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Abstract. This paper addresses the following problem: Given a one-
dimensional cellular automata (CA) defined over Zy with a rule rep-
resented by an operator X, determine all one-dimensional rules over
Zs which commute with X. It is shown that the set of all such rules is
given by the solution set of a system of nonlinear Diophantine equa-
tions. This result is generalized to cover cellular automata whose rules
obey a relation first studied by Ito, and to the case of idempotent rules.
Connections are shown between the results presented in this paper and
work on the commuting block map problem [2-4], which is known to
have significance for the study of Bernoulli shift systems.

1. Introduction

In several previous papers [5, 6] an operator formalism was introduced to
study cellular automata (CA) rules defined over Z, where p is prime. Using
this formalism, results have been obtained on inversion of certain automata
rules [7], on entropic properties of automata rules [8], and on the question of
determining fixed points and shift cycles [9].

Recently a division algorithm was discovered and the arithmetic of resi-
dues for one-dimensional automata rules studied [10]. In this paper attention
is restricted to one-dimensional automata defined over Zy. For this subset of
cellular automata we consider the following problem: Let X be the operator
representation of a given CA rule. Find the set {A | AX = XA}. Our goal
is to provide a means of computing all rules A that commute with the given
rule X. It is shown that the set of all such A is determined by the solution
set of a system of nonlinear Diophantine equations, which exhibits an elegant
structure.

This result is significant for several reasons. It is of intrinsic interest for
the insight it provides in the structure of CA rule space [11], allowing us to
study properties of maximal commuting subsets of this space; it generalizes
to rules sharing a relation of the form first studied by Ito [1]; and, as will
be discussed in section 6, it bears a direct relation to the “commuting block
map” problem, and hence to commutation properties of endomorphisms of
Bernoulli shift systems [2-4].
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In section 2 the operator formalism for CAs is reviewed. In section 3
the division algorithm for CA rules is presented. Section 4 contains the
commutation theorems that are our main result, together with examples
and analysis of several special cases. Section 5 considers the question of
idempotence; and also generalizes the work of Ito [1] by providing a means
of computing, for any two given operators X and 7', a third operator A
such that if A exists TX = (A + X)T. In section 6 the present results are
compared to work that has been done on the commuting block map problem.

2. Operator formalism

Let E represent the automata state space. Then every CA rule can be
naturally represented as an operator () : F — E. Denote this automaton
(Q,E). If a one-dimensional rule is such that the value in cell ¢ at time
t + 1 is determined only on the basis of the values in cells ¢ = ¢ — 1, 4,
and 7 + 1 at time ¢, then the automaton follows a nearest-neighbor rule. In
general, the same symbol will be used to denote both a rule and the associated
operator. For nearest-neighbor rules (and other three-site rules) we define
a set of eight nonadditive operators on E that correspond to the automata
labeled 128, 64, 32, 16, 8, 4, 2, and 1 in Wolfram’s notation [12]. Since a
site mapping to 1 under one of these operators also maps to 0 under the
remaining seven, there is no interference, and every operator that represents
a nearest-neighbor rule over Z, can be uniquely expressed as a direct sum
of these eight operators. That is, these operators provide a basis for the
nonlinear algebra of operators defined by the set of nearest-neighbor rules
over Zy. Expression of an operator @ in terms of these basis operators will
be called the canonical representation of Q.

To determine the canonical representation of an operator its numeric
label is written in powers of 2 and the appropriate basis operators are sub-
stituted. Noting that the set of eight neighborhoods {000, 001,010,011, 100,
101,110,111} are listed in ascending numeric order in Wolfram’s labeling
scheme, we can represent @) by an eight-digit binary number in which each
digit is the coefficient of the corresponding basis operator. That is, the ab-
stract numeric label of a given rule as introduced by Wolfram can also be
considered a listing of coeflicients for a “vector” representation of the oper-
ator defined by this rule.

A canonical representation can be added with coefficients reduced mod(2).
Rule 28, for example, is given by (00011100), and rule 172 by (10101100).
The sum of these two rules is (10110000), which is rule 176.

This formalism generalizes immediately to arbitrary neighborhood sizes.
One writes out the neighborhood list in ascending numeric order and di-
rectly obtains the operator representation of any given rule in terms of its
decomposition over the canonical set of basis operators.

