Monomial Cellular Automata

Ron Bartlett*
Max Garzon ${ }^{\dagger}$
Department of Mathematical Sciences, The University of Memphis, Memphis, Tennessee 38152, USA

Abstract

We investigate the dynamics of monomial cellular automata, whose next-state is given as a product of the neighboring states. Monomial cellular automata provide a multiplicative analogue of additive cellular automata with novel dynamical features. Phase portraits are given for monomials of degree two and three, along with general methods to obtain them. Monomials of higher degree are analyzed via a superposition principle.

1. Introduction

Linear or additive cellular automata (CAs) have remained, since their early inception, the most amenable to rigorous analytic treatment [1, 2, 3] due to the superposition principle. Recently, Reimen [4] extended the superposition principle to CAs over commutative monoids. With the binary operation given by juxtaposition, the superposition principle is then given by

$$
\begin{equation*}
T(x y)=T(x) T(y) \tag{1}
\end{equation*}
$$

where T is the global dynamics and x and y are configurations consisting of bi-infinite words over a finite set of states Q, that is,

$$
x=\ldots x_{-2} x_{-1} x_{o} x_{1} x_{2} \ldots \quad x_{i} \in Q
$$

and the binary operation is applied pointwise, that is,

$$
(x y)_{i}=x_{i} y_{i}
$$

Substituting for both sides of equation (1) gives

$$
\left(x_{i} y_{i}\right)\left(x_{i+1} y_{i+1}\right)=\left(x_{i} x_{i+1}\right)\left(y_{i} y_{i+1}\right)
$$

[^0]Therefore,

$$
\forall a, b, c, d, \quad(a b)(c d)=(a c)(b d)
$$

As Reimen pointed out, this condition is satisfied by a commutative monoid: examples include $\left\langle\mathbf{Z}_{m}, \bullet\right\rangle$, the residue classes of integers modulo m under multiplication.

Indeed, a multiplicative version of the superposition principle provides a direct approach to analyze CAs over $\left\langle\mathbf{Z}_{m}, \bullet\right\rangle$, whose local rule is given by a product of the neighboring states

$$
\delta_{\mathrm{mono}}(\vec{x}) \equiv \prod_{j=1}^{n} x_{i+j}^{p_{j}} \quad(\bmod m)
$$

where \vec{x}_{i} is the ordered neighborhood vector $\left(x_{i}, \ldots, x_{i+n-1}\right)$ of cell i. We refer to these as monomial cellular automata because they are a particular case of a more general class of CAs whose local rules can be expressed as polynomials, that is, as sums of S monomial terms with coefficients a_{k} :

$$
\delta_{\text {poly }}(\vec{x}) \equiv \sum_{k=1}^{S} a_{k}\left(\prod_{j=1}^{n} x_{j}^{p_{j}}\right) \quad(\bmod m)
$$

Hedlund [5] has shown that any CA over a prime number of states p can be expressed as a polynomial of degree less than p, where the degree of the polynomial is given by $\max \left(p_{j}\right)$. We then associate the complexity of a CA with the degree of the polynomial $P\left(x_{1} \ldots x_{n}\right)=\delta_{\text {poly }}(\vec{x})$. The lowest degree CAs are those with linear (additive) rules such that $\max \left(p_{j}\right)=1$. The degree of a monomial term $\prod_{j=1}^{n} x_{j}^{p_{j}}$ is the number of variables x_{j} with nonzero exponents p_{j} (we assume $x_{j}^{0}=1$). Thus, linear (additive) CAs consist of sums of monomials of degree 1, whereas bilinear (quadric) CAs consist of sums of monomials of degree 2 , and so on.

1.1 Relation to linear CAs

Monomial CAs are the multiplicative analogues of additive (linear) CAs. The trajectories of single pixels are described by rows of Pascal's triangle modulo k. For example, consider the orbit of $\overline{1}$ under

$$
\begin{equation*}
\pi_{1,1}(x)_{i} \equiv x_{i-1} x_{i+1} \quad(\bmod m) \tag{2}
\end{equation*}
$$

below.

$$
\begin{gathered}
\ldots .11111 \underline{s} 11111 \ldots \\
\ldots 1111 s 1 s 1111 \ldots \\
\ldots .111 s 1 s^{2} 1 s 111 \ldots \\
\ldots 11 s 1 s^{3} \frac{1}{3} s^{3} 1 s 11 \ldots \\
\ldots .1 s 1 s^{4} 1 \mathbf{s}^{6} 1 s^{4} 1 s 1 \ldots
\end{gathered}
$$

The underscore \underline{s} indicates the center cell. Here the exponents of s are the binomial coefficients. The following definition is taken from Aho and Honda [2].

Figure 1: Conjugacy between linear and monomial CAs over $\left\langle\mathbf{Z}_{p},+, \bullet\right\rangle$.

Definition 1.1. A state s is quasi-idempotent if there exist $d, k \in \mathbf{Z}^{+}$such that $s^{d+k}=s^{d}$, where the least such d is called the idempotent degree of s and k is called the idempotent order of s, denoted ord (s).

Now if $s^{d+k}=s^{d}$ for some integer $k>0$, then the exponents repeat modulo k where $k=\operatorname{ord}(s)$. These patterns are well understood for prime k ([6]; see also [7] and [8]), but not for composite k. For the monomial of degree 2 given by equation (2), if k is a power of 2 , the orbit of $\overline{1}=\ldots 111 \ldots$ will converge to a limit cycle, otherwise it will diverge. Since a unit (invertible element) cannot be idempotent, all finite perturbations of $\overline{1}$ by units have divergent orbits. In particular, only the orbits of finite perturbations of $\overline{1}$ by zero divisors can converge.

For prime $p,\left\langle\mathbf{Z}_{p},+, \bullet\right\rangle$ is a field that contains only one non-unit, 0 . Therefore, only configurations containing a 0 can lead to convergent orbits. For m with primitive roots, $\left\langle\mathbf{Z}_{m}^{*}, \bullet\right\rangle \cong\left\langle\mathbf{Z}_{\phi(m)},+\right\rangle$, where $\phi(m)$ is Euler's ϕ-function and $\left\langle\mathbf{Z}_{m}^{*}, \bullet\right\rangle$ is the set of units modulo m (those coprime to m). If g is a primitive root of $m,\left\langle\mathbf{Z}_{m}^{*}, \bullet\right\rangle$ is a cyclic group generated by g. In this case the discrete logarithm $\log _{g}$ given by

$$
\begin{align*}
\delta_{\Sigma}(\vec{x}) \equiv \log _{g}\left(\delta_{\Pi}\right) & \equiv \log _{g}\left(\prod_{i} x_{j}^{p_{j}}\right. \tag{3}\\
& (\bmod m)) \tag{4}\\
& \equiv \sum_{j} p_{j} \log _{g} x_{j}
\end{align*} \quad(\bmod \phi(m))
$$

provides a topological conjugacy between a monomial CA over $\left\langle\mathbf{Z}_{m}^{*}, \bullet\right\rangle$ and a linear CA over $\left\langle\mathbf{Z}_{\phi(m)},+\right\rangle,\left(\log _{g}\right.$ is locally defined, hence it is continuous and surjective). If \mathcal{C} denotes the configuration space consisting of the set of configurations endowed with the product topology, then the diagram in Figure 1 commutes.

