
Complex Systems 7 (1993) 249-268

A Constructive Algorithm for the
Training of a Multilayer Perceptron

Based on the Genetic Algorithm

H ans Christian Andersen'
Ah Chung Tsoit

Departm ent of Electrical Engineering,
University of Queensland,

St. Lucia, Queensland 4072, Australia

Abstract. A genetic algorit hm is proposed for the training and con­
struction of a multilayer perceptron. The genetic algorit hm works on
a layer-by-layer basis. For each layer, it automat ically chooses the
number of neurons required, computes the synaptic weights between
the present layer of neurons and the next layer, and gives a set of
training patterns for the succeeding layer.

The algorithm presented here const ruct s networks with neurons
that implement a -threshold act ivation funct ion. This architecture is
suitable for classificat ion problems with a single binary outp ut .

The method is appl ied to the XOR problem, the n-bit pari ty prob­
lems, and the lVIONK's problems, and. its performance is found to be
comparable to that of other techniques.

1. Introduction

Recent ly there has been much study into the. training of mu lt ilayer percep­
t rons using const ruct ive algorit hms [1, 2, 3, 4]. These algorit hms are useful
because t here are st ill no pr act ical methods for obt aining a good est imate
of the number of hidden layer neurons, or t he number of hidden layers for a
part icular classificati on problem . A good int roducto ry account of the types
of algorit hms ava ilable is given in [1]. .Among the algorit hms a not ewor thy
one is the Cascade Corr elation algorit hm [2]. T his algorit hm progressively
works out t he number of neurons needed , as well as the number of hidden
layers that are requi red.

In this pap er we will introduce a new constru ct ive algorit hm that is based
on the genetic algorit hm [5, 6, 7]. It differs from the ot her algorit hms in that

' Electronic mail address: andersen@s l .elec:uq.oz .au
tElectronic mail address: act.os i . elec .uq. oz. au

250 Hans Christian An dersen and Ah Chung Tsoi

it tr ains the mult ilayer perceptron layer by layer, that is, a layer at a time. For
each layer, it automatically chooses the numb er of hidden layer neurons, th e
synapt ic weights of connection s with the preceding layer , and a set of t ra ining
patterns for the succeeding layer . The result ing network architecture is the
same as the classic multi layer perceptron (MLP) struct ure [1]. This cont ras ts
with the Cascade Correlati on algorithm [2], which produces a st ructure that
is different from the classic MLP.

vVe have applied th e meth od to the XOR prob lem, n-bit pari ty prob­
lems (up to n = 8), and to the MONK problems, which have been used
as benchmarks for various classification algorithms [8]. It is found that the
proposed technique works well. It yields MLP architectures for each of th e
three MONK problems th at are comparable to the ones obtained by other
researchers [8].

The structure of the paper is as follows. First a brief int roduction to
genetic algorithms is present ed, followed by a descrip tion of the proposed
algorithm. T hen results of th e applicat ion of th e algorithm on standard
test problems- namely t he XOR prob lem, n-bit pari ty problems, and the
MONK 's problems-are presented and discussed. Also in the discussion is a
description of a simple pru ning algorithm that can dramatically reduce t he
numb er of neurons needed.

2. A brief int rod uction to genetic algorithms

T he basic object ive of genet ic algorithms (GAs) is to harness the power of
natural evolution to optimize problems. Natural evolut ion itself is, in essence,
an opt imization algorithm. From an exte nsive gene pool it finds combinations
of genes that produce near-optim al organisms that are able to surv ive and
prosper in their environment .

GAs are based on th is observation. They hope to emulate what nature
does, and in so doing obtain a robust optimization algorithm for the computa­
t ion of the "global" opt imum of a given function . Conceptually the gene-pool
is the solution space, the environment is the function to be optimized (the
objective or cost fun ction), and th e organisms are the trial funct ions (indi­
viduals) used to work out a solut ion. Having developed th is analogy, one has
to identi fy the mechan ics of natural evolut ion and then tr anslate th em into
something mathematically concrete. This results in an effective opt imizat ion
method.

The first issue to resolve is how each ind ividual will be encoded. We know
that each individu al must cont ain all information necessary to prod uce an
offspring similar to itself. One way to do this-the method used by GAs-is
to represent all of the parameters describ ing one individual as a bit-string.
The exac t manner in which this is done is up to the GA designer. For
example, if th e function f(x) is to be minimized, an individu al must possess
information about the x value t hat defines it. One might encode th is x as a
bit-string of 16 bits, representing a fixed-point real number within a certain
numerical range, such as -2 to 2. Once this has been done , the designer can

Training a Multil ayer Perceptron Based on the Genetic Algorithm 251

choose the operators (for the manipulation of the genes) th at will be used.
The fund ament al operators are:

Initialization sets the initi al values of the indi vidu als. This is usually done
by filling the chromosome (bit-string) of each individual with a random
distribution of Os and Is.

Evaluation calculates a fitness value for each individual on the basis of how
well it solves the problem at hand.

Selection chooses indi vidu als to pass inform ation on to the next iteration
(genera ti on) on the basis of th eir fitn ess values . This operator should
realize the principle that indi viduals with higher fitness values have
higher probabilities of "surviving."

