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Abstract. We propose a new hybrid genetic back propagation train-
ing algorithm based on a unique functional matching recombination
method. The method is used to evolve populations of neural networks
and provides versatility in network architecture and activation func-
tions. Net reorganization and reconstruction is carried out prior to
genetic recombination using a functional behavior correlation measure
to compare the functional role of the various neurons. Comparison is
done by correlating the internal representations generated for a given
training set. Net structure is dynamically changed during the evolu-
tionary process, expanded by reorganization and reconstruction and
trimmed by pruning unnecessary neurons. The ability to change net
structure throughout generations allows the net population to fit itself
to the requirements of dynamic adaptation, performance, and size con-
siderations in the selection process, thus generating smaller and more
efficient nets that are likely to have higher generalization capabilities.
A functional behavior correlation measure is used extensively to ex-
plore and compare nets and neurons, and its ability is demonstrated
by investigating the results of genetic recombination. The vitality of
nets organized via the functional behavior correlation measure prior
to genetic recombination is demonstrated by statistical results of com-
puter simulations. The performance of the proposed method and its
generalization capabilities are demonstrated using Parity, Symmetry
and handwritten digit recognition training tasks.
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1. Introduction

Constructive and destructive training algorithms for neural nets have signif-
icant importance because of their ability to construct minimal nets that are
economical in terms of hardware and software and powerful in terms of gen-
eralization capabilities. This work presents a novel approach for combining
genetic evolution, back propagation training, and various pruning methods
to provide a powerful training algorithm capable of dynamically modifying
net structure, functional composition, and weights, while adapting toward
minimal net structure.

The basic concepts of construction algorithms are demonstrated by the
Tiling [7] and Upstart [8] algorithms that create a feedforward network of
binary neurons and a single output neuron. The more advanced Cascade
Correlation [9, 10] algorithm uses continuous neurons with no limitation on
the number of output neurons. In these algorithms, a combined training
algorithm and construction operator provide the capability of building the net
gradually. Neurons and layers are added to the net as needed and convergence
is guaranteed regardless of the initial net structure.

Such “forward progressing” algorithms suffer from significant drawbacks
in their ability to produce minimal nets. It has been suggested [1, 4, 5, 6] that
the most efficient and promising way to produce a minimal net is to train a
sufficiently large net that is pruned both during and after training. A “for-
ward progressing” algorithm is likely to produce nets that have more neurons
and layers than actually needed; but due to the nature of the construction
operator, it is difficult to remove redundant units.

Extensive use of genetic algorithms for neural net training and construc-
tion has been shown to improve existing training techniques and overcome
certain limitations such as local minima traps, network paralysis, and others.
Genetic algorithms are based on various aspects of natural selection and ge-
netics. Taking an optimization problem and encoding its solution proposals
into a population of artificial “chromosomes,” one makes use of selection and
reproduction operators similar to natural ones, and evolves a population of
solution proposals. Using effective natural selection criteria and efficient re-
production methods, the population is enhanced with each generation. The
result is a powerful stochastic optimization technique.

The application of genetic algorithms for neural net training is done in a
variety of ways. In common applications, demonstrated successfully by the
GENITOR and GENITORII algorithms [12, 13, 14], network weights are
encoded into artificial “chromosomes” represented by binary strings. Con-
ventional training techniques (restricted to a predefined network structure)
are then applied. A more global approach that encodes net connectivity was
demonstrated by Whitley et al.[14], in which an evolutionary process was
used to create the interconnections map, and conventional training methods
were used to train the proposed nets. These training algorithms are confined
to a predefined network architecture where the number of layers and neurons
do not change during training.
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An example of a genetic algorithm that searches for an appropriate net-
work architecture was presented by Kitano [15]. Recognizing the “scalability”
problem of methods based on direct encoding of the interconnections map,
Kitano proposed the encoding of a graph generation grammar that encodes
the network construction rules into the artificial chromosomes. The encoded
grammar was significantly shorter than direct encoding methods, and pro-
vided the means for dealing with dynamically changing configurations. It
is important to note that every offspring net created by this algorithm was
trained from a random initial state. Besides connectivity patterns, no weight
values were transferred to the offspring nets and an expensive (in terms of
computational complexity) back propagation training was used. In a pro-
cedure similar to the introduction of priors a particular configuration was
chosen from a certain class of possible solutions. The exact solution, that is,
the explicit weight matrix, is defined by a complementary training process
(such as gradient descent) that refines the solution within the given class of
solutions.

