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Abstract. We investigate the dynamics of monomial cellular au-
tomata, whose next-state is given as a product of the neighboring
states. Monomial cellular automata provide a multiplicative analogue
of additive cellular automata with novel dynamical features. Phase
portraits are given for monomials of degree two and three, along with
general methods to obtain them. Monomials of higher degree are an-
alyzed via a superposition principle.

1. Introduction

Linear or additive cellular automata (CAs) have remained, since.their early
inception, the most amenable to rigorous analytic treatment [1, 2, 3] due to
the superposition principle. Recently, Reimen [4] extended the superposition
principle to CAs over commutative monoids. With the binary operation
given by juxtaposition, the superposition principle is then given by

T(zy) = T(=)T(y) (1)

where T is the global dynamics and = and y are configurations consisting of
bi-infinite words over a finite set of states (), that is,

T=...T 0T _1ZoZ1T3. .. z; € Q

and the binary operation is applied pointwise, that is,
(zy)i = Ty

Substituting for both sides of equation (1) gives

(i) (Ti1Yit1) = (Ti%ip1) (YiYir)-
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Therefore,
Va,b,c,d, (ab)(ed) = (ac)(bd).

As Reimen pointed out, this condition is satisfied by a commutative monoid:
examples include (Z,,,e), the residue classes of integers modulo m under
multiplication.

Indeed, a multiplicative version of the superposition principle provides a
direct approach to analyze CAs over (Z,,, ®), whose local rule is given by a
product of the neighboring states

Sinono(T) = H 2l  (mod m),

where Z; is the ordered neighborhood vector (z;, ..., Zjn—1) of cell i. We
refer to these as monomial cellular automata because they are a particular
case of a more general class of CAs whose local rules can be expressed as
polynomials, that is, as sums of S monomial terms with coefficients ay:

Spoiy(Z) = Z ay (H Ty ) (mod m).

Hedlund [5] has shown that any CA over a prime number of states p can
be expressed as a polynomial of degree less than p, where the degree of the
polynomial is given by max(p;). We then associate the complezity of a CA
with the degree of the polynomial P(z; . ..2,) = 8po1y(Z). The lowest degree
CAs are those with linear (additive) rules such that max(p;) = 1. The degree
of a monomial term H}’zl a:;”' is the number of variables z; with nonzero
exponents p; (we assume z9 = 1). Thus, linear (additive) CAs consist of
sums of monomials of degree 1, whereas bilinear (quadric) CAs consist of

sums of monomials of degree 2, and so on.

1.1 Relation to linear CAs

Monomial CAs are the multiplicative analogues of additive (linear) CAs. The
trajectories of single pixels are described by rows of Pascal’s triangle modulo
k. For example, consider the orbit of T under

m1(2)i = zi—1zin  (mod m) (2)

below.
. 11111s11111 ...
.. 1111sls1111. ..
. 1118118111 ...
. 11s18%1s%1s11 . ..
. 1s1s*1s%1s%1s1 . ..

The underscore s indicates the center cell. Here the exponents of s are the
binomial coefficients. The following definition is taken from Aho and Honda

2].
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Figure 1: Conjugacy between linear and monomial CAs over
(Zp, +, o).

Definition 1.1. A state s is quasi-idempotent if there exist d, k € Z™ such
that s™* = s, where the least such d is called the idempotent degree of s
and k is called the idempotent order of s, denoted ord(s).

Now if s = s? for some integer k& > 0, then the exponents repeat

modulo k& where k& = ord(s). These patterns are well understood for prime k
([6]; see also [7] and [8]), but not for composite k. For the monomial of degree
2 given by equation (2), if k is a power of 2, the orbit of T = ...111... will
converge to a limit cycle, otherwise it will diverge. Since a wunit (invertible
element) cannot be idempotent, all finite perturbations of 1 by units have
divergent orbits. In particular, only the orbits of finite perturbations of T by
zero divisors can converge.