Suppose that a rule with operator representation @ is defined for neigh-
borhoods containing & cells. The generic k-cell neighborhood can be written
as iy ...i. @ can be extended to an operator Q™, defined for neighborhoods
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00 01 10 11
To T1 X9 I3

000 001 010 011 100 101 110 111
qo q1 q2 qs g4 ds d6 qr

Figure 1: Wolfram labels for two- and three-site rules.

containing k + m cells, by mapping each 7; ... 17 to the set {y; ...y, 1 ...
2 Zmer | Y1 Yr21 e Zmer = 0...0,...,1...1}, reordering so that the
k+m neighborhood set so generated is arranged in ascending numeric order.
The component representation of Q% will have a 1 for every neighborhood
Y1 Ypll .- 9k21 - - - Zm—r, in which the representation of @ has a 1 for iy ...,
and a 0 otherwise.

With this construction, if 7, is the designated site for which 4y ... is the
neighborhood, then y; ... %91 ... 921 . .. Zm_r Will be neighborhoods for i, as
well. If it is required to consider y; ... ¥,01 ... %21 - . . Zm—r as the neighbor-
hood of a different site, this can be accomplished by multiplying @+ by an
appropriate shift operator. A k-site rule @ will have 2F components. Figure
1 shows the component representation for two- and three-site rules. Note
that the base 10 form of the neighborhood, considered as a binary number,
provides the index for the corresponding component of the rule.

For example, if k = 2, the neighborhood list is 00, 01, 10, 11. Suppose that
these are considered neighborhoods of the first site. This will be denoted by
underlining the designated site: 00,01, 10,11. The rule defined in component
form by @ = (0110) extends to a rule @ on the three-site neighborhoods
given by 00 — 000,001; 01 — 010,011; 10 — 100,101; 11 — 110,111. Thus
Q* = (00111100). Note, however, that although Q% is defined on three-site
neighborhoods, it is a left-justified rule rather than a nearest-neighbor rule.
The nearest-neighbor rule corresponding to Q" is ¢Q*, where o is the left
shift operator. Since all CA rules commute with shifts this is a technical
point only.

Lemma 1. Let A and B be m-site rules and let X be a k-site rule, k > m.
Then

1. (A+ B)t = At + B*, where extension is to m + r sites.

2. ATX = (AX)"T and XAt = (X A)*t, where extension of A is to m +r
sites and extensions of AX and XA are to (k+m — 1) + r sites.

3. Division of CA rules

If @ and X and given CA rules a simple procedure allows determination
of rules A and R such that @ = AX + R [10]. This division algorithm
will be illustrated for the simplest case in which @ is a three-site nearest-
neighbor rule and X is a two-site rule. The neighborhoods for X will be
taken as having the structure {s;s;4+1}, although it is equally possible to
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000 oo ao.’E:) + asxo
VPN & / Y g
001 ToZ1 gy =} a1Tyxy -+ A2TpTy + asToxy
010 212 apTYTh + a1 T2 + asx1TH + azT1L2
F ol / !
011 123 QT T3 + A1T7T3 + Q221 X3 + A3T1T3
100 5 mze B apzh + a1zhTo + agZath + a3Tox
240 0 12 9 1 /2 0 242 9 34240
101 ToTq ApToT] + A1T5T1 + AoTaT] + A3T2T1
110 T3To ApTHTY + A1 X452 + AxT3ThH + A3T3To
111 T3T3 CL()(L‘% + azxs3

Figure 2: Mapping of three-site neighborhoods under AX.

consider {s;_1, s;} neighborhoods and the operator A will, in fact, need to
be a rule with this neighborhood structure. (The reason is that a three-site
neighborhood {s;_1, $;8;+1} is covered by {s;_1,s;} and {s;, sit1}.)

Applying the operator designated X = (zoz1z273) to the list of three-
site neighborhoods shows how these neighborhoods map under X. This is
indicated in the first two columns of Figure 2.

We now look for a two-site rule A with neighborhoods {s;_1,s;} such
that @ = AX + R, where R is a nearest-neighbor rule that is, in some sense,
as small as possible. Taking A = (agajasas) and setting z; = 1 — z;, the
third column of Figure 2 indicates the action of AX on the set of three-site
neighborhoods. The expressions in this column are the simplest algebraic
combinations of the coefficients of A and X that yield the value of AX
acting on each of the three-site neighborhoods.

