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Abstract . Popul at ion diversity loss is a major obstacle in apply­
ing genetic algorithms to optimizat ion problems, which often results
in population degeneration and pr emature convergence . The diver­
sity changes caused by t hree nat ural-select ion strategies-comparing
new offspring to the least- fit spec imen in t he population , to one of
t he parents, and to the most similar specimen in t he pop ulat ion-are
analyzed theoret ically and demonstrated experimentally. Using Ham­
ming distances, the changes in diversity induced by these strategies
are analyzed for an evolving population of bin ary st rings. The resu lts
of the analysis show that the st rategy of comparing new offspring to
the most similar specimen (select ing the fit ter of the two) causes the
smallest diversity loss.

To demonstrat e the efficiency of the various methods we exa mine
the populat ion diversity of neural nets trained to perfor m certain tasks
using a genetic algorithm. The funct ional behavior of neur ons, rep­
resent ed by the intern al repr esent ations of each neuron for the ent ire
t ra ining set, is used to derive the functional similari ty of every pair of
neuro ns and to evaluate the similarity of every pair of nets in a popu­
lati on of neur al networks. Using a meas ure of the functional behavior
of neurons, the changes in diversity are demonst rated for evolving
populat ions of nets trained on t he Parity dat a set. The experimen­
t al result s demonst rate the success of the third strat egy in preserving
popu lation diversity throughout generat ions: overcoming obstacles in
the course of t raining and preventing pop ulation degeneration, and
thus provi ding more successful and reliable learn ing.
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1. Introduct ion

Genetic algorit hms are current ly used for coping with difficult opt imization
problems. By imitat ing the principles of surv ival and evolution from nature,
genetic algorithms process an ensemble of solut ion proposals (called popu­
lations), gradually enhancing the average performance while attempting to
progress toward the global opt imum. In the course of genet ic evolution the
populati on might und ergo an undesired pro cess of diversity loss, constant ly
decreasing the variety of its specimens. T his loss is caused by highly fit spec­
imens gradually overrunning the ent ire population, resul tin g in a complete
pop ulat ion degenerat ion . Wh en the problem being addressed has a single
maxim um point , higher fitness direct ly indicates a better solut ion proposal,
and the population is likely to degenerate to the global optimum. However,
most nont rivial opt imization problems have a large numb er of local maxima
(t hey are often called "decept ive problems") , and the geneti c process degen­
erates in many cases to a local optimum inst ead of the global one [1, 2, 3].
In art ificial genet ic evolution, as well as in nature, more-fit specimens are
given greater opportunities to reproduce. This selective pressure [1, 17] is
counter balanced by mutations and random crossover operations that add
stochast icity to the evolut ion of the populat ion . Pop ulation diversity should
be preserved to prevent degeneration while maintaining the general t rend
of the evolut ion and some sort of select ive pressur e. The amount of diver­
sity required is similar to the annea ling procedure in simulated annea ling
optimization algorithms, and is likely to vary from problem to problem; the
harder the opt imizat ion problem, the larger the diversity required. Examin­
ing end results in art ificial genet ic evolut ion, we obviously have no interest
in specimen duplicat ion since we are interested only in the fit test specimen.
T hus there is no need for the ent ire populat ion to degenerate to the global
opt imum, and the evolut ionary process can successfully end without losing
the populat ion diversity.

Preserving population diversity is essent ial for locatin g a global opt i­
mum , but is also crucial for coping wit h t ime-varying problems and tasks
in which more than a single solution is required (locat ing eigenvalues, reso­
nance modes, etc .) . In nature, population diversity is maintained as evident
by the variety of species and specimens . Various mechanisms explain how, in
spite of Darwin 's "survival of the fit test " law, less-fit specimen charact erist ics
survive and variety is maint ained [4, 5]:

1. The population is not in equilibrium, and less-fit specimens have not
been driven out .

2. The variation of environmental condit ions in space and t ime causes
different species to adapt to different environments. Migration of spec­
imens between th e various environments results in an equilibrium state
where the various species t hrive.
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3. Selection is not don e with respect to the ent ire population, but to the
subpopulat ions . The subpopulation is charac terized by its need for a
common resource, for which it s indi viduals must compete .

4. Mutat ions and random fluctu ation s applied during reproduction intro­
duc e new cha racterist ics to the population.

