
Complex Systems 7 (1993) 347-365

Mechanisms for Pattern Generation

Karel Culik II
Department of Computer Science,

University of South Carolina, Columbia, SC 29208, USA

Jarkko Kari
Academy of Finland

and
Mathema tics Department,

University of Thrku , 20500 Thrku , Finland

Abstract. Three mechanisms-cellular automata, finite automata ,
and L-systems- for generat ing static patterns are compared. Matrix
subst itution systems, nondeterministic extensions of iterative matrix
homomorphisms, are also introduced and shown to be equivalent to
finite automata. Two different ways for taking the limit of a sequence
of finite resolution patterns produced by any of the mechanisms are
studied: one gives an infinite resolution pat tern on the unit square,
the other one a pattern of infinite size.

1. Introduction

We define t he notion of a multiresolution (static) pattern as a coloring of
an arbitrari ly large subsqua re of the tessellat ion of the plane or in genera l
of an arbit rarily large hyp ercube of n-dimensiona l space. As a limit we
can consider eit her a coloring of th e tesse llat ion of the infinite plane or of
the unit square with infinite resolution. We consider severa l mechani sms for
generating the multiresolution pat tern . The common feature is that t he same
(local) rules define a pattern at an arbitra rily large resolution. This assumes
tha t a pattern has a cert ain fixed descriptive complexity ind epend ent of the
resolution used to present it .

First we consider cellular aut omata (CAs). CAs give low-level models of
natural systems; for example, a CA cell can represent a molecule in physics.
The un iversality of CAs implies th at every recursive pattern can be genera ted
by a CA. We show examples of ext remely simple CAs tha t produce interest ing
patt erns, such as models of simple crystals.

Second , we discuss finite automata [2] and show tha t they are equivalent
to matrix subst itut ion syste ms t ha t are nond eterministi c extensions of iter­
ated matri x homomorphisms from [9]. In [5] it was shown tha t (using our

348 Karel Culik II and Jarkko Kari

term inology) every pattern specified by a finite automaton can be genera ted
by a CA in linear t ime. Since every pat tern can be approximated by a pattern
defined by a finite auto maton [3] it follows that an approximation of every
patt ern can be generated by a CA in linear t ime. Such an approximation can
be effectively found, and an inference program for this purpose is described
in [3].

In the last sectio n we discuss how to use the "tur t le" interpretation of
L-systems [7]. T hey are a higher-level too l, par ticularly suitable for modeling
the growt h of plants [8] . We show that , somewhat surprisingly, every finite
auto maton (matrix subst itut ion system) can be simulated efficient ly by an
L-system.

2. P at terns: definitions and notati on s

To simplify notations we consider only two-dimensional pat terns. General­
izations for other dimensions are st ra ight forward.

Definit ion 1. Let C be a finite set of colors. Frequently C = {'black' ,
'white '}, but pat terns with more colors can be considered as well.

(i) A finite pattern P = (n, f) is defined by a posit ive integer n and a
mapping

I: {0, 1, .. . ,n - 1} x {0, 1, .. . ,n - 1} ----7 C.

Mapping I assigns colors to the squares of a finite checkerboard of size
n x n.

(ii) A multiresolution pattern R is defined by an infinite sequence PI, P2 , · . .

of finite pat terns Pi = (ni' Ii) , where ni < n2 < . . . is an increasing
sequence of sizes.

(iii) An infini te pattern Pm is a map ping

71.2 ----7 C

that assigns colors to squa res of an infinite square tessellat ion of the
plane.

(iv) Let us denot e by 1 = [0, 1] the unit interval of real numb ers. An
infinite resolution (black-and-white) pattern Rm is a compact subset of
the unit square 12

. A point in the unit squa re is black if it belongs to
Rm ; otherwise it is white.

In this art icle we consider various met hods for generat ing the four types
of patterns defined above. Typically finite patterns of different sizes are gen­
era ted, which defines a mult iresolut ion pat tern. The mult iresolution pattern
can be interpreted in t he limit either as an infinite pattern or as an infinite
resolution pattern of the uni t square in a mann er made precise by Definit ion
2 below.

Mechanisms for Patt ern Generation 349

In t he definition an interpretat ion of finite black-and-white pat terns P =
(n,1) as comp act subsets of the unit square 12 is needed. Define the compact
set

Roo (P) = U([~ , x : 1] x [~ , Y : 1]) ,
where the union is over all x ,Y E {O, 1, . .. ,n - I } wit h f (x ,y) = 'black' . In
other words, pat tern P is scaled appropriately to fit inside th e unit square.
Roo(P) is the infinite resolution interpretation of P .