It is well known that the integers

$$
1,2,4, p^{\alpha}, 2 p^{\alpha}
$$

have primitive roots where p is any odd prime (see [9, Theorem 4.11]).
In the general case, $\log _{g}$ provides an isomorphic copy of a linear rule over the units only. It is also necessary to examine the behavior over the zero divisors.

1.2 Relation to Wolfram classes

The CA classification scheme proposed by Wolfram [11] and refined by Culik and Yu [10] (for which the general problem of classification is undecidable) provides another approach to studying monomial CAs. Here we briefly review this scheme as given by Culik and Yu [10].

In what follows, a stable state s is one that is invariant under iteration of the local rule, that is, $\delta(s \ldots s)=s$. A homogenous (bi-infinite) configuration of s, denoted \bar{s}, is one in which every cell is in state s. A finite s-configuration is one in which all but finitely many cells are in state s. The stable state for an additive CA over $\left\langle\mathbf{Z}_{m},+\right\rangle$ is 0 , and the corresponding homogenous configuration is $\overline{0}$. The notation \underline{s} identifies s as the cell at the origin. For a multiplicative CA over $\left\langle\mathbf{Z}_{m}, \bullet\right\rangle$ the stable state is 1 and the homogenous configuration is $\overline{1}$.

Definition 1.2. (Wolfram Classes as refined by Culik and Yu [10].)
Class I (Black Hole): All finite s-configurations evolve to the homogeneous configuration of s.
Class II (Periodic Orbits): All finite s-configurations have an eventually periodic evolution.
Class III (Chaotic Orbits): it is decidable whether c_{1} evolves to c_{2} for arbitrary finite s-configurations c_{1} and c_{2}.
Class IV (Universal): All cellular automata.
Note that Class $I \subset$ Class $I I \subset$ Class $I I I \subset$ Class $I V$.
Following this scheme, we investigate the dynamics of monomial CAs by examining the evolution of finite 1-configurations, which we refer to as perturbations of $\overline{1}$. We show that monomial CAs only belong to Classes I, II, and III.

For CAs, limit cycles correspond to periodic configurations. We describe a periodic configuration by a pattern. For example, we denote the pattern $\ldots 010101 \ldots$ by $\overline{01}$. Note that we do not distinguish an origin, as in $\ldots 010101 \ldots$ A pattern is the equivalence class of periodic configurations modulo a shift. For monomial CAs, this is the same as considering equivalent classes of limit cycles modulo the cycle length, or period. For example, we will consider the 2 -cycle $\ldots 01010 \ldots \leftrightarrow \ldots 10101 \ldots$ to be in the same class as the fixed points $\ldots 01010 \ldots$ and $\ldots 10101 \ldots$... This is because all the patterns in the basic block of a limit cycle must have the same number of 0 s , as we shall explain.

The structure of this paper is as follows. In section 2 we examine the monomials of degree 2 over $\mathbf{Z}_{\mathbf{2}}$. In section 3 we investigate monomials of degree 3 over $\mathbf{Z}_{\mathbf{2}}$. In section 4 we consider higher dimensional analogues of the monomials in previous sections. In section 5 we consider the effects of extending the state sets, that is, for monomials over $\mathbf{Z}_{\mathbf{m}}$.

$$
\begin{gathered}
\ldots .1111111011111111 \ldots \\
\ldots .111111010111111 \ldots \\
\ldots .1111101 \underline{101011111 \ldots} \\
\ldots .111101010101111 \ldots \\
\ldots .111010101010111 \ldots \\
\ldots .110101010101011 \ldots \\
\vdots \\
\ldots .101010101010101 \ldots \\
\ldots .010101010101010 \ldots
\end{gathered}
$$

Figure 2: Perturbation of $\overline{1}$ under $\pi_{1,1}(x)_{i} \equiv x_{i-1} x_{i+1} \quad(\bmod 2)$.

2. Monomials of degree two

We begin by examining monomial CAs in dimension one by distinguishing two subcases:

1. the symmetric monomials, given by

$$
\pi_{r, r}(x)_{i} \equiv x_{i-r} x_{i+r} \quad(\bmod m)
$$

2. the asymmetric monomials, given by

$$
\pi_{r, k}(x)_{i} \equiv x_{i-r} x_{i+k} \quad(\bmod m)
$$

where $r>k$ (neighborhood of radius r).

2.1 Symmetric monomials of degree two

We begin with a typical example. Consider the monomial, given by

$$
\pi_{1,1}(x)_{i} \equiv x_{i-1} x_{i+1} \quad(\bmod 2)
$$

First note that $\overline{0}$ is a fixed-point attractor, as any perturbation (replacing a finite number of 0 s with 1 s) leads back to $\overline{0}$. In contrast, $\overline{1}$ is a fixedpoint repellor, as any perturbation (replacing a finite number of 1 s with 0 s) never leads back to $\overline{1}$. Note further that any perturbation of the center neighborhood of $\overline{1}$ is propagated left and right into adjacent neighborhoods. We call this idempotent propagation (idemprop). For example, consider the simplest perturbation of $\overline{1}$ under $\pi_{1,1}$ in Figure 2.

