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Abstract. A class of parameterized boolean, one-dimensional, bi-
infinite cellular automata has been studied and their behavior ob-
served when some parameters of the local function are changed. These
automata are equivalent to a particular class of boolean neural net-
works and the change in the parameters corresponds to a change in
the symmetricity of the connection matrix. The purpose is to analyze
the different dynamics, beginning with a symmetric connection ma-
trix and moving toward an antisymmetric one. We have observed that
simple dynamics corresponds to the symmetric situation, whereas the
antisymmetrical case yields more complex behavior. On the basis of
these observations, we have identified a new class of cellular automata
that is characterized by shiftlike dynamics (simple and complex sub-
shift rules); these cellular automata correspond to the asymmetric
situations and they are chaotic dynamical systems.

1. Introduction

Cellular automata (CAs) are dynamical systems with discrete space and time.
Discreteness of space means that there is a d-dimensional lattice having a dis-
crete variable that describes the state of each site on the lattice. Discreteness
of time means that the state of each site changes at successive steps accord-
ing to a function of the “neighboring” sites. Moreover, this process happens
synchronously for every site on the lattice. Wolfram gave a classification of
CAs based on some experimental observations about their dynamical behav-
ior, that is, on the kind of structure emerging from their evolution [22]. In
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the same line, we define here a new class of CAs based on a different kind
of observation; our starting point is the analysis of the chaotic properties of
the shift map.

The automata we consider are equivalent to a class of bi-infinite neural
networks with some restrictions on the connection matrix: every neuron is
connected only with itself, with its predecessor, and with its successor in
a linear arrangement. Furthermore, the weights of the forward, backward,
and self-connection are identical for every neuron, and correspond to three
parameters a, b, and c¢ that each characterize a particular net in the class.
By analyzing the behavior of the associated CAs as the three parameters
are changed, we have identified and studied five different kinds of dynamics.
The most interesting of these dynamics consists of CAs that have a shift-like
behavior; we have discovered that these rules correspond to subshift of finite
type [3, 18]. In particular, we have detected simple and complex subshift of
finite type, in which simple subshifts are CA rules that behave like the shift
on a closed, invariant subset of configurations ¥y, while complex subshifts
also have a closed and invariant subset ¥; or ¥y on which they show a
more complex shifting behavior (alternating shift or double alternating shift,
respectively). The most interesting property of these rules is their chaotic
nature. In fact, we have shown that simple subshift rules are chaotic on the
set 3y, and that alternating and double alternating subshift rules are chaotic
on ¥; or Y.

In the next section the basic definitions of CAs and the classification of
Wolfram are given. In section 3 we introduce a class of bi-infinite neural
networks and show how to associate a CA to each net. Section 4 gives the
structure of the rule space as the parameters of the networks are changed. In
sections 5 and 6 we analyze in detail the simple and complex subshift rules,
and finally, in section 7, we draw some conclusions.

2. Basic definitions

In this paper we shall consider only bi-infinite, one-dimensional (d = 1) CAs.
This means that the sites can be thought of as placed on a straight line.

Definition 2.1. An infinite, one-dimensional CA is a structure

C=(Z,G,rh)
where
Z={...,—4...,0,...,4,...} is the set of cells, where i € Z is the location
of cell i;

G ={0,1,...,k — 1} is the set of possible states of the cells;
r € N is the radius of the neighborhood;

h : G+ — @ is the local function, also called the rule of the automaton.
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Definition 2.2. A configuration of a CA is a function that specifies a state
for each site of the lattice

z:7Z—G
and can be represented by a bi-infinite sequence
& = (s s s By Bty o e 3 Bl BBy oove s By By« «:)

In particular, for sake of simplicity, in the sequel we denote by )z, ...,

z,( the periodic configuration z = (...,Z1,...,Zn | Z1,...,Zy,...) and by
(coi(@1y--32Zm) | (W15---,Yn)...) the configuration z = (...,z1,...,Tm,
Tl T | Ylsee s Yn, Y1y e -+ sYn, - --). Thus, the configuration space of the

CA is GZ, and the neighborhood of a site i € Z is the vector
(i—ri—r+1,...i=14i+1,....0+r—1i+7),
that is, the r sites to the left and r sites to the right of ¢ (plus i itself).
The global function of the CA
g: 6% 6%

associates with any configuration z € GZ the configuration at the next time
step:

g(z) = (... ,gi-1(2), gi(2), giv1(2),...) € GZ,

where Vi € Z, its ith component g; : GZ — G specifies the next state of site
1 according to the rule

i) = M Bierits s » o0 i1 R B « » & 5 TR 1 B Vi€ Z.

On CAs the global function g gives rise to a discrete time dynamical system
(DTDS) on the phase space GZ: for every configuration z € GZ the positive
motion (or orbit) of initial configuration z is the mapping

7£:N—>GZ,

which associates to any ¢t € N the configuration at time ¢, v,(t) := ¢*(z) €
GZ. The positive motion of initial state z can also be written in sequential
notation as

T = (2, 9(2), (), -, g'(2), - - )-
Positive motion 7, is a solution of the difference equation z(t + 1) = g(z(¢))
with initial condition z(0) = z. B

We denote by Per,(g) the set of all the cyclic points of period n, and
Per(g) = U, Pern(g).

By elementary CA we mean the case in which G = {0,1} and r = 1. We
denote by ¥ the configuration space {0,1}%, and we consider the Tychonoff
metric on the space X (i.e, Vz,y € ¥) to be

= 1
d(z,y)= > 1% = il

For boolean CAs of radius r we give the following definitions.
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Definition 2.3. A CA rule h : {0,1}**! — {0,1} is a shift if, Vi € Z,
P(Tiery ooy Tim1y Tiy Tig1s -« -, Tigr) = Tip1. Trivially the corresponding global
function g is the shift on the configuration space

Q(&) :U("'ax—mz"'vl‘—lyxo | "1:17"'7xma"')

= (05 5 Bmgmysis 585 LoD | Bogios v 3 Brageona)
Notice that the component mapping of cell i is

9i(z) = 0i(z) = Tin1

In the elementary case the shift rule is unique and corresponds to rule hjzg,
according to the Wolfram classification scheme [22].