Analogously, an interpret at ion of a finite pat tern P as an infinite pat tern
is needed. This is obtained by placing P on the infinite square tessellat ion in a
position specified by a given translation (x, y) E 712 , and coloring all squares
out side P using a fixed background color, usually 'whit e' . Formally, t he
infinite pattern P00 (P) : 1:. ---> C is th e infinite version of P with translat ion
(x,y) if

Poo (P)(x + x', y + y') = { ;W(hXI'/t'e~/) if 0:::; x' , y' :::; n - 1,
otherwise.

Definit ion 2. Let R be a mult iresolution pat tern defined by an infinite se­
quence PI, g , . . . of finite patterns Pi = (ni' fi)'

(i) The mult iresolution pattern R defines the infinite resolut ion pat tern
Roo (R) C;;; 12 if and only if Roo(R) is t he limit of the sequence Roo(Pd ,
Roo (P2), .. . of infinite resolut ion interpretat ions of finite pa t terns PI,
P2 , . . . in the standard Hausdorff topology on t he compac t subsets (see
[ID. Intuitively, the patterns Pi are better and better approximations
of the pa t tern Roo (R). Note th at not every multir esolut ion pattern
defines an infinite resolut ion pa t tern-the limit is defined only if th e
sequence Roo(H), Roo (P2), .. . converges.

(ii) Let (XI,YI), (X2 ' Y2), . .. be an infinite sequence of elements of 1:.2 that
describe how the finite patterns are to be placed on the infinite plane:
The infinite version Poo(Pi) of Pi is obtained by placing Pi with its
lower-left corner in posit ion (Xi, Yi). An infinite pat tern Poo(R) : 1:.2 --->

C is defined by t he mult iresolut ion pat tern R with t ran slat ions (Xi ,Yi)
if for every (x, y) E 1:.2 there exists a posit ive integer N such that
Poo(Pi)(x , y) = Poo(R) (x , y) for all i ?: N . In other words, Poo (R) is
th e limit of the sequence Poo (H),Poo(P2), . .. in the standard product
topology on the set of infinite pat terns. (T he topology used is the
infinite pro duct of the discrete topologies on C ; see for example [4].)
The limit Poo (R) is defined only if the sequence Poo (PI) , Poo(P2), . . .
converges.
If the sequence (XI,YI), (X2 ,Y2) , . . . of tra nslat ions is not explicit ly given
it is assumed to be (Xi,Yi) = (0,0). In t his case the finite patterns are
placed with their lower-left corne r in t he origin of the plan e. The
infinit e pattern they (possibly) define is contained in t he upp er-right
quadrant of the plane; the other three quadr ants have t he background
color.

350 Karel Culik II and Jarkko Kari

The not ation that we use should be und erstood as follows. RooU is the
infinite resolution pattern defined by its argument . If th e argument is a
finit e pat tern P , then Roo(P) is obtained by properly scaling the pattern
inside the unit square as describ ed before Definition 2. If th e argument is a
multiresolution patt ern R, then Roo (R) is the limit as defined in Definition
2(i) . Similarly, Poo U is the infinite pattern defined by its argument, which
can be eit her a finite pattern P or a multiresolution pattern R.

In t he following sect ions three devices for defining patterns are st udied:
cellular aut omata, finite automata (or equivalent ly, matrix subst itut ion sys­
tems) , and L-systems.

3. Two-dimensional cellular automata

Cellular automata are discrete dynamical systems used for computer simula­
tions of various natural phenom ena. Among the three mod els studied by this
article, they are the lowest-level devices in t he sense that they correspond to
th e basic physical laws covering pattern formation in nature.

Two-dimensional CAs operat e on the infinite Euclidean plane divided
into unit squares. The squares (referred to as cells) are indexed using integer
coordinat es. A finite state set 8 is fixed. At all times each cell is in one
state of 8 . The cells alte r their states synchronously at discrete tim e steps as
specified by the local transi ti on rule of the CA. The transition rule describes
the new state of the cell as a function of the old states of some of the cell's
neighbors. All cells use the same local rule. The neighborhood of the CA
specifies which cells are considered the neighbors of a cell. Frequentl y used
neighborhoods are the Moore neighborhood and th e von Neumann neighbor­
hood. The Moore neighborhood of a cell contains nine cells: th e cell itself
and the eight surrounding cells. In this case the local transition rule is a
function from 8 9 to 8 . In the von Neum ann neighborhood the neighbors of
a cell are the four closest cells- t he cells above, below, and immediately to
the right and left- as well as th e cell itself.

A configuration of the CA is a mapping 712
-7 8 that specifies the st at es

of all the cells. At each discret e time inst ance t he present configuration
of th e CA is altered by appl ying the local rule simult aneously at all cells.
When thi s proc ess is repeated a sequence of configurations is obtained. This
sequence describ es th e evolut ion of th e CA. An evolut ion of infinite patterns
is obtained if t he states are interpreted as colors. For thi s purpose we define
a coloring function 8 -7 C that gives th e color of each state. Note that th e
coloring does not need to be one-t o-one, which means that many states can
be int erpreted as t he same color. . The coloring funct ion is extended in the
obvious way to configurations, translating each configurat ion into an infinit e
pattern over the color set C.

