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Abstract. This paper addresses the following problem: Given a one­
dimensional cellular automata (CAl defined over Z2 with a rule rep­
resented by an operat or X , determine all one-dimensional rules over
Z2 which commute with X . It is shown th at the set of all such rules is
given by th e solut ion set of a system of nonlinear Diophantine equa­
tions. This result is generalized to cover cellular automata whose rules
obey a relat ion first studied by Ito , and to the case of idempotent rules.
Connect ions are shown between the results presented in this paper and
work on the commuting block map problem [2- 4] , which is known to
have significance for the study of Bernoulli shift systems.

1. Int roduction

In severa l previous pap ers [5, 6] an operator form alism was int roduced to
st udy cellular automata (CA) ru les defined over Zp where p is pr ime. Using
thi s formalism , resul ts have been obtain ed on inversion of certain auto mata
ru les [7], on ent ropic properti es of automata rules [8], and on the question of
determining fixed points and shift cycles [9].

Recent ly a division algorit hm was discovered and the arit hmet ic of resi­
dues for one-d imension al auto mata rules st udied [1 0]. In this paper attent ion
is restricted to one-dimensional automata defined over Z2. For this subset of
cellular automata we consider t he following problem: Let X be t he operator
represent ation of a given CA rule. Find the set { A I AX = X A }. Our goal
is to prov ide a means of computi ng all ru les A that comm ut e with t he given
rul e X . It is shown that t he set of all such A is determ ined by the solut ion
set of a system of non linear Dioph antine equat ions, which exhibits an elegant
st ructure.

This result is significant for severa l reasons. It is of int rinsic interest for
the insight it provides in the struc ture of CA rul e space [11], allowing us to
study properti es of maximal commut ing subsets of t his space; it generalizes
to rules sharing a relat ion of the form first st udied by Ito [1]; and , as will
be discussed in section 6, it bears a direct relation to the "commuting block
map" problem, and hence to commutat ion propert ies of endomorphisms of
Bernoulli shift systems [2- 4].
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In sect ion 2 t he operator formalism for CAs is reviewed. In sect ion 3
t he division algorithm for CA rules is presented. Sect ion 4 contains t he
commutation theorems that are our main result , together with examples
and analysis of several special cases. Sect ion 5 considers the quest ion of
idempotence; and also generalizes the work of Ito [1] by providin g a means
of comput ing, for any two given operators X and T , a third operator A
such that if A exists TX = (A + X)T . In sect ion 6 the present results are
compared to work that has been done on the commut ing block map problem.

2. Op era t or for m alism

Let E repr esent the aut omata state space . Then every CA rule can be
naturally represented as an operator Q : E ---> E. Denote this aut omaton
(Q,E). If a one-dimensional ru le is such tha t the value in cell i at t ime
t + 1 is determ ined only on th e basis of th e values in cells i = i - I, i,
and i + 1 at tim e t , then the automa ton follows a nearest-neighbor rule. In
genera l, the same symbol will be used to denote both a rule and the associated
operator. For nearest-neighbor rules (and other three-site rules) we define
a set of eight nonadditive operators on E that correspon d to t he automata
labeled 128, 64, 32, 16, 8, 4, 2, and 1 in Wolfram 's not ation [12]. Since a
site mapp ing to 1 under one of these operators also maps to 0 und er the
remaining seven, t here is no interference, and every operator that represents
a nearest-neighbor rule over Z2 can be uniquely expressed as a direct sum
of these eight operators. That is, these operators provide a basis for the
nonlinear algebra of operator s defined by the set of nearest-neighbor rules
over Z2. Express ion of an operator Q in terms of these basis operators will
be called the canonical representation of Q.

To determine the canonical representation of an operator its numeric
label is written in powers of 2 and t he appropriate bas is operators are sub­
stituted. Not ing that the set of eight neighborhoods {ODD , 001, 010, 011,100 ,
101, 110, 111} are listed in ascending numeric order in Wolfram 's labeling
scheme, we can represent Q by an eight-digit binary numb er in which each
digit is the coefficient of the corresponding basis operator. That is, the ab­
st ract numeric label of a given rule as int roduced by Wolfram can also be
considered a list ing of coefficients for a "vector" representation of the oper­
ator defined by this rule.

A canonical represent at ion can be added with coefficients reduced mod (2).
Rule 28, for example, is given by (00011100), and rule 172 by (10101100).
The sum of these two rules is (10110000) , which is rule 176.

This formalism generalizes immediately to arbit ra ry neighborhood sizes.
One writes out the neighborhood list in ascending numeric order and di­
rect ly obtains the operator represent at ion of any given rule in terms of its
decomp osition over the canonical set of basis operators.