For prime p, (Z,, +, ®) is a field that contains only one non-unit, 0. There-
fore, only configurations containing a 0 can lead to convergent orbits. For m
with primitive roots, (Z,, @) 2 (Zym), +), where ¢(m) is Euler’s ¢-function
and (ZZ,,e) is the set of units modulo m (those coprime to m). If g is a
primitive root of m, (Z* , e) is a cyclic group generated by g. In this case
the discrete logarithm log, given by

6s(Z) = log,(6n) = log, (H z’  (mod m)) (3)

= ij log,z; (mod ¢(m)) (4)

provides a topological conjugacy between a monomial CA over (Z}  e) and
a linear CA over (Zgm), +), (log, is locally defined, hence it is continuous
and surjective). If C denotes the configuration space consisting of the set
of configurations endowed with the product topology, then the diagram in
Figure 1 commutes.

It is well known that the integers

1,2,4,p% 2p%

have primitive roots where p is any odd prime (see [9, Theorem 4.11]).

In the general case, log, provides an isomorphic copy of a linear rule over
the units only. It is also necessary to examine the behavior over the zero
divisors.
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1.2 Relation to Wolfram classes

The CA classification scheme proposed by Wolfram [11] and refined by Culik
and Yu [10] (for which the general problem of classification is undecidable)
provides another approach to studying monomial CAs. Here we briefly review
this scheme as given by Culik and Yu [10].

In what follows, a stable state s is one that is invariant under iteration of
the local rule, that is, 6(s...s) = s. A homogenous (bi-infinite) configuration
of s, denoted 8, is one in which every cell is in state s. A finite s-configuration
is one in which all but finitely many cells are in state s. The stable state
for an additive CA over (Z,,,+) is 0, and the corresponding homogenous
configuration is 0. The notation s identifies s as the cell at the origin. For
a multiplicative CA over (Z,,,e) the stable state is 1 and the homogenous
configuration is 1.

Definition 1.2. (Wolfram Classes as refined by Culik and Yu [10].)

Class I (Black Hole): All finite s-configurations evolve to the homogeneous
configuration of s.

Class II (Periodic Orbits): All finite s-configurations have an eventually
periodic evolution.

Class III (Chaotic Orbits): it is decidable whether ¢, evolves to cy for ar-
bitrary finite s-configurations ¢; and cs.

Class IV (Universal): All cellular automata.
Note that Class I C Class II C Class III C Class IV.

Following this scheme, we investigate the dynamics of monomial CAs
by examining the evolution of finite 1-configurations, which we refer to as
perturbations of 1. We show that monomial CAs only belong to Classes I, II,
and ITI.

For CAs, limit cycles correspond to periodic configurations. We describe
a periodic configuration by a pattern. For example, we denote the pat-
tern ...010101... by 01. Note that we do not distinguish an origin, as in
...010101.... A pattern is the equivalence class of periodic configurations
modulo a shift. For monomial CAs, this is the same as considering equiva-
lent classes of limit cycles modulo the cycle length, or period. For example,
we will consider the 2-cycle ...01010... « ...10101... to be in the same
class as the fixed points ...01010... and ...10101.... This is because all
the patterns in the basic block of a limit cycle must have the same number
of Os, as we shall explain.

The structure of this paper is as follows. In section 2 we examine the
monomials of degree 2 over Zz. In section 3 we investigate monomials of
degree 3 over Za. In section 4 we consider higher dimensional analogues of
the monomials in previous sections. In section 5 we consider the effects of
extending the state sets, that is, for monomials over Zy,.
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-0 J1TLTTI0ITIDINT ...
...111111010111111...
SO B L 1 5 B By
...111101010101111. ..
...111010101010111. ..
..110101010101011. ...

...101010101010101. ..
..010101010101010...

Figure 2: Perturbation of T under 7 1(z); = zi—12i11  (mod 2).

2. Monomials of degree two

We begin by examining monomial CAs in dimension one by distinguishing
two subcases:

1. the symmetric monomials, given by
Trr(T); = TirTipr  (mod m)

2. the asymmetric monomials, given by
Trk(2)i = Tior iz (mod m)

where 7 > k (neighborhood of radius 7).

2.1 Symmetric monomials of degree two
We begin with a typical example. Consider the monomial, given by
m11(2); = 1Tt (mod 2).

