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Abstract. Three mechanisms—cellular automata, finite automata,
and L-systems—for generating static patterns are compared. Matrix
substitution systems, nondeterministic extensions of iterative matrix
homomorphisms, are also introduced and shown to be equivalent to
finite automata. Two different ways for taking the limit of a sequence
of finite resolution patterns produced by any of the mechanisms are
studied: one gives an infinite resolution pattern on the unit square,
the other one a pattern of infinite size.

1. Introduction

We define the notion of a multiresolution (static) pattern as a coloring of
an arbitrarily large subsquare of the tessellation of the plane or in general
of an arbitrarily large hypercube of n-dimensional space. As a limit we
can consider either a coloring of the tessellation of the infinite plane or of
the unit square with infinite resolution. We consider several mechanisms for
generating the multiresolution pattern. The common feature is that the same
(local) rules define a pattern at an arbitrarily large resolution. This assumes
that a pattern has a certain fixed descriptive complexity independent of the
resolution used to present it.

First we consider cellular automata (CAs). CAs give low-level models of
natural systems; for example, a CA cell can represent a molecule in physics.
The universality of CAs implies that every recursive pattern can be generated
by a CA. We show examples of extremely simple CAs that produce interesting
patterns, such as models of simple crystals.

Second, we discuss finite automata [2] and show that they are equivalent
to matrix substitution systems that are nondeterministic extensions of iter-
ated matrix homomorphisms from [9]. In [5] it was shown that (using our



348 Karel Culik II and Jarkko Kari

terminology) every pattern specified by a finite automaton can be generated
by a CA in linear time. Since every pattern can be approximated by a pattern
defined by a finite automaton [3] it follows that an approximation of every
pattern can be generated by a CA in linear time. Such an approximation can
be effectively found, and an inference program for this purpose is described
in [3].

In the last section we discuss how to use the “turtle” interpretation of
L-systems [7]. They are a higher-level tool, particularly suitable for modeling
the growth of plants [8]. We show that, somewhat surprisingly, every finite
automaton (matrix substitution system) can be simulated efficiently by an
L-system.

2. Patterns: definitions and notations

To simplify notations we consider only two-dimensional patterns. General-
izations for other dimensions are straightforward.

Definition 1. Let C be a finite set of colors. Frequently C' = {‘black’,
‘white’}, but patterns with more colors can be considered as well.

(i) A finite pattern P = (n, f) is defined by a positive integer n and a
mapping
f:{0,1,...,n—1} x{0,1,...,n—1} = C.
Mapping f assigns colors to the squares of a finite checkerboard of size
n X n.

(i1) A multiresolution pattern R is defined by an infinite sequence Py, Ps, . ..
of finite patterns P; = (n;, f;), where n; < ny < --- is an increasing
sequence of sizes.

(i) An infinite pattern Py, is a mapping

7’ = C
that assigns colors to squares of an infinite square tessellation of the
plane.
(iv) Let us denote by I = [0,1] the unit interval of real numbers. An

infinite resolution (black-and-white) pattern R is a compact subset of
the unit square I?. A point in the unit square is black if it belongs to
Ro; otherwise it is white.

In this article we consider various methods for generating the four types
of patterns defined above. Typically finite patterns of different sizes are gen-
erated, which defines a multiresolution pattern. The multiresolution pattern
can be interpreted in the limit either as an infinite pattern or as an infinite
resolution pattern of the unit square in a manner made precise by Definition
2 below.
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In the definition an interpretation of finite black-and-white patterns P =
(n, f) as compact subsets of the unit square I? is needed. Define the compact

set
) =U (.72 1,221,

n n n n

where the union is over all z,y € {0,1,...,n — 1} with f(z,y) = ‘black’. In
other words, pattern P is scaled appropriately to fit inside the unit square.
Roo(P) is the infinite resolution interpretation of P.