Suppose t hat a rule with operator representation Q is defined for neigh­
borhoods containing k cells. The generic k-cell neighborhood can be written
as i 1 . . . ik . Q can be extended to an operator Q+, defined for neighborhoods
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00 01 10 11
Xo Xl X2 X3

000 001 010 011 100 101 110 111
qo ql q2 q3 q4 q5 q6 q7

Figure 1: Wolfram labels for t wo- and three-site rules.
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containing k + m cells, by mapping each i l . .. i k to the set {Yl ... Yril . .. i k

Zl . . . Zm -r I Yl .. . Yr Zl .. . Zm - r = O... 0, ... , 1. . . I }, reordering so that the
k+m neighborhood set so generated is arranged in ascending numeric order.
The component representation of Q+ will have a 1 for every neighborho od
Y l .. . Yril .. . ikzl . . . Zm-n in which th e representation of Q has a 1 for i l ... i k,

and a 0 otherwise.
With this const ruction, if is is the designat ed site for which i l .. . i k is the

neighborhood, then Y l . .. Yr il . .. ikzl Zm -r will be neighbor hoods for is as
well. If it is required to consider Yl y ,.i l . .. ikZl .. . Zm-r as the neighbor-
hood of a different site , this can be accomplished by multip lying Q+ by an
appropriate shift operator. A k-site rule Q will have 2k components . Figure
1 shows the component represent at ion for two- and three-site rules. Note
that the base 10 form of the neighborhood , considered as a binary number,
provides the index for the corresponding component of the rule.

For example, if k = 2, the neighborhood list is 00,01 , 10, 11. Suppose that
t hese are considered neighbo rhoo ds of the first site . This will be denoted by
underlining t he designat ed site : QO , Q1 ,10,11. The rule defined in component
form by Q = (0110) extends to a rule Q+ on the three-site neighborhoods
given by QO --> QOO ,Q01; Q1 --> Q10,Q11; 10 --> 100,101; 11--> 110 ,111 . Thus
Q+ = (00111100). Note, however , that although Q+ is defined on three-site
neighborhoods, it is a left-just ified rule rather than a nearest -neighbor rule.
The nearest-n eighbor rule corresponding to Q+ is aQ+, where a is the left
shift operator . Since all CA rules commute with shifts this is a technical
point only.

Lemma 1. Let A and B be m -site rules and let X be a k-site rule, k > m.
Then

1. (A + B) + = A++ B+, where ext ension is to m + r sites.

2. A+X = (AX)+ and XA+ = (XA)+ , where ext ension of A is to m +r
sites and extension s of AX and X A are to (k + m - 1) + r sites.

3. Divi sion of C A r ules

If Q and X and given CA rules a simple pro cedure allows determination
of rules A and R such that Q = AX + R [10]. This division algorithm
will be illustrated for the simplest case in which Q is a three-site nearest­
neighbor rule and X is a two-site ru le. The neighborhoods for X will be
taken as having the st ruct ure {siSi+d , although it is equally possible to
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011
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X I X 3

X2 X O
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X3 X2

X3 X3
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aox~ + a3xO

aOx~x~ + al x~xl + a2XOX~ + a 3x OX I

aOx~ x; + aI X~ X2 + a 2X I X ; + a 3X I X 2

aOx~ x~ + aI X~X3 + a2X I X~ + a 3X I X 3

aOx;x~ + al x ; XO + a2X2X~ + a 3X 2XO

aOx;x~ + alx;xl + a2X2X~ + a3x2xI

aOx~x; + aI X~X2 + a 2X 3X ; + a3x3x2

aOx~ + a3x3

Figure 2: Mapping of three-site neighborhoods under AX .

consider { Si- I , s.} neighborhoods and the opera tor A will, in fact , need to
be a rule with this neighborhood st ruc ture . (The reason is that a three-site
neighborhood { Si - I ,Si Si+d is covered by { Si - I , Si } and {si , Si+d .)

Applying the operator designated X = ( XOXIX2X3) to the list of three­
site neighborhoods shows how t hese neighborhoods map under X . This is
indicated in the first two columns of Figure 2.

We now look for a two-site rule A with neighborhoods { Si- I , s;} such
that Q = AX + R, where R is a nearest -neighbor rule that is, in some sense,
as small as possible. Taking A = (aO a l a2 a 3 ) and setting x~ = 1 - Xi , the
third column of Figure 2 indicates the act ion of AX on t he set of three-site
neighborhoods. The expressions in this column are the simplest algebraic
combinat ions of th e coefficients of A and X that yield t he value of AX
act ing on each of t he three-site neighborhoods.