The mapping o is a homeomorphism of ¥; in other words, both ¢ and
or := o' (the right shift) are continuous with respect to the metric in-
troduced above. The shift map is a prototypical chaotic dynamical system.
Following the classical definition of deterministic chaos [7] and some recent
results [1], the essential features of chaos for a continuous next state function
g on some metric state space are transitivity, meaning that for all nonempty
open subsets U and V of the state space there exists a natural number k
such that f¥(U)NV is not empty; and regularity, meaning the set of periodic
points of g is a dense subset of the state space. As proved in [1], these two
conditions imply the sensitive dependence on initial conditions, which is the
main feature of chaotic behavior in dynamical systems.

Definition 2.4. A CA rule h: {0,1}**! — {0,1} is an anti-shift if, Vi € Z,
h(Ti—p, ..., %, ..., Tiy,) = Tiz1. The associated global function g is the anti-
shift on the configuration space

g(z) = o(2).

The anti-shift is a homeomorphism of ¥ whose inverse is the right anti-
shift og(z). Of course, the complex conjugate does not affect the chaotic
properties of the shift map. Therefore the anti-shift dynamics is also chaotic.

Definition 2.5. A CA rule h is a subshift rule if the corresponding global
function g is such that there exists a closed, invariant subset %y of ¥ (ie.,
9(20) C Xo) on which it is the shift, so Vz € Xy, g(z) = o(z).

In order to describe the behavior of the particular class of CAs considered
in this work, let us give the following definitions.

Definition 2.6. A CA rule h is an alternating right subshift rule if the
corresponding global function g is such that there exists a closed, invariant
subset 1 of ¥ on which it is the alternating right shift, so Vz € ¥y, g*(z) =
or(x).
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In this case, the dynamics of the automata, for every initial state z € ¥,
has the form

Y% = (z,9(z), 0r(z), or(9(2)), 0R(2), 0% (9(2)), - - )-

The following sufficient condition is easy to prove.

Proposition 1. If a CA rule h, with associated global function g, is such
that there exists an invariant subset ¥; of ¥ such that, Yz € ¥, g(z) =
zVor(z) (ie, Vi, M(Tip,...,Tiy .., Tiry) = TV Ti1) and z A o%(z) <
or(z) (ie., Vi, z; ANxi—o < x;_1), then h is an alternating right subshift.

Definition 2.7. A CA rule h is a right anti-subshift rule if the corresponding
global function g is such that there exists a closed, invariant subset ¥g of ¥

(i.e., g(X2) C %) on which it is the right anti-shift, soVz € ¥y, g(z) = or(z).

In this case, for every z € ¥

1 = (z,0(2),0%(z),0*(0(2)), 0*(z), 0*(0(2)), - . ).

Every anti-shift rule gives rise to a double alternate shift dynamic on o, so
Vz € Ty, ¢*(z) = o*().

2.1 Wolfram classification of finite cellular automata

In the case of one-dimensional CAs consisting of a finite number of cells, there
are many attempts of classification according to their asymptotic behavior
[6, 9, 13, 17, 22]. Wolfram has studied CAs extensively and has suggested
the following classification [22]:

Class 1: automata that evolve to a unique homogeneous state after a
finite transient (static CAs).

Class 2: automata whose evolution leads to a set of separated and sim-
ple stable or periodic structures (space-time patterns) (periodic CAs).

Class 3: automata whose evolution leads to aperiodic (“chaotic”)
space-time patterns (chaotic CAs).

Class 4: automata that evolve into complex patterns that have prop-
agative localized structures, sometimes long-lived (complex CAs).

CAs belonging to the first two classes are the simplest; beginning with
any initial configuration they show a simple, periodic behavior. Wolfram has
also shown that the set of configurations obtained in the infinite time limit
corresponds to a regular language. These systems have a low dependence on
initial conditions and a low degree of disorder, which is easy to see from the
values assumed by the entropy and propagation speed [22].
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Class 3 contains automata that evolve into “chaotic” patterns. Wolfram
calls these automata “chaotic” because they show disordered (i.e., nonpe-
riodic) space-time patterns. These automata have a nonzero propagation
speed and a nonzero entropy that decreases for a few time steps and reaches
an equilibrium value.

Class 4 contains “complex automata,” characterized by the presence of
propagation structures. These automata show periodic behavior with some
initial configurations, whereas with other configurations they appear to evolve
into “chaotic patterns.” There is no way to understand their dynamics with-
out observing their evolution.

For most Class 3 and 4 CAs, the limit set of configurations contains more
complex languages. It seems that CAs belonging to Class 4 are capable of
universal computation. Until now, the equivalence between this computa-
tional property and the various statistical characterizations of the Class 4
rules has remained an open question, but many observations confirm this
hypothesis.

Some examples of elementary CAs belonging to the first three Wolfram
classes are shown in the appendix (see Figure Al). None of the elementary
CAs belongs to Class 4.

When dealing with finite CAs, it is necessary to introduce boundary con-
ditions to compute the values of the first and the last cells of the lattice.
Usually circular CAs or CAs in backgrounds of Os are considered. On the
contrary, in this paper we deal with a particular class of bi-infinite CAs in
order to avoid some problems related to these situations.

2.2 The rule space for elementary cellular automata

A CA rule can be represented by a lookup table. For elementary CA rules
the rule table is the Boolean vector of length 8 = 23,

Block | Transition
000 Jooo
001 Joor
010 Joto
011 fou
100 f1o0
101 fio1
110 fiio
111 fin

The rule space of elementary CAs can be defined as the pair (R, dy), where
R = {0,1}® is the set of 256 boolean vectors of length 8 and dj, is the
Hamming distance.