Analogously, an interpretation of a finite pattern P as an infinite pattern
is needed. This is obtained by placing P on the infinite square tessellation in a
position specified by a given translation (z,y) € Z?, and coloring all squares
outside P using a fixed background color, usually ‘white’. Formally, the
infinite pattern Py (P) : Z — C'is the infinite version of P with translation

(z,y) if

Poo(P)(l'+I/7y+y/) = {P(ml,y') it 0 Sx',y’ <n-1,

‘white’ otherwise.

Definition 2. Let R be a multiresolution pattern defined by an infinite se-
quence Py, Py, ... of finite patterns P, = (n;, f;).

(i) The multiresolution pattern R defines the infinite resolution pattern
Roo(R) C I? if and only if Rs(R) is the limit of the sequence Roo(P1),
Roo(Ps), ... of infinite resolution interpretations of finite patterns P,
P, ... in the standard Hausdorff topology on the compact subsets (see
[1]). Intuitively, the patterns P; are better and better approximations
of the pattern R.(R). Note that not every multiresolution pattern
defines an infinite resolution pattern—the limit is defined only if the
sequence Reo(P1), Roo(Ps), . .. converges.

(i) Let (z1,91), (%2, 92),. .. be an infinite sequence of elements of Z* that

describe how the finite patterns are to be placed on the infinite plane:
The infinite version P, (F;) of P; is obtained by placing P; with its
lower-left corner in position (z;,%;). An infinite pattern Py (R) : Z*> —
C is defined by the multiresolution pattern R with translations (z;, y;)
if for every (z,y) € Z° there exists a positive integer N such that
Poo(B)(z,y) = Pxo(R)(z,y) for all ¢ > N. In other words, Px(R) is
the limit of the sequence Py (Py), Poo(P),. .. in the standard product
topology on the set of infinite patterns. (The topology used is the
infinite product of the discrete topologies on C; see for example [4].)
The limit Py (R) is defined only if the sequence Py (P1), Poo(P),. ..
converges.
If the sequence (1, y1), (%2, ya), . . . of translations is not explicitly given
it is assumed to be (z;,3;) = (0,0). In this case the finite patterns are
placed with their lower-left corner in the origin of the plane. The
infinite pattern they (possibly) define is contained in the upper-right
quadrant of the plane; the other three quadrants have the background
color.
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The notation that we use should be understood as follows. Ry(-) is the
infinite resolution pattern defined by its argument. If the argument is a
finite pattern P, then R, (P) is obtained by properly scaling the pattern
inside the unit square as described before Definition 2. If the argument is a
multiresolution pattern R, then Ry (R) is the limit as defined in Definition
2(i). Similarly, P(-) is the infinite pattern defined by its argument, which
can be either a finite pattern P or a multiresolution pattern R.

In the following sections three devices for defining patterns are studied:
cellular automata, finite automata (or equivalently, matrix substitution sys-
tems), and L-systems.

3. Two-dimensional cellular automata

Cellular automata are discrete dynamical systems used for computer simula-
tions of various natural phenomena. Among the three models studied by this
article, they are the lowest-level devices in the sense that they correspond to
the basic physical laws covering pattern formation in nature.

Two-dimensional CAs operate on the infinite Euclidean plane divided
into unit squares. The squares (referred to as cells) are indexed using integer
coordinates. A finite state set S is fixed. At all times each cell is in one
state of S. The cells alter their states synchronously at discrete time steps as
specified by the local transition rule of the CA. The transition rule describes
the new state of the cell as a function of the old states of some of the cell’s
neighbors. All cells use the same local rule. The neighborhood of the CA
specifies which cells are considered the neighbors of a cell. Frequently used
neighborhoods are the Moore neighborhood and the von Neumann neighbor-
hood. The Moore neighborhood of a cell contains nine cells: the cell itself
and the eight surrounding cells. In this case the local transition rule is a
function from S° to S. In the von Neumann neighborhood the neighbors of
a cell are the four closest cells—the cells above, below, and immediately to
the right and left—as well as the cell itself.

