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Abstract. Population diversity loss is a major obstacle in apply-
ing genetic algorithms to optimization problems, which often results
in population degeneration and premature convergence. The diver-
sity changes caused by three natural-selection strategies—comparing
new offspring to the least-fit specimen in the population, to one of
the parents, and to the most similar specimen in the population—are
analyzed theoretically and demonstrated experimentally. Using Ham-
ming distances, the changes in diversity induced by these strategies
are analyzed for an evolving population of binary strings. The results
of the analysis show that the strategy of comparing new offspring to
the most similar specimen (selecting the fitter of the two) causes the
smallest diversity loss.

To demonstrate the efficiency of the various methods we examine
the population diversity of neural nets trained to perform certain tasks
using a genetic algorithm. The functional behavior of neurons, rep-
resented by the internal representations of each neuron for the entire
training set, is used to derive the functional similarity of every pair of
neurons and to evaluate the similarity of every pair of nets in a popu-
lation of neural networks. Using a measure of the functional behavior
of neurons, the changes in diversity are demonstrated for evolving
populations of nets trained on the Parity data set. The experimen-
tal results demonstrate the success of the third strategy in preserving
population diversity throughout generations: overcoming obstacles in
the course of training and preventing population degeneration, and
thus providing more successful and reliable learning.
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1. Introduction

Genetic algorithms are currently used for coping with difficult optimization
problems. By imitating the principles of survival and evolution from nature,
genetic algorithms process an ensemble of solution proposals (called popu-
lations), gradually enhancing the average performance while attempting to
progress toward the global optimum. In the course of genetic evolution the
population might undergo an undesired process of diversity loss, constantly
decreasing the variety of its specimens. This loss is caused by highly fit spec-
imens gradually overrunning the entire population, resulting in a complete
population degeneration. When the problem being addressed has a single
maximum point, higher fitness directly indicates a better solution proposal,
and the population is likely to degenerate to the global optimum. However,
most nontrivial optimization problems have a large number of local maxima
(they are often called “deceptive problems”), and the genetic process degen-
erates in many cases to a local optimum instead of the global one [1, 2, 3].
In artificial genetic evolution, as well as in nature, more-fit specimens are
given greater opportunities to reproduce. This selective pressure [1, 17] is
counterbalanced by mutations and random crossover operations that add
stochasticity to the evolution of the population. Population diversity should
be preserved to prevent degeneration while maintaining the general trend
of the evolution and some sort of selective pressure. The amount of diver-
sity required is similar to the annealing procedure in simulated annealing
optimization algorithms, and is likely to vary from problem to problem; the
harder the optimization problem, the larger the diversity required. Examin-
ing end results in artificial genetic evolution, we obviously have no interest
in specimen duplication since we are interested only in the fittest specimen.
Thus there is no need for the entire population to degenerate to the global
optimum, and the evolutionary process can successfully end without losing
the population diversity.

Preserving population diversity is essential for locating a global opti-
mum, but is also crucial for coping with time-varying problems and tasks
in which more than a single solution is required (locating eigenvalues, reso-
nance modes, etc.). In nature, population diversity is maintained as evident
by the variety of species and specimens. Various mechanisms explain how, in
spite of Darwin’s “survival of the fittest” law, less-fit specimen characteristics
survive and variety is maintained [4, 5]:

1. The population is not in equilibrium, and less-fit specimens have not
been driven out.

2. The variation of environmental conditions in space and time causes
different species to adapt to different environments. Migration of spec-
imens between the various environments results in an equilibrium state
where the various species thrive.
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3. Selection is not done with respect to the entire population, but to the
subpopulations. The subpopulation is characterized by its need for a
common resource, for which its individuals must compete.

4. Mutations and random fluctuations applied during reproduction intro-
duce new characteristics to the population.

These mechanisms, which preserve the diversity of species in nature,
have been integrated into artificial genetic algorithms in various ways. Ran-
dom mutations are applied to every new solution proposal in an attempt
to slow down degeneration and introduce new characteristics to the popula-
tion. Since mutations must be of limited extent (so that the genetic process
is not reduced into a meaningless random search process), they cannot pre-
vent degeneration but only slow it down. Additional methods for introducing
stochastic fluctuations during reproduction are inversion [6] and dynamic pa-
rameter encoding [7], which control the location and length of every encoded
feature.