The limit cycle is a 2 -cycle given by $\overline{01} \leftrightarrow \overline{10}$. Other perturbations of $\overline{1}$ consist of injecting a finite number of 0s. Given idemprop, we envision two waves of 0 s meeting in or out of phase. For example, perturbing $\overline{1}$ with a pair of 0s, separated by an odd block of 1s, also yields an orbit converging to the 2-cycle $\overline{01} \leftrightarrow \overline{10}$:

$$
\pi_{1,1}^{t}\left(\overline{1} 01^{2 l+1} 0 \overline{1}\right)=\pi_{1,1}^{t}(\ldots 110 \overbrace{1 \ldots 1}^{2 l+1} 011 \ldots) \longrightarrow \overline{01} \leftrightarrow \overline{10}
$$

$$
\begin{gathered}
\ldots 111111101111101111111 \ldots \\
\ldots .1111110101 \underline{1} 1010111111 \ldots \\
\ldots .111110101010101011111 \ldots \\
\ldots .111101010101010101111 \ldots \\
\ldots .111010101010101010111 \ldots \\
\ldots .110101010101010101011 \ldots \\
\vdots \\
\ldots .101010101010101010101 \ldots \\
\ldots .010101010101010101010 \ldots
\end{gathered}
$$

Figure 3: Superimposing waves for $\pi_{1,1}(x)_{i} \equiv x_{i-1} x_{i+1} \quad(\bmod 2)$.

$$
\begin{gathered}
\ldots .11111110111101111111 \ldots \\
\ldots .111111010 \underline{1} 1010111111 \ldots \\
\ldots .111110101 \underline{0} 0101011111 \ldots \\
\ldots 111101000 \underline{0} 010101111 \ldots \\
\ldots .111010000 \underline{0} 0001010111 \ldots \\
\ldots .110100000 \underline{0} 0000101011 \ldots \\
\vdots \\
\ldots .00000000000000000000 \ldots
\end{gathered}
$$

Figure 4: Annihilating waves for $\pi_{1,1}(x)_{i} \equiv x_{i-1} x_{i+1} \quad(\bmod 2)$.

We say that the waves are superimposing (see Figure 3).
In contrast, perturbing $\overline{1}$ with a pair of 0 s, separated by an even block of 1 s , yields an orbit converging to the attractor $\overline{0}$, that is,

$$
\pi_{1,1}^{t}\left(\overline{1} 01^{2 l} 0 \overline{1}\right)=\pi_{1,1}^{t}(\ldots 110 \overbrace{1 \ldots 1}^{2 l} 011 \ldots) \longrightarrow \overline{0}
$$

We say that the waves are annihilating (see Figure 4).
Having considered all possible perturbations of $\overline{1}$, we turn next to perturbations of the 2 -cycle $\overline{0} 1 \leftrightarrow \overline{10}$. Perturbing this 2 -cycle by replacing a 0 with a 1 returns the 2-cycle.

$$
\pi_{1,1}^{t}(\overline{01} 1 \overline{10})=\pi_{1,1}^{t}(\ldots 010111010 \ldots) \longrightarrow \overline{01} \leftrightarrow \overline{10}
$$

Perturbing the 2 -cycle by replacing a 1 with a 0 gives rise to an orbit converging to $\overline{0}$.

$$
\pi_{1,1}^{t}(\overline{10} 0 \overline{01})=\pi_{1,1}^{t}(\ldots 101000101 \ldots) \longrightarrow \overline{0}
$$

The 2-cycle $\overline{01} \leftrightarrow \overline{10}$ is a saddle pattern, in the sense that it attracts some nearby patterns (perturbations) yet repels others.

Figure 5: Phase portrait for $\pi_{1,1}(x)_{i} \equiv x_{i-1} x_{i+1} \quad(\bmod 2)$.

$$
\begin{gathered}
\ldots 111^{r-1} 11^{r-1} \underline{0} 1^{r-1} 11^{r-1} 11 \ldots \\
\ldots 111^{r-1} 01^{r-1} 11^{r-1} 01^{r-1} 11 \ldots \\
\ldots 101^{r-1} 11^{r-1} 01^{r-1} 11^{r-1} 01 \ldots \\
\ldots 111^{r-1} 01^{r-1} 1^{r-1} 01^{r-1} 11 \ldots \\
\vdots \\
\ldots 101^{r-1} 11^{r-1} 01^{r-1} 11^{r-1} 01 \ldots \\
\ldots 111^{r-1} 01^{r-1} 11^{r-1} 01^{r-1} 11 \ldots
\end{gathered}
$$

Figure 6: Perturbation of $\overline{1}$ under $\pi_{r, r}(x)_{i} \equiv x_{i-r} x_{i+r} \quad(\bmod 2)$.

The phase portrait is given in Figure 5. To simplify the diagrams, we have followed several conventions. First, as mentioned in the introduction, we give only one of the patterns in a limit cycle, and indicate the length of the cycle by a subscript. For example, the 2-cycle $\overline{01} \leftrightarrow \overline{10}$ is denoted $\overline{01}_{2}$. Second, patterns are arranged so that they can be reached by a perturbation of patterns in a level above. The patterns in consecutive levels in the diagram differ in the number of 0 s , by a single 0 . The basin of attraction of $\overline{0}$ is nearly the entire configuration space, that is, $\pi_{1,1}^{t}(x) \rightarrow \overline{0}$ almost everywhere.

Next we analyze the dynamics of the symmetric monomial given by

$$
\pi_{r, r}(x)_{i} \equiv x_{i-r} x_{i+r} \quad(\bmod 2)
$$

Consider the orbit of the slightest perturbation of $\overline{1}$ in Figure 6. The limit cycle is given by the pair of bi-infinite patterns $\overline{01^{r-1} 11^{r-1}} \leftrightarrow \overline{11^{r-1} \underline{0} 1^{r-1}}$. Again, it is easy to see that $\overline{0}$ is a fixed-point attractor, while $\overline{1}$ is a fixedpoint repellor.

Due to idemprop, the perturbations of $\overline{1}$ that are contained in a single block of size $n-1=2 r$ (neither all 1s, nor all 0s) are all gardens of Eden. There are at most 2^{n-1} distinct blocks $b_{1} \ldots b_{n-1}$, each of which tends to a limit cycle pattern $\overline{b_{1} \ldots b_{n-1}}$. These blocks then constitute a sufficient set of perturbations of $\overline{1}$ to produce all the limit cycles. Of course, a given limit cycle may contain more than one pattern.

Figure 7: Phase portrait for $\pi_{2,2}(x)_{i} \equiv x_{i-2} x_{i+2} \quad(\bmod 2)$.

Next, we perturb each of the patterns in each limit cycle in order to determine their asymptotic behavior. This is easily accomplished, as changing a 1 to a 0 in any pattern leads to a pattern with fewer 1 s , while changing a 0 to a 1 in any pattern returns the pattern. So each limit cycle is a saddle cycle, except the attractor $\overline{0}$ and the repellor $\overline{1}$. Also, each set of patterns constituting a limit cycle must have the same number of 0s. Hence, we have a partial ordering on the limit cycles, determined by the number of 0 s in any one of their constituent patterns.

The global dynamics of the rule acts as a gravitational field, originating at $\overline{0}$ and pulling every configuration under the rule's evolution from $\overline{1}$ down to $\overline{0}$. We summarize these observations in the following.