One special state q E 8 is identified as the quiescent state of the CA.
The quiescent state is usually assumed to satisfy the condition that each
cell whose neighb ors are all in the quiescent state remains quiescent on t he
next tim e instance. This guarantees that if initially only finitely many cells

Mechanisms for Pattern Generation

(a)

351

(b)

Figure 1: The evolut ion of Ulam's CA: (a) the beginning of the evo­
lution, (b) the pattern produced after 60 iterations.

are non-quiescent , then this is t rue on subsequent configurations as well.
A configuration wit h a finite numb er of non-quiescent cells is called fini te.
The coloring func tion is assumed to color the quiescent state q with the
background color 'white' .

Now we are ready to define th e infinite pat tern genera ted by a CA A
from a finite initial configuration co. Let Co, CI, C2, ... be the sequence of
configurations obtained from Co by applying the CA rule repeat edly, and let
Po ,PI, . .. be the corresponding sequence of (infinite) patterns obtained from
the configurat ions using the coloring funct ion . The infinite pattern P : 71.2 --+

C is genera ted by CA A from initi al configurat ion Co if P is the limit of the
sequence Po ,PI , . .. in the product topology or , in other words, if for every
position (x, y) E 71.2 there exists an integer N such that Pi(X , y) = p(x,y) for
all i ~ N .

Example 1. Consider the following very simple CA A introduced by Ulam .
T he CA has two st ates, 0 and 1. The state 0 is the quiescent state and is col­
ored white, while state 1 is colored black. T he CA A uses the von Neumann
neighborhood. A cell in st ate 1 never changes its state . A cell in state 0 is
changed into state 1 if and only if exactly one of its four closest neighbors is
in state 1. T he fact that state 1 never changes back to 0 guarantees that a
limit exists for every initial configuration.

Figure 1 shows the first iteration steps of A starting from an initial con­
figurat ion containing just one cell in state 1, as well as the pattern obtained
afte r 60 iteration ste ps. Note the complex st ructure of the pat tern even
though the local rule of the CA is ext remely simple. This "contradict ion"
between the simplicity of the local rule and the complexity of th e pattern
produced is typ ical of CAs.

352 Karel Culik II and Jarkko Kari

Figure 2: The snowflake produced by Ulam's CA on a hexagonal
network.

The infinite pat tern generated by A in t he limit no longer has the crystal­
like st ructure visible in Figure l (b), which is due to the order in which the
black states expand. The infinite pat tern is a complex mixture of black and
white cells, which, however , has t he following simple ar ithmet ic characteri­
zat ion: A cell in posit ion (x, y) is white if and only if x,y i- a and the binary
representations of both x and y have the same numb er of as in the end. Note
also how the black cells form a connected loop-free graph , or a t ree.

Example 2. Consider the same simple local ru le as in Example 1, but
change the st ructure of the underlying network. A snowflake-like pattern
of Figure 2 is obt ained if the hexagonal network of Figure 3(a) is used. In
fact , the hexagonal network can easily be simulated by a rectangular one if
one new state is int roduced: Instead of state 1 the CA has two black states,
called 'even ' and 'odd ' . Intui tively, a black cell on an even row of the square
tessellat ion is in state 'even', and on an odd row in st ate 'odd ' . The neigh­
borhood used is the Moore neighborhood. If the neighb orhood of a cell in
state '0' cont ains a black state, t hen the cell can deduce if it is on an even
or odd row. Depending on this, the cell looks only at six of its neighbors,
excluding cells in the left corners of the Moore neighborhood if it is on an
even row and cells in the right corners if it is on an odd row. If exact ly one of
th ese six neighbors is black, t he cell becomes black. With t his simple t rick,
the network of Figure 3(b) , isomorp hic to the hexagonal network of Figure
3(a), is essent ially used.

CAs define most naturally infinite pat terns as described above. However ,
to compare CAs with t he other pat tern generation mechanisms introduced
later in this art icle, let us describe how CAs define multi resolution patterns.

Mechanisms for Pattern Generation

(a)

353

(b)

Figure 3: (a) Hexagonal network. (b) Simulation of the hexagonal
network on a rectangular one.

For this purpose, it is most convenient to use CAs t hat operate on finite
square tessellat ions instead of the ideal infinite one. Let n be a positive
integer, and consider a square of n x n cells. Ini tially all cells are in quiescent
state q. The cells know if they have a neighbor that is outside the square ,
which means that t he cells on the border can change dur ing the first t ime ste p
into a non-quiescent state. (The same effect is obtained by an infinite CA
whose initial configuration contains a finite square island of quiescent states q
in an infinite sea of states F that remain fixed throughout the computation.)