Reproduction uses selected "fit" individuals from th e current generation
to produce th e next generation. GAs use sexual reproduction, which
means th at pairs of individuals are used to form offspring. Thi s is
usually done by somehow mixing th e bit-streams, that is, taking some
bits from one individu al and the rest from the oth er (called crossover) .
Often some randomness is added by inverting some bit s (called mu­
tation) . Cloning is an operation tha t copies an indi vidu al from th e
present generation to th e next.

Initialization is don e only at the beginning of a run, bu t evalua t ion, selec­
tion , and reproduction are repeated for a numb er of generations, after which
th e optimal (maximum or minimum) value of the obj ective function would
hopefully have been located.

Many oth er operator s and modi fication s to th e exist ing ones have been
proposed. In the algorit hm presented in this pap er the evaluation operator
will be modi fied so that the GA performs niche form ation [9, 10]. For a more
in-depth descrip tion of GAs see references [5, 6, 7].

3. A description of the proposed algorithm

In this sect ion the data st ruct ure on which the algorit hm operates is intro­
duced. Secondl y, a list of each of th e steps of the algorit hm is provided, and
lastl y each of th ese ste ps is explained .

3.1 Data encoding

The algorit hm involves operations on a set of indi vidu als, which we will
describe as weight vectors (WVs) . A WV contains all of the information
needed to define a single neuron, that is, th e weight of each of the inputs to
the neuron and its threshold . A neuron with I regular inputs and 1 threshold
input will thus be defined by 1+1 weights . Each of th e weights is stored as a
fixed-point real numb er , or an integer, of B bits. Hence each 'vVV is defined
by (I + l)B bits. The weights of t he WV are arranged such th at th e weight

252 Hans Christian Andersen and Ah Chung Tsoi

of the connect ion to the first input appears first , the weight of the connection
to the last inpu t appears next to last , and the weight of th e threshold is at
the end.

Note that the dat a representation is int rinsically an integer in the present
situation. However, the GA designer can impose a real-number interpretation
by assuming that the W b bits represent a real number wit hin a particular
range. For purely boolean prob lems this can offer no advantage because one
would merely be scaling the weights .

Our WV can be described mathemati cally as

Y = f (t W iXi - t)
,=0

(1)

where y is the out put of the neuron , and Wi, Xi , and t are th e input synapt ic
weights, the inputs, and the threshold , respectively, with i = 1, 2, . . . , I . I is
the numb er of regular inputs.

T he nonlinear function f (a) is chosen to be

f(a) = g if a < 0
if a ~ 0

Note that t his is the usual definition of a neuron [1]. The only difference
is that we have assembled the input weights uu, i = 0,1 , ... , I , and the
threshold t i into an aggregate weight vector so t hat we can perform the
genet ic algorithm operations more easily. Hence, we choose to call it a weight
vector to emphas ize this point .

The out put of the 'NV is assumed to be binary. T herefore, the nonlin­
earity of the neuron is assumed to be a Heaviside funct ion , rat her than the
usual sigmoidal function.

3.2 Outline of the algorithm

The WVs form the population pool. The algorithm involves initializing the
WVs once, doing a search for good WVs by cont inually altering and evaluat­
ing them, and finally eliminat ing ineffective ones. When a solut ion has been
set t led upon- when the set of WVs has par ti tioned itself into classes with
members of ident ical classes performin g the same function- one representa­
t ive from each class is chosen and hence a group of WVs, which represents
a layer of neurons, is obtained. To allow tra ining of the next layer th e t ra in­
ing set used for this layer is prop agated through the neurons, producing a
training set for the next layer (if one is needed).

T he steps of the algorit hm are listed below and will be explained subse-
quently.

1. Initialize N weight vectors (WVs).

2. Evaluate WVs with respect to the training set.

3. Search, repeating G, tim es:

Training a Multilayer Perceptron Based on the Genetic Algorithm 253

(a) Select WVs to surv ive.

(b) Repro duce new WVs by genet ic operators (crossover and/or mu­
tation) , or cloning those selected in (a) .

(c) Evaluate WVs with respect to the t ra ining set .

4. Clean-up , repeating G; t imes:

(a) Select WVs to surv ive.

(b) Reproduce WVs for use in the next generation by cloning only.

(c) Evaluate WVs with respect to the t ra ining set.

This will result in an arbitrary number N, of classes of WVs, which will
be th e number of neurons for the current layer.

5. Choose one representat ive from each class of WVs.

6. Prod uce a training set for the next layer.

7. Repeat the entire algorithm using the t ra ining set produced in ste p 6,
bu t only if more than one class was found in ste p 5. This implies that
the training set cannot be classified by one neuron, and that anot her
layer is needed.

G, and G; are the numb ers of generations needed for the search and clean-up
phases, respectively.

3.3 Initializat ion : random izat ion of weight vectors

The (I + l)Wb bits of th e WV are set to random values. This means that
when decoded to fixed-point reals or integers, the weights will have random
values that are evenly distributed within th e range specified by the user.