A different approach was demonstrated by De Jong [8], who added a
crowding factor that affects the selection algorithm. For each new offspring
a small subset of the population is selected at random and the most similar
specimen in that subset is compared to the new offspring. Mauldin [9] pro-
posed a uniqueness measure that forced new offspring to maintain a minimal
distance from the most similar specimens, and experimentally demonstrated
the superiority of crowding, uniqueness, and their combinations with respect
to survival of the fittest and random-selection rules.

Coping with multimodal function optimizations requires selection rules
capable of maintaining independent subpopulations in specific niches of the
search space. The size of each subpopulation must be restricted to prevent
it from overrunning the entire population. In nature, if a particular sub-
population grew with no limit, it would consume all available environmental
resources, resulting in starvation and/or elimination of all specimens. Since
competition would arise within this subpopulation, its final size would be
determined by the equilibrium between the number of organisms and the
resources they consume. The sharing mechanism proposed by Goldberg and
Richardson [12] introduces artificial competition among similar specimens
by subtracting a penalty term from the fitness of every individual accord-
ing to the number and distance of its neighbors. This sharing mechanism
has successfully preserved the diversity of the entire population, prevented
the subpopulation from becoming oversized, and was extremely successful in
locating the various modes of the tested multimodal functions [13, 14, 15].

The use of genetic algorithms for neural net training is done in a variety
of methods where network weights and structure are encoded into artificial
“chromosomes” [16, 17, 18, 19]. Applying diversity-preserving methods such
as crowding, uniqueness, and sharing to those training methods is extremely
difficult, and often impossible, due to the problem of permutation [11]. The
problem of permutation arises from the fact that neurons that perform equiv-
alent tasks are located at different positions in the hidden layers, and are
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therefore encoded at different locations in the chromosomes. Comparing
pairs of chromosomes as they are arbitrarily ordered may produce meaning-
less random results and damage the performance of those processes responsi-
ble for maintaining the population diversity. To overcome that obstacle the
use of the functional behavior measure is proposed. This measure is capable
of scoring the functional and structural resemblance of nets having arbitrary
hidden neuron order and different sizes.

In this work we discuss the diversity changes caused by three natural-
selection strategies:

1. comparing new offspring to the least-fit specimen in the population;
2. comparing new offspring to one of the parents; and

3. comparing new offspring to the most similar specimen in the popula-
tion.

These three strategies are theoretically analyzed and experimentally exam-
ined in the following sections. Using Hamming distances between the new
offspring and the various specimens in the population, we discuss the effect
each natural-selection rule has on the diversity of binary string populations
and, for a population of neural networks, use the functional behavior of neu-
ron measure to apply the same natural-selection rules, then demonstrate and
monitor their performance.

2. Using Hamming distance for diversity analysis

For every pair of binary strings v; = (b%,...,b%) and v; = ®,... ,b0), where
b is equal to 0 or 1, the Hamming distance is defined by

H (v;,v;) Zb’ bl (1)

where @ signifies a binary “exclusive-or” operation. The normalized Ham-
ming distance is obtained by dividing the Hamming distance by the number
of bits n:

H(vi, v;)

ﬁ(vi,v]-) = 7

(2)
so that H(v;,v;) is limited to the interval [0,1]. Hamming distance is used
for grading the difference between binary strings that have an equal number
of bits. By calculating the normalized Hamming distance average, one can
estimate the diversity of a given set . of strings

D T 5 3 i) 2

where m is the defined set size and m(m — 1)/2 is the number of possible
string pairs in the set. All diversity values lie in the interval [0, 1].
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Figure 1: Normalized Hamming distance distribution for corresponding bit prob-
abilities of p = 0.5, p = 0.7, and p = 0.9. As the probability of corresponding
bits having equal value is increased, the mean value decreases and the distribu-
tion becomes narrower, indicating a reduced standard deviation and thus lower
diversity.

The Hamming distance distribution function P is easily derived (see [20]):

p(H:k):(Z>q’“p”—k k=0,...,n (4)

where p is the probability that corresponding bits of different strings have
equal value, ¢ = 1 — p is the probability of those bits being different, and

Z) is the number of different k-bit groups that could be selected from a

given n-bit string. The distribution in equation (4) is a binomial distribution
having expectancy (H) = ng and variance Var(/) = npq, and therefore the
normalized Hamming distance expectancy is (H) = ¢ and its variance is
Var(H) = pq. The effect of bit probability on the distribution of normalized
Hamming distance is illustrated in Figure 1 for probability values of p = 0.5,
p=0.7, and p = 0.9. As the odds of corresponding bits having equal value
increase, the mean value of the distribution is reduced and the distribution
becomes narrower, indicating a drop in the standard deviation and thus lower
diversity.