The finit e CA A operates in th e same way as th e infinite one. T he cells
change their st ates synchronously by applying the local t ransition rule. The
local rule must include the special cases of cells with neighbors outside the
square. The CA is iterated unti l a configuration is obtained that does not
change any more. If such a fixed point Crt is reached, the finite pattern Pn­
obtained from Crt by using th e coloring function- is the pattern of size n
defined by A. If no fixed point is reached, A does not define any pat tern of
size n .

T he sequence Pn" Pn2' . .. of pat terns of sizes n i < nz < . . . defined by A
(where n l , nz, .. . includes all sizes at which A reaches a fixed point) is the
multiresolution pattern R(A) defined by A. The limits Roo (A) = Roo (R(A))
and Poo (A) = Poo (R(A)) given by Definit ion 2 are the infinite resolution
pattern and infinite pattern , respect ively, defined by CA A. To otain the
infinit e pattern Poo (A) the finite squares are most convenient ly placed on the
infinite plane with their cente r in the origin. In this case it is not difficult
t o see that t he exact same infinite patterns are generated in this way as
can be genera ted by CAs on the infinite tessellat ion with the original, direct
approach used in the beginning.

Example 3. Consider the following simple CA A with t he von Neumann
neighborhood and two states , representin g black and white . A cell changes
its st ate to the opp osite color if and only if all its neighbors have th e same

354 Karel Culik II and Jarkko Keri

color as the cell itself. In addit ion, the cell in the lower-left corner of t he
finite tessellation (the cell whose left and lower neighbors are both outs ide
the square) is t urn ed black, regardless of the color of its other neighbors.
Initially all cells are white. Clearly, in 2n - 1 steps the CA reaches the
checkerboard configuration of alternat ing black and white squares that is no
longer changed, where n is the size of the tessellat ion. The corresponding
infinite patt ern Poo (A), obtained if the lower-left corner of each n x n checker­
board is placed in posit ion (-l~J,- l~J) on the infinite plane, is the infinite
checkerboard. On th e other hand , t he infinite resolut ion pat tern Roo(A) is
the completely black unit square. The infinit e checkerboard is also obtained
by the same local rule operating on t he infinite tessellat ion if the initial con­
figurat ion contains just one black cell.

4 . P at t er ns generated by fini t e automata and it erative
matrix substit ution

Consider the tessellat ion of a square into m k x m k ident ical subsquares. We
will assign st rings of lengt h k over the alphabet I:m = {O, 1, .. . ,m 2 - I}
to the subsqua res as unique addresses; that is, we give a biject ion between
the subsquares and (I:m)k. Consider the address ala2 . . . ak, where a; E I:m .

Let TiCi be the two-digit m-ary representation of a., that is, ri, c; E {O, 1, . . . ,
m - l }. For example, for m = 3 and a; = 7 we have Ti = 2 and Ci = 1. Denote
by T and C the integers with m-ary represent at ion TIT2 . .. Tk and CIC2 . .. Ck ,
respect ively. T hen ala2 .. . ak is assigned an address of the subsquare in the
r th row and cth column, with the rows numbered 0, 1, . .. , m - 1 bottom-up
and the columns from left to right . The addresses of all the subsquares for
m = 2, k = 3 and m = 3, k = 2 are shown in Figure 4.

Now we interpret a set of st rings S ~ (I:mt as a black-and-white pattern
P (S) of size m k x m k . A subsquare of P (S) is black if and only if its address is
in S. Finally, we interpret a language L ~ I:;'" as t he multi resolutio n pattern
R (L) specified by the patterns P (Lo), P(L1) , . .. where Lk = L n (I:m)k for all
k 2: O. It is easy to see that t he limit image Roo (L) = Roo (R (L)) (a compac t
subset of [0, 1]2 as describ ed in Definition 2) is exact ly the image defined by
L according to [2].

A great variety of multiresolut ion patterns can be specified by regular
sets or more precisely by regular expressions or finite aut omata.

E xa m p le 4. Consider I:2 = {O, 1, 2, 3} and L = I::i{0,3 }. Clearly, R(L)
is the mult iresolut ion pat tern such that P (Lk) is the checkerboard of size
2k x 2k (as in Examp le 3). For L' = {I , 2}*0{1, 2}*OI::i, t he limit Roo (L') is
shown in Figure 5.