First note that 0 is a fixed-point attractor, as any perturbation (replacing
a finite number of Os with 1s) leads back to 0. In contrast, 1 is a fixed-
point repellor, as any perturbation (replacing a finite number of 1s with 0s)
never leads back to 1. Note further that any perturbation of the center
neighborhood of T is propagated left and right into adjacent neighborhoods.
We call this idempotent propagation (idemprop). For example, consider the
simplest perturbation of T under 1,1 in Figure 2.

The limit cycle is a 2-cycle given by 01 < 10. Other perturbations of 1
consist of injecting a finite number of 0s. Given idemprop, we envision two
waves of 0s meeting in or out of phase. For example, perturbing 1 with a
pair of 0s, separated by an odd block of 1s, also yields an orbit converging to
the 2-cycle 01 « 10:

2041

;01 0T) = o 4(... 1101...1011...) —» 0T - 10
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...111111101111101111111 ...
...111111010111010111111 ...
...111110101010101011111 . ..
...111101010101010101111 ...
...111010101010101010111.. ..
..110101010101010101011.. ..

...101010101010101010101. ..
...010101010101010101010. ..

Figure 3: Superimposing waves for m1 1(z); = zi—1zi41  (mod 2).

s 11111110111101 1211711 . .
...11111101011010111111 . ..
...11111010100101011111 . ..
... 11110100000010101111 ...
... 11101000000001010111 . ..

.. 11010000000000101011 ...

..00000000000000000000. ..
Figure 4: Annihilating waves for m11(2); = zi—12:41  (mod 2).

We say that the waves are superimposing (see Figure 3).
In contrast, perturbing 1 with a pair of Os, separated by an even block of
1s, yields an orbit converging to the attractor 0, that is,
2

wt,(101201) = #%,(...1101...1011...) — 0

We say that the waves are annihilating (see Figure 4).

Having considered all possible perturbations of 1, we turn next to per-
turbations of the 2-cycle 01 «» 10. Perturbing this 2-cycle by replacing a 0
with a 1 returns the 2-cycle.

711 (01110) = i} (... 010111010...) — 01 <> 10

Perturbing the 2-cycle by replacing a 1 with a 0 gives rise to an orbit con-
verging to 0.

1 ,(10001) = f (... 101000101 ...) — O

The 2-cycle 01 « 10 is a saddle pattern, in the sense that it attracts some
nearby patterns (perturbations) yet repels others.
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Figure 5: Phase portrait for m1(2); = zi—1zi41  (mod 2).
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Figure 6: Perturbation of 1 under 7, ,(z); = z;—rTi+, (mod 2).

The phase portrait is given in Figure 5. To simplify the diagrams, we
have followed several conventions. First, as mentioned in the introduction,
we give only one of the patterns in a limit cycle, and indicate the length of
the cycle by a subscript. For example, the 2-cycle 01 « 10 is denoted 015.
Second, patterns are arranged so that they can be reached by a perturbation
of patterns in a level above. The patterns in consecutive levels in the diagram
differ in the number of 0s, by a single 0. The basin of attraction of 0 is nearly
the entire configuration space, that is, 7} ;(z) — 0 almost everywhere.

Next we analyze the dynamics of the symmetric monomial given by

Trr(T); = TipTipr  (mod 2)

Consider the orbit of the slightest perturbation of 1 in Figure 6. The limit
cycle is given by the pair of bi-infinite patterns 017-111"—1 « 117-1017—%
Again, it is easy to see that 0 is a fixed-point attractor, while 1 is a fixed-
point repellor.

Due to idemprop, the perturbations of T that are contained in a single
block of size n — 1 = 2r (neither all 1s, nor all 0s) are all gardens of Eden.
There are at most 27! distinct blocks by ...b,_1, each of which tends to a
limit cycle pattern by ...b,_ 1. These blocks then constitute a sufficient set
of perturbations of T to produce all the limit cycles. Of course, a given limit
cycle may contain more than one pattern.
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Figure 7: Phase portrait for mpo(z); = zj—2zit2 (mod 2).

Next, we perturb each of the patterns in each limit cycle in order to de-
termine their asymptotic behavior. This is easily accomplished, as changing
a 1 to a 0 in any pattern leads to a pattern with fewer 1s, while changing a
0 to a 1 in any pattern returns the pattern. So each limit cycle is a saddle
cycle, except the attractor 0 and the repellor 1. Also, each set of patterns
constituting a limit cycle must have the same number of 0s. Hence, we have
a partial ordering on the limit cycles, determined by the number of Os in any
one of their constituent patterns.