The effect of genetic reproduction and the natural-selection rule can now
be discussed using statistical tools. In every reproduction a pair of strings is
selected, statistically preferring those with higher scores (selective pressure [1,
17]), and a new offspring is created using random crossover. Let parent
strings be vy, = (B',...,0%) and vy, = (*,...,b%2), and the offspring
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string be vogs = (07", ..., 0P, b8, ..., bP2), where 7 is an arbitrary point of

crossover; mutations are neglected. Since r bits in v.g are identical to the

corresponding bits of v,,, and n — r bits are identical to the corresponding

bits of vp,, the resulting normalized Hamming distances expectancies are
(n—r1)q

<H(Up1u voffS)> = "

<£r(vpzavoﬂs)> ~ ﬁ <5>

n
If the new offspring is found to be more fit than an existing string in the set,
that string will be replaced by the new offspring, usually causing a diversity
drop for the entire set. The initial diversity estimation before the string
exchange, Dy, is computed according to equation (3). When the new offspring
Vot Teplaces a selected string v, the new diversity is Dgy1, so the change in
diversity is
1 m . -

AD — Dq+1 = Dq = m i:%,:#e [H(Ui, Uoﬂ"s) = H(Ui, Ue)] (6)
since all Hamming distances not involving v, and vegs remain unchanged
before and after the exchange. The diversity change expectancy is thus

m

> [(H i ve) — (H0)] )
( - 1)/2 1=1ie

It is assumed that population size is significantly larger than the string length

(m > n), and that there is no statistical dependence among strings in the

population, except between the offspring and its parents. Three cases for the

calculation of the diversity change expectancy are now discussed.

(AD) =

e The offspring replaces a randomly selected string from the
population. Since there is no statistical dependence between v, and
the rest of the population,

m
> <Hvz,ve> Z q=(m—1)q (8)
i=1,i#e i=1i#e
For vogs, a slightly different situation exists since there is a statistical
dependence with the two parents strings:

727; <]:[('Ui; vofrs)> = <I§T(vm,vogs)> + <[§[(vp2, Uoﬂs)>
i=1ie
+ f: <f_[(vi7 Uoffs)>
i=1,i#e,p1,p2
BT T 8

+
n s '
" i=1,i7e,p1,p2

q

:E”__n_r)_q+%+(m_3)q:(m—2)q 9)
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From equations (7), (8), and (9), the diversity change expectancy is

derived:
1
(AD) ~ e p— [(m —2)g — (m — 1)q]
N
 m(m—1) 0

where the negative sign indicates diversity loss.

e The offspring replaces one of its parents. Assuming that both
parents have equal chances of being replaced, the Hamming expectancy
of the surviving parent with the new offspring is the average of the two
expectancies in equation (5):

~ <H(Upl 5 Uoffs)> + <E[(Up27 Uoffs)>
2

<H(vp, vogs)> =

(n=r)qg | rq

AT R Jr LS. &

= a1 (11)
2 2

1 it <}~I(vi,ve)> remains the same as in equation (8), but vegs sta-

tistically depends on only one parent so that

i <H(Ui> 'Uoffs)> = <FI(UP, Uoffs)> a2 i <E[(vi: Uoﬂs)>

i=1,i#e i=1,i#e,p

+ > q=

i=1,ize,p

-(v-)

The diversity change expectancy is

~
~

+(m—2)gq (12)

[\OR =]
N[

(AD) ”m(m_l—l)/‘é [(m— g—)q—(m— 1)q
- _m(mq— 1) 13)

where the negative sign again indicates diversity loss.

e The offspring replaces the most similar string in the popula-
tion. The population is scanned and the string v, having the lowest
Hamming distance to the new offspring v.gs is found. If the new off-
spring is better, it will replace v.. Let s be the number of matching
bits in voss and v,. It is important to note that s > n/2 since v, could
be one of the parents if a more similar string cannot be found. In cal-
culating the diversity loss one must take into account the Hamming
distance expectancy of string v, with the two parent strings, since it
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is no longer possible to assume that they are statistically independent.
Uofts Nas r bits that are identical to vy, ; since s bits in v.gs are iden-
tical to corresponding bits in v,, the average number of identical bits
between v, and vy, is (s/n)r. For the same reasons the average number
of identical bits between v, and vy, is (s/n)(n—r), and the normalized
Hamming expectancies are