These mechanisms, which preserve the diversity of species in nature,
have been integrated into art ificial genet ic algorit hms in various ways. Ran­
dom mutations are applied to every new solut ion proposal in an attempt
to slow down degeneration and introduce new characte rist ics to the popula­
tion . Since mutations must be of limited exte nt (so th at the genet ic process
is not redu ced into a meaningless random search process) , th ey cannot pre­
vent degeneration bu t only slow it down. Addi tional methods for introducing
st ochas t ic fluctu ations during reproduction are inversion [6] and dynami c pa­
ramet er encoding [7], which cont rol the location and length of every encoded
feature.

A different ap proach was demonstrat ed by De Jong [8], who added a
crowding factor that affects the select ion algorit hm. For each new offspring
a small subset of th e population is selected at random and the most similar
specimen in that subset is compared to t he new offspring . Mauldin [9] pro­
posed a uni queness measure th at forced new offspring to maintain a minim al
dist ance from the most similar specimens , and experimentally demonstrat ed
th e super iority of crowding, uniqueness, and their combinations with respect
to survival of the fit test and random-selection rules.

Coping wit h multimodal function optimizations requires select ion rules
capable of maintaining independent subpopulations in specific niches of the
search space . The size of each subpopulation must be restricted to prevent
it from overrunning the ent ire population. In nature, if a particular sub­
population grew with no limit , it would consume all available environmental
resour ces, resulting in st arvation and/or elimina t ion of all specimens . Since
competi tion would ar ise within this subpopulat ion, it s final size would be
determined by the equilibrium between the number of organi sms and t he
resources they consume. The sharing mechanism proposed by Goldberg and
Richard son [12] introduces art ificial competition among similar specimens
by subt ract ing a penalty term from the fitn ess of every indi vidual accord­
ing to the number and dist ance of it s neighbors. This sharing mechanism
has successfully preserved the diversity of t he ent ire population, prevented
the subpopulation from becoming oversized , and was ext remely successful in
locating the various mod es of th e tes ted multimod al funct ions [13, 14, 15].

The use of genet ic algorithms for neural net training is don e in a variety
of methods where network weights and st ructure are encoded into art ificial
"chromosomes" [16, 17, 18, 19]. Appl ying diversity-preserving methods such
as crowding, uniqueness, and sharing to those training methods is extremely
difficult , and often impos sible, due to the problem of permutation [11]. The
problem of permutation arises from th e fact th at neurons that perform equiv­
alent tasks are located at different positions in the hidden layers, and are
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therefore encoded at different locat ions in the chromosomes. Comparing
pairs of chromosomes as they are arb itra rily ordered may produce meaning­
less random results and damage the performance of those processes responsi­
ble for maintaining the pop ulat ion diversity. To overcome that obst acle the
use of the funct ional behavior measure is proposed. This measure is capable
of scoring the functional and st ructural resemblance of nets having arbitrary
hidden neuron order and different sizes.

In this work we discuss the diversity changes caused by three natural­
selection st ra tegies:

1. comparing new offspring to t he least-fit specimen in the population;

2. comparing new offspring to one of the parents; and

3. comparing new offspring to the most similar specimen in the pop ula­
t ion.

These three st ra tegies are theoret ically analyzed and experimentally exam­
ined in the following sect ions. Using Hamming dist ances between the new
offspr ing and the various specimens in th e population, we discuss the effect
each natural-select ion rule has on the diversity of binary string popul ations
and, for a population of neur al networks, use the funct ional behavior of neu­
ron measure to apply the same natural-selection rules, then demonstrate and
monito r their performance.