The global dynamics of the rule acts as a gravitational field, originating
at 0 and pulling every configuration under the rule’s evolution from I down
to 0. We summarize these observations in the following.

Proposition 2.1. (The dynamics of m,,.(2); = ;& (mod 2).)
If n=2r +1, then

1. There are at most 2"~! limit cycles, each given by a distinct pattern,
of the form by ...b,_1. Fach is a saddle cycle, except the repellor 1T and
the attractor 0.

2. The basin of attraction of 0 properly contains the set of configurations
with at least one block of 0",

In Figure 7, we give the phase portrait for r = 2. The patterns may have
more than one representation. For example 1110 = 0111 = 1011 = 1101.
Any given pattern can be reached by a perturbation of a pattern above it in
the diagram, and x — 0000 almost everywhere.

In Figure 8, in order to gain an idea of the sequence of portraits for
increasing r, we present the phase portrait for » = 3 as well. Recall there are
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111100, 111010,
111000, 1101004

000000 /

Figure 8: Phase portrait for m33(z); = i—sziy3 (mod 2).

paths in the diagram between higher and lower patterns where the arrows
are not written in.

In the general case, the mixture of limit cycles depends on certain proper-
ties of r. For example, as r changes, the orbits of the alternating configuration

0011 =...00110011... are
;. (0011) — 0011,  r=2,3,6,7,10,11,...
7y .(001T) — 0011 r=4,812,...
7+ .(001T) — 0000 r=1,59,13,...

Next we consider the asymmetric case.

2.2 Asymmetric monomials of degree two

First notice that an asymmetric monomial of degree 2 is equivalent to a
one-sided monomial of degree 2 composed with a shift:

Trk(T)i = TirTipr  (mod 2) = a’“(7r,+k’0(a:))i

where o*(z); = z;,) is the left-shift applied k times. We begin then by
examining the case where k = 0.

Consider the smallest perturbation of T in Figure 9. In general, there
are 2" distinct basic blocks bbs . .. b,, each of which tends to a distinct fixed
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oo JALA0A™MT11. 0.
<+ 1227007101111, .
..1111017" 017017111 . ..

.. 1111017t017to1mto1mt. ..

Figure 9: Perturbation of 1 under 7, (z); = i Tirr (mod 2).

point. Since we may pick any cell as the cell with the left-most 0, denoted 0,
there are countably many fixed points for each distinct block. We summarize
these observations as follows.

Proposition 2.2. (The dynamics of 7,o(z); = z;—r2; (mod 2).)
1. There are countably many fixed points in each of the 2" distinct right-

periodic patterns of the form 1b, ...b,. Fach is a saddle point, except
the repellor 1 and the attractor 0.

2. The basin of attraction of 0 consists of the set of configurations of the
form 01b;11b;45 . .., where the position of the leftmost 1 is arbitrary.

The phase portrait for this case is well described by the proposition, so
we omit a diagram.
Next we investigate the shifted dynamics of

Trk(T)i = TiopTipr  (mod 2) = Uk(ﬂr+k,o(l"))i

where » > k£ > 0. The dynamics are two-sided, so there are no longer
countably many limit cycles for each of the 2" (n = r + k) patterns, but at
most one for each pattern. In general, each pattern represents a unique cycle
of length n = r + k. However, patterns containing a subpattern may lead to
a shorter cycle of length of the subpattern. We summarize these observations
as follows.

Proposition 2.3. (The dynamics of m,x(2); = zi—rZisr (mod 2).) If n =
r + k, then

1. There are at most 2" limit cycles, each given by a distinct pattern of
the form biby...b,. Fach is a saddle cycle, except for the repellor 1
and the attractor 0.

2. The basin of attraction of 0 properly contains those configurations with
a block of 0™.

All the phase portraits consist of the pattern 01, as either a fixed point or
a 2-cycle. The rest of the patterns consist of p-cycles, where p divides n. The
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Figure 10: Phase portrait for m 3(x); = zi—12+3 (mod 2).

phase portrait for r = 1 and & = 3 is given in Figure 10. Note the similarity
with the symmetric case » = 2 in Figure 7.