Proposition 2.1. (The dynamics of $\pi_{r, r}(x)_{i} \equiv x_{i-r} x_{i+r} \quad(\bmod 2)$.)
If $n=2 r+1$, then

1. There are at most 2^{n-1} limit cycles, each given by a distinct pattern, of the form $\overline{b_{1} \ldots b_{n-1}}$. Each is a saddle cycle, except the repellor $\overline{1}$ and the attractor $\overline{0}$.
2. The basin of attraction of $\overline{0}$ properly contains the set of configurations with at least one block of 0^{n-1}.

In Figure 7, we give the phase portrait for $r=2$. The patterns may have more than one representation. For example $\overline{1110}=\overline{0111}=\overline{1011}=\overline{1101}$. Any given pattern can be reached by a perturbation of a pattern above it in the diagram, and $x \rightarrow \overline{0000}$ almost everywhere.

In Figure 8, in order to gain an idea of the sequence of portraits for increasing r, we present the phase portrait for $r=3$ as well. Recall there are

Figure 8: Phase portrait for $\pi_{3,3}(x)_{i} \equiv x_{i-3} x_{i+3} \quad(\bmod 2)$.
paths in the diagram between higher and lower patterns where the arrows are not written in.

In the general case, the mixture of limit cycles depends on certain properties of r. For example, as r changes, the orbits of the alternating configuration $\overline{0011}=\ldots 00110011 \ldots$ are

$$
\begin{array}{ll}
\pi_{r, r}^{t}(\overline{0011}) \rightarrow \overline{0011}_{2} & r=2,3,6,7,10,11, \ldots \\
\pi_{r, r}^{t}(\overline{0011}) \rightarrow \overline{0011} & r=4,8,12, \ldots \\
\pi_{r, r}^{t}(\overline{0011}) \rightarrow \overline{0000} & r=1,5,9,13, \ldots
\end{array}
$$

Next we consider the asymmetric case.

2.2 Asymmetric monomials of degree two

First notice that an asymmetric monomial of degree 2 is equivalent to a one-sided monomial of degree 2 composed with a shift:

$$
\pi_{r, k}(x)_{i} \equiv x_{i-r} x_{i+k} \quad(\bmod 2)=\sigma^{k}\left(\pi_{r+k, 0}(x)\right)_{i}
$$

where $\sigma^{k}(x)_{i}=x_{i+k}$ is the left-shift applied k times. We begin then by examining the case where $k=0$.

Consider the smallest perturbation of $\overline{1}$ in Figure 9. In general, there are 2^{r} distinct basic blocks $b_{1} b_{2} \ldots b_{r}$, each of which tends to a distinct fixed

$$
\begin{aligned}
& \ldots 111101^{r-1} 111 \ldots \\
& \ldots 111101^{r-1} 01^{r-1} 111 \ldots \\
& \ldots 111101^{r-1} 01^{r-1} 01^{r-1} 111 \ldots \\
& \quad \vdots \\
& \ldots 111101^{r-1} 01^{r-1} 01^{r-1} 01^{r-1} \ldots
\end{aligned}
$$

Figure 9: Perturbation of $\overline{1}$ under $\pi_{r, k}(x)_{i} \equiv x_{i-r} x_{i+k} \quad(\bmod 2)$.
point. Since we may pick any cell as the cell with the left-most 0 , denoted $\underline{0}$, there are countably many fixed points for each distinct block. We summarize these observations as follows.

Proposition 2.2. (The dynamics of $\left.\pi_{r, 0}(x)_{i} \equiv x_{i-r} x_{i} \quad(\bmod 2).\right)$

1. There are countably many fixed points in each of the 2^{r} distinct rightperiodic patterns of the form $\overline{1} \overline{b_{1} \ldots b_{r}}$. Each is a saddle point, except the repellor $\overline{1}$ and the attractor $\overline{0}$.
2. The basin of attraction of $\overline{0}$ consists of the set of configurations of the form $\overline{0} 1 b_{i+1} b_{i+2} \ldots$, where the position of the leftmost 1 is arbitrary.

The phase portrait for this case is well described by the proposition, so we omit a diagram.

Next we investigate the shifted dynamics of

$$
\pi_{r, k}(x)_{i} \equiv x_{i-r} x_{i+k} \quad(\bmod 2)=\sigma^{k}\left(\pi_{r+k, 0}(x)\right)_{i}
$$

where $r>k>0$. The dynamics are two-sided, so there are no longer countably many limit cycles for each of the $2^{n}(n=r+k)$ patterns, but at most one for each pattern. In general, each pattern represents a unique cycle of length $n=r+k$. However, patterns containing a subpattern may lead to a shorter cycle of length of the subpattern. We summarize these observations as follows.

Proposition 2.3. (The dynamics of $\left.\pi_{r, k}(x)_{i} \equiv x_{i-r} x_{i+k}(\bmod 2).\right)$ If $n=$ $r+k$, then

1. There are at most 2^{n} limit cycles, each given by a distinct pattern of the form $\overline{b_{1} b_{2} \ldots b_{n}}$. Each is a saddle cycle, except for the repellor $\overline{1}$ and the attractor $\overline{0}$.
2. The basin of attraction of $\overline{0}$ properly contains those configurations with a block of 0^{n}.

All the phase portraits consist of the pattern $\overline{01}$, as either a fixed point or a 2 -cycle. The rest of the patterns consist of p-cycles, where p divides n. The

Figure 10: Phase portrait for $\pi_{1,3}(x)_{i} \equiv x_{i-1} x_{i+3} \quad(\bmod 2)$.
phase portrait for $r=1$ and $k=3$ is given in Figure 10. Note the similarity with the symmetric case $r=2$ in Figure 7.

When $r=4$ and $k=2, \overline{01}$ is a fixed point, and the rest of the phase portrait consists of only 3 -cycles. We omit the diagram in the interest of space.

3. Monomials of degree three

In this section we examine monomials of degree 3 whose global dynamics in one dimension are given by

$$
\pi_{r, j, k}(x)_{i} \equiv x_{i-r} x_{i-j} x_{i+k} \quad(\bmod m)
$$

Again, we distinguish between two subcases: the symmetric case where $r=k$ and $j=0$, and the asymmetric case where $r \geq k>j>0$. We begin with the symmetric case.

3.1 Symmetric monomials of degree three

Consider the symmetric monomial of degree 3 given by

$$
\pi_{r, 0, r}(x)_{i} \equiv x_{i-r} x_{i} x_{i+r} \quad(\bmod 2)
$$

This is just the two-sided analogue of $\pi_{r, 0}(x)_{i} \equiv x_{i-r} x_{i} \quad(\bmod 2)$ summarized in Proposition 2.2. A canonical example is the doubly infinite pattern $\overline{01^{r-1}}$ in Figure 11. Thus we have the following.