For any language L , using the operat ion of left quot ient [6] we can zoom
to t he subsquare with address w of the image Roo (L). The zoomed image is
Roo(w/ L). For example, consider L' , the dim inishing t riangles from Example
2. Zooming to any subsquare whose address u is a sequence of Is and 2s gives
us u] L' = L'; th e image is part ially self-similar. Zooming in the bottom-left

Mechanisms for Pattern Generation

111 113 131 133 311 313 331 333

110 112 130 132 310 312 330 332

101 103 121 123 301 303 321 323

100 102 120 122 300 302 320 322

011 013 031 033 211 213 231 233

010 012 030 032 210 212 230 232

001 003 021 023 201 203 221 223

000 002 020 022 200 202 220 222

22 25 28 52 55 58 82 85 88

21 24 27 51 54 57 81 84 87

20 23 26 50 53 56 80 83 86

12 15 18 42 45 48 72 75 78

11 14 17 41 44 47 71 74 77

10 13 16 40 43 46 70 73 76

02 05 08 32 35 38 62 65 68

01 04 07 31 34 37 61 64 67

00 03 06 30 33 36 60 63 66

Figure 4: The squares addressed by st rings in (2:;2)3 and (2:;3)2.

355

356 Karel Culik II and Jarkko Kari

Figure 5: Diminishing triangles.

Figure 6: Cantor Carpet .

quadrant O\ L' = {I , 2} *O~; we get a regular set representing a t riangle.
For the upp er-right quadrant we have 3\L' = 0; the quadrant is complete ly
white.

Example 5. Consider ~3 = {O, 1, . . . , 8} and L" = (~3 - 4)* T he finite
pattern P(L~) (resolut ion 34 x 34

) is shown in Figure 6. It is a good approx­
imation of th e ideal Cant or Carpet, which is represented by Roo (L"). Note
that for each u E (~3 - 4)* and each v E ~3 ' 4v\L" = 0 and u\L" = L", the
image represented by Roo (L") is perfect ly self-similar .

Example 6. As noted at the end of Example 1, the infinite pattern produ ced
by Ularri's CA has a simple arithmetic characterization: A square in posit ion
(x,y) is white if and only if the binary expansions of x and y have the
same number of t ra iling zeros. T hus the white squares in the upper-r ight
quadrant of the plane are represented by the regular expression ~;30*. T he

Mechanisms for Pat tern Generation

•

•
.-- r - . - .,r-.I""II- _ •.•

• •
Figure 7: The pattern represented by L;2{1 , 2}0* U 0* in resolution
32 x 32.

357

black squares are represented by its complement I:;{ 1, 2}O* U 0* The finite
pat tern at resolution 25 x 25 is shown in Figure 7.

Now we introduce matrix subst itut ion systems (MSS), which are non­
determin istic extensions of iterated matrix-valued homomorphisms from [9].
For an alphabet 6. we denote by Mn(f:J.) the set of all n x n matrices with
elements from 6..

An MSS is a tuple S = (n ,6., P , s , F) where

(i) n ~ 1, the size of the subst itut ion matrices.

(ii) 6. is a finite set , the alphabet.

(iii) P ~ 6. x Mn(6.) is the set of produ ct ions. A product ion p = (a,C) is
usually written a ----+ C . We write left (p) = a .

(iv) s E 6., the initial symbol.

(v) F ~ 6., the symbols representing black squares.

S is called deterministic if for each a E 6. there is exactly one product ion p
in P with left side a, that is, with left (p) = a.

For k ~ 1, A E Nh(6.) , and B E Mn k (6.) we writ e A => B if B is the
matri x obt ained from matrix A by replacing each element, say a, by matrix
C E Mn (6.) such that a ----+ C E P . The reflexive and t ransit ive closure of
relations => is denoted by =>* . We write =>n for a derivation of exact ly n
steps .

Now, for k ~ 1, let 'Irk = {B E M n k (6.) I S => k B} ; that is, 'Irk is the
set of all nk x nk matrices t hat can be derived from the initial symbol in
k steps . We interpret 'Irk as the finite nk x nk pat tern whose subsquare in
the ith row and jth column is black if and only if U B E1rk {Bi,j} n F i- 0,
that is, if the subsquare was "painted black" in at least one derivation of
lengt h k . The sequence 'lr l , 'lr2 , . .. specifies the mult iresolut ion pat tern R(S)
defined by MSS S, which can be interpreted as an infinite resolut ion pattern

358 Karel Culik II and Jarkko Kari

Figure 8: Double diminishing triangles.

Roo(S) = Roo(R(S)), or as an infinite size pattern Poo (S) = Poo(R(S)) as
described in Definition 2.

Example 7. Let S = (3, {w,b}, P,b, {b}) where P contains productions

b
b -+ b

b

b b
w b
b b

and
w w w

w-+ w w w
w w w

S is a deterministic MSS that generates the Canto r Carpet of Figure 6.

Example 8. Let S = (2, ll., P,v , {I}) where ll. = {v ,d 1 ,d2 ,h ,tz,O,1} and
P contains pr odu ctions

d1 -+ I~~ ~l I' dz -+ I~2

o -+ I~ ~ I , l-+ /i ii,
The image Roo (S) is shown in Figur e 8.