A configuration of the CA is a mapping Z> — S that specifies the states
of all the cells. At each discrete time instance the present configuration
of the CA is altered by applying the local rule simultaneously at all cells.
When this process is repeated a sequence of configurations is obtained. This
sequence describes the evolution of the CA. An evolution of infinite patterns
is obtained if the states are interpreted as colors. For this purpose we define
a coloring function S — C' that gives the color of each state. Note that the
coloring does not need to be one-to-one, which means that many states can
be interpreted as the same color. The coloring function is extended in the
obvious way to configurations, translating each configuration into an infinite
pattern over the color set C.

One special state ¢ € S is identified as the quiescent state of the CA.
The quiescent state is usually assumed to satisfy the condition that each
cell whose neighbors are all in the quiescent state remains quiescent on the
next time instance. This guarantees that if initially only finitely many cells
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Figure 1: The evolution of Ulam’s CA: (a) the beginning of the evo-
lution, (b) the pattern produced after 60 iterations.
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are non-quiescent, then this is true on subsequent configurations as well.
A configuration with a finite number of non-quiescent cells is called finite.
The coloring function is assumed to color the quiescent state ¢ with the
background color ‘white’.

Now we are ready to define the infinite pattern generated by a CA A
from a finite initial configuration ¢y. Let cg,cy,ca,... be the sequence of
configurations obtained from ¢y by applying the CA rule repeatedly, and let
Do, P1, - - - be the corresponding sequence of (infinite) patterns obtained from
the configurations using the coloring function. The infinite pattern p : Z> —
C is generated by CA A from initial configuration ¢y if p is the limit of the
sequence po, p1, - - . in the product topology or, in other words, if for every
position (z,y) € Z* there exists an integer N such that p;(z,y) = p(z,y) for
all 7 > N.

Example 1. Consider the following very simple CA A introduced by Ulam.
The CA has two states, 0 and 1. The state 0 is the quiescent state and is col-
ored white, while state 1 is colored black. The CA A uses the von Neumann
neighborhood. A cell in state 1 never changes its state. A cell in state 0 is
changed into state 1 if and only if exactly one of its four closest neighbors is
in state 1. The fact that state 1 never changes back to 0 guarantees that a
limit exists for every initial configuration.

Figure 1 shows the first iteration steps of A starting from an initial con-
figuration containing just one cell in state 1, as well as the pattern obtained
after 60 iteration steps. Note the complex structure of the pattern even
though the local rule of the CA is extremely simple. This “contradiction”
between the simplicity of the local rule and the complexity of the pattern
produced is typical of CAs.
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Figure 2: The snowflake produced by Ulam’s CA on a hexagonal
network.

The infinite pattern generated by A in the limit no longer has the crystal-
like structure visible in Figure 1(b), which is due to the order in which the
black states expand. The infinite pattern is a complex mixture of black and
white cells, which, however, has the following simple arithmetic characteri-
zation: A cell in position (z,y) is white if and only if z,y # 0 and the binary
representations of both z and y have the same number of Os in the end. Note
also how the black cells form a connected loop-free graph, or a tree.

Example 2. Consider the same simple local rule as in Example 1, but
change the structure of the underlying network. A snowflake-like pattern
of Figure 2 is obtained if the hexagonal network of Figure 3(a) is used. In
fact, the hexagonal network can easily be simulated by a rectangular one if
one new state is introduced: Instead of state 1 the CA has two black states,
called ‘even’ and ‘odd’. Intuitively, a black cell on an even row of the square
tessellation is in state ‘even’, and on an odd row in state ‘odd’. The neigh-
borhood used is the Moore neighborhood. If the neighborhood of a cell in
state ‘0" contains a black state, then the cell can deduce if it is on an even
or odd row. Depending on this, the cell looks only at six of its neighbors,
excluding cells in the left corners of the Moore neighborhood if it is on an
even row and cells in the right corners if it is on an odd row. If exactly one of
these six neighbors is black, the cell becomes black. With this simple trick,
the network of Figure 3(b), isomorphic to the hexagonal network of Figure
3(a), is essentially used.