We propose a new functional matching recombination method for use
with genetic back propagation hybrids, where matching is done by comparing
the functional role of neuron pairs correlated by their corresponding inter-
nal representations. The representation of neuron functionality by a vector
of internal representations for the entire training set is called the functional
behavior of neurons [1, 2] and is also used for observing the results of genetic
recombination. The proposed recombination method takes into account the
fact that neurons performing equivalent tasks may be located at different
positions in the hidden layers and therefore encoded at different locations in
the genetic “chromosomes” (this is often called the problem of hidden neu-
ron location permutation [20, 21]). By rearranging and reconstructing the
parent nets prior to genetic recombination, the recombination efficiency is
significantly enhanced and vital internal structures are preserved. In addi-
tion, since parent nets are reconstructed prior to genetic recombination, the
population may include a variety of network structures.

The main contribution of the proposed method is its ability to handle
heterogeneous populations of nets having different sizes and structures. Its
ability to transfer network infrastructures and their corresponding weight
values from parents to the offspring nets is also recognized. This enables a
smoother evolution of the population between different classes of solutions
(mainly configurations and activation functions), thereby creating offspring
nets with enhanced initial performance that require fewer retraining cycles.
By adding a pruning phase, the hybrid algorithm adaptively changes the
structure of the nets in the population. These changes are controlled by a
balance between expansion and pruning processes.

2. Genetic algorithms

Genetic algorithms are stochastic optimization methods that imitate natural
processes by applying “evolution” to a population of solutions proposed for
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a given optimization task. Fach proposal in the population is given a fitness
value representing its performance when applied to a specific task. During
evolution, pairs of individual solutions are chosen from the population (at
random), and together they produce an offspring representing a new solution
proposal. The offspring is given a fitness value with which it competes for
a place in the population. Similar to biological natural selection, less fit
individuals generally do not survive and are removed from the population.
The fitness of the entire population is enhanced with each generation until the
most fit individuals reach the global optimum. Several variations of genetic
operators have been suggested and to clarify the types of operators used in
this work, we provide the following brief review.

Each individual “chromosome” is represented by a string of encoded fea-
tures and parameters. Then the reproduction stage mentioned above is car-
ried out in the following manner.

e Two parents are chosen at random from the population, using a non-
uniform probability distribution. Higher probability is given to more fit
individuals, thus adding selective pressure [11, 13] to the evolutionary
process.

e A new offspring is created by combining attributes (selected at random
with equal probability) from each of the two parents.

e Mutations are applied to the offspring by making small random changes
to the encoded features.

e According to the principle of natural selection, the new offspring must
compete for a place in the population. A fitness value is given to the
new offspring, which is then compared to the least fit individual in the
population, resulting in the survival of the more fit individual and the
elimination of the other.

The parameters of this artificial evolutionary process must be selected
carefully. The nonuniform distribution underlying the selection of parents
must be carefully chosen to avoid exaggerated preference of highly fit indi-
viduals which may cause a premature population convergence and loss of
diversity. On the other hand, if more fit individuals are not granted a statis-
tical preference, the convergence rate is slowed and processing time is wasted.
The rate of mutation must also be carefully considered. High mutation rates
may slow the evolutionary process by creating a mass of low-fitness individ-
uals that can destroy the evolution process by transforming it into a random
search. An extremely low mutation rate, on the other hand, may result in
the loss of population diversity and prevent convergence in the vicinity of the
global optimum.