Proposition 3.1. (The dynamics of $\left.\pi_{r, 0, r}(x)_{i}=x_{i-r} x_{i} x_{i+r}(\bmod 2).\right)$

$$
\begin{gathered}
\ldots .111^{r-1} 11^{r-1} 01^{r-1} 11^{r-1} 11 \ldots \\
\ldots 111^{r-1} 01^{r-1} 01^{r-1} 01^{r-1} 11 \ldots \\
\ldots 101^{r-1} 01^{r-1} 01^{r-1} 01^{r-1} 01 \ldots \\
\vdots \\
\ldots .01^{r-1} 01^{r-1} 01^{r-1} 01^{r-1} 01 \ldots
\end{gathered}
$$

Figure 11: Typical orbit of $\pi_{r, 0, r}(x)_{i} \equiv x_{i-r} x_{i} x_{i+r} \quad(\bmod 2)$.

Figure 12: Phase portrait for $\pi_{4,0,4}(x)_{i} \equiv x_{i-4} x_{i} x_{i+4}(\bmod 2)$.

1. There are at most 2^{r} fixed points, each given by a distinct pattern of the form $\overline{b_{1} b_{2} \ldots b_{r}}$. Each is a saddle point, except the repellor $\overline{1}$ and the attractor $\overline{0}$.
2. The basin of attraction of $\overline{0}$ properly contains the set of configurations with at least one block of 0^{r}.

The phase portrait is similar to that in Figure 10. We give the portrait for $r=4$ in Figure 12.

3.2 Asymmetric monomials of degree three

Consider the asymmetric monomial of degree 3 given by

$$
\begin{aligned}
\pi_{r, 0, k}(x)_{i} & \equiv x_{i-r} x_{i} x_{i+k} \quad(\bmod 2) \\
& \equiv \sigma^{j}\left(x_{i-(r+j)} x_{i-j} x_{i+(k-j)}\right) \quad(\bmod 2) \\
& \equiv \sigma^{j}\left(\pi_{r+j, j, k-j}(x)\right)_{i} \quad(\bmod 2)
\end{aligned}
$$

We will first consider the centered asymmetric case and then shift it to obtain the off-center asymmetric case. Figure 13 illustrates the idea of fold-

$$
\begin{gathered}
\ldots 1111^{r-k-1} 11^{r-1} 11^{r-k-1} 01^{k-1} 11^{r-k-1} 111 \ldots \\
\ldots 1111^{r-k-1} 01^{k-1} 11^{r-k-1} 01^{k-1} 01^{r-k-1} 111 \ldots \\
\ldots 1111^{r-k-1} 01^{k-1} 01^{r-k-1} 01^{k-1} 01^{r-k-1} 111 \ldots \\
\vdots \\
\ldots 01^{r-k-1} 01^{r-k-1} 01^{r-k-1} 01^{r-k-1} 01^{r-k-1} \ldots
\end{gathered}
$$

Figure 13: Folding under $\pi_{r, 0, k}(x)_{i} \equiv x_{i-r} x_{i} x_{i+k} \quad(\bmod 2)$.
ing. The dynamics essentially folds the block $01^{k-1} 01^{r-1} 0$ about the center 0 , from which the limit pattern $\overline{01^{r-k-1}}$ inevitably follows.

So there are at most 2^{r-k} distinct patterns representing 2^{r-k} distinct limit cycles. Again, we summarize these observations in the following

Proposition 3.2. (The dynamics of $\left.\pi_{r, 0, k} \equiv x_{i-r} x_{i} x_{i+k} \quad(\bmod 2).\right)$
If $\hat{r}=r-k$, then

1. There are at most $2^{\hat{r}}$ limit cycles, each given by a distinct pattern of the form $\overline{b_{1} b_{2} \ldots b_{\hat{r}}}$. Each is a saddle cycle, except for the repellor $\overline{1}$ and the attractor $\overline{0}$.
2. The basin of attraction of $\overline{0}$ properly contains those configurations with a block $0^{\hat{r}}$.

Adding a shift of σ^{j} to the dynamics, we obtain the off-center asymmetric case. As in case of monomials of degree 2, the shift reduces the number of distinct limit cycle patterns modulo the length of the subpatterns.

Proposition 3.3. (The dynamics of $\left.\pi_{r-j, j, k-j} \equiv x_{r-j} x_{j} x_{k-j} \quad(\bmod 2).\right)$
If $\hat{r}=r-k$, then

1. There are at most $2^{\hat{r}}$ limit cycles, each given by a distinct pattern of the form $\overline{b_{1} b_{2} \ldots b_{\hat{r}}}$. Each is a saddle cycle, except for the repellor $\overline{1}$ and the attractor $\overline{0}$.
2. The basin of attraction of $\overline{0}$ properly contains those configurations with a block of $0^{\hat{r}}$.

In keeping with the previous cases, we give an example of a phase portrait in Figure 14.

4. Higher-dimensional analogues

The two-dimensional analogue of $\pi_{r, r}(x)_{i} \equiv x_{i-r} x_{i+r} \quad(\bmod 2)$ is a monomial of degree 4 given by

$$
\pi_{r, r, r, r}(x)_{i} \equiv x_{i+r E} x_{i+r W} x_{i+r N} x_{i+r S} \quad(\bmod 2)
$$

Figure 14: Phase portrait for $\pi_{4,0,8}(x)_{i} \equiv x_{i-4} x_{i} x_{i+8} \quad(\bmod 2)$.
where E, W, N, and S correspond to East, West, North, and South on the von Neumann neighborhood centered at cell i

W| | N |
| :---: | :---: |
| i | E |
| S | |

and $r E, r W, r N$, and $r S$ denote r cells to the East of i, r cells the West of i, etc. Consider, for example, the evolution depicted in Figure 15 of the simplest perturbation of the homogenous configuration of 1 s leading to a 2-cycle.