3 .4 Evaluation: calculation of a fitness value

Evaluating fitn ess values is the most crit ical operat ion for t he prop osed al­
gorithm. As in other niche formation schemes [9, 10] the fitness value of an
individual (a number indicat ing how good it is) is made to depend on the
characterist ics of not only the individual itself but also on the characterist ics
of oth er individuals. In oth er words, t he overa ll fitness of an individu al is de­
ter mined in part by the object ive function, but also by the relative fitn esses
of other individuals. The significance of the par ticular neuro n is relative to
the fitness of all of th e other neurons.

Smith , Forest , and Perelson [10] introduced a new name for niche for­
mati on somet imes called "speciat ion." The name cooperative populations is
perhaps a more descrip tive name for the concept. Intui tively a WV will re­
ceive a relat ively high fitn ess value if it is able to classify parts of the t ra ining
set th at not many others can . Conversely, a WV is judged to be less valuable
if it only classifies t raining vectors that many other WVs also classify. Thus,

254 Hans Christian Andersen and Ah Chung Tsoi

(2)

t he perform ance of each WV is evaluated relative to the performance of oth er
WVs in the population.

T he evalua tion funct ion is as follows:
T

Fitness = L Cti

i=l

o, = { ~ias (ni)

where

if WV classifies t ra ining vector i incorr ectly
if WV classifies t raining vector i correct ly

(3)

T = the tot al number of vecto rs in the training set

ni = the total numb er of WVs th at classify t ra ining vector
i correctly

Bias(x) = a monotonically decreasing function for x ;:::: O.

In genera l, the functio n can be chosen as Bias(x) = l / x (3 , where (3 is a non­
negative integer; for example, Bias(x) = 1/ x 2

, or Bias(x) = l / x S. Note tha t
a neuron classifies a training vector correc t ly if t he neur on 's output matches
t he desired output.

3.5 Selection: choosing weight vectors for survival

The select ion operator is identic al for both t he search and the clean-up stages .
A breeding popul ation the size of the current population is const ructed. This
population is used in the reproduction stage to produce indi vidu als for the
next generation. Individuals for the breeding population are selected from
the cur rent popul ation with a probability defined by

r 2ri
probabili ty of select ing WV; = -----d----: = N (N)

L j = lJ + 1

where

W V; = the ith individual of the curre nt popul ati on

N = total numb er of WV s

ri = t he rank of the fitn ess of indi vidu al i , where indi viduals
with high fitnesses receive high ranks. No two indi vidu als
can have the same rank and clashes are resolved randomly.

This type of select ion is commonly known as rank selection and was chosen
because of its suitability for par allel implement ation.

3.6 Reproduction: making new weight vectors from old ones

There are three operations that can be used to produce new indi viduals from
the old ones, namely cloning, crossover , and mutation.

Indi viduals of the breedin g population are grouped randomly into pairs.
For each pair of WV s, there is a probability P; that it will be crossed to

Training a Multilayer Perceptron Based on the Genetic Algorithm 255

produce new pairs of WVs. If a pair is not to be crossed, it will be cloned
(left as is) for reuse in the next generation. In the clean-up stage Pc is set to
o (i.e., cloning operation only) to make sure th at no new WVs are created.

To explain th e mixing/ crossover of individuals, WVs must be thought of
as simple st rings of bits, and to fix the terminology, the natural analogy will
be used. The old WVs will be called the moth er and the fath er, and the new
WVs will be the daughter and the son.

For each couple, a location L in t he st ring is chosen randomly. The
daughter inherits the bits to the left of L from th e corresponding bits of
her moth er and the bit s to the right of L from the corresponding bits of her
fat her. Conversely, th e son will inherit the bit s to the left of L from his father
and the bits to the right from his mother.

The mutation operati on does not require two parents. T here is a prob a­
bility Pm l that a WV will be mutat ed. If it is mutat ed , each bit of th e WV
has a probability Pm 2 of invert ing.

Both crossover and mutat ion can be applied separa tely; tha t is, th e indi­
vidua ls of a pair th at have been crossed over can be mutated independent ly.

The crossover operator is called single-point crossover and the mutation
operator is standard. For the clean-up stage Pc, Pm l , and Pm 2 are set to
zero. This has th e effect of stopping the search for bet ter individu als, but it
also means that the bad individuals curre nt ly in the population are removed.
After a few iterations with P; = Pm l = Pm 2 = 0, only good WVs remain and
hence the population has been cleaned up.

The clean-up stage could be replaced by set t ing a threshold for the fit­
nesses of all individuals, hence facilit at ing the consequent select ion of the
best ones . However, since t his would add another user-definable parameter ,
and hence an addit ional level of uncert ainty to t he algorithm, we feel that the
clean-up stage is preferable. Experiments have shown th at clean-up requires
very few generat ions compared to the rest of the algorithm.

3 .7 Choosing class representatives

Weight vectors and neurons are considered to be in the same class if th ey
perform exact ly th e same function. That is, they respond in the same way
to each training vector in the training set . This does not necessarily mean
that all of the WVs are num erically identi cal.

One represent ative from each class is taken to make up a layer of the
mult i-layer perceptron. In choosing representatives, one individual is simply
chosen at random from each class.

