Complex Systems 7 (1993) 389-413

Emerging Patterns and Computational Design
of Filter Cellular Automata

A. S. Fokas
H. R. Madala
Department of Mathematics and Computer Science,
Clarkson University, Potsdam, NY 13699, USA

Abstract. We study one-dimensional cellular automata using two
different formulations, one polynomial and one involving mod 2. Em-
phasis is placed on the existence of coherent structures. Several new
filter CAs are found that are capable of supporting either attractors
or solitons. Some of these new rules are reversible.

1. Introduction

It is well established that even simple cellular automaton (CA) rules can ex-
hibit a rich phenomenology. For example, Wolfram [1] considered the simple
CA

' =f(al_,+al_; +al+al,, +adl,) (1.1)

where a! € {0,1} is the value of site i at time step ¢, and f € {0,1} is a
function that specifies the CA rule. He found numerically that after a large
number of iterations, one of four types of patterns could emerge from such a
CA: i) a homogeneous state, ii) a set of separated simple stable or periodic
structures, iii) an aperiodic (chaotic) pattern, and iv) a set of complex lo-
calized structures, sometimes long-lived. He also observed that the degree of
regularity of the emerging patterns was related to the degree of irreversibility
of the rules.

Park, Steiglitz, and Thurston [2] introduced a class of CAs called parity
rule filter automata, and showed numerically that members of a certain sub-
class of these CAs exhibit solitonic behavior. An analytical study of such
solitonic filter CAs was presented in [3-7]. Following these studies, several
other types of soliton CAs have been introduced in the literature (see, for
example, [8-11]).

A CA can be formulated in different ways; different formulations may be
useful for studying different aspects of a CA. We consider two formulations,
one polynomial, and one involving mod 2, in the following ways. We use a
known solitonic CA to illustrate the formulations; we show how simple mod-
ifications of the existing solitonic CA yield CAs that also exhibit solitonic

390 A. S. Fokas and H. R. Madala

behavior; and we present an exhaustive numerical investigation of an impor-
tant subclass of filter CAs, in order to identify those rules that are capable
of supporting stable coherent structures. We distinguish between two cases:
the soliton case, where the interaction properties of the coherent structures
are not trivial; and the attractor case, where coherent structures either do
not interact or fuse during interactions (Wolfram’s class (ii) is of the latter

type).

2. Mathematical formulation

A one-dimensional CA can be written in the form

)
attl = f (Z afﬂ-) i r,m €Z (2.1)

J=r1

where a! € {0,1} is the value of the site 7 at time step ¢, f € {0,1} is an

arbitrary function or rule, and the parameters r; and 7 specify the local

range of interactions. The CA given in (1.1) corresponds to r; = —ry = —2.
A one-dimensional filter CA can be written in the following form.

J=r1 J=ra+1

T2 T3
o =1 (Z ali+ > a§+j>; 7T, € 2, T <1y <73 (22)

In the case of the Park-Steiglitz-Thurston (PST) rule, r; = —r,7p = —1,73 =
r, where 7 € Z,, and f is the parity rule

1 if a is even (2:3)

f(a):{ 0 ifaisoddor0

Logical functions can always be reexpressed as ordinary polynomial func-
tions. For example, the function f(v; + vy + vs), where f,v; € {0,1}, can be

written as
f(’l]l + Uy + 1)3) = (123V1V2V3 + (0612’011}2’!73 + U1 U903 + CP) (2 4)
+ V10203 '

where 7 = (1 —v), CP denotes cyclic permutations, and 4,5, € {0,1}.
Thus, there exist 22° different rules depending on the choice of «. Similarly,

flvr +ve+v3+vg+0vs5) =
(1234501 V2U304V5 + (123401 V2U304T5 + Q12301 V20304 Ts (2.5)
+ Q124V1V2U3V405 + 120102030405 + (130102030405

and there exist 22 such different rules.
It is evident that if f(a) is the parity rule defined in (2.3), then

f(Ul + 4 U5) = 1)11)22}37}4175 + ’U1?)2’T)327455 + ’U]T)gl)g?jﬂjg, -+ CP (26)

Emerging Patterns and Computational Design of Filter CAs 391

that iS, Q1234 = *** = Q5123 = 1,0&122 rrr =051 = Q13 = = Q52 =]., and
all other o in (2.5) equal 0.