When genetic algorithms are used for evolving populations of neural net-
works, major encoding difficulties are encountered. Neurons that perform
equivalent tasks within different networks are located at different positions in
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the hidden layers and therefore encoded at different locations in the “chromo-
somes” of a selected pair of parent nets. Recombining the two parent “chro-
mosomes,” which are arbitrarily ordered, may produce meaningless random
results as well as untrainable offspring nets. This obstacle is often called the
problem of hidden neuron location permutation and is known to have a disas-
trous effect on genetic algorithm training processes [20, 21]. The damage is
usually caused by the destruction of vital infrastructures of both parent nets
during recombination, since weight values belonging to different infrastruc-
tures are mixed. To minimize the damage during recombination, one must
evaluate the infrastructure functional similarity in both parent nets and en-
code the connectivity patterns and weight values of similar infrastructures at
similar locations in the parent “chromosomes.” Since neuron activation func-
tions are nonlinear, it is impossible to evaluate the similarity of neurons and
network infrastructures by comparing network connectivity or weight val-
ues. In the next section, we present a measure for evaluating infrastructure
functional similarities.

3. Functional behavior of neurons

The “functional behavior” of a neuron describes how that neuron and its
corresponding subnet respond when various input vectors are presented to
the net. The net is fully forward connected and has no feedback connections;
weight values are real and neuron activation functions are continuous. Each
subnet is a part of the net starting at an input layer and ending at a single
hidden or output neuron that is the output neuron of that subnet. The sub-
net contains all relevant neurons in previous layers and all interconnections
leading to those neurons. Every subnet represents a real function f: R™ — R
on the set of input vectors where n is the number of input neurons. (Note
that a binary representation is a special case of the general continuous rep-
resentation.) This function is the subnet response function. The output of
the subnet ending at neuron ¢ is represented by

st = flvi,...,vn) (1)

where v1, ..., v, are the components of the input vector and s* is the output
value of neuron 4. The neuron’s functional behavior is defined as the response
of the corresponding subnet to the set of input vectors

Bi:(si,...,s;) (2)

where p is the number of input vectors in the data set and sj» represents the
output value of neuron 7 when input vector j is presented to the net.
To compare different neurons and functional behaviors, the latter is nor-

malized with respect to its overall norm E* = 37_, (s%)?, that is,

B:<ﬁ@_> (3)
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This normalized representation simplifies both graphic and numerical func-
tional comparisons. The degree of matching between a pair of neurons 7;
and iy is given by the correlation of their corresponding normalized func-
tional behaviors:
. 1 P
match(iy,i2) = B* - B2 = —— ) 152, 4)

This normalized matching factor lies in the interval [—1,1]. Its magnitude
represents the functional similarity of the corresponding subnets, where the
negative sign indicates an opposite response. For linearly dependent func-
tional behavior vectors, the matching factor is either 1 or —1:

match(i, i) giy_ppie = B - B®? =

1 < i 1 :
W Zl OszQSj2 = 81gn(a). (5)
=

where a denotes the linear dependence.

4. Genetic recombination operator

This section proposes a new genetic recombination operator based on the
functional behavior correlation measure. The main objectives of the proposed
operator are to increase neural net recombination efficiency by rearranging
the internal structure of parent nets, providing the capability to recombine
parent nets of different sizes and thus making the handling of heterogeneous
net populations possible. The two parent nets undergo internal rearrange-
ment and reconstruction, creating a pair of target nets that have identical
architecture and well-matched internal order.

The mutual reordering process and reconstruction of the parent nets is
performed simultaneously on the two nets, layer by layer.

1. Input layer: The functional role of every input neuron is uniquely
defined by its location in the input layer, and all input neurons are
copied to the same locations in the target nets.