It is interesting to study the differences in the behavior of the CAs as
they move across the rule space; in fact, it is possible to detect different
regions in this space that contain automata with different characteristics,
and to observe the change in the global behavior when moving along a path
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in the rule space. To help explore the rule space, a parameter A (which
describes the density of 1s in the rules) has been introduced [11]. Varying
this parameter from 0 to 0.5, it seems that CA behavior changes from a simple
dynamics to a more complex one, and increasing the parameter the behavior
passes from a complex to a simple one. In general, it has been observed that
CA dynamics go from order to disorder, passing through an intermediate
complex behavior (characteristic of Class 4). Packard’s study of the rule
space for elementary CAs has shown in which regions the Wolfram classes
are located [16]; moreover, the connections between rules in the same class
and among the different classes are described. There are other techniques
for analyzing the rule space, such as Packard’s use of mean-field clusters to
organize changes in CA dynamics into rules. In this paper we study the rule
space of a class of elementary CAs according to yet another criterion.

In the next section we introduce the particular model of neural network
that we want to study and show that it is equivalent to a CA model.

3. A class of bi-infinite neural networks

Definition 3.1. A bi-infinite neural network can be defined as a structure
R=(Z,G,W,z,{fi :i € Z})

where

Z={ . —14...,0,...,i,...} Is the set of neurons;

G ={0,1,...,k — 1} is the set of states of the neurons;

W = (wi;)ijez, Wiy € R, is the bi-infinite connection matrix, satisfying the
condition Yz = (z;);cz € GZ and Vi e Z, >0 Wiz Is convergent;

7 € RZ s the threshold vector; and

fi : R — G is the activation function of neuron 1.

The network has a bi-infinite number of neurons. Its global activation
function is the mapping g : GZ — GZ whose component functions g; : GZ —
G are defined as

gi(z) = fi (Z WijTj — Ti) VieZ
J
We consider the particular class of binary neural networks (i.e., G =
{0,1}) whose activation functions are
gl(g) =HS (axi_l + bx; + Cxi-H) :
where the Heavyside function HS is defined as

1 ifz>0
HS(z) = ="
(z) { 0 otherwise.
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P(Y-1, Yo, Y+1)
1
HS(c)
HS(b)
HS(b+ ¢)
HS(a)
HS(a+¢)
HS(a + b)
HS(a+b+c¢)

N

el =N e ]

== -0 O OO
Ny
— O ROk O OF
AN

Table 1: Lookup table for a one-dimensional bi-infinite CA.

In this case, the associated connection matrix has the form

b ¢ 00 00
a b c 000
0 abc 00
0 0adbcO
000 a b c
0000 a6d

This network has a bi-infinite number of neurons, and each neuron changes
its state on the basis of its two adjacent neurons according to a homogeneous
activation function. It is easy to see that this net is equivalent to a one-
dimensional, bi-infinite CA in which every site evolves according to a rule
whose lookup table is shown in Table 1.

Our goal is to observe the behavior of this class of networks by varying
the three values a, b, and c¢. In particular, we are interested in studying the
different dynamics beginning with a symmetric weight matrix and moving
toward an asymmetric one until the antisymmetric situation is reached. We
have studied the subset of the rule space obtained by changing the parameters
a, b, and ¢, trying to detect regions that have unique behaviors.

At first we analyze the case b < 0 by varying the three parameters, which
yields the three subcases shown in Table 2. Table 2 shows which CA rules
correspond to the different values of parameters a, b, and c. In parentheses
there are the rule numbers and the number of the smallest equivalent rule
under the simple transformations conjugacy and reflection [22]. In the fol-
lowing discussions, for each choice of the parameters we always consider the
smallest equivalent rule.

In the next section we describe the structure of the rule space when the
parameters are varied.
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1.

2

3.

4.

a>0 and ¢>0

¢>—band a< —b Rule:
¢>—banda>—b Rule:
—(a+b) <ec< —band a < —b Rule:
—(a+b) <c< —band a>—b Rule:
—(a+0b)<cand a< —b Rule:

a>0 and ¢<0

c>—aanda< —b Rule:
—a<c< —(a+b)and a>—b Rule:
—(a+b) and a > —b Rule:

c< —aanda< —b Rule:

c< —aanda>—b Rule:

a<0 and ¢>0

c< —aandc< —b Rule:
c>—-aandc< —b Rule:
—b<c< —a Rule:
—a<c<—(a+b)and ¢c> —b Rule:
¢>—(a+b)and c > —b Rule:

Table 2: Three subcases for b < 0.

Structure of the rule space

We have detected five kinds of dynamics:

1.

10111011 (Rule 187) (eq. 34
11111011 (Rule 251) (eq. 32
10110011 (Rule 179) (eq. 50
( ) (
(

N2 N 2N

11110011 (Rule 243) (eq. 34
00110011 (Rule 51)

00110001 (Rule 49) (eq. 35)
01110001 (Rule 113) (eq. 43)
11110001 (Rule 241) (eq. 42)
00010001 (Rule 17) (eq. 3)

01010001 (Rule 81) (eq. 11)

00000011 (Rule 3)

00100011 (Rule 35)
00000011 (Rule 11)
00100011 (Rule 43)
10100011 (Rule 171) (eq. 42)

Attracting fixed-point dynamics with a unique isolated cycle of order 2

. Attracting periodic dynamics

2
3.
4

Simple subshift rules

right subshift

. Complex subshift rules consisting of simple subshift and alternating

Complex subshift rules consisting of simple subshift and double alter-

nating right subshift

Figure 1 shows which rules are obtained by varying parameters a and c,
and considering b < 0. The y axis represents parameter ¢, and the z axis

represents parameter a.