2. U sing Hamming distance for di versity analysis

For every pair of binary strings Vi = (bi, . .. , b~) and Vj = (b{,. . . ,!Jt,) , where
b is equal to 0 or 1, the Hamming dist ance is defined by

n

H (Vi , Vj ) = L, b~ ffi hie
k=l

(1)

where ffi signifies a binary "exclusive-or" operat ion. T he normalized Ham­
ming distance is obtained by dividing t he Hamming dist ance by the number
of bits n:

(2)

so that H (Vi , Vj) is limited to the interval [0, 1]. Hamming distance is used
for grading t he difference between binary st rings t hat have an equal numb er
of bits. By calculat ing the norm alized Hamming dist ance average, one can
estima te the diversity of a given set of st rings

1 m-1 m _

D = ( _ 1)/ 2 L,L, H (Vi , Vj )
m m t = l J= t+ 1

(3)

where m is the defined set size and m(m - 1)/2 is the number of possible
st ring pairs in the set . All diversity values lie in the interval [0, 1].
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Figure 1: Normalized Hamming distance distribution for corresponding bit prob­
abilities of p = 0.5, p = 0.7, and p = 0.9. As the probability of corresponding
bits having equal value is increased, the mean value decreases and the distribu­
tion becomes narrower, indicating a reduced standard deviation and thus lower
diversity.

The Hamming dist ance distribution function P is easily derived (see [20]):

k = 0, ... ,n (4)

where p is the pro babili ty that corres ponding bits of different st rings have
equa l value, q = 1 - p is the probabili ty of those bits being different , and
(~) is the numb er of different k-bit groups t hat could be selected from a
given n-bit string. The distribution in equat ion (4) is a binomial distribut ion
having expectancy (H) = n q and variance Var(H) = npq , and th erefore the
normalized Hamming distance expectancy is (H) = q and it s variance is
Var(H) = pq. The effect of bit probability on the dist ribut ion of normalized
Hamming distance is illustrated in Figur e 1 for probability values of p = 0.5,
p = 0.7, and p = 0.9. As the odds of corr esponding bits having equal value
increase, th e mean value of the distribution is redu ced and the distribution
becomes narro wer , indi cat ing a drop in the standa rd deviat ion and thus lower
diversity.

The effect of genet ic reproduction and the natural-selection rule can now
be discussed using stat ist ical tools. In every reproductio n a pair of st rings is
selected, statist ically pr eferring those with higher scores (se lective pressure [1 ,
17]), and a new offspring is creat ed using random crossover. Let parent
strings be vP1 = ( ~l, .. . ,~l) and vP2 = (~2 , ... ,~2 ) , and the offspr ing
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(6)

(7)

st ring be Voffs = (bf\ ... ,1Y,", 11,:~1 " ' " ~2) , where r is an arbit rary point of
crossover; mutations are neglected . Since r bits in Voffs are ident ical to t he
corresponding bits of vp1, and n - r bits are identical to the corr esponding
bits of vp2, the result ing normalized Hamming dist ances expectancies are

r ) (n-r)q
\ H(Vp"Vo ffs)::::; n

( H(vP2 ' VOffS)) ::::;~ (5)

If the new offspring is found to be more fit t han an exist ing string in the set,
t ha t string will be replaced by t he new offspring, usually causing a diversity
drop for t he entire set . T he ini tial diversity est imat ion before t he st ring
exchange, Dq , is computed according to equa tion (3) . When the new offspring
Voffs replaces a selected st ring Ve , the new diversity is D q+l ' so the change in
diversity is

1 m [ _ _ ]
t:"D = D q+1 - D q = ( _ ) / L H(v;,Voffs ) - H(v;,ve )

m m 1 2 ;=l,;#e

since all Hamming dist ances not involving Ve and Voffs remain un changed
before and afte r t he excha nge. T he diversity cha nge expectancy is thus

(t:"D ) = ( ~ )/ f [(H (V;,VOffS)) - ( H(v;,ve ) ) ]
m m 1 2 ;=l#e

It is assumed that popul ation size is significant ly larger t ha n the st ring lengt h
(m » n), and that there is no statist ical dependence among st rings in t he
popul ation , except between the offspring an d its parents. Three cases for t he
calculat ion of the diversity change expectancy are now discussed .

• The offsp ring rep laces a randomly se lected string from the
population. Since there is no st at ist ical dependence between Ve an d
t he rest of t he popul ation ,

f ( H(v;, ve ) ) ::::; f q =(m - l)q
i=l,i#e i= l ,i¥:e

(8)

For Voffs , a slight ly different situa t ion exists since there is a st at istical
depend ence wit h the two parents strings :

m

L (H(V;,VO ffS) ) = ( H(VP1> VOffS)) + ( H(VP2 ,VOffS))
;=l ,;#e

m

+ L ( H(V;,VOffS ))
;=1,;#e,p1,p2

(n - r )q rq
::::; +-+

n n

m

q

(n - r)q rq
-'------------'--=-+ - + (m - 3)q = (m - 2)q (9)

n n



Preserving Diversity Using the Functional Behavior of Neurons 333

From equa t ions (7), (8), and (9), the diversity change expectancy is
derived:

1
(t1D) ~ ( )/ [(m - 2)q - (m - l )q]

m m - l 2

2q
m(m - 1)

(10)

where th e negati ve sign indicates diversity loss.