3.8 Producing a training set for t he next layer

T he set of representatives chosen in the previous operation is a solut ion for a
single layer of a multi-layer perceptron for classifying the t raining set used. To
generate a tra ining set for the next layer, the inputs of the t ra ining vectors in
the current tra ining set are propagated through t his layer and hence become
the inputs for the neurons in the next layer . The desired output for each

256 Hans Christian Andersen and Ah Chung Tsoi

t ra ining vector is made equal to th e desired output for the corresponding
training vecto r in th e current training set .

After being passed through a layer , it is possible that two different input
vectors are mapped to identical output vectors. This means tha t subsequent
layers have no way of differenti ating them. In this case, if th ey have different
desired outputs, the network cannot possibly classify both correc tly, and in
the training sets for the subsequent layers the two training samples are said to
be "conflict ing." If the algorit hm is allowed to cont inue without intervention,
it will get confused and attempt to classify both of th e conflicting vectors
correctly. Thi s can never be done by a single neuron, so no layer will ever
be produced with just one neuron; because this is our stopping criterion, the
algorithm will never terminate.

To cure this problem the conflict must be resolved. Conflict resolution
is done by choosing one of the desired outputs and setting it equal to the
output for both input vectors. If there are more than two vector s involved ,
the desired output chosen is the more common one.

Conflict resolution results in a loss of accuracy, but if it is not used a final
solut ion will not be obtained.

3.9 Parameters

The parameters that the algorithm needs are the following:

• Number of bits per weight , Wb

• Rang e of magnitude of weights, We

• Population size N , the number of individuals

• Crossover probability Pc, the probabili ty that crossover will occur

• Individual mutation probabili ty Pm l , t he probability that an individual
will be mutated

• Per bit mutation probability Pm 2 , the probability that a bit in a mu­
t at ed individual will be inverted

• Numb er of generations for search G;

• Number of genera t ions for clean-up G;

• The par ameter cont rolling bias (3

Wb and We are dependent on the t raining set . Wb controls the precision of
th e weights , and We det ermines the rang e within which the hyp erpl ane of
any neuron can exist . N controls the probabili ty of finding a good solut ion
to a problem. The larger N , the higher the probability of finding a good
solut ion; however, run t ime increases with population size.

The algorithm, like most GAs [5], is quite robust with respect to the value
of Pc, Pm l , and Pm 2 , which is fortunate since little concrete theory exists on

Training a Multilayer Perceptron Based on the Genetic Algorithm 257

how to determine th em. Values of about 0.5 for Pc and about 0.01 for both
Pm 1 and Pm 2 have been found to work.

The G values cont rol the amount of run t ime used by the algorithm.
First, the algorithm searches for solut ions for G; genera tions, then sorts out
which solut ions are good for G; generations. Gs varies with the difficulty of
the problems presented. G; should only need a few generations, although
this may also vary from one training set to another.

As in all algorithms of t his kind , the setting of t hese parameters depends
on th e user 's experience and on t he nature of th e problem. These parameters
are often chosen by trial and error, as lit tle theory exists th at helps in accom­
plishin g this t ask. The examples shown in sect ion 4 give some indications of
how th ese parameters can be chosen for typical problems.

3 .10 Computational time issues

The computat ional t ime for th e proposed meth od is almost inst ant aneous for
a small number of input s, a small population size, and a small dat a sample
set. However , t he GA can be quite t ime consuming when run on a sequent ial
machine. This is because the opera t ions crossover and mutation are essen­
tially parallel operations. Hence, to emulat e these parallel operations on a
sequent ial machine takes longer.

We have implemented two versions of the algorithm: one on a sequen­
t ial machine, and th e other on a mass ively parallel machine. The massively
parallel machine we used was a MasPar MP-1 SIMD (Single Inst ruct ion Mul­
t iple Data) computer with 4096 processor elements , each element having a
4-bit processor . We have resorted to using the MasPar computer because it
is ideally suited for studying problems of this nature. Each processor ele­
ment can be used to emulate an individual in the population . Mutati on and
crossover can be performed by simple opera t ions, either on t he pro cessor
itself, or among a small numb er of pro cessors . The speed of the algorithm
when run on th is machine is insensitive to pop ulation size as long as it is less
than the total number of pro cessors. Hence, pop ulation size was always set
to th e maximum 4096 individuals. It is possible to implement even larger
populat ion sizes on the MasPar computer as well, except that the speedup is
expected to be a linear funct ion of the number of individuals in a population.

4. Results and discussions

As ment ioned previously, the algorithm has so far been tested on the XOR ,
the n-bit parity, and the MONK 's problems. In this sect ion results for all
of these are present ed. We focus our analysis of the algorithm on the XOR
prob lem.

4.1 The ex clusive-or (XOR) problem

With population sizes (N) upwards of ab out 150, the algorithm almost always
arrives at the same general solut ion to th e XOR problem (see Table 1 for the

258 Hans Christian Andersen and Ah Chung Tsoi

Trainin g Inputs
Vector A B Output

a a a a
1 a 1 1
2 1 a 1
3 1 1 a

Table 1: Traini ng set for t he XOR problem.