It is sometimes convenient to use a mod 2 formulation (such a formulation
was first given in [6]). For example, the parity rule (2.3) can be written as

{v1 + v2 + v3 +vg + v5 + (1 — D102030475) } mod 2 (2.7)
Indeed, (2.6) implies

f(vg + -+ +v5) = Iy — 3103 + 7114 — 15115 (2.8)
where II, denotes all possible products between v, ...,vs taken two at a

time, Il denotes products taken three at a time, and so forth, with IT; =
V1U20304V5. Also

V1 VaU304 V5 = 1-— Hl + H2 H3 + H4 = H5 (29)

Comparing (2.8) and (2.9), (2.7) follows.
The mod 2 formulation is particularly convenient for identifying reversible
CAs (see [8, 9]).

Examples:

i) The PST rule [2]:

= f(af*3 +aif] +af + afyy +ab,);

_ [0 ifaisoddor0 (2.1)
f(a) = .
1 if a is even
admits the polynomial formulation
(a:+éai+%ata2+laz+2 £y a:+21’a:+ia'faz+laz+2 ()
2.2
A& a:+éat+%a2a§+ldl+2 + CP)
and the mod 2 formulation
ai™t = {af +al, +al, —aif] —aff (2.3)
+ (1 —atjaitata ,al,.)} mod 2 '
ii) The reversible PST rule [9]:
aft = f(alt) + aft] +al +aty +all,);
_J1 ifaisevenora=at=1 (24)
f(a) = ’ i
0 otherwise
admits the polynomial formulation
aitt = (af“afﬂataiﬂawz + af‘%af*}afafﬂéﬁz 25)

t+1=t+1 t=t = t+1-t+1 t-t =
+ aftyai akat, at, + CP) + G158, 1afas 18

392 A. S. Fokas and H. R. Madala

and the mod 2 formulation
of#! = {af + iy + oy —] — ol .
+ (1 - aifa1a},4a},,)} mod 2
We note that the term a‘*3a‘" atat, ;at, , has been added to (2.11) and the
term @’ has been deleted from (2.12). Formulations (2.12) and (2.15) indicate

that while rule (2.10) is irreversible, rule (2.13) is reversible (see [9]).
iii) The JB rule [8]:

= f(at+1 t+1 + a + a1+1 + a1+2 + aH—S)

0 ifa=0 (2.7)
f(a) = { at if ais odd
at if ais even

The polynomial formulation considering vy = af, vo = al,, vs = al ,, v4 =

t+1 4l ot
a;ly, Vs = a;’ o, and vg = aj, 3 is

f(vy + ve + vz + vg + v5 + V) =
V102U3V4V5V6 + V10203V4 V5V + V1020304 V5Vs + V1V203V4U5V6
—+ V1V2U3V4U5Vg + V1 U2V3V4 V5V + V1V2U3V4Vs5Vs + V1V2VU3U4V5V6
+ U1 ’U21)3U4’l_)5'U§ + U1 ’U2'U3’U4’Us’176 + ’l)11721731741)5’l)5 + ’U1172’l_)3’U4’l—)5’Us
—+ V10903045V + V1U203U4 V5V + V1U2VU304V50g + V1U2U3V4U5Vg (28)
+ V1V903V405V + V1V203U4V50g + V1V2U3V4V506 + V1V2U3V4U5Vg
+ U1020304U5V6 + V102030405V + V1U2U3V4V5Ug + U1U2V304U5V6

+ 1711_)21}31_)41)5’1_16 + 1_)1’1_)21)31)41_)5’1_}6 + 1_)11)2’1_}31_)41_}5’1}6 + ’171’()2173’1.)41}5176

and the mod 2 formulation is
a’t+1 {az+1 + az+2 + a1+3 a’§+} - a:+%
(2.9)

—t+1-t+1-t~t
+ (1 - @;haaia; 1@t 005 5) fmod 2

Again, the mod 2 formulation implies immediately that this rule is reversible.
This rule is a special case of (2.2), with 7y = =2, 7y = —1, and 73 = 3.
Other rules exhibiting solitonic structures are given in [10] and [11].

3. New solitonic rules

We present some new rules capable of supporting solitonic structures.

i) PST rule with weights:

GEHI)

= f(alf] + 2aiT] + 3al + 2al., +alL,);

f(a) = {0 if @ is odd or 0 (3.1)

1 if aiseven

Emerging Patterns and Computational Design of Filter CAs 393

Figure 3.1: PST rule with weights (rule 1)
Coeflicients: 01011010010110101010010110100100.