• The offspring replaces one of its parents . Assuming th at both
parents have equal chances of being replaced , the Hamming expectancy
of the surv iving parent wit h the new offspring is the average of th e two
expectancies in equation (5):

t i: ) ( H(VPllVOffS)) + ( H(VP2,VOffS))
\ H (Vp ,Voffs) = 2

(n-r)q + !!1
~ n n _ q

2 2
(11)

L~l , i#e (H(Vi , Ve ) ) remains the same as in equation (8), but Voffs sta­
tist ically depends on only one parent so that

m m

L ( H (Vi,Voffs)) = ( H(Vp,VOffS)) + L ( H(Vi ,Voffs))
i=l,i#e i=l,i#e,p

q m q
~ - + L q = - + (m 2) q (12)

2 i=l#e,p 2

= (m- ~) q

The diversity change expectancy is

(t1D) ~ m (m ~ 1) /2 [ (m-~) q- (m- l ) q]

q

m(m - 1)
(13)

where the negative sign again indicates diversity loss.

• The offspring replaces the most similar string in the popula­
tion. The population is scanned and th e st ring Ve having the lowest
Hamming distance to the new offspr ing Voffs is found . If the new off­
spring is bet ter , it will replace Ve . Let s be the numb er of matching
bit s in Voffs and Ve . It is impo rtant to not e t hat s ::::: n/2 since Ve could
be one of the parents if a more similar st ring cannot be found. In cal­
culat ing the diversity loss one must take into account th e Hamming
distance expe ctancy of st ring Ve wit h the two parent st rings, since it
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is no longer possible to assume that t hey are statist ically independent .
Voffs has r bits that are identi cal to VP1 ; since s bits in Voffs are iden­
tical to corres ponding bits in V e , the average number of identical bit s
between V e and vP1 is (s/ n )r. For the same reasons the average numb er
of identical bits between Ve and vP2 is (s/n)(n - r), and the normalized
Hamming expectancies are

/ i: ) n - (s/n)r
\ H(vP1 ' ve ) ~ n q

/ H ( )) ~ n - (s/n)(n - r )
\ vp2 , u; ~ n q (14)

2::: 1,i#e\ H (Vi ' VOffS)) remains the same as in equation (9), and t he sum
of te rms involving Ve is

f \ H(Vi 'Ve)) = \ H(vPll ve)) + \ H(vP2've)) + f \ H(Vi'Ve))
i= l ,i#e i=1,i#e,Pl,P2

n - (s/n)r n - (s/n)(n - r)
~ q+ q +

n n

m

I: q
i=l ,i#e,pl,p2

(16)

n - (s/n)r n - (s/n )(n - r) ( 3)
= q+ + m - q

n q

n -s
= --q + (m - 2)q (15)

n

The diversity change expectancy is

(6.D) ~ m(m ~ 1)/ 2 [(m - 2)q - (m - 2)q _ n: sq]

n - s 2q

n m(m- 1)

Note that s has the range n/2 S s S n. When s = n/2 th e result is
identi cal to t he case when one of the parents is replaced , whereas for
s = n no diversity change takes place since a st ring in th e population
is replaced by an identi cal one.

The lowest diversity change is obtained for this last case (equation (16)),
thus indi cating th e superiority of th e method that compares every new off­
spring to the most similar string in the popul ation and thus prevents st ring
duplications. In this discussion , statistical ind ependence of all st rings was
assumed. When diversity is not preserved , each generation produces more
depend ent st rings. Given a high rate of diversity loss, finite popul ati on size,
and a long evolut ionary cycle, one can no longer neglect th e effects of the
accumulation of similar st rings on the popul ation diversity. In this case one
cannot assume stat ist ical independ ence, so diversity change approximations
are no longer valid and diversity collapses . The diversity loss predicted by
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our analysis (equations (10), (13) , and (16)) is t herefore replaced by a nonlin­
early increasing diversity loss that deteriorates as the population cont inues
to evolve.