The idea is to choose the a; so t he third column of Figure 2 fits as closely
as possible to Q = ( qo ql q2 q3q4q5 q6q7) . To do this not e that the t hird column
in Figure 2 can be writ ten as a matrix product XA, where

X ' 0 0 Xo0

x~x~ X~X I xox~ XOXI

A ~ (~)
x~x; X~X2 X I X; X I X2

X = x~ x~ X~X3 XIX~ XI X3

x;x~ x;xo X2X~ X 2X O

x;x~ X ;XI X2X~ X 2XI

x~x; X~X2 X3 X; X 3X2

X l 0 0 X33

Taking Q as the column vector with components given by ( QOql q2 q3 q4

Q5Q6Q7 ) , consider the equa t ion XA = Q . By const ruct ion each row of X
contains only a single 1. Therefore, if c, is the ith column vector of X and
c; is its t ranspose, t hen c; * Cj = n/5i j , where l5i j is the Kronecker delta and
n j is the number of Is cont ained in Cj' Multiplying XA = Q on both sides
by X T yields the set of equa t ions

(3.1)

where Qi = c; . Q is the numb er of Is that c, and Q have in common.
The algorithm for the choice of the a; and the remainder R is as follows:
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1. If Qi = 0, set ai = O.

2. If ni = Qi =f 0, set ai = 1.

3. If ni =f Qi =f 0, t hen

(a) If Qi < n;/2 , set ai = O.

(b) If Qi ::::: n;j2 , set ai = 1.

4. Determine the rule R from the labeling by R = Q + AX mod (2).
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This algorithm minimizes R in the sense that the binary label for R contains
th e smallest possible number of Is.

Extension to the case in which Q is defined for k-site neighborhoods and
X for m-site neighborhoods is simply a matter of defining the appropriate
X matrix. In this case X will have 2k rows and 2k

-
m +1 columns. The rows

will be labeled by Q-neighborhoods, listed in ascending numeric order, and
columns by A-neighborhoods similarly listed. For 0 ::; i < 2k

, 0 ::; j <
2k - m +1 , the generic term of X is

(3.2)

Taking the binary expression of t he index j as jo . . . jk -m , we set xi. = Xis if
i, is 1 and equal to x~s if i, is O.

For 0 ::; s ::; k - m, th e is's are given by

(3.3)

where [z] denotes the largest integer less than or equal to z.

4 . Commutation of CA rules

Derivation of the commutation equations requires extensive use of both the
base 10 and binary forms of rule components and indices. Our general nota­
tion will be that a single symbol- for example, i , i . x , a, and so forth- will
denote t hat the term represented is taken in base 10. The binary form will
be shown by indicat ion of each digit . For example, if an index is written
i , it is understood to be in base 10. But j = jo ... jk is in base 2 with i ,
indicating th e coefficient of 2k - s - 1 .

Let A and X be two k-site rules with X given. The commutator AX +X A
is denoted [A,X] . (Note that a plus sign is used here since t hese rules are
defined over Z2.) The condit ion [A ,X ] = 0 can be expressed in terms of
the matr ices X and A as defined in the previous sect ion by X A = A X .
T his yields a set of 22k- 1 equations for components (ao . . . a2"-1) of A. For
i = ioi1 ... ik-l the ith equation in this set will have the form

X~OX;J . . . X;k _2 X;k _Jao + x;Ox;J .. . X;k_2Xik_J al + ...
+ XiO XiJ . .. Xik_2Xik _J a2k_l = (same, X and a exchanged)
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Now consider the coefficient of a; in the term on the left . This coefficient
comes from t he r th column of t he X matrix, and the component Xi, in this
term will be prime or unprime as 7"s (th e coefficient of 2k

- s- 1 in the binary
form of 7") is 0 (primed) or 1 (unprimed).

This observation allows th e equation to be writ ten as

1...1 k-l 1.. .1 k-l
L a r II (1+ 7"s+Xi,) = L x r II ( l + 7"s + a i ,)

r=O...O s=o r=O...O s=o

(4.1)

(4.2)

where th e binary form of 7" is 7"07"1 . . . 7"k - l, the sum und er the product is t aken
mod (2), and each is is

is = [ 2k~S- I] mod (2
k
)

We now prove a result th at allows Equ ation (4.1) to be transformed into
a more useful form .

Theorem 1.

1...1 k-l
L a; II (1+ 7"x + Xio)

r=O...O s=o

1.. .1 2
k
-n-l (2 k 1)= '" I - no . .. I-nk _1 '" - n -c: X'D X'k_ 1 0 7" a;

n=O...O r=O

(4.3)

in which n has binary form no . . . nk-l and ( :) indicates th e (m + l )st

entry in the n th row of the mod (2) Pascal triangle.

Proof. We prove t his result by showing th at for all 0 ::::; 7" ::::; 2k - 1 th e
coefficients of a; are the same on both sides of this equation. For a given
value of 7" define two subsets of 0, . .. ,k - 1 by Ro = {s I 7"S = O} and
R 1 = {s l 7"s = 1}. Then the left side of Equ ation (4.3) has t he form

a; II Xi, II (1+ Xi,)
sERI sE Ro

Thus th e coefficient of a; consists of a sum over all products of the Xi, 's
containing the product over R1 as a factor .

