j (111 ) = 0, their return maps are single-humped and they
tend to be chaotic. Indeed, simulat ions show the early formation of
disordered triangular patterns, characterist ic of Class C.

• Null rule with high A (40): for this rule j (Ol1 ) = j (101 ) = 1. It is seen
th at initial condit ions of the form (Dl I}; shift , while all others erode
to O.

• Fixed-point rules with low A (2, 4): in th e first case, t he only surviving
bits at t = 1 come from 001 strings in the initial condition; th ese shift to
the left th ereaft er. In the second case, only 010 in the initi al condition
survives and remains.

• Fixed-point rule with high p, (104): j (Ol1 ) = j (101 ) = j (110 ) = 1.
Strings 0110 in the initial condit ion are invariant ; all other strings even­
tually evolve to zeros, leaving stripes of width 2-hence Class F.

• Periodic rule with high p, (134): j(OOl) = j(OlO) = j(111 ) = 1. Strings
of consecutive Is followed by a 0 in the initial condit ion are eroded from
the right by Os. The remaining Is oscillate between being isolated or in
groups of two, producing patterns th at shift to the left with speed 1/2.

The remaining independent rules are shown schematically in an activity­
sensit ivity diagram in Figure 2. The segregation of rules by class is quite
sati sfactory. As in Figure 1, near A = 1/2 the sensit ivity parameter app ears



A Phase Diagram for Elementary Cellular A utomata 245

J.L
1/2

.........
...5···········..···

;~~~?~.J
/. L\ ....·:~

I::.~t.: :y· · · · · · · ·~.. ·~ ·~· ;> ~A
/1 ) I

/' f j. . •·· ···F J
/ C.:.:.::.~.:;i.._.._.._··_·p··_.._··_··-
i ; ,;"
i .......·N
! ; .."......

o 1/2 A.

Figure 1: Phase diagram for all independent elementary CAs. The
axes are activity (A) and sensitivity (J.L) . Classes are as defined by Li
and Packard [2] . Wehave included ruleswhich do not have a quiescent
state , in violation of the usual definition of A.

to be quite useful in discriminat ing between classes, especially between N, F,
and C. The domain for Class L is not shown, for clarity.

Two more diagrams, not shown here , were considered. Legal rules (qui­
escent with left-right symmetry) did not yield add it ional insights . A di­
agram indicating the domains of Wolfram Classes shows them segregating
very nicely. The domain of Class 1 corresponds to Class N in Figure 1, Class
3 corresponds to C, and Class 2 corresponds roughly to the union of F and
P. There are overlapping regions between Classes 1 and 2 and between 2 and
3, and only one "triple point" at A = 1/2, J.L = 1/ 4, which can be explained
in terms of the exceptional rules discussed above.

In conclusion , the phase diagrams in this Section confirm, to a great
extent , our expectations, based on numerical observations (see, for example,
Figure 1 in [2], and Figure 13 in [10]).

5 . Discussion

The approximate prediction and ordering of rule behavior in terms of simple
prop erti es of the STT has been an impor tant open prob lem in th e theory
of CAs. Previous studies have considered either the clustering of rules in
a high-dimensional space, or one-parameter transit ions from order to chaos.
(We note that the usefulness of Xrecently has been called into question [16J.)

The present study is an extension and complement to previous studies; we
have introduced a new parameter (J.L) which estimates the average sensitivity
of rules to small configurational changes. We have shown that in the space of
the act ivity [8] and sensitiv ity parameters, rules cluster very nicely according
to either their Wolfram Class [1] or their Li-Packard Class [2]. We have
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Figure 2: Revised phase diagram of rules for elementary CAs, after
nonquiescent and exceptional rules have been removed. L rules are
not shown, for simplicity.

considered only elementary CAs in this paper; we should point out that a
similar phase diagram for totalist ic k = 2, r = 2 rules [15] explains the
numerical observation that both first- and second-order transitions to chaos
can occur over the same range of th e activity parameter.

Given the profound complexity of CAs, it is clear th at such simple param­
eters as those used in this paper are of limited value. This is especially true
for elementary rules , which are known to be highly correlated. For example,
many features of the evolut ion of particular initi al conditions are decided
over the first few tim e steps; this cannot be taken into account by a priori
parameters.

We expect that th e two-parameter phase diagrams will be sharper in
higher dimensions, and that sensit ivity studies of the order-to-chaos transi­
t ion will help in elucidat ing the fuzziness th at is observed when A is used.

Finally, we realize that J-L is a very crude parameter, which still allows some
overlap between classes. One possible improvement would be to give different
weights to sensitivity to changes in th e central versus the peripheral bits, or
somehow to separate the effects of information generation and transmission.
A more phenomenological approach, which loses the predictive aspect of a
priori parameters, would be to modify any of the proposed versions of th e
J-L parameter to reflect the numerically observed frequency of neighborhoods
(e.g., as in Packard 's , ).
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