Output Layer

Hidden Layer

Input Layer

Figure 1: Sample solut ion to the XOR problem. The magnitude of
the weights is pro portional to the thickness of the connecting lines,
and broken lines have negative weights.

t ra ining set) . A sample of this solut ion is shown in Figure 1, which shows a
network of 4 nod es in a single hidden layer and 1 nod e in the output layer .

To illustrate how the algorit hm converges, a graph has been included
(see Figure 2) that shows the relative sizes of selected output classes at each
generation of a single exper iment . The XOR problem has 4 tra ining vectors ,
so th ere are 16 (= 24) different ways in which a neuron can classify these.
Hence, t here are at most 16 possible output classes to which individu als can
belong. We have numb ered th ese a to 15, where a corresponds to the type of
neuron that classifies all input vectors as as, and 15 corresponds to t he one
t hat classifies th em all as Is. The numb ering scheme is described in Table
2. The classes plot ted are the four "good" ones (2, 4, 7, and 14) and two
of the "bad" ones (0 and 15). We could have plot ted all 16 classes, but the
resulting graph would be too cluttered to illustrat e the points we wish to
make. The significance of this graph will be discussed lat er.

The parameters used for this run were:

• Wb = 16 bits per weight

Training a Multilayer Perceptron Based on the Genetic A lgorithm 259

Relative Class Size (%)

"
""
", ", "I :'

1O - -h--l-ll..h\cl----+-I--'-+-- --li-- '------H+--- -A--+t--'------';:-+t-i-4--

o-f-- - -+- - - +--- - -+- - - +-- - -----j1----'----

o 20 40 60 80 100
Generation

Figure 2: Sizes of outpu t classes 0, 2, 4, 7, 14, and 15 during a run of
the algorithm on the XOR problem.

• Wr = same as that of a signed lfi-bit integer (2's complement)

• N = 150 indi viduals

• Pc = 50% probability of crossover

• Pm 1 = 5% probabili ty of individual mutation

• P m 2 = 5% probabili ty of bit inversion in a mut at ed indi vidual

• C; = 100 generations for search

• Gc = 10 generations for clean-up

As can be seen in Figur e 1, the algorit hm solves th e XOR problem with 4
neurons in the hidden layer . This was disconcerting at first because we know
tha t a network for solving this problem requires only 2 nodes in the hidden
layer. An explanation for this behavior is tha t t he algorit hm is obj ective in
its choice of neurons; that is, it evalua tes in dividual neurons in terms of their
cont ribut ion toward th e complete solution. Once it has located each of the

260 Hans Christian Andersen and Ah Chung Tsoi

Output for
Output Trainin g Vector
Class a 1 2 3

a a a a a
1 a a a 1
2 a a 1 a
3 a a 1 1
4 a 1 a a
5 a 1 a 1
6 a 1 1 a
7 a 1 1 1
8 1 a a a
9 1 a a 1
10 1 a 1 a
11 1 a 1 1
12 1 1 a a
13 1 1 a 1
14 1 1 1 a
15 1 1 1 1

Table 2: Definition of output classes of the XOR problem.

4 classes of neurons in questio n, it will not eradicate any of them because
they all contribute equally toward the complete solut ion. One could describ e
the solut ions generated by t his algorithm as being individualistic. Alt hough
these ind ividualisti c networks will somet imes contain more neurons t han are
necessary, it is t hought that this will occur primarily in symmetric problems
like th e XOR problem, which have severa l equally good sets of solut ions . In
th e last sect ion of the pap er a pruning algorit hm is introduced th at , to a
large exte nt solves this problem of duplication of effort.

The gra ph in Figure 2 illustrates some characterist ics of the algorithm's
convergence . The first observation is t he inst ability of the class sizes with
respect to time. This is prob ably due to the discrete nature of the fitness
funct ion (i.e., there are only 14 (= 24 - 2) possible fitn ess values) , which
has the effect of not allowing a class's ideal size to be mat ched by its ideal
fit ness. It is possible that a slight ly modified fitn ess function will alleviate
t his problem.

The event tha t caused the change near genera tion 100 is the start of the
algorithm's clean-up stage (step 4). The two lower lines almost immediately
go to O. In fact , all class sizes go to a except t he four good ones; these
are the four that will make up the solut ion . The purpose of the clean-up
stage is to do this filtering, "to clean out t he barn. " The question of why
the bad ones disappear ed is perhaps best answered by asking why they were
th ere at all. They were not present because they received good fitness values

Training a Mul tilayer Perceptron Based on the Genetic Algorithm 261

n Average Accuracy (%) Example of MLP Generat ed
3 100 3-4-1
4 100 4-15-1
5 100 5-15-1
6 100 6-41-1
7 100 7-39-1
8 100 8-54-1

Table 3: Accuracies and examples of networks used to solve the n-bit
parity problems. Each accuracy figure is an average of 5 solutions
generat ed from consecut ive runs. The notation used to describe the
architectures gives the number of neurons in each layer with the num­
ber of neurons in the input layer being the first number.

and reproduced of their own accord. In fact , th eir fitn ess values would most
likely have been quite low throughout . The reason they were there was tha t
th ey were the result of th e crossover of memb ers of separa te good classes.
For example, mating a member of class 2 with a memb er of class 14 might
result in an individual of class 6. Hence there is a constant production of
inter-class offspring due to crossover between different good classes. When
th e pro bability of crossover and mut ation are redu ced to zero at genera t ion
100, thi s production of mutant int er-class offspring is elimina ted . Therefore,
since th e bad classes cannot surv ive by th emselves and are not being produced
through int er-class mating, they disappear. In th e XOR problem clean-up
occurs almost inst antaneously, but experiments with the MONK 's problems
indicate t ha t it somet imes takes longer (see section 4.3).