On the right , for t he same fixed value of 7", we have a; appearing for
each n value such t hat 7" ::::; 2k - n - 1. This condit ion selects n values that
sat isfy n ::::; 2k

- 7" - 1. If n = 0 . .. 0 we have a single term Xio . .. Xik_I ' while
n = 2k

- 7" - 1 gives t he term TI s ER I Xi, . This last term follows because the
binary expression of 2k

- 1 consists ent irely of 1s so th at the binary form
of 2k

- 7" - 1 has Os where t he binary form of 7" has Is, and 1s at all other
positions.

Now suppose that n = 2k
- 1 - (7" + b) for 0 < b < 2k

- 7" - 1. Then

we are considering the binary coefficients ( 7"; b) , and these satisfy th e



Commu tation of Cellular Automata Rules 315

condition that they are 0 if the bin ary forms of rand b have a 1 in the same
position, and ar e 1 otherwise. This is a consequence of a theorem du e to
Kummer [13], which states that the exponent of 2 in the prime factorization of

( ~) * (ast erisk denotes coefficients taken modUO )) is equal to the number

of borrows required in the binary subt rac t ion n - m . Application of this

resul t to (r; b) * indi cates that this exponent is the numb er of borrows in

the bin ar y subtra ct ion of (r + b) r , which is 0 (yielding an odd coefficient,
hence equ al to 1 mod (2)) if and only if the bin ary form of r + b has a 1
in each position in which the bin ary form of r has a 1. Equivalently, the
binary forms of rand b do not have a 1 in the same positions. This mean s
that the bin ar y form of n = 2k - 1 - (r + b) has Os in all places where r
has Is. Then , as b ran ges over its set of possible values, we find Os in all
possible combinat ions of the remaining digits of n . Thus the coefficient of
a; on the right of Equation (4.2) consists of all possible product s of the Xis'S

that contain ITsER 1 Xis as a factor , and that is t he same as the coefficient of
a; that appears on t he left of Eq uation (4.3 ). Since thi s is t rue for all r , the
claim ed result follows.•

Application of Equation (4.3) allows Equa tion (4.1) to be rewri t ten as

1.. .1 2
k

- n - 1 (2 k 1)"\" 1- n o 1-nk-1 "\" - n -
L..J x'o . .. X'k _ 1 L..J r ar

n=O...O r=O

1.. .1 2
k

- n - 1 (2 k 1)= "\" 1- n o 1-nk _1 "\" - n -
L..J a ,o .. . a'k _ 1 L..J r X r

n=O ...O r=O

From the symmetries of the Pascal triangl e [14] we know that

(
2k - n - 1) = ( k2k - n - 1 )

r 2 - n - r - l

(4.4)

and with thi s subs ti t ut ion , and an int erchange of summations, the left side
of Equat ion (4.4) may be written as

2
k

- 1 2
k

- n - 1 k 1)2 - n - 1-ro 1-rk_1L an L (2k 1 x io . . . Xi --n -r - k1
n=O r=O

(4.5)

For fixed n we now consider the coefficient of a n in this summat ion . Note
that the summat ion is along the (n + l) st diagon al of the mod(2) Pascal
triangle, beginning at the (2k - 1)st row. Note also that it is a property of
the mod (2) Pascal triangle that this segment of the (n+ l) st diagonal equals
the (2k - n - l)st row [14], and thus has the sa me symmetry properti es as
thi s row. In particular , it contains an even number of I s unl ess n = 2k

- 1,
in which case it consist s of a single 1.

Let x(i) be the base 10 form of the bin ary number for which the Xi s are
components, and suppose that elements of a fixed subset W of { X io ' ... , Xik_ l }
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(4.6)

are equal to 1 and those not in W are equal to O. Taking r in the second
sum of Equat ion (4.5) equal to 2k - n - 1 yields a product term that contains
the fewest numb er of Xis'S for a given value of n . All other product terms
will contain this minimum term as a factor . Therefore if this term contains
any Xis'S not in W , the ent ire coefficient of an is automatically zero . T hus
we need only consider values of n for which all of the Xis'S contained in t he
minimum pro duct term are in W . If this minimum term is a product of all
members of W then all other terms in the r sum will contain an Xis not in
Wand hence will be O. Therefore the coefficient of an for this case will be
1. Because n = x(i) , it follows that for this maximal minimum product term
r = 2k

- n - 1 or n = 2k
- r - 1; furthermore, the assumpt ion that this

term exhaust s W imp lies that in binary form r has a 1 entry for each Xis not
contained in t he minimum product and a 0 ent ry for each Xis contained in
the minimum product , while the binary form of 2k

- 1 is all 1s. Thus the
binary form of n in this case has a 1 in t he st h positi on if and only if Xis is
cont ained in W.