Now we show that regu lar expressions and a (deterministic) MSS generat e
the same multiresolution pat terns.

Theorem 1. For every MSS S there effectively exists a deterministic MSS
S' and a regular language L such that R(S) = R(S') = R(L). For every
regular language L there effectively exists a deterministic MSS S such that
R(S) = R(L).

Mechanisms for Pattern Generation

Proof.

359

1. Given 5 = (n, !::" ,P, s , F) we construct a nondeterministic finite au­
tomaton A = (!::", ~n , 8, s , F) where the t ransit ion function 8 is defined
for every state a E !::,. and inpu t symbol j E ~n as follows. State bE!::"
is in 8(a,j) if and only if there is a production a ---+ C E P and the
element of C with address j is b. Clearly a st ring w is accepted by A
if and only if the subsquare with addresses w in the n1wl x n1wl pattern
generated by 5 is black.

2. Given a regular set L <:;;; ~~ , there exists a complete determinist ic finite
automaton A = (Q,~n , 8, qo, F) such that L(A) = L. We const ruct
MSS 5 = (n ,Q,P, qo, F) where P is defined as follows. For each q E Q,
q ---+ C E P where C E Mn(Q) and the element of C with address j is
8(q,j). Clearly R(L) = R(5).

3. Given 5 we obtain an equivalent 5' using both previous steps of this
proof. •

Without extending their generative power we can make MSS more con­
venient by allowing rot ation or flipping of th e substituted submatrices. For
A E Mn (!::"), p(A) denotes the matrix obtained from A by the rotat ion 90°
counte rclockwise, and A R denotes t he left- right reversal (mirror image) of A.
By compos ing 90° rotation and left-right reversal we can obtain any combi­
nation of 90°, 180°, and 270° rotations and any flipping. A produ ct ion of an
extended MSS 5 = (n, !::", P,s,F) is of the form a ---+ w where w is obtained
by applying an arbit rary numb er of operations of rotation or reversal to a
matrix C E Mn (!::"). The extension of relation =? is obvious.

It is easy to see t hat by intr odu cing addit ional symbols every extended
MSS can be converted into an equivalent (determinist ic) MSS. However, using
an extended MSS might requir e fewer symbols as shown in the following
examples.

Example 9. Let 5 = (2, !::", P,v, {I}) where zx = {v, d, t ,0, 1} and P con­
t ains productions

v ---+ I ~

t it---+ 1

I
0 d

R
Iv ---+ dR tR ,

O ---+ I~ ~ I , 1---+ 1~

Clearly Roo (5) is the same as the one generated by the MSS of Example 8
and shown in Figure 8.

Example 10 . In [9] a determini stic MSS t hat generates the Peano's space­
filling curve is shown. It has 17 symbols. We will generate Peano's curve

360

..
Karel Culik II and Jarkko Kari

Figure 9: Peano's space-filling curve.

with the following extended MSS with only four symbols. S = (3, {a,b,O, l} ,
P, a, {I}) where P contains pro duct ions

a p(a) a 0 0 0
a --> bR b bR a --> 1 1 0

p2(a) p3(a) b 0 1 0

b p(a) a 0 1 0
b --> bR b bR b --> 0 1 0

p2 (a) p3(a) b 0 1 0

See Figure 9 for the first st eps of the extended MSS S.

The following theorem was proved in [5].

Theorem 2. For every regular language L there effectively exists a cellular
automaton A such that R (A) = R (L). Moreover, CA A generates the mul­
tiresolution pattern R (L) in linear time; that is, there exists a constant c
(= 2) such that the finite pattern P (L k) of size m k x m k is generated by A
in O(c . m k

) time steps, for every k > O.

According to T heorem 2, cellular automata are efficient parallel devices
for simulating finite automata or iterat ive matrix substit ut ions. Note that
any sequent ial algorithm for drawing a pattern of size m k x mk requires at
least (mk)2 operat ions.

5. L-systems

The third class of pat tern-generating mechanisms considered here are L­
systems. It is well known that L-systems are convenient to ols for simulat ing
biological growt h. We use only the most elementary L-systems, called DOL­
systems, which consist of simple, context-free, rewrit ing rules of st rings. The
st rings generated are interpret ed as pat terns using turtle geometry [7].

Formally, a DOL-system is a t riplet D = (~ , h,w) where ~ is a finite
alphabet , h : ~* --> ~* is a morp hism, and w E ~+ is a non-empty word
called an axiom. The morphi sm h is a collection of rewriting rules a --> u,
where a E ~ is a let ter and u E ~* is a word. For every let ter a of ~
there is exactly one rewriting rule with a on the left side-the system is

Mechanisms for Pat tern Generation 361

determinist ic. T he word u on the right-hand side of the production is the
homomorphic image of a (under h).