App lying th e proposed diversity-maintain ing method to genetic algo­
rithms used for neural net train ing requires a new measur e for scoring the
resemblance of nets and neurons with continuous output response. The Ham­
ming dist ances cannot be used in this case since cont inuous net paramet ers
are direct ly encoded into the pop ulation. T he measure presented in this work
is based on the functional behav ior operator [10, 11], describ ed br iefly in the
next sect ion .

3. Evaluating net similarity using the
functional behavior of neurons

The "funct ional behavior" of a neuron describes how that neuron and its
corresponding sub-net respond when various inpu t vect ors are presented to
the net. The net is assumed to have no feedback connect ions. Each sub-net
is a part of the net st art ing at the input layer and ending at a single hid den or
output neuron that is th e outp ut neuron of t he sub-net . The sub-net contains
all relevant neurons from pr evious layers and all interconnections that lead
to those neurons. Every sub-net realizes, therefore , a funct ion f : Rn --+ Ron
t he inpu t vectors, where n is th e number of input neurons. This funct ion is
defined as the sub-net response function. The output of the sub-net ending
at neuron i is represented by

(17)

wher e (Vl ,"" vn ) repr esent s th e input vector .
A neuron's func tional behavior is defined as the vector of output values

generated for th e ent ire set of inpu t vectors:

(18)

(19)

(20)

where i is th e neuron index, sj is th e output value of neuron i when the input
vector index ed j is fed to the net , an d p is the number of input vectors .

In order to compare different neurons and different functional behaviors,
the measure is normalized with respect to its overall norm E i = Z=:f=l sj2 :

Bi =(;k,..., ~)

The degree of matching between a pair of neurons i1 and i2 is defined by t he
corre lation of their corresponding normalized functional behaviors:

- - 1 p
match(i1 ,i2 ) = Bil . B i2 = '" S'l S'2

VE i lEi 2 ~ ] ]

This normalized matching factor lies in the interval [- 1,1 ]. It s amplitude
determines how close is the behavior of the corresponding sub-nets, where a
negat ive sign stands for opposit e response. It is important to note tha t for
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linearly dependent funct ional behavior vectors the matching factor is either
l or - 1:

(21)

= sign(ex)

where ex denotes the linear dependence.
Net similarity is evaluated by the average neuron matching according to

equation (20). Both nets are processed layer by layer start ing with the first
hidden layer and ending with the out put layer. For each neuron in the first
net, the most similar neuron in the other net is found and vice versa:

(22)

where L is the number of hidden (and output) layers, Nl the number of
neurons in layer l of net i , and nL is neuron j in layer l of net i . T he compu­
tat ional complexity of this calculation is approximat ely 0 (N 2p), where N is
the average numb er of neurons in the hidden and output layers and p is the
number of t raining vectors .

This definition breaks down each net into its basic functional elements and
uses those elements to compare t he nets' functional st ructure , overcoming the
problem of hidden neuron location permutation. It is import ant to note t hat
nets may also have a different number of neurons in each layer, bu t must
have an equal number of layers. T he choice of neurons that have maximal
matching factors permits mult iple use of a single neuron . T his does not affect
the integrity of the net comparison method since, when prop er compensa t ion
measures are taken, neurons may be dup licated (with their ent ire set of input
connect ions) without changing net performance (see [lID.

Following the diversity definition of equat ion (3), the diversity of a popu­
lation having m nets is defined by their functi onal dist ances dist met. , net . ) =
1 - matchfnet. , net j ) to be:

1 m-1 m

D = ( _ )/ 2 L L dist friet. , netj )
m m 1 i=1 j=i+ 1

Diversity value lies in the interval [0, 1].