The different regions in the graph correspond to

particular values of the three parameters. For example, Rule 43 corresponds
to the two choices

a>0,b<0, c<0, —a<c<—(a+b), and a>-b
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Figure 1: Rule space for b < 0.

or
a<0,b<0, c<0, —a<c< —(a+b), and c> —b.

Neural networks with symmetric matrices (a = ¢) correspond to simple
CA rules that belong to Classes 1 (hs2) and 2 (hy, hso, hs1). For every initial
configuration they evolve to a fixed point or to a cyclic state of period two.
For a rule in Class 1 there are a unique attracting fixed-point cycle (the
null configuration) and a unique isolated cycle (the configurations )01( and
y10(). Moreover, the basin of attraction of the null configuration is the entire
phase space minus the two points of the cycle, while for rules in Class 2
the cycles are not isolated. The remaining rule space contains subshift rules
(has, hag, hs, has, hi1, hag).

Rules hgs and hyp are subshift rules in which the subset ¥ (see Definition
2.5) is an attractor. Beginning with any initial configuration, the evolution
leads the automata to %y after one time step (Figure 2).

The other rules (hs, hgs, k11, has), which correspond to the antisymmetri-
cal situation, are more complex in the sense that they divide the configuration
space into three subsets: one in which they act as the simple shift rule (Xo),
one in which they show a more complex shifting behavior (3; or ), and
one (X =X\ (ZoUZX;)) that is not attracted by ¥ or £;, and in which ¥ can
be further divided in more complex subsets (Figure 3). Table 3 summarizes
the characteristics of the rules for the case b < 0.

In the next section the characteristics of the simple subshift rules are
analyzed in detail.
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Figure 2: Structure of ¥ for simple subshift rules.

@

Figure 3: Structure of ¥ for complex subshift rules.

‘ Rule ‘ Dynamics

32 | Unique attracting fixed point and unique isolated periodic point
1 | Periodic

50 | Periodic

51 | Periodic

34 | Simple subshift

42 | Simple subshift
3 | Simple subshift and alternating right subshift

35 | Simple subshift and alternating right subshift

11 | Simple subshift and double, alternating right subshift

43 | Simple subshift and double, alternating right subshift

Table 3: Rule characteristics for b < 0.

5. Subshift rules

A subshift rule can be characterized by the closed, invariant subset g in
which it behaves like a shift. From another point of view, it can also be
characterized by the list of forbidden blocks, that is, the blocks that must
not appear in the initial configuration (and thus, by the invariance of ¥,
in the entire dynamical evolution). It is easy to characterize the subset ¥
introduced in Definition 2.5, taking into account definitions of g; and o;. In
fact, a configuration z € ¥ iff

gz@) = h(xi—m sy L1y Ty Tifdy v v ey Ii+r) = Uz‘(.l;) = Ti41 Vi € Z.
If we call admissible the blocks (y_r, ..., %0, -,Y+r) € {0,1}?"+1 such that

h(y—T7 e Y-1,Y0 Y4150 -0 yT) = Y+1,
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(-1 Yo Y+1 | Paa(y—1,Y+0,Y+1) |
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

Table 4: Transition table for elementary rule 34.

and forbidden the blocks such that

h(y—N e Y-1,Y90, Y415 - - 1y‘r) 7‘4 Yt1,

then the following lemma is easy to prove.

Lemma 1. A configuration x € Yo iff Vi, (Ti—p ..., Tic1, Tiy Tit1y - - - Tigr) IS
admissible, that is, iff z is made (only) of admissible blocks.

The admissible and forbidden blocks of a CA rule can be quickly found
from the transition table of the local rule. For instance, given the transition
table (Table 4) for elementary rule 34 we see that the forbidden blocks are
(0,1,1) and (1,1,1). The subset on which rule 34 is a subshift is the set of
configurations that do not contain these blocks. It turns out that this is the
set of configurations that contain only isolated 1s.

Theorem 1. The subset % is closed and strongly invariant (ie., g(¥o) =
Yo).

Proof. Let z € ¥\ £y. Then, by Lemma 1, there exists in z a forbidden
block, centered in site g (Tig—r, . .., Tig, - - - s Tig+r). NOW, let mg € N be such
that 49 + 7 < mg and mg > 7 — 9. Then the open sphere Bj/4mo(z) consists
of all the configurations y € ¥ such that

y—’mg :I—mow")yo :'/'1:07"'7ym0 :xmo'

Thus, they also contain the forbidden block (Zig—p,. .., Tigy -+, Tigtr). AcC
cording to Lemma 1, £ € Byymo(z) C X\ 2o, concluding that X\ ¥ is open
and consequently X is closed.

To show that X is strongly invariant, we have to prove that g(3,) = Zo.
First we show that g(3o) € . Suppose that z € %, that is, that it is made
of admissible blocks. Then, since Vi € Z

(gi—T($)= ce 7gi(§)7 e agi+r(£)) = (Ui—r(§)7 cEa ,O'i(g), 395 Ui+r(§))
= (xi—T+l7 coe s Tiglye e 7xi+r+1)
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we find that g(z) is made of admissible blocks also, or g(z) € %.
Now, we show that g(3y) 2 . Since
(O'f,:lr(g)~, susl gy 0—1_1(£)7 Geey 0-7,_4.17(&)) = (a"i-T*17 sy Li1y e, xi+r—l)
VieZ

o~ !(z) is made of admissible blocks. Then g is a shift on o' (z) and

9(c7'@) =0 (@) =21
An important question that arises is whether, given a set of admissible

blocks, the set ¥ is not empty. It is possible to give a necessary and sufficient

condition to determine whether the set ¥ of a CA rule is not empty.

Proposition 2. The set ¥y of a CA rule with n admissible blocks is not
empty iff it is possible to find a segment of length n+1+2r (i.e., an element
of {0, 1}"*1%27) made of admissible blocks (where r is the radius of the CA).