2. Hidden layer: There is no dependency between the functional role of
hidden neurons and their locations in the hidden layers. Therefore one
must identify related neurons in both nets and place them in the same
location in the hidden layers of the corresponding target nets. Neurons
are copied to target nets together with their entire set of internal pa-
rameters, input connections, and weight values.

Hidden layer processing is done in the following manner:

e All neurons from the currently processed hidden layer of the first
net are copied to the corresponding target net.

e For each neuron in the first net, the neuron with the highest func-
tional similarity is identified in the second net and copied to the
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equivalent location in the second target net, parallel to the orig-
inal neuron in the first net. The functional similarity of neurons
is evaluated by equation (4), the functional behavior correlation
measure.

e If the matching factor (4) is negative, invert the activation func-
tion and the outgoing connections of the second neuron. When
the activation function is antisymmetric, one simply inverts the
incoming connections instead of the activation function.

e When all neurons from the first net have been processed, repeat
the process for the second net by identifying and copying neurons
with the highest functional similarity from the first net.

e During the reordering process and reconstruction, neurons are du-
plicated and may therefore appear more than once in the hidden
layers of the target nets. The functional performance of the target
nets is restored by compensating the outgoing connections of the
duplicated neurons. The compensation is carried out by dividing
the amplitudes of the corresponding output connections by the
number of duplications.

The number of neurons in the hidden layer created in the target nets
is the sum of hidden layer sizes of the two original nets.

3. Output layer: The functional role of each output neuron is uniquely
defined by its location in the output layer. All output neurons are
copied together with their entire set of internal parameters, input con-
nections, and weight values, to the same locations in the target nets.

After the two parent nets are reordered and reconstructed, and the target
nets have been created, an offspring net is created. Each building block of
the recombination process consists of a neuron, its internal parameters (for
example, an activation function), a set of input connections, and the corre-
sponding weight values. It therefore represents a specific function performed
by that neuron (on the space of net inputs as well as output of neurons in
previous layers). The function is kept intact throughout recombination and
transferred to the offspring net. The offspring net is created by parsing the
two reconstructed nets simultaneously, selecting at random which of them
will supply the next building block, which is then copied to the same lo-
cation in the offspring net. Mutations are applied by adding random noise
to the offspring weights. The offspring net is retrained and submitted to
pruning [1, 4, 5, 6] and retraining cycles.

5. The hybrid training system

We will now describe an entire training algorithm utilizing genetic algorithms,
back propagation, pruning, and the recombination operator defined in sec-
tion 4. Training is divided into two stages:



452 Nachum Shamir, David Saad, and Emanuel Marom

1. initial population generation; and
2. genetic population evolution.

Initial population generation is done by training, pruning, and retraining
nets seeded with random initial weights. The method used for training is
back propagation with momentum (o = 0.4) and weight decay (¢ = 0.005).
Back propagation training continues until all output polarities are correct
or the epoch limit of 100 epochs is reached, whichever comes first. Network
pruning is done using three different methods:

1. neuron merging using functional behavior correlation to find and merge
matchable pairs of neurons [1];

2. neuron pruning by removing irrelevant neurons (see, for example, [5]);
and

3. interconnections pruning by measuring the interconnection relevance
and removing irrelevant interconnections (see, for example, [6]).

Functional matching is evaluated by (4) for all pairs of neurons, and those
pairs having matching magnitudes greater than or equal to 0.75 are marked as
merging candidates. This parameter has been determined experimentally [1].

The relevance of each neuron k is evaluated by calculating the influence
of its removal on net output

q P

Ri=33" (0~ O¥) ©)

=1g=1

where O; represents the net output bit 4 when input vector j is fed to the net.

The term O(k); is the net output generated for the same data when neuron
k is removed. The constant p is the number of vectors in the data set, and
q is the number of output neurons. In our simulations we used the relevance
measure defined at equation (6), but it should be noted that the amount of
computation can be reduced by using approximations such as those described
in [5, 6, 17].