The three-dimensional analogue is easy to visualize as well and is given by

$$
\pi_{r, r, r, r, r, r}(x)_{i} \equiv x_{i+r E} x_{i+r W} x_{i+r N} x_{i+r S} x_{i+r F} x_{i+r B} \quad(\bmod 2)
$$

where F and B denote the Front and Back faces of the neighborhood cube. The K-dimensional analogue has $2 K$ directions D and global dynamics given by

$$
\pi_{\underbrace{r, r, \ldots, r}_{2 k}}(x)_{i}=\prod_{D=1}^{2 K} x_{i+r D} \quad(\bmod 2)
$$

The natural extension of $\pi_{r, k}$ to two dimensions is

$$
\pi_{r_{1}, r_{2}, k_{1}, k_{2}}(x)_{i} \equiv x_{i+r_{1} E} x_{i+r_{2} W} x_{i+k_{1} N} x_{i+k_{2} S} \quad(\bmod 2)
$$

which has the one-sided special case

$$
\begin{aligned}
\pi_{r_{1}, 0, k_{1}, 0}(x)_{i} & \equiv x_{i+r_{1} E} x_{i} x_{i+k_{1} N} x_{i} \quad(\bmod 2) \\
& \equiv x_{i+r_{1} E} x_{i}^{2} x_{i+h_{2} N} \quad(\bmod 2)
\end{aligned}
$$

| $\cdots 1111111 \cdots$ | $\cdots 1111111 \cdots$ | $\cdots 111111 \cdots$ |
| :---: | :---: | :---: | :---: |
| $\cdots 1111111 \cdots$ | $\cdots 1111111 \cdots$ | $\cdots 1110111 \cdots$ |
| $\cdots 1111111 \cdots$ | $\cdots 1110111 \cdots$ | $\cdots 1101011 \cdots$ |
| $\cdots 1110111 \cdots$ | $\mapsto 1101011 \cdots$ | $\mapsto 1010101 \cdots$ |
| $\cdots 1111111 \cdots$ | $\cdots 1110111 \cdots$ | $\cdots 1101011 \cdots$ |
| $\cdots 1111111 \cdots$ | $\cdots 1111111 \cdots$ | $\cdots 111011 \cdots$ |
| $\cdots 111111 \cdots$ | $\cdots 111111 \cdots$ | $\cdots 111111 \cdots$ |
| \vdots | \vdots | \vdots |
| \vdots | | \vdots |
| $\cdots 1010101 \cdots$ | | $\cdots 0101010 \cdots$ |
| $\cdots 1010101 \cdots$ | | $\cdots 0101010 \cdots$ |
| $\cdots 1010101 \cdots$ | | $\cdots 0101010 \cdots$ |
| $\cdots 1010101 \cdots$ | | $\cdots 0101010 \cdots$ |
| $\cdots 1010101 \cdots$ | | $\cdots 0101010 \cdots$ |
| $\cdots 1010101 \cdots$ | | $\cdots 0101010 \cdots$ |

Figure 15: An orbit of $\pi_{1,1,1,1}(x)_{i} \equiv x_{i+E} x_{i+W} x_{i+N} x_{i+S} \quad(\bmod 2)$, the two-dimensional analogue of the orbit computed earlier.

Consider the orbit for $r_{1}=3$ and $k_{1}=2$ given in Figure 16, which tends to a fixed point with the upper half-plane all 1 s and right half-plane all 1s. Clearly this is the two-dimensional analogue we seek, with countably many fixed-points for each two-dimensional pattern of 0 s and 1 s . Higherdimensional analogues should be equally visible to the reader. The two-sided, shifted dynamics is also easy to visualize, leaving only the details of the cycle lengths, which we omit.

The two-dimensional analogue of $\pi_{r, 0, r}$ is given by

$$
\pi_{r, r, 0, r, r}(x)_{i} \equiv x_{i+r E} x_{i+r W} x_{i} x_{i+r N} x_{i+r S} \quad(\bmod 2)
$$

In Figure 17, we give the simplest orbit for the $r=2$ case. The strictly fixed-point dynamics is clear from the one-dimensional case, as should be the dynamics for three and higher dimensions.

The two-dimensional analogue of $\pi_{r, 0, k}$ above is given by

$$
\pi_{r_{1}, r_{2}, 0, k_{1}, k_{2}}(x)_{i} \equiv x_{i+r_{1} E} x_{i+r_{2} W} x_{i} x_{i+k_{1} N} x_{i+k_{2} S} \quad(\bmod 2) .
$$

Folding occurs in both directions, but is difficult to portray in limited space, so we omit the example. However, the dynamics should be clear from the onedimensional case, as should the dynamics for three and higher dimensions.

$\ldots 11111111111 \ldots$	$\ldots 11111111111 \ldots$	$\ldots 11111111111 \ldots$
$\ldots 11111111011 \ldots$	$\ldots 11111011011 \ldots$	$\ldots 11011011011 \ldots$
$\ldots 11111111111 \ldots$	$\ldots 11111111111 \ldots$	$\ldots 11111111111 \ldots$
$\ldots 11111111111 \ldots$	$\ldots 11111111011 \ldots$	$\ldots 11111011011 \ldots$

... 11111111111 ...
... 11011011011 .
... 11111111111 ...
$\mapsto \quad \cdots 11011011011 \ldots$
... 11111111111 ...
... 11011011011 ...
... $11111111111 .$.

Figure 16: An orbit of $\pi_{3,0,2,0}(x)_{i} \equiv x_{i+3 E} x_{i}^{2} x_{i+2 N}(\bmod 2)$.

| $\ldots 111111111 \ldots$ | $\ldots 111111111 \ldots$ | $\ldots 111101111 \ldots$ |
| :--- | :--- | :--- | :--- |
| $\ldots 111111111 \ldots$ | $\ldots 111111111 \ldots$ | $\ldots 111111111 \ldots$ |
| $\ldots 111111111 \ldots$ | $\ldots 111101111 \ldots$ | $\ldots 110101011 \ldots$ |
| $\ldots 111111111 \ldots$ | $\ldots 11111111 \ldots$ | $\ldots 11111111 \ldots$ |
| $\ldots 111101111 \ldots$ | $\ldots 110101011 \ldots$ | $\ldots . \ldots 10101010 \ldots$ |
| $\ldots 111111111 \ldots$ | $\ldots 111111111 \ldots$ | $\ldots 111111111 \ldots$ |
| $\ldots 111111111 \ldots$ | $\ldots 11101111 \ldots$ | $\ldots 110101011 \ldots$ |
| $\ldots 111111111 \ldots$ | $\ldots 111111111 \ldots$ | $\ldots 111111111 \ldots$ |
| $\ldots 111111111 \ldots$ | $\ldots 111111111 \ldots$ | $\ldots 111101111 \ldots$ |

Figure 17: An orbit of $\pi_{2,2,0,2,2}(x)_{i} \equiv x_{i+2 E} x_{i+2 W} x_{i} x_{i+2 N} x_{i+2 S}$ $(\bmod 2)$, the two-dimensional analogue of the orbit computed with $r=2$.

The two-dimensional analogue of the shifted version of the above requires combining two shifts, one for each dimension.

$$
\begin{aligned}
& \pi_{r_{1}-j, r_{2}-j, j, l, k_{1}-l, k_{2}-l}(x)_{i} \\
& \quad \equiv x_{i+\left(r_{1}-j\right) E} x_{i+\left(r_{2}-j\right) W} x_{i+j E+l N} x_{i+\left(k_{1}-l\right) N} x_{i+\left(k_{2}-l\right) S} \quad(\bmod 2)
\end{aligned}
$$

For example, if the North-South shift is $2 N$ and the East-West shift is $3 E$, then the resultant shift is $2 N+3 E$. Other than this, the dynamics follows the one-dimensional case. Similarly, three components are used to compute the resultant shift in the 3D case.