Proof. First we note that if there are no admissible blocks then ¥, must be
empty. Otherwise, let n be the number of admissible blocks. Every segment
of length n+ 14 2r in any configuration z € ¥ is made of admissible blocks.
In particular, there is at least one segment of length n + 1 + 2r made of
admissible blocks. This condition is also sufficient. In fact, suppose that we
have a segment of length n + 1 + 2r made of admissible blocks

(ml—rw v L1y Ty D1y - - aIn+1+7‘)'

This segment contains n + 1 admissible blocks; however, because there are
only n different blocks, two of them must be equal. Suppose they are

(@iry 53 o 5Bisr s 5 Tigr) ADA (Zjopyos - 5By » <5 Bjin)y With £ < §. If we repeat
the segment (z;,...,z;_1) infinitely we obtain a configuration
oy Timpy ey iy o3 T = Ly e oo, Tjpr = Tigpy oo o3 Ty v -

that is made of admissible blocks. B

Thus, to check whether X is empty for a given CA rule, it is enough to
make a list of all the segments of length n+ 14 27, and then find out if there
exists one segment made of admissible blocks.

Example. Rule 34 has 6 admissible blocks, so we need to write all segments
of length 9. Among them, segment (0,0, 1,0,0,0, 1,0, 0) is made of admissible
blocks, so we are certain that Xy is not empty. Because the admissible block
(0,1,0) is repeated twice,
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the admissible block between the ith and (j — 1)st places is (1,0,0,0); by
repeating indefinitely we build a configuration of 3:

...,0,1,0,0,0,1,0,0,0,...

The analysis of the dynamics of rule 34 can be completed by showing that
every configuration falls into ¥, after one step, that is, the CA is definitely
a shift. In fact, if we look at the transition table

[-Ti—2 Ti-1 Ti Tipl $i+2]9i—1(.3£) gi(z) gi+1(l)]

0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 1 0 0 1 0
0 0 © 1 1 0 1 0
1 1 1 1 0 0 0 0

1 1 1 1 0 0 0

we see that the blocks that appear after one step are admissible. We now
put together all the results about the subshift elementary rules.

Proposition 3. Elementary rule 34 is a subshift over the (nonempty) set
of configurations ¥, that do not contain the forbidden blocks (0,1,1) and
(1,1,1). Every configuration in ¥ goes to ¥q in one step.

An analogous result holds for rule 42.

Proposition 4. The elementary rule 42 is a subshift over the (nonempty)
set of configurations ¥y that do not contain the forbidden block (1,1,1).
Every configuration in ¥ goes to ¥, in one step.

A subshift over an invariant subset ¥ can also be specified by giving two
objects ([2, 3, 18]):

1. a positive integer n, and

2. an n X n matrix (M) with entries in {0,1}.

Using these two objects it is possible to build a finite set A with n elements,
called the alphabet of the subshift, and a special subset ¥ of the bi-infinite
sequences of elements of A:

Yg e @ m= Loy Bt B0 Bty ) 5
Vte Z, z € A, and M (zy, 2441) = 1}

Yo consists of all the admissible sequences of elements of M, called the transi-
tion matriz, a sequence z being admissible if M (z¢, x;11) = 1 for each t € Z,
that is, if the pair z;x;.7 may appear as adjacent symbols in the sequence.
The subshift can also be described by giving the list of forbidden blocks, the



Complex Chaotic Behavior of a Class of Subshift Cellular Automata 283

(Ler—

Figure 4: Subshift rule 34.

sequences of symbols that cannot appear consecutively in a configuration
z € Yy. Another way of describing a subshift is by a directed graph (V, E)
that has n vertices vy, ..., v, and whose edges are described by matrix M.

It is easy to see that this kind of description corresponds to the other
definitions given above that characterize the subshift rules over the subset
0.

Definition 5.1. A transition matrix M is called irreducible if, for every
couple 0 < 4,7 < n, there exists an integer k = k(i,j) > 0 such that
(M*);; # 0. This means that there is a sequence of edges from any vertex to
any other vertex:

Yv;,v; € V 3k = k(1, j) such that (v;,v;41) € E,
(UH—I) vvi+2) € E» i o, (U‘i+k7 UJ) €E.

In [4] an algorithmic procedure is given in order to obtain in a reduced form
the transition matrix associated with a one-dimensional CA rule. The matrix
presented in the following are constructed according to this procedure.

Example. In the case of elementary rule 34, the transition matrix for n = 2
is the following:

11
]V134=(1 O)'

We can define the alphabet A4 = {0, 1}, whose corresponding graph is shown
in Figure 4. In this case ¥, contains only isolated 1s.

Example. For elementary rule 42 with n = 4, the alphabet has four symbols
A = {qo,q1, 2, q3}, where the symbols correspond to the strings ¢y = 11,
q¢1 = 10, ¢ = 01, and g3 = 00. The corresponding graph is shown in Figure
5, and matrix My, is

0100
001 1
Ma=14 199
0011

In this case, the one-entry in the matrix between the symbol ¢y and ¢,
means that in the admissible, bi-infinite configuration the string 11 can be
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Figure 5: Subshift rule 42.

followed by the string 01. In the examples that follow we will denote by go,
1, G2, and ¢z the strings 11, 10, 01, and 00, respectively.

From Definition 5.1 it is easy to see that elementary rules 34 and 42 are
described by an irreducible matrix. In [19] the following theorem and lemma
are proved.

Theorem 2. If the matrix M associated to a subshift over a subset Xg is
irreducible, then the subshift with domain ¥y has (1) a countable infinity of
periodic orbits, (2) an uncountable infinity of nonperiodic orbits, and (3) a
dense orbit.

Lemma 2. Suppose M is an irreducible matrix. Then, given any a,b € G
there exist a k = |G| and an admissible string s1, . .. sy such that a, s1, ... Sk, b
is an admissible string of length k + 2.