Figure 3.2: PST rule with weights (rule 1).
Coefficients: 01011010010110101010010110100100.

The polynomial formulation considering v; = af, v, = al , vs = al,,, va =

ai*l, and vs = alt} is given by

£(3v1 + 2vg + v + 204 + vs5) =
U1U21)3’U4’L_)5 = U1U2@3U41)5 + 7.‘}1‘1}27)31)4’05 ~+ ’Ul’l}g’l)gf)ﬂ—}s
+ V1V2U3U4Vs + V102U3V4U5 + V1UaU3V4Us + V1V20U3U4V5 (32)
+ U102U3V4V5 + V1UaU3V4Us5 + V1U203U4V5 + V1VUU3V4T5
+ U102V304V5 + U1V20U304Us + V102030475
and the mod 2 formulation is
= {al +al , —aF} + (1 —altjaltialal jat,,)} mod 2 (3.3)
Two typical solitonic patterns are shown in Figures 3.1 and 3.2.
it) Reversible PST rule with weights:

aitt = {al + al,, — alty + (1 —attjaltial, al,,)} mod 2 (3.4)

The polynomial formulation is the same as for the previous rule, with the
additional term v102030405. Typical solitonic patterns are shown in Figures
3.3 and 3.4.

394 A. S. Fokas and H. R. Madala

Figure 3.3: Reversible PST with weights (rule 2).
Coefficients: 01011010010110111010010110100100.

Figure 3.4: Reversible PST with weights (rule 2).
Coeflicients: 01011010010110111010010110100100.

The extension of the two preceding rules to rules involving an arbitrary
number of sites is straightforward.

iii) Other rules:

There exist several other cases of (2.2), with ry =2, ro = —1, and r3 = 2,
that can support solitons. Some of these rules are summarized in Table 1,
and typical solitonic patterns are shown in Figures 3.5-3.12. (Rules (3.1)
and (3.4) appear in the table as rules 1 and 2, respectively.)

4. A systematic investigation of rules supporting
coherent structures

Due to the large number of possible rules, it is practically impossible to
investigate exhaustively all cases when the radius of interaction is 2. However,
one can exhaustively study particular subclasses of CA and filter CA rules.
These subclasses are specified by assuming that all & with the same number
of indices are equal. In the case of (2.4), for example, we assume that ajg =
a1z = agg and a1 = ap = az. We study the subclasses for rules depending
on 3 and on 5 sites.

395

Emerging Patterns and Computational Design of Filter CAs

a2

Qg

Qo

Qo

Q25

Q15

Qg5

Qs

Q124

Q4

Qo4

Oy

1245

Q145

Qg5

Qly5

Q123

a3

Qo3

a3

(1235

Q135

Q235

Q1234

Q134

Q234

Qi34

1345

Q9345

Q345

Rule | cr12345

Rule

Rule

Rule

Table 1: CA rules with solitonic behavior.

396 A. S. Fokas and H. R. Madala

Figure 3.5: Rule 3.
Coefficients: 00011001110001111010101100000000.

Figure 3.6: Rule 3.
Coeflicients: 00011001110001111010101100000000.

Figure 3.7: Rule 4.
Coefficients: 00110110001100110101000001001000.

Emerging Patterns and Computational Design of Filter CAs 397

Figure 3.8: Rule 5.
Coefficients: 01100000101111011010100110000100.

Figure 3.9: Rule 6.
Coefficients: 01101111100001000001010011000000.

Figure 3.10: Rule 7.
Coefficients: 11111000111101011000010111100100.

398 A. S. Fokas and H. R. Madala

Figure 3.11: Rule 8.
Coefficients: 00001001000000010011110001001000.

Figure 3.12: Rule 8.
Coefficients: 00001001000000010011110001001000.

I. Rules depending on 3 sites: We consider formulation (2.4) with

_ _ _ _ (2
Q23 = 04(3)7 Qg = Qi3 = Qigg = ol),

4.1
ar=a=03=aW, and ay=a® (&1
and consider first a particular CA and then a particular filter CA.
i)
aitt =1f(a +afyy + i) (4.2)

In this case, we identify the following two rules that can support attractor
structures.