The idea is to choose the a; so the third column of Figure 2 fits as closely
as possible to @ = (¢0¢19293G49596G7). To do this note that the third column
in Figure 2 can be written as a matrix product XA, where

1'6 0 0 Zo

TOTY  XTET1  Toly  Toli

ag ThTh T T2 T ITh  T1Zo

A | @ X — av:lxé lescg mlx% 123
[¢D) Ty ToZo T2Xy T2Xo

as ThE] xhT1 Zoxl  zam

THTH  THTo  T3TH  T3To

xé 0 0 I3

Taking Q as the column vector with components given by (gog1¢293¢a
G59647), consider the equation XA = Q. By construction each row of X
contains only a single 1. Therefore, if ¢; is the ith column vector of X and
cf is its transpose, then ¢} % ¢; = n;6;;, where §;; is the Kronecker delta and
n; is the number of 1s contained in c¢;. Multiplying XA = Q on both sides
by X7 yields the set of equations

T

where @; = ¢; - Q is the number of 1s that ¢; and Q have in common.
The algorithm for the choice of the a; and the remainder R is as follows:
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1. If Q; =0, set a; = 0.
2. Ifn; =Q; #0, set a; = 1.
3. Ifny # Q; # 0, then

(a) If @Q; < n;/2, set a; = 0.
(b) If Q; > ni/2, set a; = 1.

4. Determine the rule R from the labeling by R = @ + AX mod (2).

This algorithm minimizes R in the sense that the binary label for R contains
the smallest possible number of 1s.

Extension to the case in which @ is defined for k-site neighborhoods and
X for m-site neighborhoods is simply a matter of defining the appropriate
X matrix. In this case X will have 2* rows and 2¥~™*! columns. The rows
will be labeled by @-neighborhoods, listed in ascending numeric order, and
columns by A-neighborhoods similarly listed. For 0 < i < 2F, 0 < j <
2k=m+1 the generic term of X is

Xij=axp Ty, (3.2)

Taking the binary expression of the index j as jo ... jr—m, We set 2} = z;, if
Js is 1 and equal to z;_ if js is 0.

For 0 < s < k —m, the is’s are given by

iy = [1/257*"™] mod (2™) (3.3)

where [z] denotes the largest integer less than or equal to z.

4. Commutation of CA rules

Derivation of the commutation equations requires extensive use of both the
base 10 and binary forms of rule components and indices. Our general nota-
tion will be that a single symbol—for example, i, 7, z, a, and so forth—will
denote that the term represented is taken in base 10. The binary form will
be shown by indication of each digit. For example, if an index is written
J, it is understood to be in base 10. But j = jo...Ji is in base 2 with j,
indicating the coefficient of 2F~5-1.

Let A and X be two k-site rules with X given. The commutator AX +X A
is denoted [A, X]. (Note that a plus sign is used here since these rules are
defined over Z,.) The condition [A, X] = 0 can be expressed in terms of
the matrices X and A as defined in the previous section by XA = AX.
This yields a set of 22*~! equations for components (ag .. .asx_;) of A. For
1 = 1igiy ...1,_1 the ith equation in this set will have the form

/ / / / 7 / /
Tigiy -+ - Ty T4, G0 + L30Ty - Ty Ty 01+

+ LTy - . Ty, T4, ok = (same, x and a exchanged)
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Now consider the coefficient of a, in the term on the left. This coefficient
comes from the rth column of the X matrix, and the component z;, in this
term will be prime or unprime as r, (the coefficient of 2¥75=! in the binary
form of r) is 0 (primed) or 1 (unprimed).

This observation allows the equation to be written as

o L..1 k—1

> aTﬁ(1+Ts+Iis): > oz [[A+ri+a) (4.1)

r=0...0 5=0 r=0...0 s=0

where the binary form of r is r¢71 . .. 7x_1, the sum under the product is taken
mod(2), and each i; is

i = {#} mod (2) (4.2)

We now prove a result that allows Equation (4.1) to be transformed into
a more useful form.

Theorem 1.

Ll

k1
> a [J(1+re + )

r=0...0 5=0

Tl 2k _np—1 B
. 1-ng . 1—ng g 28 —m—1
= E 'ri() Iik_l E < r Gy

n=0...0 =0

(4.9)

in which n has binary form ng...ng—, and (;;) indicates the (m + 1)st

entry in the nth row of the mod(2) Pascal triangle.