When r = 4 and & = 2, 01 is a fixed point, and the rest of the phase
portrait consists of only 3-cycles. We omit the diagram in the interest of
space.

3. Monomials of degree three

In this section we examine monomials of degree 3 whose global dynamics in
one dimension are given by

Wr,j,k(-r)i = Ti—rTi—jTitk (I’I'lOd m)

Again, we distinguish between two subcases: the symmetric case where r = k
and j = 0, and the asymmetric case where r > k > j > 0. We begin with
the symmetric case.

3.1 Symmetric monomials of degree three
Consider the symmetric monomial of degree 3 given by
00 (X)i = Ty TiTigr (mod 2)

This is just the two-sided analogue of 7, 0(z); = 2;—rz; (mod 2) summarized
in Proposition 2.2. A canonical example is the doubly infinite pattern 0171
in Figure 11. Thus we have the following.

Proposition 3.1. (The dynamics of 7,.0,(2); = ¥ 2iZiyr (mod 2).)
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S I K I O Rt I s B OO
S I K0 K 0 K O W s
..1017"to1m—to17-to1m101 . .

. 1017to1r—torr—to1m—tol. ..

Figure 11: Typical orbit of w0, (2); = Ti—rxiTiy, (mod 2).

Figure 12: Phase portrait for my04(2); = 2j—a®izita (mod 2).

1. There are at most 2" fixed points, each given by a distinct pattern of
the form biby...b.. Each is a saddle point, except the repellor 1 and
the attractor 0.

2. The basin of attraction of 0 properly contains the set of configurations
with at least one block of 0.

The phase portrait is similar to that in Figure 10. We give the portrait
for r = 4 in Figure 12.

3.2 Asymmetric monomials of degree three
Consider the asymmetric monomial of degree 3 given by
Trok(Z)i = TirTiZiyr,  (mod 2)
= 07 (Ti(r+5)Ti-jTit(k—j)) (mod 2)
= 07 (Mr4jjh-i(2))i  (mod 2)

We will first consider the centered asymmetric case and then shift it to
obtain the off-center asymmetric case. Figure 13 illustrates the idea of fold-
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R 1 B A R it Rt 0 et I Kt B
B R O Kt B Kt et O N At B B
B 5 Y0 K0 Kt 0 Kt O N Kt B B O

‘s .()1“’“‘101’_’“_10lr;’“_lolr_’“_lo1“’“‘1 :

Figure 13: Folding under 7,0 x(2); = j—rZiTitr  (mod 2).

ing. The dynamics essentially folds the block 01¥~1017~10 about the center
0, from which the limit pattern 017—%=1 inevitably follows.

So there are at most 2"~* distinct patterns representing 27" distinct limit
cycles. Again, we summarize these observations in the following

Proposition 3.2. (The dynamics of 7,05 = &;—rTiZipr  (mod 2).)
If # =r —k, then

1. There are at most 2" limit cycles, each given by a distinct pattern of
the form byb, .. . bs. Each is a saddle cycle, except for the repellor 1 and
the attractor 0.

2. The basin of attraction of 0 properly contains those configurations with
a block 07,

Adding a shift of ¢ to the dynamics, we obtain the off-center asymmetric
case. As in case of monomials of degree 2, the shift reduces the number of
distinct limit cycle patterns modulo the length of the subpatterns.

Proposition 3.3. (The dynamics of m,_; x—; = z,—jz;jz5—; (mod 2).)
If # =r — k, then

1. There are at most 2" limit cycles, each given by a distinct pattern of
the form byb, . .. bs. Each is a saddle cycle, except for the repellor 1 and
the attractor 0.

2. The basin of attraction of 0 properly contains those configurations with
a block of 07.

In keeping with the previous cases, we give an example of a phase portrait
in Figure 14.