Qo3 Qg Qg G Qigg Qi (3
rule 104 — 0 1 1 0 1 0 0 O (4.3)
rule 232 — 1 1 1 0 1 0 0 O

Emerging Patterns and Computational Design of Filter CAs 399

i)
ot = f(ait] + a; + a1,) (4.4)
In this case, we identify the following four rules that can support attractors.

Qg3 Qg Qi3 . Qigg Qg (i3 (Y

rule22 — 0 0 0 1 0 1 1 0
rulel0s4 - 0 1 1 0 1 0 0 0 (4.5)
rulel0 —- 1 0 0 1 0 1 1 O
rule 232 — 1 11 0 1 0 0 O
Rule 104 is the PST rule for the radius r = 1.
II. Rules depending on 5 sites: We consider formulation (2.5) with
Q12345 = Oé(s), Q1234 =+ = Qligges = 01(4), Q13 = = Qgas = 05(3),
a12:.'.=a45=a(2)’ alz---zasza(l), al’ld Oéo=01(0)
(4.6)
Again, we consider a particular CA, and a particular filter CA.
i)
aﬁ“ = f(af S a$+1 + azt‘+2 <+ a§+3 + a§+4) (4.7)

In this case, we identify the following three rules that can support coherent
structures.
a® a® o® 4@ Q0 O
rule20 — 0 1 0 1 0 0

rule24 — 0 1 1 0 0 O [48)
rule 56 — 1 1 1 0 0 0

i)
af“ = f(a?_r% e aﬁﬂ + aﬁ + af+1 + a§+2) (4.9)

In this case, we identify the following thirteen rules that can support coherent
structures. Rule 20 is the PST rule for the radius r = 2.
a® @ 4B 4@ L0 LHO

rule 2 1
rule 4
rule 8
rule 10
rule 18
rule 20
rule 24
rule 34
rule 36
rule 40
rule 42
rule 50

rule 56

0
0
0
0
0
8 (4.10)
1
1
1
1
1
1

NI A S A R P I A A
H EFOOOOORMFHEFMFEFOOOO
HOMHPFRPFOOHOORF~,OO
OO OO HOOROOORFO
OO O OO OO ODODODOCDOOO

O H OO, OOKF,MFEFOO

400 A. S. Fokas and H. R. Madala

Figure 4.1: Rule 2. Coefficients: 000 0 1 0.

One can observe that if a rule supports coherent structure with coefficient
a®) = 0, then coherent structures also seem to be supported for the rule
with a(® = 1. This is true for rules 2 and 34, 4 and 36, 8 and 40, 10 and
42, 18 and 50, and 24 and 56. Rule 56 is the standard threshold automata,
described as a majority rule in the neural modeling

1 ifa>40
f(a):{o i (4.11)

where 6 is the threshold value of the unit; here it is equal to 2, as the range
of the automata is r = 2. The polynomial formulation is represented in the
case of CA as

At t 24 t t tiat t t =t
= 040341054 00;430;4 T (aiai+1ai+2ai+3ai+4

£ 8 ot of o tt ot ¢ =t
+ afai, 107,005, 307 4 + 010,185 207, 48 4 + CP) (4.12)

t+1
a;

and in the case of filter CA as

t4+1 __ 41 _t4+1 t ¢ t —t+1 t+1 t ¢t t
a;" = 0;750;710,0; 11054 + (8507105051040

Fatatlalal oty + At lalal B, + CP) (419

which is in a bounded form, in contrast to the unboundedness used in neural
networks. This rule supports nonmovable patterns of attractor structures for
the initial conditions of two particles.

Table 2 gives the types of pattern behavior for the preceding rules. Two
types of attractor structures are observed, nonmovable and movable; non-
movable means that the initial data move straight down, and movable means
that they move from right to left or left to right (see Figures 3.8 and 3.10).
Some rules, such as 4 and 36 (Figures 4.2 and 4.9), support ‘movable’ patterns
with a cyclic nature, indicating a periodic behavior.