Fin ally, if the minimum produ ct term consists of a product Il (U) over a
proper subset U of W , th en th e coefficient of an has the form

1... 1

II(U) = L x;~o . . . X;~q
to ..t l = O...O

where th e Xib'S are drawn from W - U. But this sum is always over an even
number of terms, hence is 0 modulo 2. Combination of these results with
Equat ion (4.4) proves the following theorem.

Theorem 2. Let X = (xo X2 L l) be a given k-site rule over Z2. Th e set
of all k-site rules A = (ao a2k_l) that commute with X is obtained by
solving the set of Diophantine equations

1...1 2
k- n- l (2 k 1)_ ~ I-no I-nk_l ~ - n -

aX(i) - ~ aiD . .. aik_
1

~ r z;
n=O...O r=O

for 0 s:; i < 22k- 1 with is defined in terms of i as before and x(i) the base 10
form of XioXil . .. Xik_l '

Note that the symmetry between t he left and right sides of Equat ion (4.4)
means that Equ ation (4.6) can also be written in the form

a x( i) = X a(i ) (4.7)

However this form, although formally elegant , is computationally unhelpful
since if A is not given, th ere is no way to determine the values of a(i) .

The result of Theorem 2 easily genera lizes to includ e cases in which X
and A are defined over neighb orhoods having different numb ers of sites . All
t hat is required is to extend the rule defined for fewer sites unti l the number
of sites is equal.
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Theorem 3 . Suppose that X is a k-site rule and A is an m -site rule, with
m < k . Let A+ be the extension of A to a k-site rule. Th en [A , Xl = 0 if
and only if [A+, X ] = O.

As an example of how commutator sets are computed , consider the two­
site rule (0010). The possible values of i are given by 0, 1, 2, 3, 4, 5, 6, and 7,
which, from Equation (4.2), give the possible combinations for x (i ) as XOXo,
XOXI , XIX2, XIX3 , X2XO , X2X I, X3X2, and X3X3 · For X = (0010) these yield
x (i ) values 0, 0, 1, 0, 2, 2, 1, and 0, and subst it ut ion into Equation (4.6)
produ ces the set of equat ions

ao = aoao(xo+ Xl + X2+ X3) + ao(xo+ X2) + ao(xo+ Xl) + Xo

ao = aOal (xO + Xl + X2 + X3) + ao(xo + X2) + al (xO + Xl ) + Xo

a l = ala2(xO+ Xl + X2+ X3 ) + al( xO+ X2 ) + a2(xO+ Xl ) + Xo

ao = ala3(x O+ Xl + X2 + X3 ) + al (xO+ X2) + a3(xO + X l ) + Xo

a2 = a2aO(xO+ X l + X2+ X3 ) + a2 (xO+ X2) + al( xO + x d + Xo

a2 = a2al(xO+ X l + X2+ X3) + a2(xO+ X2) + al( xO + x d + Xo

al = a3a2(xO+ Xl + X2 + X3) + a3(xO + X2) + a2(xO+ Xl) + Xo

ao = a3a3(xO+ Xl + X2 + X3 ) + a3(xO+ X2)+ a3(xO + Xl) + Xo

which, on subst itution of the X values, simplify to

ao = 0

ala2 = 0

al( 1 +a3) = 0

a l = a3(1 + a2)

It is easy to determine that the solut ion set of these equations is {(OOOO),
(0010), (0101), (001l)} . Thus t hese are the only rules tha t commute with
(0010). By exte nding to three-site neighborhoods we obtain (0010); =
(00001100) and (0010)( = (00100010) where in th e first case, as indicated by
subscripts, the two-site neighborhoods have been extended on the right and
in the second case they have been extended on the left . For both of these
extensions Equations (4.6) are the same. It turn s out that these equat ions
divide naturally into two sets . The first defines values of some of the ai, while
the second are constraint s:

1. ao = 0

a l = a3(1 + a6) = a7(1 + a6)
a2 = a6(1 + a4) = a6(1 + as)

a4 = as(l + a3)

2. ala2 = ala4 = a2a4 = a2aS = 0

a l( l + a3) = 0

a3(1 +a7) = 0
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(0000) r , I ) (00000000)

(0010)~ (00100010)
r (00001100)

(0101)~ (01010101)
~ (0011001 1)

(0011) r ) (00001111)
(00100011)
(00001110)
(01010001)

Figure 3: Two- and three-site commutators of (0010).

Burton Voorhees

It is not part icularly difficult to comput e the solution set for these equa­
tions , or to see th at all but the last of the equat ions in the second set are
automatically sat isfied as a result of the first set .

T he full solut ion set cont ains right and left extensions of all two-site rules
th at commut e with (0010) as well as three addit ional members. It must be
the case that the full set contains cont ains both right and left shifts, the
identi ty, and both right and left ext ensions of (0010). This is ind icated in
Figure 3 with lab eled arrows indicating right and left ext ensions. Note that
(0101);- = (0011);'

There are several special cases of Equ ation (4.6) that merit consideration.