CAs define most naturally infinite patterns as described above. However,
to compare CAs with the other pattern generation mechanisms introduced
later in this article, let us describe how CAs define multiresolution patterns.
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Figure 3: (a) Hexagonal network. (b) Simulation of the hexagonal
network on a rectangular one.

For this purpose, it is most convenient to use CAs that operate on finite
square tessellations instead of the ideal infinite one. Let n be a positive
integer, and consider a square of n x n cells. Initially all cells are in quiescent
state g. The cells know if they have a neighbor that is outside the square,
which means that the cells on the border can change during the first time step
into a non-quiescent state. (The same effect is obtained by an infinite CA
whose initial configuration contains a finite square island of quiescent states ¢
in an infinite sea of states F' that remain fixed throughout the computation.)

The finite CA A operates in the same way as the infinite one. The cells
change their states synchronously by applying the local transition rule. The
local rule must include the special cases of cells with neighbors outside the
square. The CA is iterated until a configuration is obtained that does not
change any more. If such a fixed point ¢, is reached, the finite pattern p,—
obtained from ¢, by using the coloring function—is the pattern of size n
defined by A. If no fixed point is reached, A does not define any pattern of
size n.

The sequence py,, Pn,, - . - of patterns of sizes ny < ng < --- defined by A
(where n1,n9, ... includes all sizes at which A reaches a fixed point) is the
multiresolution pattern R(A) defined by A. The limits Ry (A) = Roo(R(A))
and Py (A) = Px(R(A)) given by Definition 2 are the infinite resolution
pattern and infinite pattern, respectively, defined by CA A. To otain the
infinite pattern P, (A) the finite squares are most conveniently placed on the
infinite plane with their center in the origin. In this case it is not difficult
to see that the exact same infinite patterns are generated in this way as
can be generated by CAs on the infinite tessellation with the original, direct
approach used in the beginning.

Example 3. Consider the following simple CA A with the von Neumann
neighborhood and two states, representing black and white. A cell changes
its state to the opposite color if and only if all its neighbors have the same
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color as the cell itself. In addition, the cell in the lower-left corner of the
finite tessellation (the cell whose left and lower neighbors are both outside
the square) is turned black, regardless of the color of its other neighbors.
Initially all cells are white. Clearly, in 2n — 1 steps the CA reaches the
checkerboard configuration of alternating black and white squares that is no
longer changed, where n is the size of the tessellation. The corresponding
infinite pattern Py, (A), obtained if the lower-left corner of each n x n checker-
board is placed in position (—[% |, —|%]) on the infinite plane, is the infinite
checkerboard. On the other hand, the infinite resolution pattern R (A) is
the completely black unit square. The infinite checkerboard is also obtained
by the same local rule operating on the infinite tessellation if the initial con-
figuration contains just one black cell.

4. Patterns generated by finite automata and iterative
matrix substitution

Consider the tessellation of a square into m* x m* identical subsquares. We
will assign strings of length k over the alphabet %, = {0,1,...,m? — 1}
to the subsquares as unique addresses; that is, we give a bijection between
the subsquares and (X,,)*. Consider the address ajas . ..ax, where a; € &,,.
Let 7;¢; be the two-digit m-ary representation of a;, that is, r;,¢; € {0,1,...,
m—1}. For example, for m = 3 and a; = 7 we have r; = 2 and ¢; = 1. Denote
by r and c the integers with m-ary representation rirs...7 and cics. .. cg,
respectively. Then ajas ... ay is assigned an address of the subsquare in the
rth row and cth column, with the rows numbered 0,1,...,m — 1 bottom-up
and the columns from left to right. The addresses of all the subsquares for
m =2, k=3 and m = 3, k = 2 are shown in Figure 4.

Now we interpret a set of strings S C (Z,,)* as a black-and-white pattern
P(S) of size m* xm¥. A subsquare of P(S) is black if and only if its address is
in S. Finally, we interpret a language L C X7, as the multiresolution pattern
R(L) specified by the patterns P(Lg), P(L1), ... where Ly = LN(Z,,)* for all
k > 0. It is easy to see that the limit image Roo(L) = Reo(R(L)) (a compact
subset of [0,1]? as described in Definition 2) is exactly the image defined by
L according to [2].