On the basis of the previous observation and Lemma 2, we give the fol-
lowing theorem.

Theorem 3. The subshift rules with irreducible transition matrix M are
chaotic over the closed, invariant subset Xg.

Proof. In order to prove that a subshift rule g is chaotic over a set g, we
want to prove that, relative to ¥g:

1. g is transitive, and

2. Pers,(g), the set of periodic points in Y, is dense in Y.

Since A is irreducible, it follows from the previous observations that the
subshift has a dense orbit, and thus it is transitive. Now, we want to prove
that Vz € ¥, Ve, 3y € Perg,(g) such that y € B(z).

Let us consider a fixed configuration z € £y (z = (..., Z—m,...,2_1 | Zo,
Z1y...Tm,...)). Then for every e, we want to build a periodic configuration
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y € Yo that belongs to B.(x). For any e, let us consider an m such that
€ < 1/4™ and an admissible string (s, ..., $x) with the properties of Lemma

2. Then we build the periodic configuration

y:(‘-~7817--'3k‘7yfm7-"7y*1|y07y11'-~ym7517"'31€7
yfrn:-"7y*17y07y17"'ym7"')

in such a way that 2; = y; for —m < ¢ < m. In this way y € Be(z). Because
(from Lemma 2) ¢y, 51, - - - 8k, Y—m i an admissible string, it follows that y is
made only of admissible strings, so y € 3. B

The structure of X for the simple subshift rules is shown in Figure 2. In
the next section the characteristics of the complex subshift rules are analyzed
in detail.

6. Complex subshift rules

In this section we analyze the complex subshift elementary CA rules g,, T -
g,,, and g,.. In order to study their dynamics we introduce the following
definition.

Definition 6.1. For a CA with local rule h : {0,1}>*! +— {0, 1} we define
RB {0,134+ — {0,1} in the following way:

h[Ql(y—ZTa e Yoy e ay27‘) =
h(h(y721’a e Yy e )y0)7" '7h(y01" o Yr e ayQT))

6.1 Simple subshift and alternating right subshift

Rules g, and g, are both simple and alternating subshift. Using the same
technique used in the previous section, it is possible to prove the following
proposition.

Proposition 5. Rule 3 is a subshift over the (nonempty) set of configura-
tions ¥y that do not contain the forbidden blocks (000), (011), (101), and

(111). There is at least one configuration in ¥ that is not attracted by 3.

Proof. We only prove the second part of the proposition because the first
part can be easily proved in analogy with the cases previously discussed. We
want to show that 3z € X, limy . g*(2) ¢ So. We can consider, for instance,
the configuration z = (... (0) | (1)...). It is easy to see that it is a periodic
point, thus limy . g*(z) ¢ Zo. B

We can also describe subshift rule 3 by means of its corresponding graph
and transition matrix. For n = 3 we have A = {q1, ¢, qz}. The transition
matrix is

001
My=1]11 00
010
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Figure 6: Subshift rule 35.

It is easy to see that Mj is not irreducible.
The following proposition holds for rule 35.

Proposition 6. Rule 35 is a subshift over the (nonempty) set of configura-
tions Yo that do not contain the forbidden blocks (000), (011), and (111).
There is at least one configuration in ¥ that never goes to ¥.

Describing rule 35 by means of its corresponding graph and transition matrix,
we have n = 3 and A = {q1, g2, g3}, and the transition matrix has the form

011
100
010

Mss =

M35 is irreducible and the corresponding graph is shown in Figure 6.
In analogy with X, it is easy to characterize the subset ¥; introduced in
Definition 2.6:

T ={z€X:gz) =or(a)}

In fact, a configuration x € ¥ iff, Vi € Z,
(@®)i(z) = B (Zigr, ..., Ty .., Tigr) = (0R);(T) = Ti1.

If we call admissible the blocks (y_or, ... ,, Y0, - - - Yr2r) € {0, 1}* ! such that
hm(y—zm v s iy v s Y] = Yty

and forbidden the blocks such that

h[gl(y—%“, < Y05 - - ay+27‘) 7é Y-1,

then the following lemma is easy to prove.
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Lemma 3. A configuration x € %, iff, Vi,

(xi—er sy gy eny iUi+2r) and (gi—2r(£), cee 792'(&), cen 7gi+2'r(_3_7))

are admissible, that is, iff x and g(z) are made of admissible blocks.

Theorem 4. The subset X; is closed and strongly invariant (ie., g(X;) =
).

Proof. & € ¥\ % iff there exists either a forbidden block centered in g
(@ig—2rs - s Tigy - - - » Tig+ar), OF & forbidden block centered in ¢y (gs,—2r(2), .. .,
Gi, (2), .., Giy+or(z)). Choosing mg € N such that my > max{(ig+2r, i1 +2r}
and mgy > min{2r — ig,2r — i1} and proceeding as in Theorem 1, we can
conclude that ¥ is closed.

Let z € ¥1. Then, by Lemma 1,

(gi1727"(£)7 s Gy (@) s 7gi1+2T(§)) Vi

is admissible. Moreover,

(931727”(&)7 e 92'21 (&)’ e 7gi21+2r(£)>
= ((O—R)il—QT(i)’ vy (UR)?l (2)’ e cpots ) (UR)ZZ1+2T(£))

= (-T’L1—2r—11 RS T PR 7xi1+2rﬁl>7

which is an admissible block, so g(z) € X;.
Let 2 be an admissible configuration; then o (z) is also an admissible
configuration. Since go oy = o, 0¢ and g(z) is admissible (owing to Lemma

3), g(or(z)) = o1(g(z)) is admissible. We can conclude that

9(glon(@) = g*(or(z) =z

with g(oz(z)) € £, B

The admissible and forbidden blocks of an elementary CA rule can be
found quickly from the transition table of hl? (@i—2, Tim1, Ty, Tig1, Tita) US-
ing the same procedure described above. In the same way it is possible to
determine whether the subset ¥; is empty.