For an arb it ra ry word v E ~. we write v ::::} v' if v' is the word obtained
from v by replacing each letter by its homomorphic image. The DOL-system
D generates the infinite sequence wo, WI, ... of words, where Wo = wand, for
every k ~ 1, WI<;-l ::::} WI<; .

Next we explain how a word WI<; is interpreted as an image using t urtle
geomet ry. Our approach is similar to the one introduced by Prusinkiewicz
[7]; the only difference is that because we compare L-systems with cellu­
lar automata and finite automata that define pat terns composed of colored
squares, the turtle in our int erpretation draws squares, not lines. A turtle is
a simple drawing device that moves on the infinite plane divided into unit
squares. T he state of the turtle is a triplet (x, y , ex) , where (x, y) are inte­
ger coordinates of th e position of the turtle, and ex E {0°, 90°, 180°, 270°} is
the angle indicating the direct ion in which the turtle is heading. Initially
th e state of the turtle is (0, 0,9 0°) , meaning that th e t urtle is in the origin
and facing up. Then th e st ring W I<; is scanned from left to right , interpreting
let ters as comman ds to th e turtle in the order they are encountered.

The alphabet ~ is assumed to contain the following special symbols: F ,
t, +, - , [, and J. In addit ion there may be an arbit rary number of ot her
symbols. The rewriting ru les for +, - , [, and J are rest ricted: each of them
is rewritten to itself. Symbols F and f , as well as any auxiliary symbols,
may have unrest ricted rewriting. As the st ring WI<; is scanned the six special
symbols are interpreted as commands to t he turtle as follows:

F Paint the square under the turtle black, and advance one unit in the
present direction.

f Advance one unit on the plane in the present direct ion (without paint ­
ing anyt hing) .

+ Turn left (counterclockwise) 90°.

Turn right (clockwise) 90°.

Push the current state of the turtle onto a stack.

Pop a state from the top of the stack and make it the current state of
t he tur t le.

All other let ters of the alphabet do not affect t he turtle; th ey are just used
to direct the evolut ion of the L-syst em.

Note that th e only change to the original turtle interpr etat ion by Prusin­
kiewicz is in the interpretation of F. Also the directions in our approach are
restricted to st ra ight angles.

Ex ample 11. Let D 1 = ({ A ,F , t, +,- ,[, j} , h, A) where the rewrit ing rules
for A , F , and f are

A ---> A[+ f A][- f A]FA,

362 Karel Culik II and Jarkko Kari

.;. +.
"+1:

t.

...: ":.
""~ 1"

Figure 10: The sixth iterate of the DOL-system simulating Ulam's
CA.

F -> F,
f->f.

The first strings gener at ed by the DOL-syst em D l are

Wo = A,
Wl = A [+ f A][- f A]FA ,
W 2 = A [+f A][- fA]F A [+f A[+f A][- f A]F A][- f A [+f A][- fA]FA]

F A[+f A][- f A]FA.

The graphical interpret ation of t he st ring W k is the same pattern that was
produced by Ulam's CA in 2k- l - 1 ste ps for every k > 0 (see Example 1).
The interpret ation of W 6 is depicted in Figure 10.

Most convenient ly th e sequence PO ,Pl , . .. of patterns obtained with the
turtle int erpretation from th e sequence Wo , W l, . . . of st rings is understood
as a sequence of infinit e patterns. The limit in th e product topology, if it
exists, is the infinite pattern generated by the DOL-system D. To translate
the sequence PO ,Pl , ... into a multiresolution pattern, the borders of the
finite patterns need to be specified. Let S = (xo,Yo ,no), (Xl,Yl, nl) , '" be an
infinite sequence of triples of int egers, where 0 < no < nl < .. -. The multi­
resolution pattern R(D) defined by DOL-system D together with sequence
S is given by the finit e patterns (no, fo), (n l, h) ,... where , for every k > 0,
fk(X,y) = Pk (X+ Xk ,Y +Yk) for X, y E {O, 1, . . . , nk - 1}. In other words, the
finite pattern (nk' ik) is obtained from the infinite one Pk by t aking only the
finit e portion inside the square of size nk x nk whose lower-left corne r is in
posit ion (Xk,Yk).

Theorem 3. For every regular language L th ere effectively exists a DOL­
system D such that R(D) = R(L).