A great variety of multiresolution patterns can be specified by regular
sets or more precisely by regular expressions or finite automata.

Example 4. Consider ¥y = {0,1,2,3} and L = £3{0,3}. Clearly, R(L)
is the multiresolution pattern such that P(Ly) is the checkerboard of size
2k x 2% (as in Example 3). For L' = {1,2}*0{1, 2}*05%, the limit Ro(L') is
shown in Figure 5.

For any language L, using the operation of left quotient [6] we can zoom
to the subsquare with address w of the image R (L). The zoomed image is
Ro(w/L). For example, consider L', the diminishing triangles from Example
2. Zooming to any subsquare whose address u is a sequence of 1s and 2s gives
us u/L' = L'; the image is partially self-similar. Zooming in the bottom-left
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Figure 5: Diminishing triangles.
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Figure 6: Cantor Carpet.

quadrant 0\L' = {1,2}*0%} we get a regular set representing a triangle.
For the upper-right quadrant we have 3\L' = (J; the quadrant is completely
white.

Example 5. Consider 33 = {0,1,...,8} and L” = (X3 — 4)*. The finite
pattern P(LY) (resolution 3* x 3) is shown in Figure 6. It is a good approx-
imation of the ideal Cantor Carpet, which is represented by R (L"). Note
that for each u € (X3 —4)* and each v € X%, 40\L" = §) and u\L" = L”, the
image represented by R (L") is perfectly self-similar.

Example 6. Asnoted at the end of Example 1, the infinite pattern produced
by Ulam’s CA has a simple arithmetic characterization: A square in position
(z,y) is white if and only if the binary expansions of z and y have the
same number of trailing zeros. Thus the white squares in the upper-right
quadrant of the plane are represented by the regular expression ¥530*. The
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Figure 7: The pattern represented by X3{1,2}0* U 0* in resolution
32 x.32.

black squares are represented by its complement $3{1,2}0* U 0*. The finite
pattern at resolution 2% x 2° is shown in Figure 7.

Now we introduce matrix substitution systems (MSS), which are non-
deterministic extensions of iterated matrix-valued homomorphisms from [9].
For an alphabet A we denote by M,(A) the set of all n X n matrices with
elements from A.

An MSS is a tuple S = (n, A, P, s, F') where

(i) n > 1, the size of the substitution matrices.
(ii) A is a finite set, the alphabet.

(i) P € A x M,(A) is the set of productions. A production p = (a,C) is
usually written a — C. We write left(p) = a.

(iv) s € A, the initial symbol.
(v) F C A, the symbols representing black squares.

S is called deterministic if for each a € A there is exactly one production p
in P with left side a, that is, with left(p) = a

For k > 1, A € Mg(A), and B € M,,(A) we write A = B if B is the
matrix obtained from matrix A by replacing each element, say a, by matrix
C € M,(A) such that @ — C € P. The reflexive and transitive closure of
relations = is denoted by =*. We write =" for a derivation of exactly n
steps.

Now, for k > 1, let m, = {B € Myx(A) | s =* B}; that is, m is the
set of all n* x n* matrices that can be derived from the initial symbol in
k steps. We interpret 7 as the finite n* x n* pattern whose subsquare in
the ith row and jth column is black if and only if Ugen, {Bij} N F # 0,
that is, if the subsquare was “painted black” in at least one derivation of
length k. The sequence 71, o, . .. specifies the multiresolution pattern R(S)
defined by MSS S, which can be interpreted as an infinite resolution pattern
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Figure 8: Double diminishing triangles.

R (S) = Rwo(R(S)), or as an infinite size pattern Pu(S) = Pxo(R(S)) as
described in Definition 2.