4.2 The n-bit parity problems

The algorithm has been tes ted on n-bit parity probl ems for n up to and
including eight . The accuracy of some networks const ruc ted using th e al­
gori thm are shown in Table 3. Thi s t able also gives examples of typical
networks produced for each of the problems.

The number of hidden layer neurons appears to be greater th an t hose
found by other algorithms. However , as explained in subsequent sect ions ,
thi s number can be redu ced by using a pruning algorithm.

4.3 The MONK's problems

The MONK 's problems is a set of three problems used at th e Second Euro­
pean Summer School on Machine Learning to benchmark a numb er of expert
systems and art ificial neur al network techniques [8]. The problems are set in
an art ificial dom ain in which robo ts are describ ed by six different attributes:

262 Hans Christian Andersen and Ah Chung Tsoi

head.shape E

body.shape E
is. smiling E

holding E

jacket- color E

has.tie E

round, square, octagon.
round, square, oct agon
yes, no
sword , ba lloon , flag
red , yellow, green, blue
yes, no

There are a total of 17 inpu ts. The learn ing task is a binary classification
task, each problem is given by a logical description of a class. Robots belong
eit her to this class or not. There are three problems as follows:

1. Problem 1 (MONK-I) :
(head .shap e = body.shap e) or (jacket. color = red)
From 432 possible examples, 124 were selected randomly for th e t ra in­
ing set. There are no misclassification s, so there is no noise in the
training set.

2. Problem 2 (MONK-2) :
exactly two of the six at t ributes have th eir first value
(For example, body.s hape = head.shap e = round implies that robot is
not smiling, holding no sword , jacket . color is not red and has no t ie,
since then exact ly two (body.s hape and head .shap e) attributes have
their first value.)
From 432 possible examples, 169 were selected randomly to be in th e
training set . Again , th ere is no noise introduced .

3. P roblem 3 (MONK-3) :
(jacket .co lor is green and holding a sword) or (jacket-color is not blue
and body.shape is not oct agon)
From 432 examples, 122 were selected randomly, and among th em t here
were 5% misclassifications; th at is, there is noise in the tr aining set.

The mult i-layer perceptrons construct ed and t ra ined by th e proposed algo­
rithm are descr ibed in Tab le 4.

It should be noted that the training set for MONK -3 has noise in the form
of 5% incorrectly classified t raining vectors. In the original MONK report
[8], it was reported that th e classification accuracy for both the MONK ­
1 and MONK -2 problems is 100%. However , this is t rue only if th e init ial
condit ions are chosen jud icially. In general, if the initial conditions are chosen
randomly, it is possible that the classificat ion accuracy may not be 100%
using the back-propagation algorithm. In our case, the average classification
accuracy is shown afte r 5 runs with random init ial cond it ions.

These problems were all run on a MasPar MP-1 computer with 4096
processor elements. The par amet ers th at were changed from th e runs on the
XOR problem were N = 4096, Gs = 400, and G; = 100. The run-time for
each layer of each problem was about 1 minute.

The MONK's problems ar e less "clinical" th an the XOR and n-bit par­
ity problems and did not seem to suffer from the problem of an excessive

Training a Multilayer Percep tion Based on the Genetic Algorithm 263

Problem Average Accuracy (%) Examp le of MLPs Generat ed
MONK 1 99.64 17-5-1
MONK 2 97.54 17-6-1
MONK 3 96.42 17-4-1

Tab le 4: Test ing accuracies and examples of networks used to solve
t he MONK 's problems using the genet ic algorithm. Each accuracy
figur e is an average of 5 solut ions generated from consecutive runs .

Problem Accuracy (CASCOR) (%) Accuracy (BP) (%)
MONK 1 100.0 100.0
MONK 2 100.0 100.0
MONK 3 97.2 97.2

Tab le 5: Test ing accurac ies of the MO NK's problems using cascade
corre lat ion (CASCOR) and back-propagation (BP) as reported in [8].
The figures are apparent ly those of a single run of each algorithm.

numb er of neurons (see Tab le 4). Table 5 shows the performance of the
back-propagation and cascade correlation algorithms on the MONK's prob­
lems.

Note that our results are not comparable to t hose presented in the original
MONK report [8]. This is beca use the authors of [8] did not clearly ment ion
the initial conditions th ey used. Secondly, they did not indicate if th eir re­
sults were a single best-performance figure, or an average-performance figure.
In our experience, the classificat ion performance depends on the init ial con­
ditions. In our results we have observed 100% correct classification accuracy
for both MO K-1 and MONK-2 probl ems using certain initial condit ions .
However, in order to be fair to the problem, we have chosen to report the
average performance of the proposed algorithm instead. This is closer to
the actual performance of the algorithm shou ld initi al conditions be chosen
at random. However , for th e sake of completeness, we have duplicated the
results of both t he cascade correlation and the backprop as shown in Table
5 for the reader to judge.