Mechanisms for Pattern Generation

1,2 1,2 0,1,2 ,3

W~O 0
~~~0

Figure 11: A deterministic finite automaton for the language L' =

{I , 2} *O{l, 2} * 0~2'

363

Proof. Given regular language L ~ ~:'n , there exists a complete determinis­
tic finit e automa ton A = (Q,~m , S, qo , E) such that L(A) = L. We construct
DOL-syst em D = (Q U {F, i .+,- , [, ]}, h, qb) where the rewriting rules in h
are defined below. For each i E ~m denote W i = - j"i + j'i, where r. c; is th e
two-digit m-ary representat ion of i . Clearly Wi is th e command st ring tha t
makes th e turtle move from its initial st ate to t he subsquare with address
i . Also, denote q' = qF if q E E and q' = q if q E Q\E. (The st ring q'
commands th e turtle to paint th e square black if q is a final state .)

The rewriting rule for symbol q E Q is

q ----> [wob(q,O)'][WI b(q, 1)'] . .. [W m 2- 1 b(q, m2 - 1)'].
The rewriting rules for th e special symbols F and j are

F ----> E,

j ----> i'" ,
where E is the empty word.

The axiom of the DOL-system D is qb , that is, qoF if qo E E and qo
if qo ~ E. If the sequence of pat terns genera ted by D is int erpreted as
a multiresolution pattern R(D) using t riple (0,0 , m k

) for cutting the finite
portion from the infinit e plane on the kth it eration (see discussion before
Theorem 3) , it is easy to get convinced th at R(D ) = R(L). •

Note t ha t the numb er of auxiliary symbols in th e DOL-syst em con­
st ructed in the proof of Theorem 3 is the same as th e numb er of states
in t he complete deterministic aut omaton recognizing the language. The con­
st ruction can be modified in a st ra ightforward manner to work directly for
an arbit ra ry (nondetermini stic) finit e aut omaton , thus redu cing the numb er
of auxiliary symbols needed in the DOL-syst em.

Example 12. Consider the finit e automaton shown in Figur e 11 recognizin g
the language L' of Example 4. The construction in the proof of Theorem 3
produces the equivalent DOL-system ({A,B,C,F, j , +, - ,[, ]}, h,A) where
the rewrit ing rules are as follows:

A ----> [B ][ j A][- j + A],

B ----> [CF ][ j B ][- j + B ],

C ----> [CF ][ j CF ][- j + CF][- j + jCF],
F ----> E,

i ----> if.



364 Karel Culik II and Jarkko Kari

(T he const ruct ion was simplified by not including the expressions correspond­
ing to nonexisting transit ions in the automaton of Figure H -e-the automaton
is not complete .)

6 . Conclusions

We have compared t he generat ive powers of three pattern genera t ion mecha­
nisms: cellular aut oma ta, finite automata, and L-syst ems. Cellular automata
have the highest generative power among the three models. This is du e to
the fact that CAs are computationally universal. Consequently, any recur­
sive infinite pat tern can be generated using CAs. On the other hand , to find
the local rule for generating a par t icular pattern appearing in nature can be
difficult : to simulate t he natural process using a CA one ty pically simulates
the basic physical laws. In this sense CAs corres pond to t he lowest , most
basic level of simulat ion.

L-syst ems have the second highest genera tive power. Int roduced by Lin­
denmayer in 1968 as models for the developm ent of certain organisms, they
provide a natural mechan ism for simulat ing the growth of biological st ruc­
tures. L-systems opera te on the higher , biological level of simulat ion.

Finite automat a have the most rest ricted generative power among the
three mechanisms. On t he ot her hand , given a pattern , if a finite automaton
exists that generates a given pat tern, it is easy to find . F inite automata do
not const ruct patterns through simulat ion of nat ural pro cesses; t hey directly
express the self-similarit ies in t he patterns.

A cknowledgment s

This research was supported by NSF Grant o. CCR-9202396.

R eferences

[1] M. F. Barnsley, Fractals Everywhere (San Diego: Academic Press, 1988).

[2] K. Culik II and S. Dube, "Rat ional and Affine Expressions for Image Descrip­
t ion," Discrete Applied Mathematics, 41 (1993) 85- 120.

[3] K. Culik II and J . Kari, "Image Compression Using Weighted Finite Au­
tomata," Computer and Graphics (to appear).

[4] K. Culik II, J . Pachl, and S. Yu, "On the Limit Sets of Cellular Automata,"
SIA M Journal on Computing, 18 (1989) 831- 842.

[5] K. Culik II, "How to Fire Almost Any Pattern on a Cellular Automata," Pro­
ceedings of the NA T O Workshop on Cellular Au tomata and Cooperative Sys­
tems, Les Houches, France, June- July 1992 (to appear).

[6] John E. Hopcroft and Jeffrey D. Ullman, Introduction to Automata Theory,
Languages and Computation (Reading, MA: Addison-Wesley, 1979).



Mechanisms for Pattern Generation 365

[7] P. P rusinkiewicz, "Graphical Applicat ions of L-systems," Proceedings of
Graphic Interface 1986- Vision Interface, (1986) 247-253.

[8] P. Prusinkiewicz and A. Lindenmayer , The Algorithmic Beauty of Plants (New
York: Sprin ger Verlag, 1990).

[9] J. Shallit and J. Stolfi, "Two Methods for Generatin g Fractals," Computer and
Graphics, 13 (1989) 185- 191.