Example 7. Let S = (3, {w, b}, P,b, {b}) where P contains productions

b b b w o ow w
b—|b w b and w—|lw w w.
b b b wow w

S is a deterministic MSS that generates the Cantor Carpet of Figure 6.

Example 8. Let S = (2,A, P,v,{1}) where A = {v,dy,ds,t1,%,0,1} and
P contains productions

d] 0 O d2 d1 O O d2
vl ol "l ml BTy &t 9 g %)
|t 0 REE ’0 0‘ ‘1 11
b ltl"’ =y, 10 9o o) 171 1)

The image R (S) is shown in Figure 8.

Now we show that regular expressions and a (deterministic) MSS generate
the same multiresolution patterns.

Theorem 1. For every MSS S there effectively exists a deterministic MSS
S" and a regular language L such that R(S) = R(S') = R(L). For every
regular language L there effectively exists a deterministic MSS S such that
R(S) = R(L).
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Proof.

1. Given S = (n,A, P, s, F') we construct a nondeterministic finite au-
tomaton A = (A, %,,6, s, F) where the transition function é is defined
for every state a € A and input symbol j € ¥, as follows. State b € A
is in 8(a, j) if and only if there is a production a — C € P and the
element of C' with address j is b. Clearly a string w is accepted by A
if and only if the subsquare with addresses w in the n/*! x nl*l pattern
generated by S is black.

2. Given a regular set L C X%, there exists a complete deterministic finite
automaton A = (Q,%,,9,q, F) such that L(A) = L. We construct
MSS S = (n,Q, P, q, F) where P is defined as follows. For each ¢ € Q,
g — C € P where C' € M,(Q) and the element of C' with address j is
8(q,7). Clearly R(L) = R(S).

3. Given S we obtain an equivalent S’ using both previous steps of this
proof. B

Without extending their generative power we can make MSS more con-
venient by allowing rotation or flipping of the substituted submatrices. For
A € M,(A), p(A) denotes the matrix obtained from A by the rotation 90°
counterclockwise, and A® denotes the left-right reversal (mirror image) of A.
By composing 90° rotation and left-right reversal we can obtain any combi-
nation of 90°, 180°, and 270° rotations and any flipping. A production of an
extended MSS S = (n, A, P, s, F) is of the form a — w where w is obtained
by applying an arbitrary number of operations of rotation or reversal to a
matrix C' € M,(A). The extension of relation = is obvious.

It is easy to see that by introducing additional symbols every extended
MSS can be converted into an equivalent (deterministic) MSS. However, using
an extended MSS might require fewer symbols as shown in the following
examples.

Example 9. Let S = (2,A, P,v,{1}) where A = {v,d,t,0,1} and P con-
tains productions

U_a}d 0 v_"o dR‘
t d)’ di® 8|7

t 0 0 0 11
t—’|1 ¢ 04'0 0" L=blg 1“

Clearly R, (S) is the same as the one generated by the MSS of Example 8
and shown in Figure 8.

Example 10. In [9] a deterministic MSS that generates the Peano’s space-
filling curve is shown. It has 17 symbols. We will generate Peano’s curve
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Figure 9: Peano’s space-filling curve.

with the following extended MSS with only four symbols. S = (3, {a,b,0,1},
P, a,{1}) where P contains productions

a pla) a 0 00

a—| bR b bR, a—|1 1 0f,
p’(a) pla) b 010
b pla) a 010

b—| bt b bR, b—1|0 1 0].
2@ pa) b 010

See Figure 9 for the first steps of the extended MSS S.
The following theorem was proved in [5].

Theorem 2. For every regular language L there effectively exists a cellular
automaton A such that R(A) = R(L). Moreover, CA A generates the mul-
tiresolution pattern R(L) in linear time; that is, there exists a constant c
(= 2) such that the finite pattern P(Ly) of size m* x m* is generated by A
in O(c - m*) time steps, for every k > 0.

According to Theorem 2, cellular automata are efficient parallel devices
for simulating finite automata or iterative matrix substitutions. Note that
any sequential algorithm for drawing a pattern of size m* x m* requires at
least (m*)? operations.