An interesting monomial of degree two in two dimensions

While searching for two-dimensional analogues of monomials of degree 2, we discovered an interesting case given by

$$
\pi(x)_{i} \equiv x_{i+E} x_{i+N} \quad(\bmod 2)
$$

Initially, this seemed analogous to the one-sided dynamics of $\pi_{0, r}(x)_{i} \equiv x_{i} x_{i+r}$ $(\bmod 2)$. However, this is a monomial of degree 2 in two dimensions, hence it is an analogue in a different sense than the degree- 4 monomials above. In this case, all finite perturbations of $|\overline{1}|$ (the homogenous configuration of 1) by 0s disappear to the South-West. A verticle line of 0s perturbing a sea of 1 s reproduces itself downward and to the left ($N E$ idemprop), eventually tending to the configuration with a half-plane of 0s to the left of the line and a half-plane of 1 s to the right. We denote this configuration by $0 \mid 1$. Similarly, a horizontal line of 0s tends to $\frac{1}{0}$, the configuration with a half-plane of 1 s above the line and a half-plane of 0s below. Interestingly, lines of 0s with positive, rational slope m / n tend to cycles with period $m+n$, while lines of 0s with negative, rational slope disappear to the South-West, tending to $|\overline{1}|$. All this is also true for half-lines.

Essentially, the rule propagates parallel lines of 0s with slope -1 corresponding to the NE idemprop. Each cell eventually cycles with period $m+n>1$ if and only if there is a half-line of 0s with slope $0<m / n<\infty$. In that case, there are eventually periodic points of every period. We give an example in Figure 18 where $m=n=1$ tends toward a 2-cycle.

We extend this map to asymmetric neighborhoods in a natural way, namely,

$$
\pi_{r, k}(x)_{i} \equiv x_{i+r E} x_{i+k N} \quad(\bmod 2)
$$

This map propagates parallel lines of 0 s with slope $-k / r$ corresponding to the $k N r E$ idemprop. As in the case $r=1=k$ above, finite perturbations of | $\overline{1} \mid$ by 0s disappear to the South-West. Infinite perturbations by lines of 0s with negative slope also disappear to the South-West. A vertical line of 0s is copied r places to the West, while a horizontal line of 0s is copied k places to the South. Again, lines of 0s with positive slope tend to limit cycles. A line with slope m / n for $m, n \in \mathbf{Z}^{+}$tends to a cycle of length $\operatorname{lcm}(k, m)+\operatorname{lcm}(r, n)$, where $\operatorname{lcm}(x, y)$ is the least common multiple of x and y.

$\ldots 1111101 \ldots$	$\ldots 1111010 \ldots$	$\ldots 1110101 \ldots$	
$\ldots 1111011 \ldots$	$\ldots 1110101 \ldots$	$\ldots 1101010 \ldots$	
$\ldots 1110111 \ldots$	$\ldots 1101011 \ldots$	$\ldots 1010101 \ldots$	\longrightarrow
$\ldots 1101111 \ldots$	$\ldots 1010111 \ldots$	$\ldots 0101011 \ldots$	
$\ldots 1011111 \ldots$	$\ldots 0101111 \ldots$	$\ldots 1010111 \ldots$	
\vdots	\vdots		
\vdots		\ldots	
$\ldots 0101010 \ldots$		$\ldots 1010101 \ldots$	
$\ldots 1010101 \ldots$		$\ldots 0101010 \ldots$	
$\ldots 0101010 \ldots$		$\ldots 010101 \ldots$	
$\ldots 1010101 \ldots$		$\ldots .$.	
$\ldots 0101010 \ldots$		$\ldots 1010101 \ldots$	

Figure 18: A limit cycle in $\pi(x)_{i} \equiv x_{i+N} x_{i+E} \quad(\bmod 2)$.

Other neighborhoods-such as the Moore neighborhood or the Margolis neighborhood, as well as more general grids-have similar features and can be analyzed using the same techniques.

5. Extended state sets

Next we consider the effects of introducing more states. Reimen [4] has shown that a CA over a commutative monoid has divergent orbits with space-time trajectories isomorphic to Pascal's triangle modulo m. For m with primitive roots, this can also be inferred for the cyclic groups $\left\langle\mathbf{Z}_{m}, \bullet\right\rangle$ from the work on linear CAs over $\left\langle\mathbf{Z}_{m},+\right\rangle$ by Aso and Honda [2] using the topological conjugacy provided by the discrete logarithm (2), except for the additional 0 . Here we show that there may also be more limit cycles.

Consider the monomial in one dimension given by

$$
\pi_{1,1}(x)_{i} \equiv x_{i-1} x_{i+1} \quad(\bmod 14)
$$

and the orbit of $x=\overline{5}$ with $H=11$ below.
... 5555555 ...
... 9999999
... ННННННН
9999999
. . . ННННННН . . .

In the example above, $\overline{5}$ has idempotent degree 2 and idempotent order 2 .

Now consider the homogenous configuration \bar{s}. Clearly, if $s^{2}=s$, then $x_{i-r} x_{i+r}=s$, for every i (and r), and \bar{s} is a fixed point. Now if $s^{4}=s$, but $s^{2} \neq s$, then \bar{s} is a 2 -cycle. Continuing, if $s^{2 t}=s$, but $s^{2 t^{\prime}} \neq s$ for $t^{\prime}<t$, then \bar{s} is a t-cycle. In the example above, $s=4, s^{2}=2$, and we have a one-step transient, which we might refer to as $\sqrt{s}=8$. The phase portrait for $x_{i-1} x_{i+1}(\bmod 10)$ is the same as that for $x_{i-1} x_{i+1}(\bmod 6)$ given in Figure 12.