Proof. We prove this result by showing that for all 0 < r < 2% — 1 the
coefficients of a, are the same on both sides of this equation. For a given
value of r define two subsets of 0,...,k — 1 by Ry = {s | rs = 0} and
Ry = {s|rs = 1}. Then the left side of Equation (4.3) has the form

ar [] 2 JI (1 +2s)

SERy sC€Ry

Thus the coefficient of a, consists of a sum over all products of the z; ’s
containing the product over R; as a factor.

On the right, for the same fixed value of r, we have a, appearing for
each n value such that r < 2¥ —n — 1. This condition selects n values that
satisfy n < 28 —r — 1. If n = 0...0 we have a single term Tig -+ - Tiy_y, While
n = 2F —r — 1 gives the term [ cp, #:;,. This last term follows because the
binary expression of 2* — 1 consists entirely of 1s so that the binary form
of 28 —r — 1 has Os where the binary form of 7 has 1s, and 1s at all other
positions.

Now suppose that n = 28 — 1 — (r +b) for 0 < b < 28 —r — 1. Then

we are considering the binary coefficients (Tj:b), and these satisfy the
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condition that they are 0 if the binary forms of r and b have a 1 in the same
position, and are 1 otherwise. This is a consequence of a theorem due to
Kummer [13], which states that the exponent of 2 in the prime factorization of

<TZ) (asterisk denotes coefficients taken mod(10)) is equal to the number
of borrows required in the binary subtraction n — m. Application of this
result to ( " ;r b) indicates that this exponent is the number of borrows in

the binary subtraction of (r 4 b) — r, which is 0 (yielding an odd coefficient,
hence equal to 1 mod (2)) if and only if the binary form of r 4+ b has a 1
in each position in which the binary form of r has a 1. Equivalently, the
binary forms of 7 and b do not have a 1 in the same positions. This means
that the binary form of n = 2¥ — 1 — (r + b) has Os in all places where r
has 1s. Then, as b ranges over its set of possible values, we find Os in all
possible combinations of the remaining digits of n. Thus the coefficient of
a, on the right of Equation (4.2) consists of all possible products of the z;,’s
that contain [[,cg, @i, as a factor, and that is the same as the coeflicient of
a, that appears on the left of Equation (4.3). Since this is true for all r, the
claimed result follows. B

Application of Equation (4.3) allows Equation (4.1) to be rewritten as

1.1 2k _n—1 k.
:El no zlkrlbkl Z (2 ;l l)ar
=0...0 r=0 (44)

2k _p—1 B
1-ng 1 —TMg—1 2 —n—1
= S aae Y (P

n=0...0 =0

;

From the symmetries of the Pascal triangle [14] we know that

2k —p—1\ < 2k—n—1
7 T\2P—n—r-—1
and with this substitution, and an interchange of summations, the left side
of Equation (4.4) may be written as

ok_q 2k _p—1 Qk . Lro 1erps L6
> an z;) ok _ gy 1) Tio Ty (4.5)

For fixed n we now consider the coefficient of a,, in this summation. Note
that the summation is along the (n + 1)st diagonal of the mod(2) Pascal
triangle, beginning at the (2% — 1)st row. Note also that it is a property of
the mod (2) Pascal triangle that this segment of the (n+1)st diagonal equals
the (2% —n — 1)st row [14], and thus has the same symmetry properties as
this row. In particular, it contains an even number of 1s unless n = 2% — 1,
in which case it consists of a single 1.

Let (i) be the base 10 form of the binary number for which the z;, are
components, and suppose that elements of a fixed subset W of {z;,, ...,z _, }
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are equal to 1 and those not in W are equal to 0. Taking r in the second
sum of Equation (4.5) equal to 28 —n —1 yields a product term that contains
the fewest number of z; s for a given value of n. All other product terms
will contain this minimum term as a factor. Therefore if this term contains
any x;.’s not in W, the entire coefficient of a,, is automatically zero. Thus
we need only consider values of n for which all of the z;,’s contained in the
minimum product term are in W. If this minimum term is a product of all
members of W then all other terms in the 7 sum will contain an z;, not in
W and hence will be 0. Therefore the coefficient of a, for this case will be
1. Because n = z(i), it follows that for this maximal minimum product term
r=2—-n—1orn =2F—r —1; furthermore, the assumption that this
term exhausts W implies that in binary form r has a 1 entry for each z;, not
contained in the minimum product and a 0 entry for each z; contained in
the minimum product, while the binary form of 2 — 1 is all 1s. Thus the
binary form of n in this case has a 1 in the sth position if and only if z;, is
contained in W.