An analytical investigation of these new rules that support coherent struc-
tures is beyond the scope of this paper. (We can only point out that there
exists a Fast Rule Theorem [3] for the PST rule with weights that was in-
troduced in section 3.) However, because we have followed the evolution of

Emerging Patterns and Computational Design of Filter CAs

Rule Pattern behavior Figure
2 attractors (4.1)
4 attractors (4.2)
8 | nonmovable attractors (4.3)
10 attractors (4.4)
18 attractors (4.5)
20 solitons (4.6)
24 | nonmovable attractors (4.7)
34 attractors (4.8)
36 attractors (4.9)
40 | nonmovable attractors (4.10)
42 attractors (4.11)
50 attractors (4.12)
56 | nonmovable attractors (4.13)

Figure 4.3: Rule 8. Coefficients: 0010 0 0.

401

402 A. S. Fokas and H. R. Madala

Figure 4.5: Rule 18. Coefficients: 0100 1 0.

Figure 4.6: Rule 20. Coefficients: 0101 0 0.

Emerging Patterns and Computational Design of Filter CAs 403

Figure 4.8: Rule 34. Coeflicients: 1 000 1 0.

Figure 4.9: Rule 36. Coefficients: 1001 0 0.

404 A. S. Fokas and H. R. Madala

Figure 4.10: Rule 40. Coefficients: 1 01 00 0.

Figure 4.11:

Figure 4.12: Rule 50. Coeflicients: 1100 1 0.

Emerging Patterns and Computational Design of Filter CAs 405

Figure 4.13: Rule 56. Coeflicients: 11100 0.

these rules starting with random initial data, we expect that the behavior
we have observed is generic. In other words, for the rules given in Tables 1
and 2, we expect that any initial data will give rise to attractors, solitons, or
a homogeneous state.

We note that there exist rules which for some initial data support solitons,
which for other initial data yield chaotic patterns. Such a rule is (4.9) with
a® = a® = o = 1,00 = o) = o =0 (rule 52).

5. Conclusion

We have studied CA dynamics using both polynomial and mod 2 formula-
tions. CAs usually support either attractor or chaotic pattern structures,
whereas a large number of solitonic structures are possible with filter CAs.
Figures 3.1-3.12 exhibit the solitonic behavior of various new CAs. Figures
4.1-4.13 exhibit the emerging coherent structures of other CA rules. Compu-
tational aspects of the algorithms are given for studying various CA rules by
binary digit counters (Appendixes A and B). Our study shows that changing
the polynomial formulations with unit weight connections results in various
chaotic (unstable) and nonchaotic (stable) output patterns. This study can
be extended to higher order polynomial formulations by slightly changing
the given programs.

Appendix A: Generalized algorithm

In this appendix, we present a generalized algorithm for the CA and the filter
CA found in (2.1) and (2.2), respectively. Let the radius r = 1; that is, there
will be 2 % r + 1(= 3) location sites considered for each state of formulation
(2.4). In the case of the CA (r; = 0 and 7y = 2), v1 = af, va = af,, and
vy = ab,, (forward locations) are taken, and in the case of the filter CA
(p=-1,rp=—1,andr3 =1),v; = a}, vy = al,, and v3 = a}ﬂ are taken.
There are 23 terms, and the same number of coefficients in the polynomial
formulation. Different rules are generated by giving values of 1s and 0s for

406 A. S. Fokas and H. R. Madala

93, (2, 13, Q1, Qag, (o, ag, and . Binary digit counters are used in
the program. The algorithm generates two binary notation matrices; one
for representing the terms in the polynomial equation, and another for the
rules. A binary matrix of three is used to represent the terms, as shown in
(A.1). Each row of the binary matrix represents one polynomial term in the
equation.

000 — 017203 — h(1) = ay
001 — 0102v3 — h(2) = as
010 — D1v903 — h(3) = o
011 — Dyv9uz — h(4) = a3 (A1)
100 — v1T203 — h(5) = oy
101 — V1UV3 — h(6) Q13
110 — U1U2’U3 =% h(?) Q19
111 — vyvevs — h(8) = aias
where 1 represents v and 0 represents (= 1 — v); and h(¢), 7 = 1,...,8 are

the coefficient terms corresponding to each polynomial term and to «, as
shown.