Using this technique to detect the forbidden blocks for Y1, we obtain, in
the case of rule 3, that they are b; = (10100), by = (10101), b3 = (10110),
and by = (10111). The following proposition is then easy to prove.

Proposition 7. The blocks by = (10100), by = (10101), bg = (10110), and
by = (10111) are forbidden iff the block (101) is forbidden.

Proof. Suppose by, b, b3, and b, are forbidden. It follows that the block
(101) is also forbidden, because it cannot appear in any configuration z € ¥,
followed by the couples 00, 01, 10, or 11.

Conversely, if (101) is forbidden, then z € ¥; does not contain (101) fol-
lowed by the couple 00, 01, 10, or 11. Hence by, bs, b3, and by are forbidden. B

As a consequence of Lemma 2 and Proposition 7, the following proposition
holds.
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Figure 7: Structure of X for rule hs.

Proposition 8. Rule 3 is an alternating right subshift over the (nonempty)
set of configurations ¥ that do not contain the forbidden block (101). Every
configuration goes to ¥, in one step.

The structure of ¥ for rule 3 is shown in Figure 7.
The results for rule 35 can be proved easily using the same technique.

Proposition 9. Rule 35 is an alternating right subshift over the (nonempty)
set of configurations ¥y that do not contain the forbidden block (101). There
is at least one configuration in ¥ that does not go to ¥, in a finite number
of steps.

We give an example of a configuration that does not go to ¥; in a finite
number of steps. The configuration z = (... 1010 | 000000...), which can be
written as

z={..(10)| (0)...),
is such that Vt € N, g*(z) € X, (but lim,_. g*(z) € Xy).

Theorem 5. An alternating subshift rule whose transition matrix corre-
sponding to ¢* is irreducible is chaotic over the closed invariant subset ¥;.

Proof. Because g %(z) = o(z) for any z € ¥;, and the transition matrix
corresponding to g is irreducible, it follows from Theorem 3 that g is chaotic
on ¥y, and thus has a dense orbit. If g* has a dense orbit, then g also has a
dense orbit, so g is transitive.

Now we want to prove that Vz € ¥; and Ve, Jy € Be(z) N Per(g).

Let us consider a configuration z € ¥y (z = (..., Zom,...,T—1, %0, L1, - - -
Zpm, .. .)), where m is such that 1/4™ < e. We consider an admissible string
(81,...,8;) with the properties of Lemma 2, and we build a configuration

y € Per(g®) = Per(o),

U= (>317 Sk Y—ms oo Y-1,Y0, Y15 - - ym()a

where )z1,...,z,( means the bi-infinite repetition of the string zi,...,x,.
Because (Y, S1, - - - Sk, Y—m) 18 an admissible string (from Lemma 2), it follows
that y is made of admissible strings only, so y € ¥ is periodic with period
n=k+2m+1.
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Figure 8: Subshift rule 11.
Let us consider g(y). Because g(y) =7 A or(y), it is easy to see that, if
y € Per,(g?), then g(y) € Per,(g?) = Per,(0). In fact, y € Per(g®) has the
form

8= (B ore By Yooy oo w0 Bl s s Y1+ » W o

Because y is such that

Thus g(y) is still periodic and belongs to Per,(
€ Be(z). B

9)-
Yi = @, Vi with —m < i < m, it follows that y € B,

6.2 Simple subshift and double alternating right subshift

Rules g,, and g,, are both simple and alternating subshift.

Proposition 10. Rule 11 is a subshift over the (nonempty) set of configura-
tions ¥ that does not contain the forbidden blocks (000), (101), and (111).
There is at least one configuration in ¥ that never goes to ¥y (for instance,
the configuration Y0011().

The proof is similar to the one for rule 3 shown previously. Describing rule
11 by means of its corresponding graph and transition matrix, we have n = 4
and A = {qo, ¢1, ¢2, g3}, and the transition matrix Mj; has the form

My, =

o= oo
o= O =
O OO
OO = O

My, is irreducible and the corresponding graph is shown in Figure 8.
For rule 43 the following proposition holds.
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Proposition 11. Rule 43 is a subshift over the (nonempty) set of configu-
rations ¥y that do not contain the forbidden blocks (000) and (111). There
is at least one configuration in ¥ that never goes to ¥, (for instance, the
configuration )1100¢).

Describing rule 43 by means of its corresponding graph and transition
matrix, we have n = 4 and A = {qo, ¢1, ¢2, g3}, and the transition matrix
M3 has the form

0100
0011
Mis=14 1 ¢ ¢
0010

My is irreducible.

Now we characterize the subset ¥, in analogy to the characterization
of subset ¥y. The subset Y, introduced in Definition 2.7 is such that a
configuration x € 3, iff

gf(z) = hm(Ii,QT, wsuy Bigee s 4 ,ZCH.Q,-) = O'ZZR(.Z'> =g g Vi€ Z.

If we call admissible the blocks (y_or, ..., %0, -, Yrer) € {0, 1}4F! such that

hm(y—2m s Yoy yw) = Y-2,
and forbidden the blocks such that
WAy ar, - Yo, o) # Y2
then we can prove the following lemma.
Lemma 4. A configuration x € Yo iff Vi,
(Ticory -3 @iy oo, Tigor)  and  (gicor(2), ..., Gi(Z), - - ., Givar())
are admissible, that is, iff z and g(x) are made of admissible blocks.

Theorem 6. The subset Xy defined above is closed and strongly invariant
(i.e., g(zg) = 22)

Proof. We observe that ¥y can be described by the form
Yy {z e L:g(x) =op(®)}.