The relative relevance of neuron & is defined by:

_ B
NIl R

where N is the total number of neurons. The relative relevance of intercon-
nections is calculated similarly. In all experiments, we used a relative neuron
relevance pruning threshold of 0.3 and a relative interconnections relevance
pruning threshold of 0.2. The three pruning methods are used together:
the merging and pruning candidates are first marked, and then the nets are
pruned and retrained.

The fitness of each individual net is determined by counting the number
of correct outputs generated for the set of training or testing vectors. When

Pr = (7)
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the fitness of two nets is equal, priority is given to the smaller net. The
number of initially trained nets must be larger than the target population
size. This ensures populations of nets with enhanced initial performance
exceeding that of random net selection.

Once the initial population is created, the evolutionary process may be-
gin. For each evolutionary step, two individual nets are chosen at random
from the population such that fitter individuals have a greater chance of be-
ing selected (this is called selective pressure [11, 13]). The selected pair of
individuals recombines and creates a new offspring as described in section 4.
The new offspring is trained, pruned, and retrained. Its fitness is calculated
and compared to the most similar net in the population, which is replaced
if the offspring is found to be more fit. Such a method of selection [2] shows
better performance and preserves the diversity of an evolving population of
neural networks.

6. Experimental results

The performance of the proposed hybrid training system is illustrated by four
examples. In the first example, the influence of functional reorganization on
genetic recombination efficiency is examined by comparing the recombination
performance with and without reorganization, using the Parity-6 data set.
In the second example, the generalization enhancement properties of the
proposed system are demonstrated using the Symmetry-16 data set, whose
performance is compared to that of a computationally equivalent non-genetic
training program. The third is a unique experiment involving heterogeneous
populations of nets, each implementing a variety of decision functions. In
the last experiment, nets are trained to identify handwritten digits.

6.1 The influence of functional reorganization on genetic
recombination efficiency

This experiment was designed to isolate and investigate the effects of hidden
neuron functional reorganization on the efficiency of genetic recombination.
Two types of recombination methods were compared. In the first, hidden
neurons were not reorganized prior to recombination; in the second, hidden
neurons were reorganized as described in section 4. All other recombination
and retraining parameters, including net growth factors, were identical in the
two experiments.

The population included ten nets. All nets were fully forward connected
and had an initial structure of 6:6:6:1. The nets were exhaustively trained
by the Parity-6 data set, subjected to pruning (by the three methods dis-
cussed in section 5), and retrained. The initial population evolved for 2000
generations. Population evolution was performed according to the guide-
lines described in section 5, using all three pruning methods and functionally
matched recombination. It is important to note that all nets in the pop-
ulation had perfect performance throughout the generations, since all nets
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in the initial population had perfect performance and these were replaced
by offspring nets that had equivalent or better scores. Both recombination
experiments were performed using the same population of nets. For the first
pair of tests we used the nets of the initial population, for the second pair we
used the nets of the population after 1000 generations of evolution, and for
the last pair of tests we used the nets of the population after 2000 generations
were performed.

Recombination efficiency was measured by the number of retraining
epochs needed to achieve perfect performance of an offspring. An adequate
recombination method was one that efficiently transferred vital infrastruc-
tures from parent to offspring nets, giving high initial performance to the
offspring and reducing the amount of retraining. Note that during recombi-
nation tests offspring were not subjected to pruning and did not participate
in the evolution of the population.