<I:I(Upuve)> ~ @;&;/ﬂ
)~ %ﬂnﬁr)q (14)

Din ite <P~I(vl Uoﬁs)> remains the same as in equation (9), and the sum
of terms involving v, is

i <ﬁ(vi,ve)> = <]Ef(vpl,ve)> + <1€I(vp2,ve)> + i <H(w,ve)>

i=1,ize i=1,ie,p1,p
n—(s/n)r n—(s/n)n—r i
onmlr (e R
s & i=1,ie,p1,p2
_n— (5/n)rq+ n—(s/n)(n—r) & (i~ 3
n q
n—s
=220+ (m~2)g (15)

The diversity change expectancy is

1 n—s
(AD>NM (m—2)g— (m —2)q —

q

_ k-8 2% (16)
n m(m—1)
Note that s has the range n/2 < s < n. When s = n/2 the result is
identical to the case when one of the parents is replaced, whereas for
s = n no diversity change takes place since a string in the population
is replaced by an identical one.

The lowest diversity change is obtained for this last case (equation (16)),
thus indicating the superiority of the method that compares every new off-
spring to the most similar string in the population and thus prevents string
duplications. In this discussion, statistical independence of all strings was
assumed. When diversity is not preserved, each generation produces more
dependent strings. Given a high rate of diversity loss, finite population size,
and a long evolutionary cycle, one can no longer neglect the effects of the
accumulation of similar strings on the population diversity. In this case one
cannot assume statistical independence, so diversity change approximations
are no longer valid and diversity collapses. The diversity loss predicted by
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our analysis (equations (10), (13), and (16)) is therefore replaced by a nonlin-
early increasing diversity loss that deteriorates as the population continues
to evolve.

Applying the proposed diversity-maintaining method to genetic algo-
rithms used for neural net training requires a new measure for scoring the
resemblance of nets and neurons with continuous output response. The Ham-
ming distances cannot be used in this case since continuous net parameters
are directly encoded into the population. The measure presented in this work
is based on the functional behavior operator [10, 11], described briefly in the
next section.

3. Evaluating net similarity using the
functional behavior of neurons

The “functional behavior” of a neuron describes how that neuron and its
corresponding sub-net respond when various input vectors are presented to
the net. The net is assumed to have no feedback connections. Each sub-net
is a part of the net starting at the input layer and ending at a single hidden or
output neuron that is the output neuron of the sub-net. The sub-net contains
all relevant neurons from previous layers and all interconnections that lead
to those neurons. Every sub-net realizes, therefore, a function f : ®* — & on
the input vectors, where n is the number of input neurons. This function is
defined as the sub-net response function. The output of the sub-net ending
at neuron i is represented by

st = fvi,. .., vn) (17)
where (v1,...,v,) represents the input vector.

A neuron’s functional behavior is defined as the vector of output values
generated for the entire set of input vectors:

B = (si,...,s;) (18)

where 7 is the neuron index, s§ is the output value of neuron ¢ when the input
vector indexed j is fed to the net, and p is the number of input vectors.

In order to compare different neurons and different functional behaviors,
the measure is normalized with respect to its overall norm E* = ¥7_, s;'-z:

B:<ﬁ@> (19)

The degree of matching between a pair of neurons 4; and 5 is defined by the
correlation of their corresponding normalized functional behaviors:

match(il,iz) = Bil . BiQ = i1 b2 (20)

1 p
el Z S8
This normalized matching factor lies in the interval [—1,1]. Its amplitude
determines how close is the behavior of the corresponding sub-nets, where a
negative sign stands for opposite response. It is important to note that for
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linearly dependent functional behavior vectors the matching factor is either
lor =1;

1 o
Vamm e P

match(i1, ig) giy _ogin = B" - B2 =
= Sign(a)

where a denotes the linear dependence.