(23)
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Figure 2: Functional dist ance distribution curves for genet ic back propagation
training: using t he natural-select ion st rat egy of comp aring new offspri ng to t he
least -fit specimen. The rapid loss of diversity and popul ati on degeneration is ev­
ident , being caused by a single highly fit net t hat overruns the enti re popu lation.
(a) Populat ion size 20. Rap id degenerat ion resulted wit h a functionally identi cal
popu lation afte r only 120 generations . (b) Populat ion size 40. After 290 genera­
tions most popul ation specimens have become funct ionally ident ical. (c) Popula­
t ion size 80. After 580 generations a highly fit specimen began overr unning the
popul ation. However , before population had degenerated , a different, more "pow­
erful" specimen evolved , first slight ly restor ing diversity but t hen overrunning the
ent ire popu lation, causing final degenerati on at generat ion 850.
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Figure 3: Diversity curves for populat ion sizes of 20, 40, and 80, where the natur al­
selection strategy of comparing new offspring to the least-fit specimen has been
used. In all experiments the populat ion underwent a complete degenerat ion after
120, 290, and 850 generations, respectively.

4. Experimental res ul t s

The performance of th e three natural-select ion st rategies-compar ing new
offspring to t he leas t-fit specimen in the population, to one of the parent s,
and to the most similar specimen in the population- is test ed using the
Parity-7 data set . In this data set the net is t ra ined to prod uce t he parity
bit for a 7-bit binary string, th at is, a + 1 output whenever an odd number
of + 1 bits are presented to t he net and - 1 otherwise. The dat a set contains
27 = 128 vectors, each representing 7 inpu t bits and a single output bit. This
problem was chosen due to its mult iple minima st ructure .

Using a hybrid genet ic algorithm- back propagation t ra ining system (see
[lID, populat ions of 20, 40, and 80 nets were t rained exhaustively. In every
generation a new offspring net was created by recombining pairs of nets from
the populat ion. The offspring net was subjected to 50 t ra ining epochs, and
two pruning and ret raining cycles, where ret raining was also limited to 50
epochs. Aft er retraining , the offspr ing net (Voffs ) competed with a selected
net (ve ) chosen from the populat ion according to the tested st rategy. Every
10 epochs the population diversity and the dist ribut ion of the net funct ional
dist ances were measured; the result s are displayed in Figures 2- 7.

In the first set of experiments the behavior of the tra ining syste m was
examined when every new offspring was compared to the least- fit specimen
in the populat ion. Figures 2(a) , 2(b), and 2(c) display dist ribution curves
for popu lation sizes of 20, 40, and 80 nets, respect ively, and Figure 3 shows
th e changes in diversity across generations. The 20-net populat ion was the
first to degenerate, surviving only 120 generations before the ent ire popula-
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tion became functio nally identical. The 40-net popul ation did not survive
much longer, with final degeneration occur ring afte r 290 generations. For
the 80-net population an int eresting result was obtained , with the popula­
tion partially recovering from degenerati on. This phenom enon was caused by
a highly fit specimen that overran the population after 580 generations; but
in the course of evolut ion a different , more "powerful" specimen was crea ted,
causing a slight restoration of diversity (when population was composed of
two degenerat ed groups) until it too overr an the ent ire population , causing fi­
nal degeneration at generation 850. These experiments indicat e th at a larger
population could surv ive longer (as was anticipat ed by equat ion (10)) , but
no mat ter what size was selected, given enough time the population would
degenerate, t erminating the evolut ionary pro cess and preventing fur th er pop­
ulation enha ncement .

In the second set of experiments the behavior of th e t ra ining syste m was
examined when every new offspring was compared to one of its parent s (se­
lected at random). F igures 4(a) , 4(b) , and 4(c) display distribution curves for
population sizes of 20, 40, and 80 nets, respectively, and Figure 5 shows the
changes in diversity across generat ions. For the three popul ation sizes a slow
but steady loss of diversity is observed , with smaller populations suffering
higher loss rat es. The numb er of functionally equivalent nets grows steadily,
as indicated by the accumulat ing peaks at zero dist ance on the distribution
curves. The diversity loss in this case is a cont inuous process, whereas in the
previous set of experiments it could be categorized as a deterior ating pro cess
that ended with a final collapse.