D efinitions

1. If th e components of an operator X sat isfy X i+ 2k- r = Xi , th en X is said
to be 2k - r per iodic.

2. If the components of X sat isfy X i+2k- r = 1 + X i, then X is said to be
2k -

r antiperiodic.

Lemma 2. If X is 2k - r antiperiodic for r > 1, then X is 2k - r+l periodic.

Theorem 4. For - r :::; s :::; k - r - 1 the shift a s is 2k -
r - s- 1 antiperiodic.

Theorem 5. Let X be 2k- m periodic. Th en in Equation (4.6)

no = nl = .. . = n m - l = 1

Proof. The xs's satisfy x s+2 k- m = X s and the sum over s in Equation (4.6)
has coefficient s drawn from th e (2k - r - l )st row of th e mod(2 ) Pascal
t riangle. The self-similar structure of this t riangle is well known (e.g., see
[14]). By the symmet ry of this figure , so long as 2k

- r - 1 > 2k
-

m
- 1,

each component z; of X with a nonzero coefficient in Equatio n (4.6) will be
matched with a set of compo nents { X s+d2k- m} , also with nonzero coefficients ,
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where d is even. Therefore t he only terms cont ribut ing to the right-h and side
of (4.6) will be those that have 2k

- r - 1 ~ 2k
-

m
- 1. But

k - l

2k - 2k - m = L 28

8= k-m

so that
k-l k - l

n = L n 82k
-

8
-

1
:::: L 28

8=0 8= k - m

meaning that no = nl = .. . = nm-l = 1, at leas t. I

Theo rem 6. If X is 2k - 1 antiperiodic then Equ ations (4.6) becom e

(4.8)

Proof. The proof is similar to th at of Theorem 5. If r < 2k - 1 , every
contribut ion to the sum over x,. in Equati on (4.6) will be of the form x,. +
(1 + X,.) = 1; and, with a single exception, there will be an even numb er of
Is by the 2k - 1 ant iperiodic condit ion.

T he only except ion to this is the term aiD(xO + X2 k- 1) = a i D' Therefore
the sum over the X,. can give no contribut ion except for a i D unless r :::: 2k

- \

bu t this means that no = 1. I

5. Ito relat ions a nd idemp otence

In a very nice paper Ito [1] carried out a st udy of th e three-site rules 18 and
126. He was att racted to th is study because th e st ate t ransit ion diagrams
of these two rules are remarkably similar. In th e present formalism this
similarity is expressed in terms of th e existence of a t hird rule, ru le 252. If
X , Y , and T are taken as the operator representations of rules 18, 126, and
252, respect ively, then these operators satisfy th e equation T X = Y T [6] .
More genera lly, rules X and Y will be said to be Ito related via T if there is
a T such that this equa t ion holds.

Theorem 7. For given X and T there exists a Y such tha t X and Y are Ito
related via T if and only ifT I [X ,T ], that is, T mu st divide the comm utator
of X and T.

Proof. If there is a Y such that TX = YT , then XT + [X, T] = YT , hence
[X ,T] = (X +Y )T. On the other hand , if T I [X ,T ], then t here is an A such
that [X ,T ] = AT . Thus X T + T X = AT or T X = (X + A)T , and we take
Y = X + A.I

The equation [X ,T ] = AT can be writ ten in a form similar to Equat ion
(4.4). Since T and X are given, however, it is easier to use th e compact form
of Equation (4.7). The same arguments that led to Equation (4.6) then yield
the following theorem.
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Theorem 8. Let X and T be given k-sit e rules. Th en there exists an A
such that X and Y = A + X are Ito related via T if and only if a solution
exists for the set of equations

at(i) = Xt(i) + t X(i) (5.1)

As an example, let X = (01001000) (rule 18) and T = (00111111) (rule
252). Then, recalling that the addit ion in Equation (5.1) is mod (2), we
obtain th e set of equat ions

ao = Xo + t o = Xo + t l = 0

al = Xl + t 2 = 0

a3 = X3 + t 5 = X3 + t 2 = X3 + t 4 = 1

a4 = X4 + t4 = X4 + t 5 = 0

a 5 = X5 + t6 = 1

a6 = X6 + t 2 = X6 + t3 = 1

a7 = a7 + t o = X7 + t , = 0

(5.2)

Hence A = (00a210110). If a2 = 1 this gives X + A = (01111110), which
is rule 126, the case st udied by It o. If a2 = 0 then X + A = (01011110),
indicating that rule 122 is also It o related to rule 18 via rule 252.