For each histogram in Figures 1(a) and 1(b), 900 recombinations were
made, each time selecting a pair of nets from the population (with uniform
probability) and retraining the newly created offspring. The results are dis-
played as a histogram of the required number of retraining epochs needed
to achieve perfect training, where retraining was limited to 100 epochs. The
peaks shown in the histograms at 100 epochs represent the amount of untrain-
able offspring created by the corresponding recombination method, while the
peaks at zero epochs represent offspring created with perfect initial perfor-
mance. The experiments were performed three times: for non-evolved, for
1000 generation-old, and for 2000 generation-old populations, exploring the
effect of population aging upon the performance of the corresponding recom-
bination method. The results of recombination without functional reorga-
nization are displayed in Figure 1(a), while the results for the functionally
matched recombination method are displayed in Figure 1(b). For the initial
non-evolved population, the two experiments presented in Figure 1(a) and
Figure 1(b) show a minor advantage for the functionally matched recombi-
nation method: the number of untrainable nets is 137 (out of 900), while 153
of the nets were untrainable for the recombination without functional reor-
ganization. The convergence properties of the functionally matched recom-
bination method are clearly better for the 1000 and the 2000 generation-old
populations.

As populations grow older, superior infrastructures gradually dominate
the “chromosomes.” Recombination without functional reorganization fails
to preserve and transfer these superior structures to the created offspring, as
is evident by the fact that the histograms have similar shapes (Figure 1(a)).
We find that vital infrastructures are destroyed during recombination, re-
training success is reduced, and the number of untrainable offspring is in-
creased. The functionally matched recombination method, on the other hand,
preserves those infrastructures as the population evolves. The number of nets
that require less retraining to achieve the desired performance is increased,
as is the number of nets with perfect initial performance (represented by the
peaks at zero epochs in Figure 1(b)).
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Retraining epochs histogram for non-evolved population.
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Figure 1: Recombination performance benchmark. Recombination
performance was tested for the initial, 1000 generation-old, and 2000
generation-old populations of ten nets, perfectly trained by the Parity-
6 data set. Each of the three tests included 900 independent recombi-
nations and retrainings. The histograms show the distribution of the
number of retraining epochs required to restore perfect performance
of the generated offspring. The peak at 100 epochs represents those
nets that could not be retrained, while the peak at zero epochs (if any)
represents nets that were produced with perfect initial performance.
(a) Performance benchmark for recombination without functional re-
organization.

6.2 Generalization enhancement

Generalization capability is the most important property of neural networks,
and efforts are being made to improve it. Learning from a set of examples
(called the training vectors), nets are capable of responding correctly to new
inputs that were not presented previously during training. However, not all
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Retraining epochs histogram for non-evolved population.
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Figure 1: Recombination performance benchmark (continued).
(b) Performance benchmark for functionally matched recombination.

trained nets have good generalization capabilities and additional steps—such
as pruning, weight decay, and so forth [19]—must be taken to improve gener-
alization. Generalization capability is a function of the capacity of the trained
net configuration and the complexity of the task itself [22, 23]. Training a
powerful net to perform a simple task results in perfect training but poor
generalization, while training an over-simplified net to perform a complicated
task may result in an incomplete training. Many generalization failures are
due to overfitting or “tuning to the noise,” a situation where nets learn the
noise as well as the data. Pruning and other generalization enhancement
techniques help alleviate these problems by reducing net capacity, usually by
minimizing the number of free parameters in the net.

This experiment demonstrates the generalization capabilities of the pro-
posed algorithm and compares its performance with that of a computation-
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ally equivalent non-genetic training algorithm. Genetic evolution was carried
out by the algorithm described in section 5, while non-genetic training was
done using randomly created nets instead of genetically created offspring.
We refer to the second method as selective back propagation. The randomly
created nets had an initial structure of 16:14:1 (fully forward connected),
were trained, pruned, and retrained, and had to compete for a place in the
population. In both cases, the initial population included the same 20 nets
that were pruned and retrained by the selected training data set, and the
same training and pruning parameters were used.