To show that 3, is strongly invariant we have to prove that g(¥,) = . First
we show that g(¥s) C Xy. Suppose that & € ¥, so it is made of admissible
blocks. Then, because

(Gi=r(@); -1 96(2)s -, Gine (7)) = ((OR)ir(T), - - (OR)i(T), - s (OR)i42(T))

= (Tt Ticts - Tigr—1) Vi € Z,
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it is also easy to see that g(z) = (Ti=, ..., T, . . ., Tiry) is made of admissible
blocks, that is, g(x) € 2.
Now we show that g(X;) D 3y. Because

(or)i @), s (0R)] (@) -, (0R) 3 ()
= (Ticrtls - 2 Titls - - Taprp1)  VIEZ,

or~'(Z) is made of admissible blocks. Then g is a shift on o~ (z) and
g (g’l(x)) = (o_l(:v)) =z 0

The admissible and forbidden blocks of an elementary CA rule can be
found quickly from the transition table of A (2;_ o, 2;_1, s, 7411, Ti0) using
the same procedure that we described in Section 3. In the same way it
is possible to check whether the subset Y5 is empty. Using the technique
described above to detect the forbidden blocks for Y, we obtain in the case of
rule 11 that they are by = (10110), by = (10111), bs = (01000), by = (01001),
bs = (01010), and bg = (01011). We can prove the following.

Proposition 12. The blocks by = (10110), by = (10111), b3 = (01000),
by = (01001), b5 = (01010), and bg = (01011) are forbidden iff the blocks
(101) and (010) are forbidden.

Proof. Suppose that blocks by, by, bs, by, b5, and bg are forbidden. From bs,
bs, by, bs, and bg it is easy to see that (0, 1,0) cannot be followed by 00, 01,
10, or 11, which means that (0, 1,0) is forbidden. From b; and b, it is easy to
see that (1011) is also forbidden; but because (1010) is also forbidden (as an
immediate consequence of the fact that (010) is forbidden), we conclude that
(101) can be followed by neither 0 nor 1, which means that it is forbidden.

Conversely, suppose (101) and (010) are forbidden. It is immediately
clear that b1, by, b3, by, bs, and bg are all forbidden because each of them
contains one of the forbidden blocks ((101) or (010)). B

As a consequence of Lemma 3 and Proposition 12, the following proposi-
tion holds.

Proposition 13. Rule 11 is a double alternating right subshift over the
(nonempty) set of configurations £, that do not contain the forbidden blocks
(101) and (010). There is at least one configuration in ¥ that never goes to
¥, (for instance, the configuration )100().

Proof. The proof follows directly from the fact that Yz € 3, rule 11 can be
expressed as g, (z) = op(z). B

Proposition 14. Rule 11 is an alternating right subshift over the (nonempty)
set of configurations 3y that do not contain the forbidden blocks (011),
(1000), and (1010). There is at least one configuration in ¥ that never
goes to ¥y (for instance, the configuration )0011().
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Similar results for rule 43 can be proved using the same technique.

Proposition 15. Rule 43 is a double alternating right subshift over the
(nonempty) set of configurations ¥y that do not contain the forbidden blocks
(0100), (1011), (1101), (00101), and (10010). There is at least one configu-
ration in ¥ that never goes to Xy (for instance, the configuration {...(100) |

(0)...)).

We now state the following result, which can be proved similarly to the
case of the alternating right subshift.

Theorem 7. Double alternating subshift rules that have an irreducible tran-
sition matrix are chaotic over the closed, invariant subset ¥».

The evolution of subshift rule 11 is shown in the appendix. Figure A2
is the space-time diagram of the CA starting with an initial configuration
€ Yo (simple left subshift). Figure A3 is the space-time diagram of the same
rule starting with an initial configuration in ¥y (double alternating right
subshift).

7. Conclusions and open problems

Analyzing the structure of the rule subspace of Figure 1, we have observed
that CAs have a simple behavior in correspondence to the symmetric region
(a = ¢), whereas, in the antisymmetric case (e = —c) a complex subshift
behavior has been detected (asymmetric region). In the rest of the rule
subspace the CAs show a simple subshift behavior. Summarizing our results,
we can divide the rule space in 3 regions:

1. The symmetric region with periodic rules,
2. The asymmetric region consisting of simple subshift rules, and

3. The antisymmetric region consisting of complex subshift rules.

It is interesting to note that the periodic rules are distributed along the line
of symmetry, and the complexity increases with an increase in asymmetry.

For the simple subshift rules, the subset ¥, is an attractor, and all the
initial configurations will eventually fall into it; in the particular cases we
have considered, they fall into ¥y after only one step. In the complex sub-
shift rules we observe also the set ; (i = 1,2) on which the rules have a more
complex behavior; in this case the set ¥ = X\ (¥o U %;) is in general not
attracted by an invariant subset of configurations. We are now investigating
the subspace ¥ for the complex subshift rules, and we are trying to give a
precise characterization of this subspace. To date, the precise description of
this space is still an open question, but our study suggests that the charac-
terization of ¥ can be refined and different behaviors can be identified. For
example, we have detected three subsets with different dynamics:
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Figure 9: Rule space for b > 0.

1. a subset attracted by X,
2. a subset attracted by ¥y, and

3. an invariant subset X; C 3

We have proved that simple subshift rules that have an associated irreducible
transition matrix have the classical properties of chaotic dynamical systems
on Xy, and the same holds for the alternating and double alternating subshift
on Zz

For sake of completeness we include the rule space for b > 0 (Figure 9). In
this case, the rule subspace has a simpler structure. The differences between
the two cases merit further study.
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I

Figure Al: Space-time diagrams of some CAs and Wolfram classi-
fications. Left to right: rules 8 (Class 1), 12, 23 (Class 2), and 18
(Class 3).

Appendix

g

Figure A2: A simple left subshift. Space-time diagram of rule 11 with
an initial configuration in % (left), and magnification of a portion of
it (right).

Figure A3: A double alternating right subshift. Space-time diagram
of rule 11 with an initial configuration in 25 (left), and magnification
of a portion of it (right).