5. L-systems

The third class of pattern-generating mechanisms considered here are L-
systems. It is well known that L-systems are convenient tools for simulating
biological growth. We use only the most elementary L-systems, called DOL-
systems, which consist of simple, context-free, rewriting rules of strings. The
strings generated are interpreted as patterns using turtle geometry [7].
Formally, a DOL-system is a triplet D = (2, h,w) where ¥ is a finite
alphabet, h : ©* — X* is a morphism, and w € X% is a non-empty word
called an aziom. The morphism A is a collection of rewriting rules a — u,
where a € ¥ is a letter and v € ¥* is a word. For every letter a of ¥
there is exactly one rewriting rule with a on the left side—the system is
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deterministic. The word u on the right-hand side of the production is the
homomorphic image of a (under h).

For an arbitrary word v € ¥* we write v = v’ if v’ is the word obtained
from v by replacing each letter by its homomorphic image. The DOL-system
D generates the infinite sequence wy, wy, . . . of words, where wy = w and, for
every k > 1, wi_1 = Wg.

Next we explain how a word wy, is interpreted as an image using turtle
geometry. Our approach is similar to the one introduced by Prusinkiewicz
[7]; the only difference is that because we compare L-systems with cellu-
lar automata and finite automata that define patterns composed of colored
squares, the turtle in our interpretation draws squares, not lines. A turtle is
a simple drawing device that moves on the infinite plane divided into unit
squares. The state of the turtle is a triplet (z,y, «), where (z,y) are inte-
ger coordinates of the position of the turtle, and a € {0°,90°,180°,270°} is
the angle indicating the direction in which the turtle is heading. Initially
the state of the turtle is (0,0,90°), meaning that the turtle is in the origin
and facing up. Then the string wy, is scanned from left to right, interpreting
letters as commands to the turtle in the order they are encountered.

The alphabet ¥ is assumed to contain the following special symbols: F,
fy, 4+, = [, and ]. In addition there may be an arbitrary number of other
symbols. The rewriting rules for +, —, [, and ] are restricted: each of them
is rewritten to itself. Symbols F and f, as well as any auxiliary symbols,
may have unrestricted rewriting. As the string wy. is scanned the six special
symbols are interpreted as commands to the turtle as follows:

F Paint the square under the turtle black, and advance one unit in the
present direction.

f Advance one unit on the plane in the present direction (without paint-
ing anything).

+ Turn left (counterclockwise) 90°.
— Turn right (clockwise) 90°.

Push the current state of the turtle onto a stack.

Pop a state from the top of the stack and make it the current state of
the turtle.

All other letters of the alphabet do not affect the turtle; they are just used
to direct the evolution of the L-system.

Note that the only change to the original turtle interpretation by Prusin-
kiewicz is in the interpretation of F'. Also the directions in our approach are
restricted to straight angles.

Example 11. Let D; = ({A, F, f,+,—,[,]}, h, A) where the rewriting rules
for A, F', and f are

A — A[+fA|[-fAJFA,
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Figure 10: The sixth iterate of the DOL-system simulating Ulam’s
CA.

F—F,
i

The first strings generated by the DOL-system D; are

Wy = A,
— A[+f A~ FAIF A,
wy = Al+fA| [~ FAIF AL F AL+ f Al - f AP A~ f AL+ f Al FATF A
FA[+fA][-fA]FA.

The graphical interpretation of the string wy is the same pattern that was
produced by Ulam’s CA in 2¥=! — 1 steps for every k > 0 (see Example 1).
The interpretation of wg is depicted in Figure 10.