Net similarity is evaluated by the average neuron matching according to
equation (20). Both nets are processed layer by layer starting with the first
hidden layer and ending with the output layer. For each neuron in the first
net, the most similar neuron in the other net is found and vice versa:

l
kaax ]match(nlj,nlk)}
e

l
Z max, ‘match(nu, n, L)'

T (S} +57)

i (N + N) 22)

match(nety, nety) =

where L is the number of hidden (and output) layers, N; the number of
neurons in layer [ of net 7, and nfrj is neuron j in layer [ of net i. The compu-
tational complexity of this calculation is approximately O (N?p), where N is
the average number of neurons in the hidden and output layers and p is the
number of training vectors.

This definition breaks down each net into its basic functional elements and
uses those elements to compare the nets’ functional structure, overcoming the
problem of hidden neuron location permutation. It is important to note that
nets may also have a different number of neurons in each layer, but must
have an equal number of layers. The choice of neurons that have maximal
matching factors permits multiple use of a single neuron. This does not affect
the integrity of the net comparison method since, when proper compensation
measures are taken, neurons may be duplicated (with their entire set of input
connections) without changing net performance (see [11]).

Following the diversity definition of equation (3), the diversity of a popu-
lation having m nets is defined by their functional distances dist(net;, net;) =
1 — match(net;, net;) to be:

1 m—1 m

D= mim 178 2 2, ot nt) .

Diversity value lies in the interval [0, 1].
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Figure 2: Functional distance distribution curves for genetic back propagation
training: using the natural-selection strategy of comparing new offspring to the
least-fit specimen. The rapid loss of diversity and population degeneration is ev-
ident, being caused by a single highly fit net that overruns the entire population.
(a) Population size 20. Rapid degeneration resulted with a functionally identical
population after only 120 generations. (b) Population size 40. After 290 genera-
tions most population specimens have become functionally identical. (c¢) Popula-
tion size 80. After 580 generations a highly fit specimen began overrunning the
population. However, before population had degenerated, a different, more “pow-
erful” specimen evolved, first slightly restoring diversity but then overrunning the
entire population, causing final degeneration at generation 850.
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Figure 3: Diversity curves for population sizes of 20, 40, and 80, where the natural-
selection strategy of comparing new offspring to the least-fit specimen has been
used. In all experiments the population underwent a complete degeneration after
120, 290, and 850 generations, respectively.

4. Experimental results

The performance of the three natural-selection strategies—comparing new
offspring to the least-fit specimen in the population, to one of the parents,
and to the most similar specimen in the population—is tested using the
Parity-7 data set. In this data set the net is trained to produce the parity
bit for a 7-bit binary string, that is, a +1 output whenever an odd number
of +1 bits are presented to the net and —1 otherwise. The data set contains
27 = 128 vectors, each representing 7 input bits and a single output bit. This
problem was chosen due to its multiple minima structure.

Using a hybrid genetic algorithm—back propagation training system (see
[11]), populations of 20, 40, and 80 nets were trained exhaustively. In every
generation a new offspring net was created by recombining pairs of nets from
the population. The offspring net was subjected to 50 training epochs, and
two pruning and retraining cycles, where retraining was also limited to 50
epochs. After retraining, the offspring net (vos) competed with a selected
net (ve) chosen from the population according to the tested strategy. Every
10 epochs the population diversity and the distribution of the net functional
distances were measured; the results are displayed in Figures 2-7.

In the first set of experiments the behavior of the training system was
examined when every new offspring was compared to the least-fit specimen
in the population. Figures 2(a), 2(b), and 2(c) display distribution curves
for population sizes of 20, 40, and 80 nets, respectively, and Figure 3 shows
the changes in diversity across generations. The 20-net population was the
first to degenerate, surviving only 120 generations before the entire popula-
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tion became functionally identical. The 40-net population did not survive
much longer, with final degeneration occurring after 290 generations. For
the 80-net population an interesting result was obtained, with the popula-
tion partially recovering from degeneration. This phenomenon was caused by
a highly fit specimen that overran the population after 580 generations; but
in the course of evolution a different, more “powerful” specimen was created,
causing a slight restoration of diversity (when population was composed of
two degenerated groups) until it too overran the entire population, causing fi-
nal degeneration at generation 850. These experiments indicate that a larger
population could survive longer (as was anticipated by equation (10)), but
no matter what size was selected, given enough time the population would
degenerate, terminating the evolutionary process and preventing further pop-
ulation enhancement.