More examples

The monomial $\pi_{1,1}(x)_{i} \equiv x_{i-1} x_{i+1} \quad(\bmod 3)$ over $\left\langle\mathbf{Z}_{3}^{*}, \boldsymbol{\bullet}\right\rangle$ has been extensively analyzed under the guise of its isomophic image, the additive CA with local rule $\delta(x)_{i} \equiv x_{i-1}+x_{i+1} \quad(\bmod 2)$ (see Wolfram Rule 90). By including 0, we obtain the state set $\left\langle\mathbf{Z}_{3}, \bullet\right\rangle$. We already know the general dynamics on configurations consisting only of 0 s and 1s. From previous work on Rule 90, we obtain the dynamics on $\{1,2\}$-configurations. And since $2^{2} \equiv 1(\bmod 3)$, we also know the dynamics for $\{0,2\}$-configurations, as illustrated below.
... $222222202222222 \ldots$
... 111111010111111 ...
Only the $\{0,1,2\}$-configurations remain, which have the divergent dynamics of the space-time trajectories of Pascal's triangle modulo m, as seen in the following orbit.

$$
\begin{aligned}
& \ldots .1111112 \underline{2} 2111111 \ldots \\
& \ldots .111112010211111 \ldots \\
& \ldots .111202 \underline{0} 2021111 \ldots \\
& \ldots 111201010102111 \ldots \\
& \ldots 1120201 \underline{0} 1020211 \ldots \\
& \ldots 120102010201021 \ldots
\end{aligned}
$$

The phase portrait is given in Figure 19.
The phase portrait for $\pi_{1,1}(x)_{i} \equiv x_{i-1} x_{i+1} \quad(\bmod 4)$ is similar to that for $\pi_{1,1}(x)_{i} \equiv x_{i-1} x_{i+1} \quad(\bmod 2)$ given in Figure 5. No new limit cycles are added; only divergent orbits appear. The phase portrait for $\pi_{1,1}(x)_{i} \equiv$ $x_{i-1} x_{i+1}(\bmod 5)$ is similarly repetitive.

Figure 20 gives the phase portrait for $\pi_{1,1}(x)_{i} \equiv x_{i-1} x_{i+1} \quad(\bmod 6)$. The phase portrait for $\pi_{1,1}(x)_{i} \equiv x_{i-1} x_{i+1} \quad(\bmod 10)$ is the same as that in Figure 20 , provided $3 \rightarrow 5$ and $4 \rightarrow 6$. Again not all arrows are present. An exception here is that not every pattern lower in the digram can be reached from a pattern above it. However, every limit cycle pattern can be reached via a perturbation of $\overline{1}$. In addition to the limit cycles, there are divergent orbits with space-time trajectories of Pascal's triangle modulo m. See, for example, Figure 21 (where $\left(^{*}\right.$) is either 2 or 5 , initially 5).

Figure 19: Phase portrait for $\pi_{1,1}(x)_{i} \equiv x_{i-1} x_{i+1} \quad(\bmod 3)$.

Figure 20: Phase portrait for $\pi_{1,1}(x)_{i} \equiv x_{i-1} x_{i+1} \quad(\bmod 6)$.

```
11111111111111111111111**111111111111111111111111
1111111111111111111111****11111111111111111111111
111111111111111111111**41**1111111111111111111111
11111111111111111111**********11111111111111111111
1111111111111111111**414141**1111111111111111111
111111111111111111****4141*****111111111111111111
11111111111111111**41**41**41** }1111111111111111
1111111111111111*****************1111111111111111
111111111111111**41414141414141***111111111111111
11111111111111****414141414141*****11111111111111
1111111111111**41**4141414141***41** 1111111111111
111111111111********41414141******** 111111111111
11111111111**414141**414141***414141** 11111111111
1111111111****4141*****4141****4141**** 1111111111
```



```
11111111*********************************11111111
```

Figure 21: A divergent orbit of $\pi_{1,1}(x)_{i} \equiv x_{i-1} x_{i+1} \quad(\bmod 4)$.

Figure 22: Phase portrait for $\pi_{2,0,1}(x)_{i} \equiv x_{i-2} x_{i} x_{i+1} \quad(\bmod 6)$.
Clearly, these monomials fall into Wolfram Class II since every limit cycle can be determined in finite time from one of a finite number of perturbations of \bar{s}, for some $s \in \mathbf{Z}_{\mathbf{m}}$.

As a final example, we present in Figure 22 the phase portrait for $\pi_{2,0,1}(x)_{i}$ $\equiv x_{i-2} x_{i} x_{i+1} \quad(\bmod 6)$.

6. Conclusion

Monomials of arbitrary degree can be obtained as a product of monomials of degrees 2 and 3. Monomials of even degree are the product of monomials of degree 2. Monomials of odd degree greater than 3 are the product of a monomial of degree 3 and monomials of even degree. We apply the superposition principle to find the limit cycles. Given an initial configuration, limiting
configurations are the pointwise multiplication modulo m of the respective limiting configurations under the component monomials of degrees 2 and 3.

Monomial CAs over $\left\langle\mathbf{Z}_{m}, \bullet\right\rangle$ fall into the first three Wolfram Classes. We need only simulate the dynamics over a finite window for a finite time to determine whether they obtain a particular orbit.

Acknowledgments

The work of the first author was partially funded through the Institute for Intelligent Systems at The University of Memphis.

References

[1] M. Ito, N. Osato, and M. Nasu, "Linear Cellular Automata over \mathbf{Z}_{m}," Journal of Computer and System Sciences, 27 (1983) 125-140.
[2] H. Aso and N. Honda, "Dynamical Characteristics of Linear Cellular Automata," Journal of Computer and System Sciences, 30 (1985) 291-317.
[3] T. Sato, "Decidability for Some Problems of Linear Cellular Automata over Finite Commutative Rings," Information Processing Letters, 46 (1993) 151155.
[4] N. Reimen, "Superposable Treillis Automata," Proceedings of MFCS '91, LNCS, (1991) 13-24. Also PhD Thesis, École Normale Supérieure de Lyon (1992).
[5] G. A. Hedlund, "Endomorphisms and Automorphisms of the Shift Dynamical System," Mathematical Systems Theory, 3 (1969) 320-375.
[6] C. T. Long, "Pascal's Triangle Modulo p," Fibonacci Quarterly, 19 (1981) 458-463.
[7] B. Voorhees, "Cellular Automata, Pascal's Triangle, and Generation of Order," Physica D, 31 (1988) 135-140.
[8] S. Wolfram, "Geometry of Binomial Coefficients," American Mathematical Monthly, (1984) 566-571.
[9] W. J. LeVeque, Topics in Number Theory, Vol. 1 (Reading, MA: AddisonWesley, 1956).
[10] K. Culik II and S. Yu, "Undecidability of CA Classification Schemes," Complex Systems, 2 (1988) 177-190.
[11] S. Wolfram, "Universality and Complexity in Cellular Automata," Physica D, 10 (1984) 1-35. Reprinted in S. Wolfram, editor, Theory and Applications of Cellular Automata (Singapore: World Scientific, 1987).

[^0]: *Electronic mail address: bartlettr@hermes.msci.memst.edu
 ${ }^{\dagger}$ Electronic mail address: garzonm@hermes.msci.memst.edu