Another quest ion of some interest is whether k-site operato rs are idem­
potent . In the formalism of this pap er this reduces to determining solut ions
to the equation X 2 = X +, where the term on the right is appropriate ly ex­
tended. A technicality is involved, however , since it is necessary to specify
which site of a neighborhood the rule maps th e neighborhood to . This can
be illustrated by the following example. For a two-site rule with neighbor­
hoods QO , Q1, 10, and 11 the identity operator is (0011). On the other hand ,
if th e neighborhoods are OQ, 01, 1Q, and 11 the identi ty is (0101). In or­
der to consider for these operato rs t he equat ion X 2 = X +, we first extend
them on the right to three-site neighborhoods (0011)+ = (00001111) and
(0101)+ = (01010101). T he first of these is the ident ity with respect to the
neighborhoo ds z.yz and the second with respect to the neighborhoods XYtf .
The nearest-neighb orhood ident ity is given by (0011)(0101) = (00110011).
T his indicates that it is importan t to keep track of th e designated site to
which neighborhoods map .

Let X be a k-site operator such that J-li (t + 1) = X (J-li- r , . . . , J-lH k-r-d ·
Then X 2 will be a (2k - 1)-site operator defined by J-li (t + 1) = X 2(J-li- 2ro .. . ,
J-lH 2(k- r- I»). Therefore X + must also be a 2k - 1 site operator defined by
J-li (t + 1) = X +(J-li-2 r , . . . , J-li+2(k- r- I») . If the neighborhood listing for X +
is to be maintained in ascending numeric order then t he X neighborhoods
must be extended as Xl . .. XrYI . .. YkZI . .. Zk-r- l, where YI . . . Yk indicates
th e original X neighborhood . T he idempotence condit ion is then given by
the following theorem.
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Theorem 9 . Let q, a :::; q :::; 2k - 1 indicate the designated sit e to which an
operator X 2 maps, where X is a k-site operator. Th en X is idempotent if
and only if

1...1 2
k

- n -1 (2k 1 )
. _ '" I-no I - n k_ l '" - n -

X'q - L X i o . . , X i k _ 1 L r z;
n = O...O r= O

(5.3)

As an exam ple consider the k = 2 case with left-just ified neighbo rhoods
X.Z extending to neighborhoods x.zy. Equation (5.3) then becomes

Xo = X OX3

X o = XI + X O(X I + X 2 ) + X OX I (X2 + X3)

XI = x o( l + xI )( l + X2) + X I X 2X3

XI = x o (1 + xI)( l + X3 ) + X I (X2 + X3 ) + XI X2 X 3

0 = X O(X I + X2 + X IX2 + X2X3 )

0 = x o (1 + x d( l + X2 ) + XI + X IX2X3

X 3 = xo ( l + x 2)( 1 + X3) + X 2 (X I + X3) + X1X2X3

0 = xo (1 + X3)

(5.4)

After some computation the complete set of two-site idempotent oper­
ato rs wit h neighborhoods x.z is determined to be {(OOOO), (0010) , (0011),
(1011), (1111)}. Similarly, the set of two-site idempotent operators with
neighborhoods X~ is {(OOOO), (0100), (0101), (1101), (1111)} .

6. The com m ut ing block map problem

A length-n st ring of numbers taken from Z2 is called an n-block. If En is
the set of all n-blocks then an n-block map is a function f : En ---7 Z2.
Block maps are of interest in t he st udy of Bernoulli shift syst ems as a result
of a theorem due to Curtis, Hedlund, and Lyndon [15], which asserts that
every endomorphism of such a system is shift equivalent to a block map.
In paticular , the problem of finding commuting endomorphisms of Bernoulli
systems reduces to the problem of finding commut ing block maps. Thus
there has been considerable work toward solut ion of the following quest ion.
Let f be a given block map. What is the set C(J) of all block maps that
commute with f ? T his is termed the commuting block map problem [2- 4] .
Because every k-site CA rule is shift equivalent to a k-block map (indeed, a
k-block map is just a left-ju stified k-site CA) our Equation (4.6) provides a
computationa l means of addressing this problem. That is, given f we find
an associated CA rule X f and solve Equat ion (4.6) .

Block maps have a naturally defined multin omial expression f( ZI , . . . , Zk).
The next theorem relates this expression to the comp onent form of the cor­
responding CA rule.

T heorem 10 . Let f(z l, . . . ,Zk ) be a k-block map, and let Z be the base-lO
form of Zl . . . Zk. The corresponding CA rule X is given by designating the
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site to which neighborhoods map , and setting X z = f( ZI , " " Zk). On the
other hand , if X = (xo, ... , xZk_d in component form, then it defines the
block map f( ZI," " Zk ) by

1.. .1 Zk-r - l (2k 1 )_ l - r o l -rk _ l - r -
f( ZI . . . Zk) - != ZI . .. Zk 0 S X s

T- O.. .O s-O

(6.1)

In references [2-4] two subsets of the set of all block map s are defined:
those that are linear and those that are linear in the first var iab le. In addit ion ,
reference [2] considers cases in which a block map has the form

k

f( ZI,"" Zk) = Zo + II (Oi - Zi)
i =1

while references [3, 4] generalize this to block maps of the form

k

f( ZI , ' . . , Zmk ) = Zo+ II (Oi - Zmi )
i= 1

The following definitions are t aken from reference [2] .