Most conveniently the sequence py, p1, ... of patterns obtained with the
turtle interpretation from the sequence wg,ws, ... of strings is understood
as a sequence of infinite patterns. The limit in the product topology, if it
exists, is the infinite pattern generated by the DOL-system D. To translate
the sequence pg,pi,... into a multiresolution pattern, the borders of the
finite patterns need to be specified. Let S = (xq, ¥o, 7o), (%1, Y1,71), ... be an
infinite sequence of triples of integers, where 0 < ng < n; < ---. The multi-
resolution pattern R(D) defined by DOL-system D together with sequence
S is given by the finite patterns (ng, fo), (1, f1), . .. where, for every k > 0,
fr(z,y) = pr(x +zk, y +yx) for 2,y € {0,1,...,n, — 1}. In other words, the
finite pattern (ng, fi) is obtained from the infinite one p;, by taking only the
finite portion inside the square of size ny X n; whose lower-left corner is in
position (xx, yx).

Theorem 3. For every regular language L there effectively exists a DOL-
system D such that R(D) = R(L).
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1,2 0,1,2,3

Figure 11: A deterministic finite automaton for the language L' =
{1,2} % 0{1,2} « 033.

)

Proof. Given regular language L C X7, there exists a complete determinis-
tic finite automaton A = (Q, X, 6, qo, F) such that L(A) = L. We construct
DOL-system D = (Q U {F, f,+,—,[,]}, h, ¢)) where the rewriting rules in h
are defined below. For each ¢ € ¥, denote w; = —f% + f™, where 7;¢; is the
two-digit m-ary representation of i. Clearly w; is the command string that
makes the turtle move from its initial state to the subsquare with address
i. Also, denote ¢ = ¢F if ¢ € F and ¢ = ¢ if ¢ € Q\E. (The string ¢
commands the turtle to paint the square black if ¢ is a final state.)
The rewriting rule for symbol ¢ € Q is

q — [wy8(q,0)][wi1 8(q,1)] ... [Wma_1 6(g, m* — 1)].
The rewriting rules for the special symbols F' and f are
F — e
e F i
where € is the empty word.

The axiom of the DOL-system D is ¢, that is, gF if ¢go € E and ¢
if go ¢ E. If the sequence of patterns generated by D is interpreted as
a multiresolution pattern R(D) using triple (0,0,m*) for cutting the finite
portion from the infinite plane on the kth iteration (see discussion before
Theorem 3), it is easy to get convinced that R(D) = R(L). B

Note that the number of auxiliary symbols in the DOL-system con-
structed in the proof of Theorem 3 is the same as the number of states
in the complete deterministic automaton recognizing the language. The con-
struction can be modified in a straightforward manner to work directly for
an arbitrary (nondeterministic) finite automaton, thus reducing the number
of auxiliary symbols needed in the DOL-system.

Example 12. Consider the finite automaton shown in Figure 11 recognizing
the language L' of Example 4. The construction in the proof of Theorem 3
produces the equivalent DOL-system ({4, B,C, F, f,+,—,[,]}, h, A) where
the rewriting rules are as follows:

A— [B][fA[-f + 4],

B — [CF|[fB][-f + B],

C — [CF)[fCF|[~f + CF|[—f + fCF],

F — e

f=1r
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(The construction was simplified by not including the expressions correspond-
ing to nonexisting transitions in the automaton of Figure 11—the automaton
is not complete.)

6. Conclusions

We have compared the generative powers of three pattern generation mecha-
nisms: cellular automata, finite automata, and L-systems. Cellular automata
have the highest generative power among the three models. This is due to
the fact that CAs are computationally universal. Consequently, any recur-
sive infinite pattern can be generated using CAs. On the other hand, to find
the local rule for generating a particular pattern appearing in nature can be
difficult: to simulate the natural process using a CA one typically simulates
the basic physical laws. In this sense CAs correspond to the lowest, most
basic level of simulation.

L-systems have the second highest generative power. Introduced by Lin-
denmayer in 1968 as models for the development of certain organisms, they
provide a natural mechanism for simulating the growth of biological struc-
tures. L-systems operate on the higher, biological level of simulation.

Finite automata have the most restricted generative power among the
three mechanisms. On the other hand, given a pattern, if a finite automaton
exists that generates a given pattern, it is easy to find. Finite automata do
not construct patterns through simulation of natural processes; they directly
express the self-similarities in the patterns.
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