The most interesting results were obtained when new offspring were com­
par ed to the most similar specimens in t he population . The ent ire populat ion
was scanned in each generation, using equa tion (22) to compare all spec imens
to the new offspring and to find the most similar one. If the new offspring
was found to be more fit , it was pu t into t he population instead of the most
similar specimen; otherwise it was discarded. Figures 6(a), 6(b) , and 6(c)
display distribution curves for populati on sizes of 20, 40, and 80 nets, re­
spectively, and Figure 7 shows the changes in diversity across genera tions .
Only minor loss of diversity is observed for the smallest population , while
the other two remain int act across generations. It is imp ortant to note that
the measur es taken to preserve the diversity did not damage the speed of
learning (as measured by the perform ance of the most-fit net ) with respect
to th e oth er st rategies, and the quality of genetic search improved , resulting
in smaller and more efficient final nets.

This experiment was repeated using a simplified net comp arison method ,
comp aring nets only by mat ching the functional behavior of their output
neurons (equation (20)) instead of using equa t ion (22) to compare the ent ire
nets . The computationa l complexity of every comparison in this method is
o (Noutp) where Nout is the numb er of output neurons and p is th e number
of t raining vectors. It is significant ly smaller th an the compl exity of equa­
tion (22) (0 (N 2p)). The simplified method produced similar results and
pres erved population diversity as well.
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Figur e 4: Func tional dist ance distribution cur ves for genetic back propagation
training: using the natural-selection st ra tegy of comparing new offspring to one
of the parents (selected at random). A slow but ste ady loss of diversity is seen
across generati ons, and the accumulating peaks at zero dist an ce indicate t he grow­
ing number of duplicated specimens in t he populat ion. (a) Populat ion size 20.
(b) Population size 40. (c) Population size 80.

The benefits of diversity preservation come into effect when training is
done in the presence of local maxim a. In such cases , nonpreserving training
may cause population degeneration in the vicinity of one of th ose maxim a,
while the preserving t ra ining may cont inue to pro gress across generations.
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Figure 5: Diversity curves for population sizes of 20, 40, and 80, where the natural­
selection strategy of comparing every new offspring to one of the parents (selected
at random) has been used. In all experiments a slow but steady loss of diversity
is seen across generat ions, where smaller populations suffer higher loss rat es.

Using the Parity-7 data set , such an experiment was performed. Forty of the
128 vectors were used for back propagation t ra ining, and the enti re set of 128
vectors was used for fitn ess det ermination for each offspr ing net. Exp erim ents
indicated th at th is set up diverts t he genetic tr aining into a local maximum in
the form of a very simple net , having a single hidden neuron, th at responds
with correct output polar it ies to 114 of the 128 training vect ors (89%). Note
tha t th is set up was chosen to demons tr ate the performance of th e genet ic
t ra ining in th e presence of highly influent ial local maxima and tha t th is
configur at ion is not the most efficient one for training nets to solve a Parity
problem.

The performance of the three natural-select ion st rategies was examined
by performing 300 different genetic-back propagat ion train ings, 100 for each
strategy. In each training a populat ion of 20 nets was evolved, and the perfor­
mance of th e best net in th e population was test ed after 250, 500, 1000, and
2000 generat ions. The statistical results are displayed in Tab les l(a)-l (c) .
Each row in th e three tables represent s the distribut ion of best net perfor­
mance after t he 100 populat ions had evolved for th e corresponding numb er
of generations. When new offspr ing were comp ar ed to the least-fit specimen
in the population (Tab le 1(a) ), 89 of the 100 trained populations were st ill
t rapped at th e local maximum of 89%. Since diversity was not pr eserved ,
only a small percentage (9%) of the trained populations had overcom e the
local maximum aft er 2000 generations. When new offspr ing were compared
to one of their parent s (Table 1(b)) , there was minor improvement , but again
most populations failed to overcome t he local maxim um. Since diversity was
aga in insufficientl y preserved , only 14% of th e populations had overcom e th e
local maximum of 89% after 2000 generat ions.
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Figure 6: Functional distance distribution curves for genetic back propagation
tr aining: using the natural-selection strategy of comparing new offspring to the
most similar specimen in the population. Only minor loss of diversity is observed
for the smallest population , while the other two remain intact across generation s.
(a) Population size 20. (b) Popul ation size 40. (c) Population size 80.