D efinitions

(6.2)

(6.3)

3. A k-b lock map f is linear if its multinomial expression has the form

k

f( ZI"'" Zk ) = ao+ L aizi·
i= 1

(6.4)

If ao = 0, f is homogeneous , and if ao = 1, f is inhomogeneo us .

4. A k-b lock map f is linear in the first variable if there is a g such that
f( ZI "' " Zk ) = ZI + g(zz , . .. ,Zk).

5. A linear k-b lock map f is even or odd accordingly as an even or odd
number of the a; in Equation (6.4) are equal to 1.

Theorem 11 . (Reference [2}) For k ~ 2, a k-block f is linear in the first
variable if and only if f(OB) i- f( IB) for all (k -I )-blocks B.

Comparison with definition 2 immediately yields the following coro llary.

Corollary. A k-b lock map is linear in the first variable if and only if the
associated CA operator X is 2k - 1 antipe riodic.

Theorem 12 . A k-block map is linear if and only if there is a non-negative
integer s < k such that the associated CA rule has the form

k

Xi = aoI + L a r(jk - s - r

r= 1
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R emark. T he number 8 is introd uced to compensate for t he locat ion of the
designated CA mapping site th at appears in t he sth posit ion from the left in
the k-block. If X I is left-justified then 8 = O.

In reference [2J a complete characterization is given for C(j ) in the case
of linear f. Using the formalism of this pap er it 'is a simp le mat ter to reprove
this theorem in terms of linear CA rules (see Theorem 13).

T heorem 13. Let W , X , Y , and Z be CA rules generated by linear k-block
m aps. Let Wand X be hom ogeneous, and let Y and Z be inhomogeneous.
Then

1. [W,X ] = 0,

2. [X, Y ] = 0 if and only if X is odd, and

3. [Y, Z ] = 0 if and only if Y and Z are both even or both odd ,

Proof. By Theorem 11 we can write

W = 2:= w;ai

Y = 1 + 2:=Yiai

X = 2:= xiai

Z = 1 + 2:= z;ai

Direct computat ion now shows that [W,X J = 0, and that

[X, Y] = (1+ 2:= xi)1

[Y,Z ] = (1+ 2:= Yi)1 + (1+ 2:= zi)1

The theorem follows immediately. •

Theorem 14. Let f be a k-block map of the form of Equation (6,2) with
81 . . ,8k fixed, and let X I be the CA operator associated with f.

1. If Zo = 0, the operator X I is the canonical basis operator that m aps the
k-site neighborhood 1 . . . 1 + 81 ... 8k to 1 and all other neighborhoo ds
to O.

2. If Zo = 1, th en X f is 1 plus the basis operator of part (1).

P roof. If Zo = 0, th e product in Equat ion (6,2) is also 0 unless Xi + 8i = 1
for all i. Hence the only neighborh ood tha t maps to 1 is that for which
Xi = 1 + 8i ·

If Zo = 1, then X f maps every neighborhood to 1 except those defined by
Xi = 1 + 8i . •

T here is a similar result for the more general case in which f is an mk­
block map as defined in Equation (6.2).
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Theorem 15 . Let f be the mk-block map defined by Equation (6.3) with
8l . .. 8k fixed. If Zo = 0 the operator X f is a sum of 2k (m - l ) of the canonical
basis operators. If Zo = 1, then X f will be 1 plus this sum. In addition, if
Zo = 0, then the numerical label for X f is given by

k- l 2m_ l
2 </>(0) II 2: 2 2rm+ l s

r=O 8=0

where

k

¢(8) = 2:(1 + 8i ) 2 (k - i )m

i = l

Proof. If Zo = 0, then X f will map 2 k of the possible 2 m k neighborhoods to
1 and the remainder to O. Hence X f will be a sum of 2 m k - k basis operators .
If Xo = 1, X f will be 1 plus this sum. Fur th er , the neighborhoods th at map
to 1 will be of the form

But the neighborhoods are listed in ascending numerical order so the number
of the basis opera tor corresponding to th e num erical label of a neighborhood
Zl . . . Zm k is just 2Z

• Thus the numb er that labels X f is

where n(x l " . x m- l ( 1 +8l ) x m +1 " . X km - l ( 1 + 8k ) ) is the base-l 0 value of the
argument , and the sum is over

O... 0 :S X l .. . Xm-lXm+l . . . X2m-lX2m+1 . . . Xk m-l :S 1 . . . 1

Evaluat ion of this sum yields the expression for the numerical label of X] . •
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