As there are eight coefficients, there are 28 (= 256) rules formed for all
combinations of Os and 1s. A binary matrix of eight is used to represent the
rules (A.2).

h(8) h(7) h(6) h(5) h(4) h(3) h(2) h(l) « coeflicient vector
6o 0 0 0 0 0 0 0 —rule0
0 0 0 0 0 0 0 1 — rulel
o 0 0 0 0 0 1 0 —rule2 (A.2)
0 0 0 0 0 0 1 1 — ruled
1 1 1 1 1 1 1 1 — rule 255

Each row in the matrix represents a rule, and each element in it is one
coeflicient value. The rule numbers are computed as h(8) * 27 + h(7) * 26 +
R(6)%25+h(5) 24+ h(4) * 23+ h(3) %22+ h(2) x 2L + h(1) %2°. As j varies from
1 to m, where m is the total number of state-space locations, the sites vy,
vy, and vg are read for each state j, the polynomial terms are computed by
using the binary counter notation (A.1) (if 1, the value of v; is taken directly,
and if 0, the value of v; is subtracted from 1), and the state-space value of j
at t + 1 is calculated.

Subroutines BMAT and BROW (see Appendix C) are used to generate
the binary digit matrix. BROW generates the row of the matrix from the
number of the row and the number of coeflicients, using the parameters jg,
jn, and jd(jn), where jq is the variable to evaluate the specific row, jn is
number of coefficients, and jd is the row vector of length jn. BMAT generates
the binary matrix via BROW, using the parameters [, j f, and id(j f,), where
[is number of coefficients or columns in the matrix, jf is total number of
rows, and id is the binary matrix.

Emerging Patterns and Computational Design of Filter CAs 407

I. The first part of the algorithm is the initialization for the following values:
m (number of spaces in the CA), ¢ (number of time evolutions to be evolved),
a0(m) (initial conditions), ca (to choose the case as CA or filter CA), and r
(to specify the radius of the CA).

¢ PART A of Main Program
character*1l ul(80)
integer a0(80), a(80,2), v(50)
integer h(50), h1(50), ide(512,50)
integer r,t,sl,ca,o02
real ic
¢ Initialization
110 format (’CA case (1) / FilterCA case (2) ?77°)
120 format (’Give r value 777°)
m =80
t =25
seed =0.0
write(*,110)
read (x,*)ca
write(*,120)
read (x,*)r
sl =2xr+1
if (ca.eq.1) r =s1-1
dol j=1,m
1 a0(j) =0
do 2 i =m-13-r,m-r-3
k =i-15
a0(k) =RND(seed)
2 a0(i) =RND(seed)

In this example, m and ¢ have been set at 80 and 25, respectively. Initial
input data of a0(j);j = 1,...,m are generated by using a random function
with an initial seed value set at 0 (a pseudorandom generating function is
given in Appendix C).

The values of ca and r are to be fed as inputs to the program. The CA
case requires an input of 1 (= ca) and the filter CA case requires an input of
2 (= ca). In the program, the value of sl is computed as s1 = 2% r + 1, for
obtaining the total number of arguments v.

II. The binary matrix for s1 is generated with 2! rows and s1 columns as in
(A.1); BMAT generates the matrix ide with kf(= 2°!) rows.

III. The coefficient vector h as a CA rule (A.2) is generated using BROW,
according to the number of terms kf in the polynomial. In part B of the
main program, BMAT and BROW are used, and initial conditions a0(80)
are transferred to a(i,1) as ¢ = 1. The rule number kf2 is given as h1(1) =
2171+ h1(2) % 2172 4 -« + h1(s1) 20,

408 A. S. Fokas and H. R. Madala

c PART B of Main Program
¢ Generation of binary matrix
100 format (80al)
130 format (’Rule #’,i3,1x,’Coeffts:’,33i2)
call BMAT(s1,kf,ide)
ic =0.
11 call BROW(ic,kf,h1)
kf2 =0
do 3 1= 1,kf
il =kf-i+1
h(i1) =h1(i)
3 kf2 =kf2+h1(i)*2**(i1-1)
ic =ic+1
do 4i=1,m
a(i,1) =a0(i)
a(i,2) =0
if (a(i,1).eq.0) ul(i) =’ ?
if (a(i,1).eq.1) uil(i) =’1’
4 continue
write(*,130)kf2, (hi1(i),i=1,kf)
write(*,100) (ul(j),j=1,m)

IV. The next step is to compute the time evolution at time ¢ + 1, and to
proceed to obtain an evolutionary pattern of the CA. At each state j, the
location sites (v, va, . .. ,vs1) are formed, and a(j, 2) is computed at t+1 = 2.
Before going to the next time step, a(j, 2), § =1 to m is printed and the values
are transferred to a(j,1). This procedure is repeated until all the specified
time steps ¢ are performed.