4.4 C hangin g the bias function

As mentioned previously, the bias function xfJ is used in fitness evaluation to
provid e a relationship between the numb er of WVs that correct ly classify a
t ra ining example and the value attribut ed to a WV for doing so. It must be
a monotonically decreasing function (for x 2: 0) so that there is a trend to
encourage WVs to classify correctly examples that few others do.

An example is used to clarify t his. T hree t ra ining vectors Ta , Ti; and T;

264 Hans Christian An dersen and Ah Chung Tsoi

100

98

~ 96

_I~

~ 94

~
92

90

1.5 2 2.5 3 3.5 1.5 2 2.5 3 3.5
BiasParameter Bias Parameter

(a) (b)

Figure 3: The average number of neurons (a) and the accuracy on
the training and test ing sets (b) of sets of ten runs on the MOl K- 3
problem with the bias parameter increasing. In graph (b) the solid
line represents the accuracy on the training set, and the dashed line
represents the accuracy on the testing set . Error bars are included.

from a large training set have the following numbers of correctly classified
ind ividuals: ti« = 10, nb = 20, and n c = 20. If f3 = 1 then the payoff
gained from classifying each of them will be Pa = 0.1 and Pb = Pc = 0.05.
A neuron that correct ly classifies only Ta in this case will receive the same
fitn ess, 0.1, as one tha t classifies bot h Tb and T; correc t ly. However , if f3 > 1
t hen th e former neuron will get a total payoff grea ter than th at of the others.
It can easily be seen th at a greater f3 will have the effect of promoting the
imp ortance of rarely classified training vectors. In the same manner , if f3 is
small then a solution will be searched for where less importance is placed on
rar e tra ining vectors .

One could envision a case in which a tra ining vector requires a neuron to
be devoted to classification alone. If f3 is low it is unlikely this will hap pen,
but the higher f3 becomes, the more likely it is that this will occur .

This feature of being able to vary the amount of at tention to detail could
be t hought of as being analogous to cont rolling generalization. T he lower the
bias parameter , the more the result ing multilayer perceptron will genera lize.

The two graphs in Figur e 3 show how the accuracies on the train ing and
testing sets , as well as the numb er of neurons, vary with the bias par ameter.
Each point on the gra phs is the average of ten runs on the MONK-3 problem.
This t raining set has 5% noise in the form of incorrect classificat ions.

The effect of th e bias paramet er f3 being related to the amount of genera l­
ization is quite apparent. T he higher the bias para meters , the more neurons
are ut ilized, and the higher t he accuracy on the t ra ining set . However, be­
cause of the noise in t he t raining set of MONK-3, a near-perfect accuracy
on the training set is not desirab le as it results in poor performance on th e
testing set . Overall performance is best when f3 is aro und 2. At this level,
the networks produced seem to have the best level of generalization.

Training a Multilayer Perceptron Based on the Genetic Algorithm 265

Network Produced
2-2-1

Accuracy (%)
100

Table 6: Results on the XOR problem of an algorithm that used
pruning on intermediate training sets.

4 .5 Pruning the intermediate tr aining sets

It is apparent from the results presented thus far that the networks produ ced
by t he algorithm are larger than they need to be. This is parti cularly obvious
in the case of the parity problems whose results are presented in sect ion 3.2.
In sect ion 3.1 we described why the algorithm produced a solut ion with
4 hidden-layer uni ts for t he XOR problem. We suspected that something
similar was happ ening in the pari ty problems, that is, t he excessive size of
the networks was a result of dup licat ed effort caused mainly by the symmetry
of the problems. In order to tes t our hypothesis we produced a pruning
algorithm that turned out to be a potent ially useful addit ion to t he techniq ue.
The method is described below.

The pruning algorithm is based on th e following idea. If a tra ining set
is f aithful then a neural network can be found to classify correctly every
tra ining vector in that set . By faithful we mean that it has no conflicts:
in other words, there exists no pair of input-outpu t exemplars in which the
inp uts are identi cal bu t the out puts are different .

T he objective is to minimize the number of inpu ts wit hout int rodu cing
conflicts into the tra ining set . Because t he inpu ts come from the neurons
in the previous layer, when we know which inputs can be cut out we also
know which neurons in the previous layer are redundant . T he method itself
is merely an implementat ion of t his.

It should be noted that doing this pruning does not necessar ily make
the t ra ining set easier because situations may exist in which severa l inpu ts
cont ribute toward a particular classification, alt hough only one of them is
vital.

Below is a step-by-step description.

1. Remove the first input from every tr aining vector in th e tr aining set
(ana logous to removing a neuron from th e previous layer).

2. Check the tra ining set to determine if there are conflicts. If th ere are
conflicts go to step 3, otherwise go to step 4.