Finally, if the minimum product term consists of a product [J(U) over a
proper subset U of W, then the coefficient of a,, has the form

1.1
H(U) = Z xfgo .. xziq
tpit1=0:.0
where the z;,’s are drawn from W — U. But this sum is always over an even
number of terms, hence is 0 modulo 2. Combination of these results with
Equation (4.4) proves the following theorem.

Theorem 2. Let X = (xg...x9x_,) be a given k-site rule over Zy. The set
of all k-site rules A = (ag...ag_;) that commute with X is obtained by
solving the set of Diophantine equations

_ e 1-ng 1-ng—y P 2 —n—1 4.6
az(i) = Z aio "'aik~l Z - T, ( A )

n=0...0 r=0

for 0 < i < 2%~1 with i, defined in terms of i as before and z(i) the base 10
form of x;yx;, ... Tiy_,-

Note that the symmetry between the left and right sides of Equation (4.4)
means that Equation (4.6) can also be written in the form

(i) = Ta(i) (4.7)

However this form, although formally elegant, is computationally unhelpful
since if A is not given, there is no way to determine the values of a(i).

The result of Theorem 2 easily generalizes to include cases in which X
and A are defined over neighborhoods having different numbers of sites. All
that is required is to extend the rule defined for fewer sites until the number
of sites is equal.
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Theorem 3. Suppose that X is a k-site rule and A is an m-site rule, with
m < k. Let AT be the extension of A to a k-site rule. Then [A,X] = 0 if
and only if [AT, X] = 0.

As an example of how commutator sets are computed, consider the two-
site rule (0010). The possible values of i are given by 0, 1, 2, 3,4, 5, 6, and 7,
which, from Equation (4.2), give the possible combinations for z(i) as xozo,
ToT1, T1T2, T1T3, TaZy, Toli, T3Te, and xzzs. For X = (0010) these yield
x(i) values 0, 0, 1, 0, 2, 2, 1, and 0, and substitution into Equation (4.6)
produces the set of equations

To + ) + ag(To + 1) + X
xo + z2) + a1(zo + x1) + o
(

(

ag = agag(zo + 1 + 2 + x3) + ag )
)

2o + Za) + ap(To + 1) + Zo
)
)

)
ap = aga(To + 21 + Ty + x3) + o
a1 = a162(xo + 1 + o + 3) + a4
ap = a1a3(xo + 1 + 9 + 3) + @y

)

)

)

)

(

(

(

( xo + x2) + az(xg + x1) + o

as = asag(xo + 1 + T3 + 3) + a2

(

(

(

)

)

)

)
xg + Zo9) + (11(.73‘0 -+ 1‘1) + 2o
To + Iz) T al(.’IJo + 231) + xp
Tg + 22) + az(xo + 21) + 7o
Zo + xa) + az(zo + 1) + zo

Ay = Qo1 (Lo + 21 + T2 + 23) + Qg
a; = azazx(xo + 21 + 29 +23) + as
apg = aszas(rg + 1 + T2 +x3) + as

which, on substitution of the X values, simplify to

a0=0
a1a2=0
a1(1 + 0.3) = 0

ay = 0,3(1 B a-z)

It is easy to determine that the solution set of these equations is {(0000),
(0010), (0101), (0011)}. Thus these are the only rules that commute with
(0010). By extending to three-site neighborhoods we obtain (0010);} =
(00001100) and (0010);" = (00100010) where in the first case, as indicated by
subscripts, the two-site neighborhoods have been extended on the right and
in the second case they have been extended on the left. For both of these
extensions Equations (4.6) are the same. It turns out that these equations
divide naturally into two sets. The first defines values of some of the a;, while
the second are constraints:

1. ap=0
a1 = ag(l + ag) = a7(1 + agp)
as = ag(l + as) = ag(1 + as)
ag = as(1 + as)

2. a1a9 = a1a4 = G204 = aoaz = 0
a1(14+a3)=0
a3(1 =T CL7) =0
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(0000) '—% (00000000)
(0010) iﬁ (00100010)
(00001100)

(0101) (01010101)
=3 (00110011)

(0011) =———(00001111)
(00100011)

(00001110)
(01010001)

Figure 3: Two- and three-site commutators of (0010).

It is not particularly difficult to compute the solution set for these equa-
tions, or to see that all but the last of the equations in the second set are
automatically satisfied as a result of the first set.