4. Higher-dimensional analogues

The two-dimensional analogue of 7,.,.(z); = Z;—rZisr (mod 2) is a monomial
of degree 4 given by

’/Tr,r,r,r(x)i = Ligr ELitrW Litr NLitrS (mOd 2)
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Figure 14: Phase portrait for ma08(2); = Zi—azszirs  (mod 2).

where E, W, N, and S correspond to Fast, West, North, and South on the
von Neumann neighborhood centered at cell ¢
N
w ¢ E
S
and rE, rW, rN, and rS denote r cells to the East of 4, r cells the West
of 4, etc. Consider, for example, the evolution depicted in Figure 15 of the
simplest perturbation of the homogenous configuration of 1s leading to a
2-cycle.
The three-dimensional analogue is easy to visualize as well and is given
by
Trrrrra(L)i = Citr BTigrW Citr NCitrSTitr FLitrB (mod 2)

where F' and B denote the Front and Back faces of the neighborhood cube.
The K-dimensional analogue has 2K directions D and global dynamics given
by

2K
mr,r, ..., r(@)i= [] Ziwrp (mod 2).
2k
The natural extension of . to two dimensions is
T dordes (£)i = Tidery BirgW Tie ks NEiphps  (o0d 2)
which has the one-sided special case
Tr1,0,k1,0(%)i = Tigry BLiTiqp NT;  (mo0d 2)

— 2
= Zi4r EL; TithoN (mod 2)
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<+ 1111117 -+ +++1111111 -+ w18 TALLLLT o

e T1TLTTL - o N b s v+« 11T0T1T v
e« L ETELL - -~ 1110111 - - - - 1101611 - -
.-1110111-++ +» ---1101011--- +— ---1010101--- >
1111111 - .- 1110111 - -- ..-1101011 - --
st s TITTTTL s e3 s TLTLE s .+ 1110111 -
e {11117 5+ S BB ST ses TATITAT o
.--1010101 - - - .+-0101010 - - -
.--1010101 - - - +--0101010 - - -
..-1010101 - - - ++-0101010 - - -
-+-1010101 - - - — .--0101010 - - -
.--1010101 - - - .--0101010 - - -
--1010101 - - - -+.0101010- - -

--1010101 - - - ---0101010- - -

Figure 15: An orbit of 71,1,11(2)i = ZirpTiywTirnTits (mod 2),
the two-dimensional analogue of the orbit computed earlier.

Consider the orbit for 11 = 3 and k; = 2 given in Figure 16, which tends
to a fixed point with the upper half-plane all 1s and right half-plane all
1s. Clearly this is the two-dimensional analogue we seek, with countably
many fixed-points for each two-dimensional pattern of Os and 1s. Higher-
dimensional analogues should be equally visible to the reader. The two-sided,
shifted dynamics is also easy to visualize, leaving only the details of the cycle
lengths, which we omit.
The two-dimensional analogue of ¢, is given by

’/TT,r,O,T,'r(m)i = Titr EXitrWLiZitr NLitrS (mOd 2)

In Figure 17, we give the simplest orbit for the r = 2 case. The strictly
fixed-point dynamics is clear from the one-dimensional case, as should be
the dynamics for three and higher dimensions.

The two-dimensional analogue of 7, above is given by

7T7"lv7‘2707k1;k2(m)i = Tipr ETitraW TiTitky NTitkys  (mod 2).

Folding occurs in both directions, but is difficult to portray in limited space,
so we omit the example. However, the dynamics should be clear from the one-
dimensional case, as should the dynamics for three and higher dimensions.
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Figure 16: An orbit of m3020(z); = xi+3E:cz2a:i+2N (mod 2).

i 1l i P

P 1 1 e B O

£« JMLITOLLTY . ..

AR B 1 B o I co.o111111111... co 11111111t
o 111111111, ...111101111... ...110101011...
o 111111111, .. e IETIARTNT.. . . PSP
... 111101111 .. sz JHOTOTONT. . 5 5 ...010101010...
sas JAELIELIAN .o v oo JELELTALL, o SR s o
SR i b I ...111101111... ...110101011...
S 11111111, .. N e o e i o coo11111111n. ..

col1111111e... co111111111. .. . 111101111 ..
Figure 17: An orbit of m2022(Z)i = Tit2ETi+oWTiTitaNTit2s

(mod 2), the two-dimensional analogue of the orbit computed with
= 2.
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The two-dimensional analogue of the shifted version of the above requires
combining two shifts, one for each dimension.