¢ PART C of Main Program

do 9k =1,t
do7 j=1,m
c forming vector v as per CA or filterCA case
i =0
do while (i.le.r)
v(i+1) =0

if (j+i.le.m) v(i+1) =a(j+i,1)
if (ca.eq.2.and.i.ne.0) then
v(i+r+1l) =0
if (j-i.ge.1) v(i+r+1) =a(j-i,2)
endif
i =i+l
enddo
c evolution at next time step
a(j,2) =0
do 6 1i = 1,kf

Emerging Patterns and Computational Design of Filter CAs 409

02 =1
do 5 1j = 1,s1
if (ide(1li,1j).eq.0) then
02 =o02x(1-v(1j))
else
02 =02*v(1lj)
endif
5 continue
a(j,2) =a(j,2)+h(1i)*02
6 continue
7 continue
do 8 j=1,m
a(j,1) = a(j,2)
a(j,2) =0
if (a(j,1).eq.0) ul(j) =’ °
if (a(j,1).eq.1) ul(j) =’1’

8 continue
write(*,100) (u1(j),j =1,m)
9 continue
c stopping after all the rules are covered
is =0

do 10 ji=1,kf
10 is=is+h(j1)
if (is.1lt.kf) goto 11
stop
end

V. This process is repeated for all 2! rules, using the same initial conditions.
It is possible to choose the coeflicient vector for a specific CA rule as an input
each time.

Appendix B: Algorithm for specified rules

The generalized algorithm given in Appendix A is simplified here to study
specified rules of CA and filter CA cases. This is preferable for the study
of CAs under specific conditions as given, and reduces the computational
burden when r > 2.

For example, let us consider 7 = 2, thus sl = 2 r + 1(= 5) location sites
are considered at each state of the CA. The polynomial formulation (2.5) is
specified as follows.

f(vr +va +v3 vy +05) =
P, 5030405 +) (v1v20304T5 + CP) +
a® (v1v9V3T4Ts + V1V T3v4T5 + CP) + (B.1)
' (v1V9T3T4Ts + V10930405 + CP) +

410 A. S. Fokas and H. R. Madala

where v; are the location sites considered, o = (1 — v), and o® € {0,1}
are the coefficients. In the CA case (r; = 0 and ry = 4), we take v; =
a%,vg = abyy,v3 = @by, vs = @by, and vs = af,,; and in the filter CA case

(r1 = —=2,mp = —1, and r3 = 2), we take v; = a}, vy = al,;,v3 = alp,v4 =
af*}, and vs = a7, As each polynomial term is formed with five site terms,
a binary matrix of five is used. This is given by ide(i,7);7 = 1,...,sl,i =

1,...,kf where sl (= 5) is the number of columns and kf(= 2°) is the
number of rows, which represents the number of polynomial terms (= 32). As
previously, each row of the matrix corresponds to one term in the polynomial.

(©)
(@)
(€))

nn

—
N

00100 — @1’1_)2?]3774@5 — h 1)
00101 — 51’1_12’03’174’[}5 — h
00110 — 1711_)21)3/04’!_}5 — h

00111 — @17._)27.)3’1)41)5 — h

— =
NN
- =
—
(3]
~

Il
QR R e eere

(0)
(1)
(1)
00011 — 17117217304U5 — h(2)
(1)
(2)
(2)
3)

11110 — ’U1’U2U3’U4’U5 =% h(4) = &(4)
11111 — vyvav3v405 — h(5) = a!®

where the terms h(0) = o, h(1) = oW, h(2) = o, A(3) = a®, h(4) =
a®, and h(5) = al® are specified according to the number of 1s in the binary
term. As there are six coefficients, there are 2° (= 64) rules. We consider
only those rules where h(0) = 0. This enables us to use the same binary
matrix (B.1) for indicating the rules.

h(5) h(4) h(3) h(2) h(1) h(0) « coefficient vector

O 0 0 0 0 0 — rule0
O 0 0 0 1 0 — rule?
0O 0 0 1 0 0 — ruled (B.3)
0 0 0 1 1 0 — rule6

1 1 1 1 1 0 — rule62

Consequently, each row of the matrix ide is also considered as the coefficient
terms h(i),i = 0,1,...,s1, by including the term h(0) as o® (B.3); this is
done by extending the columns of the matrix ide to s1 + 1. Each coefficient
vector becomes a rule, and each term of the vector becomes the connecting
coefficient value of the polynomial term, according to the total number of 1s
in the binary counter of that term. The specified rule numbers are computed
as h(5) x2° +h(4) x2* +h(3) x 23+ h(2) ¥ 22+ h(1) x 21 +h(0) x2°. The program
given in Appendix A is here simplified, and it works for the specified rules
having h(0) = 0.