3. Put back the input just removed.

4. If there are more inputs, remove th e next inpu t and go to step 2,
ot herwise finish.

The results obtained when pruning is done on interm ediate t raining sets
are shown in Tables 7, 8, and 9. For all of these runs {3 = 2. In each case the

266 Hans Christian An dersen and Ah Chung Tsoi

n Average Accur acy (%) Example of iVILP Generated
3 100 3-3-1
4 100 4-4-1
5 100 5-5-1
6 100 6-9-1
7 100 7-9-1
8 100 8-15-1

Tabl e 7: Accur acies and examples of networks used to solve the n­
bi t pari ty prob lems using pruning of intermediate training sets. Each
accuracy figure is an average of 5 solutions generated from consecutive
ru ns.

Problem Average Accuracy (%) Example of MLPs Generat ed
MONK 1 99.91 17-3-1
MONK 2 97.78 17-2-1
MONK 3 94.40 17-2-1

Table 8: Accuracies and examples of networks used to solve the
MO K 's problems . Each acc uracy figure is an average of 5 solut ions
generated from consecutive runs .

pruned architecture is similar to the more established architectures reported
in the literature [8].

Without major modificat ions to th e algorithm and using its principles of
parallel search, it does not seem probable that pruning-like behavior can be
made implicit in the main part of the algorithm. Therefore, because problem
heuristics are available, we thought it best to build our pruning algorithm
around these.

5. Conclusion

In this pap er we have int roduced a novel const ructive algorithm for the t ra in­
ing of a mult ilayer perceptron based on genet ic algorithm concepts . It is
shown that such an algorithm can construct the multi layer percept ron layer
by layer. In addit ion, the algorithm yields automatically a tr aining pat tern
set for th e subsequent layer. In contra-dist inct ion to the Cascade-Correlat ion
algorithm introduced by Fahlman , the architec ture of the resultin g network
is similar to the classic multilayer percept ron .

This algorithm has been applied to a number of testing problems, namely
the exclusive OR problem, the n-bit pari ty problem, and the MONK prob­
lems. It is found that in all cases the results obtained are comparable to the
known results.

Training a Mul tilayer Perception Based on the Genetic Algorithm 267

It is noted that th e proposed algorithm is capab le of findin g an MLP
st ructure with more th an one hidden layer of neurons. However, it so happens
that the examples chosen in this paper can all be solved using MLP st ructures
that have only one hidden layer of neurons. It might be interesting to find
examples th at cannot be solved using a single hidden layer, and see wheth er
the prop osed algorithm yields structures th at are comparab le to those found
by more tr aditio nal methods.

6 . Acknowledgments

The second aut hor , Ah Chung Tsoi, acknowledges partial financial support
from th e Australian Research Council in performing this research. Both
aut hors also wish to acknowledge fruitfu l discussions with Steven Young,
which led to the development of part of t he algorit hm . In add ition , the
authors wish to acknowledge the assistan ce given by the anonymous referee
whose helpful comments led to a more readable version of this pap er.

References

[1] J . Hert z, A. Krogh , and R. G. Palmer , Introduction to the Theory of Neural
Computation (Reading, Mass .: Addison-Wesley, 1991).

[2] S. Fah lman and C. Libiere, "T he Cascade-Correlat ion Learning Architec­
ture," pages 524-532 in Advances in Neural Information Processing Systems
II, edited by D. Tour et zky (San Mateo, Calif.: Morgan Kau fman n, 1990) .

[3] M. Frean , "T he Upstart Algorithm : A Met hod for Constructing and Training
Feedforward Neur al Networks," Neural Computation, 2 (1990) 198- 209.

[4] J .-P. Mezard and M. Nadal, "Learn ing in Feedfor ward Layered Networks:
The T iling Algori thm," Journal of Physics A , 22 (1989) 2191-2204.

[5] D. E. Goldb erg, Genetic Algorithms in Search, Optimization, and Machine
Learning (Reading, Mass. : Addi son-Wesley, 1989).

[6] L. Davis, Genet ic Algorithms and Simulated Annealing (San Mateo , Ca lif.:
Morgan Kaufmann , 1987).

[7] L. Davis, Handbook of Genetic Algorithms (New York: Van Nost rand Rein­
hold , 1991).

[8] S. B. Thrun, J. Bala , E. Bloedorn,!. Bratko , B. Cestnik, J. Cheng, K.
De Jong, S. Dzeroski , S. E. Fahlman. vD. Fisher , R. Hamann, K. Kaufman , S.
Keller , !. Kononenko, J . Kreuziger , R. S. Michalski, T. Mitchell, P. Pachowicz,
Y. Reich, H. Vafaie, W . Van de Weide, W . Wenzel, J . Wn ek, and J. Zhang,
"T he MO K 's Problems: A Performance Comparison of Different Learning
Algorithms," Carnegie Mellon University, Report CMU-CS-197 (December
1991).

268 Hans Christian Andersen and Ah Chung Tsoi

[9] D. E. Goldberg and J. Richardson , "Genet ic Algorithms with Sharing for
Multi-modal Function Optimizat ion," Genetic Algorithms and their App lica­
tions: Proceedings of the Second Intern ational Conference on Genetic Algo­
rithms (San Mateo, Calif.: Morgan Kaufman , 1988).

[10] R. E. Smith , S. Forrest , and A. S. Perelson , "Searching for Diverse, Coopera­
t ive Populations with Genetic Algorithms," TCGA Report No. 92002 (1992).