The full solution set contains right and left extensions of all two-site rules
that commute with (0010) as well as three additional members. It must be
the case that the full set contains contains both right and left shifts, the
identity, and both right and left extensions of (0010). This is indicated in
Figure 3 with labeled arrows indicating right and left extensions. Note that
(0101); = (0011);".

There are several special cases of Equation (4.6) that merit consideration.

Definitions

1. If the components of an operator X satisfy ;, or—r = z;, then X is said
to be 28" periodic.

2. If the components of X satisfy z; oc-» = 1 4+ x;, then X is said to be
2F=7 antiperiodic.
Lemma 2. If X is 2¥=" antiperiodic for r > 1, then X is 28"+ periodic.

Theorem 4. For —r < s < k —r — 1 the shift o° is 28-7=~1 antiperiodic.

Theorem 5. Let X be 2™ periodic. Then in Equation (4.6)

no:nlz--~:nm_1:1

Proof. The z,’s satisfy z, ot-m = x5 and the sum over s in Equation (4.6)
has coefficients drawn from the (2% — 7 — 1)st row of the mod(2) Pascal
triangle. The self-similar structure of this triangle is well known (e.g., see
[14]). By the symmetry of this figure, so long as 28 —r — 1 > 2F™ — 1,
each component z, of X with a nonzero coefficient in Equation (4.6) will be
matched with a set of components {z, 4or-m }, also with nonzero coefficients,
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where d is even. Therefore the only terms contributing to the right-hand side
of (4.6) will be those that have 28 —r — 1 < 2¥=™ — 1. But

2Ic _ Qk—m - kil 28

s=k—m
so that
k—1 k—1
n= Zn52k7371 > Z 95
s=0 s=k—m
meaning that ng =n; =--- =n,_1 = 1, at least. i

Theorem 6. If X is 2¥~! antiperiodic then Equations (4.6) become

s 1— 2% ]
Qg () = Ay + Z a}l'”l P aikﬁnlk_] ( # ) Ty (48)
=0
Proof. The proof is similar to that of Theorem 5. If r < 2¢1 every
contribution to the sum over z, in Equation (4.6) will be of the form z, +
(1+ z,) = 1; and, with a single exception, there will be an even number of
1s by the 2! antiperiodic condition.
The only exception to this is the term a;,(zo + Zox-1) = a;,. Therefore
the sum over the z, can give no contribution except for a;, unless r > k=1
but this means that ng = 1. 0

5. Ito relations and idempotence

In a very nice paper Ito [1] carried out a study of the three-site rules 18 and
126. He was attracted to this study because the state transition diagrams
of these two rules are remarkably similar. In the present formalism this
similarity is expressed in terms of the existence of a third rule, rule 252. If
X,Y, and T are taken as the operator representations of rules 18, 126, and
252, respectively, then these operators satisfy the equation TX = YT [6].
More generally, rules X and Y will be said to be Ito related via T if there is
a T such that this equation holds.

Theorem 7. For given X and T there exists a Y such that X andY are Ito
related via T if and only if T | [X, T, that is, T must divide the commutator
of X and T.

Proof. If there is a Y such that TX = YT, then XT + [X,T] = YT, hence
[X,T] = (X+Y)T. On the other hand, if T' | [X, T, then there is an A such
that [X,T] = AT. Thus XT +TX = AT or TX = (X + A)T, and we take
Y=X+A1

The equation [X,T] = AT can be written in a form similar to Equation
(4.4). Since T' and X are given, however, it is easier to use the compact form
of Equation (4.7). The same arguments that led to Equation (4.6) then yield
the following theorem.
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Theorem 8. Let X and T be given k-site rules. Then there exists an A
such that X and Y = A+ X are Ito related via T if and only if a solution
exists for the set of equations

Qi) = Ty(s) + o) (5.1)

As an example, let X = (01001000) (rule 18) and 7' = (00111111) (rule
252). Then, recalling that the addition in Equation (5.1) is mod(2), we
obtain the set of equations

ap=xg+to=x9+t1 =0

ag=21+t=0

a3 =23+ ts=x3+ta=x3+1ts=1

ag=T4+ts=24+1t5=0 (5.2)
as =25+ tg=1

ag=2g+ta=a6+1t3=1

ar=ar+tg=z7+t1 =0

Hence A = (00a310110). If ay = 1 this gives X + A = (01111110), which
is rule 126, the case studied by Ito. If a = 0 then X + A = (01011110),
indicating that rule 122 is also Ito related to rule 18 via rule 252.