Only when t he st rategy of comparing new offspring to the most similar
spe cimen in the population was used did t he population diversity pr evail
and t ra ining success fully overcome the 89% obstacle. Observing Ta ble 1(c)"
one can clearl y see the improvement where 21%, 49%, 85%, and 95% of
the experiments successfully overcame the 89% local maximum afte r 250,
500, 1000, and 2000 generations, respectively. T hese resul ts demonstrate
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Figure 7: Diversity curves for population sizes of 20, 40, and 80, where the natural­
selection st rategy of comparing new offspring to the most similar specimen in the
population has been used. Only the smallest population suffers minor diversity
loss across generat ions while the other two remain perfectly intact.

the vitality of diversity preservation to th e success and cont inuation of the
genet ic process.

It is important to note t hat when the st rategy of comparing new offspring
to the most similar specimen is used , each new offspring must be compared
to all specimens in the popul ation, whereas no such comparisons are requir ed
when one of the ot her met hods is used. T hese add itional computations are
negligible in comparison to the total t ra ining t ime since the comp utation
t ime required to t ra in each offspring is much mor e significant. In addition ,
since popul ation variety is main tained across generations, one can redu ce the
popul ation size required to complete the t ra ining , thus redu cing significant ly
the t ra ining t ime as well as t he numb er of comparisons required in the t hird
method. We have not encounte red any pr actical difficult ies imp lementing
t he third st ra tegy in our simulat ions.

5 . Conclusion

In th is work the diversity changes caused by three natural selection st rate­
gies-comparing new offspring to the least-fit specimen in th e population, to
one of the parents , and to the most similar specimen in the populat ion-were
analyzed theoret ically and demonstrat ed experimentally. Using Hamming
dist ances, the chang es in diversity induced by those strateg ies were analyzed
for an evolving populat ion of binary strings ; using th e function al behavior
of neurons measure, the changes in diversity were demonstrated for evolving
popu lations of neural networks tra ined by a Pari ty dat a set . Both t heoretical
analysis and experimental results indi cate the superiority of the last st rategy
in its ability to maintain popul ation diversity t hroughout genet ic evolut ion,
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Best net success rat e (%)

Generation 85 86 87 88 89 90 91 92 93 94 95 96 97 98

250 2 91 3 2 1 1

500 2 90 2 4 1 1

1000 2 89 1 3 1 1 1 1 1

2000 2 89 4 1 1 2 1

(a)

Best net success rate (%)

Generation 85 86 87 88 89 90 91 92 93 94 95 96 97 98

250 1 86 3 6 2 2

500 86 2 8 2 1 1

1000 86 1 9 2 1 1

2000 86 10 2 1 1

(b)

Best net success rate (%)

Generat ion 85 86 87 88 89 90 91 92 93 94 95 96 97 98

250 4 75 10 9 1 1

500 1 50 13 28 2 3 2 1

1000 15 16 47 7 6 5 4

2000 5 6 42 10 6 10 13 4 2 2

(c)

Table 1: Results of statist ical performance tests for (a) comparin g new offspring
to the least-fit specimen in th e popu lation , (b) comparing new offspring to one of
the parent s, and (c) comparing new offspring to t he most similar specimen in t he
pop ulation. In each training the performance of the best net was tested afte r 250,
500, 1000, and 2000 generations, and the distribution of results is displayed accord­
ing to th e corresponding natural- select ion st rategy. Each row in the three tables
repr esent s t he distribut ion of best net performance afte r t he 100 pop ulatio ns have
evolved for the corresp onding number of generat ions. Th e majority of train ings
in t he first two st rategies were trapped at t he local maximum of 89%. However,
when th e strat egy of compar ing new offspr ing to the most similar specimen in t he
pop ulat ion was used , 21%, 49%, 85%, and 95% of the experiments successfully
overcame t he 89% local maximum after 250, 500, 1000, and 2000 generat ions , re­
spect ively, demonstrat ing the significance of diversity preservat ion to the success
of t he genet ic process.
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and statist ical experimental results demonstrate its ability to overcome ob­
stacles in the course of tra ining (such as local maxima). The influence of
population size on the diversity loss rate is predicted by t he theoretical anal­
ysis and is demonst rated by computer simulations for evolving populations
of neur al networks. The successful use of the functional behavior of neurons
measure for evaluat ing net similarity provides th e means for integrating other
diversity-maintaining schemes such as crowding, uniqueness, and sharing into
genet ic algorithms used for neur al net t ra ining. These promising possibilit ies
provide fertile ground for further research into making bet ter use of genet ic
algorithms for neural net t ra ining.
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