Ty —jira—jiboks—Lka—1(T)i
= i (ry =) ETit(ra—j)W Titj EHINTit (k1) N Tik(ko—1)s  (mod 2).

For example, if the North-South shift is 2V and the East-West shift is 3F,
then the resultant shift is 2N + 3F. Other than this, the dynamics follows
the one-dimensional case. Similarly, three components are used to compute
the resultant shift in the 3D case.

An interesting monomial of degree two in two dimensions

While searching for two-dimensional analogues of monomials of degree 2, we
discovered an interesting case given by

m(2); = vinpriny  (mod 2).

Initially, this seemed analogous to the one-sided dynamics of 7, (2); = ZiZitr
(mod 2). However, this is a monomial of degree 2 in two dimensions, hence
it is an analogue in a different sense than the degree-4 monomials above. In
this case, all finite perturbations of [1] (the homogenous configuration of 1)
by Os disappear to the South-West. A verticle line of Os perturbing a sea
of 1s reproduces itself downward and to the left (N E idemprop), eventually
tending to the configuration with a half-plane of Os to the left of the line and
a half-plane of 1s to the right. We denote this configuration by 0|1. Similarly,
a horizontal line of Os tends to %, the configuration with a half-plane of 1s
above the line and a half-plane of Os below. Interestingly, lines of Os with
positive, rational slope m/n tend to cycles with period m + n, while lines of
0s with negative, rational slope disappear to the South-West, tending to [1].
All this is also true for half-lines.

Essentially, the rule propagates parallel lines of Os with slope —1 cor-
responding to the NE idemprop. Each cell eventually cycles with period
m +mn > 1 if and only if there is a half-line of Os with slope 0 < m/n < cc.
In that case, there are eventually periodic points of every period. We give
an example in Figure 18 where m = n = 1 tends toward a 2-cycle.

We extend this map to asymmetric neighborhoods in a natural way,
namely,

Trk(2)i = TiyrpTirey  (mod 2).

This map propagates parallel lines of Os with slope —k/r corresponding to
the kNrE idemprop. As in the case r = 1 = k above, finite perturbations of
|1| by Os disappear to the South-West. Infinite perturbations by lines of Os
with negative slope also disappear to the South-West. A vertical line of 0s is
copied r places to the West, while a horizontal line of Os is copied k places to
the South. Again, lines of Os with positive slope tend to limit cycles. A line
with slope m/n for m,n € Z* tends to a cycle of length lem(k, m)+lem(r, n),
where lem(z, y) is the least common multiple of z and y.
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Figure 18: A limit cycle in 7(z); = zi4nzirp (mod 2).

Other neighborhoods—such as the Moore neighborhood or the Margolis
neighborhood, as well as more general grids—have similar features and can
be analyzed using the same techniques.

5. Extended state sets

Next we consider the effects of introducing more states. Reimen [4] has shown
that a CA over a commutative monoid has divergent orbits with space-time
trajectories isomorphic to Pascal’s triangle modulo m. For m with primitive
roots, this can also be inferred for the cyclic groups (Z,,,e) from the work
on linear CAs over (Z,,,+) by Aso and Honda [2] using the topological
conjugacy provided by the discrete logarithm (2), except for the additional
0. Here we show that there may also be more limit cycles.
Consider the monomial in one dimension given by

7F1,1(55)i = Ti—1%ip1

and the orbit of z =5 with H = 11 below.

...0555555 . ..
...9999999. ..
...HHHHHHH ...
:++.9999999. ..
...HHHHHHH ...

(mod 14)

In the example above, 5 has idempotent degree 2 and idempotent order 2.
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Now consider the homogenous configuration 5. Clearly, if s> = s, then
T Tii, = 8, for every i (and 7), and 3 is a fixed point. Now if s* = s, but
s? # s, then 5 is a 2-cycle. Continuing, if s* = s, but s* # s for ¢/ < t,
then 5 is a t-cycle. In the example above, s = 4, s> = 2, and we have a
one-step transient, which we might refer to as v/s = 8. The phase portrait
for z;_1xz;41  (mod 10) is the same as that for z;_jz;1; (mod 6) given in
Figure 12.