Another question of some interest is whether k-site operators are idem-
potent. In the formalism of this paper this reduces to determining solutions
to the equation X? = X+, where the term on the right is appropriately ex-
tended. A technicality is involved, however, since it is necessary to specify
which site of a neighborhood the rule maps the neighborhood to. This can
be illustrated by the following example. For a two-site rule with neighbor-
hoods 00, 01, 10, and 11 the identity operator is (0011). On the other hand,
if the neighborhoods are 00, 01, 10, and 11 the identity is (0101). In or-
der to consider for these operators the equation X? = X, we first extend
them on the right to three-site neighborhoods (0011)* = (00001111) and
(0101)* = (01010101). The first of these is the identity with respect to the
neighborhoods zyz and the second with respect to the neighborhoods zyz.
The nearest-neighborhood identity is given by (0011)(0101) = (00110011).
This indicates that it is important to keep track of the designated site to
which neighborhoods map.

Let X be a k-site operator such that p;(t + 1) = X (fiery -+, fitk—r—1)-
Then X? will be a (2k — 1)-site operator defined by u;(t+1) = X?(u;i 2, .. .,
Pita(k—r—1y). Therefore X must also be a 2k — 1 site operator defined by
wi(t +1) = Xt (pior, . ., fisok—r—1))- If the neighborhood listing for X+
is to be maintained in ascending numeric order then the X neighborhoods
must be extended as zy...Z,y1...Yr21 ... 2k—r—1, Where y; ...yr indicates
the original X neighborhood. The idempotence condition is then given by
the following theorem.
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Theorem 9. Let q, 0 < g < 2k — 1 indicate the designated site to which an
operator X? maps, where X is a k-site operator. Then X is idempotent if
and only if

11 3 2k—n—1 ok _pm_1
2= 3 g 3 (T T w (5.3)

n=0...0 r=0

As an example consider the k& = 2 case with left-justified neighborhoods
2z extending to neighborhoods zzy. Equation (5.3) then becomes

2o = ToZ3
xo = 21 + To(Z1 + Z2) + 2oz (T2 + T3)

21 = zo(1 + z1)(1 + z2) + 212025

1 = xo(1 + 1) (1 + z3) + z1 (22 + 23) + 212273 (5.4)
0= zo(z1 + 22 + 122 + T2T3)

0=xo(l 4+ z1)(1 + x3) + 21 + 12273

x3 = xo(1 + x2)(1 + z3) + xa(21 + T3) + T12223

0 = zo(1 4 z3)

After some computation the complete set of two-site idempotent oper-
ators with neighborhoods zz is determined to be {(0000), (0010), (0011),
(1011),(1111)}. Similarly, the set of two-site idempotent operators with
neighborhoods zz is {(0000), (0100), (0101), (1101), (1111)}.

6. The commuting block map problem

A length-n string of numbers taken from Z, is called an n-block. If E, is
the set of all n-blocks then an n-block map is a function f : E, — Zs.
Block maps are of interest in the study of Bernoulli shift systems as a result
of a theorem due to Curtis, Hedlund, and Lyndon [15], which asserts that
every endomorphism of such a system is shift equivalent to a block map.
In paticular, the problem of finding commuting endomorphisms of Bernoulli
systems reduces to the problem of finding commuting block maps. Thus
there has been considerable work toward solution of the following question.
Let f be a given block map. What is the set C(f) of all block maps that
commute with f? This is termed the commuting block map problem [2-4].
Because every k-site CA rule is shift equivalent to a k-block map (indeed, a
k-block map is just a left-justified k-site CA) our Equation (4.6) provides a
computational means of addressing this problem. That is, given f we find
an associated CA rule X and solve Equation (4.6).

Block maps have a naturally defined multinomial expression f(z1, ..., 2x).
The next theorem relates this expression to the component form of the cor-
responding CA rule.

Theorem 10. Let f(z1,...,2;) be a k-block map, and let z be the base-10
form of z; ...z,. The corresponding CA rule X is given by designating the
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site to which neighborhoods map, and setting x, = f(z1,...,2x). On the
other hand, if X = (xo,...,Z_1) In component form, then it defines the
block map f(z1,...,2x) by

1.1 - ok _r—1 ok _p_q
flzr...ozi) = Z By Z ( s > T (6.1)
r=0...0 s=0

In references [2-4] two subsets of the set of all block maps are defined:
those that are linear and those that are linear in the first variable. In addition,
reference [2] considers cases in which a block map has the form

k
f(Zl, s & ,Zk) =25+ H((S'b _ Zl) 6; € Zo (62)
i=1
while references [3, 4] generalize this to block maps of the form
k
f(Zb cee ka) =29+ H((SZ — qu') 62 € Zo (63)
i=1

The following definitions are taken from reference [2].
Definitions

3. A k-block map f is linear if its multinomial expression has the form

k
fla, . z) = ao—l—Zaizi, (6.4)
=1

If ap = 0, f is homogeneous, and if ag = 1, f is inhomogeneous.