In the second set of experiments the behavior of the training system was
examined when every new offspring was compared to one of its parents (se-
lected at random). Figures 4(a), 4(b), and 4(c) display distribution curves for
population sizes of 20, 40, and 80 nets, respectively, and Figure 5 shows the
changes in diversity across generations. For the three population sizes a slow
but steady loss of diversity is observed, with smaller populations suffering
higher loss rates. The number of functionally equivalent nets grows steadily,
as indicated by the accumulating peaks at zero distance on the distribution
curves. The diversity loss in this case is a continuous process, whereas in the
previous set of experiments it could be categorized as a deteriorating process
that ended with a final collapse.

The most interesting results were obtained when new offspring were com-
pared to the most similar specimens in the population. The entire population
was scanned in each generation, using equation (22) to compare all specimens
to the new offspring and to find the most similar one. If the new offspring
was found to be more fit, it was put into the population instead of the most
similar specimen; otherwise it was discarded. Figures 6(a), 6(b), and 6(c)
display distribution curves for population sizes of 20, 40, and 80 nets, re-
spectively, and Figure 7 shows the changes in diversity across generations.
Only minor loss of diversity is observed for the smallest population, while
the other two remain intact across generations. It is important to note that
the measures taken to preserve the diversity did not damage the speed of
learning (as measured by the performance of the most-fit net) with respect
to the other strategies, and the quality of genetic search improved, resulting
in smaller and more efficient final nets.

This experiment was repeated using a simplified net comparison method,
comparing nets only by matching the functional behavior of their output
neurons (equation (20)) instead of using equation (22) to compare the entire
nets. The computational complexity of every comparison in this method is
O (Noutp) where Ngyt is the number of output neurons and p is the number
of training vectors. It is significantly smaller than the complexity of equa-
tion (22) (O (N?p)). The simplified method produced similar results and
preserved population diversity as well.
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Figure 4: Functional distance distribution curves for genetic back propagation
training: using the natural-selection strategy of comparing new offspring to one
of the parents (selected at random). A slow but steady loss of diversity is seen
across generations, and the accumulating peaks at zero distance indicate the grow-
ing number of duplicated specimens in the population. (a) Population size 20.
(b) Population size 40. (c¢) Population size 80.

The benefits of diversity preservation come into effect when training is
done in the presence of local maxima. In such cases, nonpreserving training
may cause population degeneration in the vicinity of one of those maxima,
while the preserving training may continue to progress across generations.
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Figure 5: Diversity curves for population sizes of 20, 40, and 80, where the natural-
selection strategy of comparing every new offspring to one of the parents (selected
at random) has been used. In all experiments a slow but steady loss of diversity
is seen across generations, where smaller populations suffer higher loss rates.

Using the Parity-7 data set, such an experiment was performed. Forty of the
128 vectors were used for back propagation training, and the entire set of 128
vectors was used for fitness determination for each offspring net. Experiments
indicated that this setup diverts the genetic training into a local maximum in
the form of a very simple net, having a single hidden neuron, that responds
with correct output polarities to 114 of the 128 training vectors (89%). Note
that this setup was chosen to demonstrate the performance of the genetic
training in the presence of highly influential local maxima and that this
configuration is not the most efficient one for training nets to solve a Parity
problem.

The performance of the three natural-selection strategies was examined
by performing 300 different genetic-back propagation trainings, 100 for each
strategy. In each training a population of 20 nets was evolved, and the perfor-
mance of the best net in the population was tested after 250, 500, 1000, and
2000 generations. The statistical results are displayed in Tables 1(a)-1(c).
Each row in the three tables represents the distribution of best net perfor-
mance after the 100 populations had evolved for the corresponding number
of generations. When new offspring were compared to the least-fit specimen
in the population (Table 1(a)), 89 of the 100 trained populations were still
trapped at the local maximum of 89%. Since diversity was not preserved,
only a small percentage (9%) of the trained populations had overcome the
local maximum after 2000 generations. When new offspring were compared
to one of their parents (Table 1(b)), there was minor improvement, but again
most populations failed to overcome the local maximum. Since diversity was
again insufficiently preserved, only 14% of the populations had overcome the
local maximum of 89% after 2000 generations.
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Figure 6: Functional distance distribution curves for genetic back propagation
training: using the natural-selection strategy of comparing new offspring to the
most similar specimen in the population. Only minor loss of diversity is observed
for the smallest population, while the other two remain intact across generations.
(a) Population size 20. (b) Population size 40. (c) Population size 80.