More examples

The monomial 71 1(2); = ;1241 (mod 3) over (Z3, o) has been extensively
analyzed under the guise of its isomophic image, the additive CA with local
rule §(z); = zi—1 + zi11  (mod 2) (see Wolfram Rule 90). By including 0,
we obtain the state set (Z3, o). We already know the general dynamics on
configurations consisting only of Os and 1s. From previous work on Rule 90,
we obtain the dynamics on {1, 2}-configurations. And since2*> =1 (mod 3),
we also know the dynamics for {0, 2}-configurations, as illustrated below.

... 222222202222222 . ..
...111111010111111 ...

Only the {0, 1, 2}-configurations remain, which have the divergent dynamics
of the space-time trajectories of Pascal’s triangle modulo m, as seen in the
following orbit.

P K o 73 I
... 111112010211111 ...
...111120202021111 . ..
...111201010102111 ...
...112020101020211. ..
..120102010201021 . ..

The phase portrait is given in Figure 19.

The phase portrait for m 1(z); = z;—1i11  (mod 4) is similar to that
for m1(x); = zi—1zi1  (mod 2) given in Figure 5. No new limit cycles
are added; only divergent orbits appear. The phase portrait for m(z); =
Zi—1Tir1  (mod b5) is similarly repetitive.

Figure 20 gives the phase portrait for 7 1(z); = ;12441 (mod 6). The
phase portrait for 71 1(z); = z;—12,41  (mod 10) is the same as that in Figure
20, provided 3 — 5 and 4 — 6. Again not all arrows are present. An
exception here is that not every pattern lower in the digram can be reached
from a pattern above it. However, every limit cycle pattern can be reached
via a perturbation of 1. In addition to the limit cycles, there are divergent
orbits with space-time trajectories of Pascal’s triangle modulo m. See, for
example, Figure 21 (where (*) is either 2 or 5, initially 5).
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Figure 19: Phase portrait for 71 1(z); = zi—1ziy1  (mod 3).

o1
41, 31,
4_32
14 33
« 00

Figure 20: Phase portrait for m11(z); = zi—1zi+1  (mod 6).
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11111111111111111111111%%11111111111111111111111
1111111111111111111117%**%1111111111111111111111
111111111111111111111%%41**111111111111111111111
11111111111111111 111k 171111111111111111111
1111111111111111111%*%414141**%1111111111111111111
1111111111111 1k4747%%%*%111111111111111111
1111111111111111T**41%*41%*41%*11111111111111111
1111111111111 1 edebolotoieiiolli®1111111111111111
111111111111111%%41414141414141%%111111111111111
T1111111111111%F%%414141414141%*%%11111111111111
1111111111111%%41%%4141414141%*41%*1111111111111
1111111111 TR HAT L] 4] 4THRFHX1 11111111111
11111111111%%414141%%414141%%414141%*%11111111111
111111111 1RRH*4TTHRHRHRLI4TF*HHR4T41F9*%1111111111

11111111144 1F41RF414F41FF4TFF41FF41¥* 111111111
11111111****>(<***************************11111111

Figure 21: A divergent orbit of 7 1(z); = z;—12i+1  (mod 4).

i3
44 33
00

Figure 22: Phase portrait for w0 1(z); = zi—2zizi+1  (mod 6).

Clearly, these monomials fall into Wolfram Class II since every limit cycle
can be determined in finite time from one of a finite number of perturbations
of 3, for some s € Zp,.

As a final example, we present in Figure 22 the phase portrait for 7o 1();
= Ti—2%:Ti41 (mod 6)

6. Conclusion

Monomials of arbitrary degree can be obtained as a product of monomials of
degrees 2 and 3. Monomials of even degree are the product of monomials of
degree 2. Monomials of odd degree greater than 3 are the product of a mono-
mial of degree 3 and monomials of even degree. We apply the superposition
principle to find the limit cycles. Given an initial configuration, limiting
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configurations are the pointwise multiplication modulo m of the respective
limiting configurations under the component monomials of degrees 2 and 3.

Monomial CAs over (Z,,, e) fall into the first three Wolfram Classes. We
need only simulate the dynamics over a finite window for a finite time to
determine whether they obtain a particular orbit.
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