4. A k-block map f is linear in the first variable if there is a ¢ such that
flz,.m) =2+ g(2, .., 2).

5. A linear k-block map f is even or odd accordingly as an even or odd
number of the a; in Equation (6.4) are equal to 1.

Theorem 11. (Reference [2]) For k > 2, a k-block f is linear in the first
variable if and only if f(0B) # f(1B) for all (k — 1)-blocks B.

Comparison with definition 2 immediately yields the following corollary.

Corollary. A k-block map is linear in the first variable if and only if the
associated CA operator X is 251 antiperiodic.

Theorem 12. A k-block map is linear if and only if there is a non-negative
integer s < k such that the associated CA rule has the form

k
Xy =apl + Z apot ST

r=1
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Remark. The number s is introduced to compensate for the location of the
designated CA mapping site that appears in the sth position from the left in
the k-block. If X is left-justified then s = 0.

In reference [2] a complete characterization is given for C(f) in the case
of linear f. Using the formalism of this paper it’is a simple matter to reprove
this theorem in terms of linear CA rules (see Theorem 13).

Theorem 13. Let W, X, Y, and Z be CA rules generated by linear k-block
maps. Let W and X be homogeneous, and let Y and Z be inhomogeneous.
Then

1. [W,X] =0,

2. [X,Y] =0 if and only if X is odd, and

3. [Y,Z] =0 if and only if Y and Z are both even or both odd.

Proof. By Theorem 11 we can write

W = w;o? X = z;0°
Y =143 yot Z=1+73 20"

Direct computation now shows that [W, X] = 0, and that

[X= Y] = (1 +2Ii)1
Y. Zl=(1+XZw)1+(1+Zz)1

The theorem follows immediately. B

Theorem 14. Let f be a k-block map of the form of Equation (6.2) with
81 ... 06y fixed, and let Xy be the CA operator associated with f.

1. If 29 = 0, the operator X is the canonical basis operator that maps the
k-site neighborhood 1...1 4 61...6; to 1 and all other neighborhoods
to 0.

2. If zg =1, then Xy is 1 plus the basis operator of part (1).

Proof. If zy = 0, the product in Equation (6.2) is also 0 unless z; + 6; = 1
for all . Hence the only neighborhood that maps to 1 is that for which
If zp = 1, then X; maps every neighborhood to 1 except those defined by

There is a similar result for the more general case in which f is an mk-
block map as defined in Equation (6.2).
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Theorem 15. Let f be the mk-block map defined by Equation (6.3) with
01... 0y fixed. If zy = 0 the operator Xy is a sum of 2k(m=1) of the canonical
basis operators. If zy = 1, then X will be 1 plus this sum. In addition, if
29 = 0, then the numerical label for X is given by

k-1 2m-1

2¢(6) H Z 22""+ls

r=0 s=0
where

k

6(8) = D (1 + &;)2k=m

i=1

Proof. If 2y = 0, then X will map 2* of the possible 2™* neighborhoods to
1 and the remainder to 0. Hence X; will be a sum of 2™*~* basis operators.
If zo =1, Xy will be 1 plus this sum. Further, the neighborhoods that map
to 1 will be of the form

i 2 - Im_l(l e 51)Im+1 e mgm_l(l e (52).’,’62m+1 . ka_l(l + ék)

But the neighborhoods are listed in ascending numerical order so the number
of the basis operator corresponding to the numerical label of a neighborhood
2y ... Zmk is just 2°. Thus the number that labels Xy is

Z (@1 @m—1(1+61)Tm+1..-Tkm—1(1+6k))

where n(zy ... Zm-1(14+61)Zmt1 - - - Thm—1(1 + 6k)) is the base-10 value of the
argument, and the sum is over

O...OS1‘1...1‘,”_11‘m+1...mzm_1$2m+1...$km_1 < 1...1

Evaluation of this sum yields the expression for the numerical label of X;. B
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