Only when the strategy of comparing new offspring to the most similar
specimen in the population was used did the population diversity prevail
and training successfully overcome the 89% obstacle. Observing Table 1(c)
one can clearly see the improvement where 21%, 49%, 85%, and 95% of
the experiments successfully overcame the 89% local maximum after 250,
500, 1000, and 2000 generations, respectively. These results demonstrate
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Figure 7: Diversity curves for population sizes of 20, 40, and 80, where the natural-
selection strategy of comparing new offspring to the most similar specimen in the
population has been used. Only the smallest population suffers minor diversity
loss across generations while the other two remain perfectly intact.

the vitality of diversity preservation to the success and continuation of the
genetic process.

It is important to note that when the strategy of comparing new offspring
to the most similar specimen is used, each new offspring must be compared
to all specimens in the population, whereas no such comparisons are required
when one of the other methods is used. These additional computations are
negligible in comparison to the total training time since the computation
time required to train each offspring is much more significant. In addition,
since population variety is maintained across generations, one can reduce the
population size required to complete the training, thus reducing significantly
the training time as well as the number of comparisons required in the third
method. We have not encountered any practical difficulties implementing
the third strategy in our simulations.

5. Conclusion

In this work the diversity changes caused by three natural selection strate-
gies—comparing new offspring to the least-fit specimen in the population, to
one of the parents, and to the most similar specimen in the population—were
analyzed theoretically and demonstrated experimentally. Using Hamming
distances, the changes in diversity induced by those strategies were analyzed
for an evolving population of binary strings; using the functional behavior
of neurons measure, the changes in diversity were demonstrated for evolving
populations of neural networks trained by a Parity data set. Both theoretical
analysis and experimental results indicate the superiority of the last strategy
in its ability to maintain population diversity throughout genetic evolution,
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Best net success rate (%)

Generation | 85 | 86 | 87 [ 8889 | 90|91 [92[ 93] 94 9596 [ 97] 98
250 2 91|32 1 1
500 2 90| 2[4 1 1
1000 2 89| 1[3]1 111 1
2000 2 89 4 1)1 2 [ 1

(a)

Best net success rate (%)
Generation || 85 | 86 [ 87 [ 88 [ 89 [ 90 [ 91 [ 92 [ 93| 94 | 95 96 | 97 | 98

250 183622

500 8|2 |8 2 11

1000 86|19 2 11

2000 86 10 2 |11
(b)

Best net success rate (%)
Generation | 85 [ 86 | 87 [ 83 [ 89 [ 90 | 91 | 92 [ 93 [ 94 [ 95| 96 | 97 | 98

250 4 |75]10] 9 |1 1

500 1 (5013|282 |3 |21

1000 15|16 |47 7 | 6 | 5 | 4

2000 5|6 (42|10 6 |10 |13 | 4 | 2 | 2
(c)

Table 1: Results of statistical performance tests for (a) comparing new offspring
to the least-fit specimen in the population, (b) comparing new offspring to one of
the parents, and (c) comparing new offspring to the most similar specimen in the
population. In each training the performance of the best net was tested after 250,
500, 1000, and 2000 generations, and the distribution of results is displayed accord-
ing to the corresponding natural-selection strategy. Each row in the three tables
represents the distribution of best net performance after the 100 populations have
evolved for the corresponding number of generations. The majority of trainings
in the first two strategies were trapped at the local maximum of 89%. However,
when the strategy of comparing new offspring to the most similar specimen in the
population was used, 21%, 49%, 85%, and 95% of the experiments successfully
overcame the 89% local maximum after 250, 500, 1000, and 2000 generations, re-
spectively, demonstrating the significance of diversity preservation to the success
of the genetic process.
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and statistical experimental results demonstrate its ability to overcome ob-
stacles in the course of training (such as local maxima). The influence of
population size on the diversity loss rate is predicted by the theoretical anal-
ysis and is demonstrated by computer simulations for evolving populations
of neural networks. The successful use of the functional behavior of neurons
measure for evaluating net similarity provides the means for integrating other
diversity-maintaining schemes such as crowding, uniqueness, and sharing into
genetic algorithms used for neural net training. These promising possibilities
provide fertile ground for further research into making better use of genetic
algorithms for neural net training.
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