Emerging Patterns and Computational Design of Filter CAs 411

c PROGRAM for specified rules
c PART A
character*1l ul(80)
integer a0(80), a(80,2), v(50)
integer h(50), ide(512,50)
integer r,t,sl,ca,o02
100 format (80al)
110 format (’CA case (1) / FilterCA case (2) ?77°)

120 format(’Give r value ?777’)

130 format (’Rule #’,1i3,1x,’Coeffts:’,30i2)
m =80
t =25
seed =0.0

write(*,110)
read(*,*)ca
write(*,120)
read (*,*)r
sl =2xr+1
if (ca.eq.1) r =si-1
dolj=1,m
1 a0(j) =0
do 2 i =m-13-r,m-r-3
k =i-15
a0(k) =RND(seed)
2 a0(i) =RND(seed)
c PART B
call BMAT(s1,kf,ide)
do 10 ic = 1,kf
kf2 =0
ide(ic,s1+1) =0
do 3 i1 = 1,s1+1
i =s1-il+1
h(i) =ide(ic,il)
3 kf2 =kf2+ide(ic,il)*2%*i
do 41i=1,m
a(i,1) =a0(i)
a(i,2) =0
if (a(i,1).eq.0) ul(@) =’ °
if (a(i,1).eq.1) ul(i) =’1’
4 continue
write(*,130)kf2, (ide(ic,i),i=1,s1+1)
write(*,100) (ui(j),j=1,m)
C PART C
do 9k =1,t
do7 j=1,m
i =0

412 A. S. Fokas and H. R. Madala

do while (i.le.r)
v(i+l) =0
if (j+i.le.m) v(i+1) =a(j+i,1)
if (ca.eq.2.and.i.ne.0) then
v(itr+1) =0
if (j-i.ge.1) v(i+r+1l) =a(j-i,2)
endif
i =i+l
enddo
a(j,2) =0
do 6 1i = 1,kf
kx =0
02 =1
do 5 1j = 1,s1
if (ide(1i,1j).eq.0) then
02 =02*(1-v(1j))

else
kx =kx+1
02 =02xv(1j)
endif
5 continue
a(j,2) =a(j,2)+h(kx)*02
6 continue
7 continue
do 8 j =1,m
a(j,1) = a(j,2)
a(j,2) =0

if (a(j,1).eq.0) ul(j) =’
if (a(j,1).eq.1) ul(j) =1’
8 continue
write(*,100) (u1(j),j =1,m)
9 continue
10 continue
stop
end

Appendix C: Subroutines used

subroutine BMAT(1,jf,id) subroutine BROW(jq,jn,jd)
dimension ip(50),id(512,50) dimension jd(50)
real ic real jq, jl
ic =0.0 js =jn+1
ict =1 10 il =jq
jf =0 do 11 i = 1,jn
25 call BROW(ic,1,ip) 11 jd(i) =0

ic =ic+1 if (js-1) 15,21,15

Emerging Patterns and Computational Design of Filter CAs 413

is =0 15 i =0
do 26 ji = 1,1 jni =jn+1
26 is =is+ip(j1) 16 i =i+l
jf =jf+1 if (js-j1l) 17,17,18
do 27 j = 1,1 17 jc =j1/js
27 id(jf,3) =ip(j) jd(jni-i) =jl-jc*js
write(*,28) (id(jf,j),j =1,1) jl =jc
28 format (5x,1712) goto 16
if (is-ict) 25,30,30 18 jd(jni-i) =j1
30 return do 20 i2 = 1,jn
end if (jd(i2)-1) 20,20,19
19 jq =jqt+1
¢ Random number generating function goto 10
20 continue
function RND(seed) 21 return
x1 =(seed+3.14159)*5.04 end
x1 =x1-int(x1)
seed =x1

if (x1.gt.0.5) RND =1
if (x1.le.0.5) RND =0
return

end