The task selected for the demonstration consisted of training a net to
perform a Symmetry test for binary strings, returning +1 if half the string
is a mirror reflection of the other half, and —1 otherwise. The input strings
were 16 bits long, spanning an input space of 2'¢ vectors. From this set, three
disjoint subsets were created at random, each containing 200 vectors. The
first was used as a training set, the second for resolving the fitness of newly
created and retrained offspring, while the last set was used as a measure of
the generalization ability of the nets. Note that the last set was used only
for performance testing, and did not influence the training.

The results shown in Figure 2 give the average fitness and generalization
scores for all the nets in the two populations, the first having evolved by
genetic evolution and the other by selective back propagation. The average
fitness and generalization scores are displayed as a function of the gener-
ation/iteration count. The average training scores of both populations are
approximately 100% at all times and therefore not displayed. The superiority
of genetic evolution is demonstrated by the improvement of both fitness and
generalization scores throughout generations, while only minor improvement
is found for selective back propagation. After 1000 generations, genetic evo-
lution achieved a population training score average of 99.5%, a fitness score
average of 91.5%, and a generalization score average of 90%. The best net
achieved training, fitness, and generalization scores of 100%.

After 1000 iterations the selective back propagation algorithm achieved
a training score average of 99.5%, a fitness score average of 83.5%, and a
generalization score average of 83%, while the best net achieved a training
score of 98.5%, and fitness and generalization scores of 96.5%. The increase in
both fitness and generalization scores and the results obtained by comparison
with the selective back propagation method demonstrates the superiority of
genetic evolution and the success of its implementation for evolving neural
net populations.

6.3 Activation function adaptation

We now demonstrate the versatility of the proposed hybrid algorithm by
showcasing its ability to automatically choose an appropriate neuron acti-
vation function. Populations of heterogeneous nets were evolved, each com-
posed of a mixture of neurons where the activation function was randomly
selected from four different types of functions:
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Figure 2: Generalization benchmark. The average fitness and gen-
eralization scores of all 20 nets in the population are displayed as
a function of the generation count for both a genetically evolving
population of nets and a population evolving by selective back prop-
agation. Nets were trained by the Symmetry-16 data set, where 200
vectors were used for training, 200 for resolving fitness of results, and
200 for testing the generalization capability of the nets. The average
training scores of both populations was approximately 99.5% at all
times and therefore not displayed. The superiority of genetic evolu-
tion is demonstrated by the marked improvement of both fitness and
generalization scores throughout the generations, while only minor
improvement is evident for the selective back propagation method.

f(z) = tanh(¢z), most commonly used for neural net training.

f(z) = exp(—tz?), commonly used for classification tasks.

f(z) = zexp(—tz?), provides higher versatility than the exp(—tz?)
function.

f(z) = sin(¢x), which separates any given set of points on the real axis
using a single parameter.

The two tasks selected for the demonstration were exhaustive training
by both the Parity-6 and Symmetry-6 data sets. A population of 24 nets
was randomly initialized and an activation function was chosen at random,
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Figure 3: Evolution of activation function distribution. The distri-
bution of neuron types in the population is displayed as a function
of the generation count for the two exhaustive training experiments
done by (a) Parity-6 and (b) Symmetry-6 data sets. In the Parity
training exercise, neurons operating with the sin(tz) activation func-
tion dominated the population, comprising 65% of the hidden and
output neurons in the entire population after 1000 generations. In
the Symmetry training example, the population was dominated by
neurons operating with the tanh(tz) and exp(—tz?) activation func-
tions, composing (after 1000 generations) 39% and 41% of the hidden
and output neurons, respectively.

thereby forming nets composed of a mixture of neuron types. The selection
process was evenly distributed among all participating neuron types, result-
ing in a uniform distribution of types in the initial population. Each net in
the initial population was trained by back propagation and training was lim-
ited to 100 epochs. The choice of activation function is displayed in Figure 3,
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Figure 4: Average number of hidden neurons in the population. The
average number of hidden neurons is displayed as a function of the
generation count for the two exhaustive training experiments done by
(a) Parity-6 and (b) Symmetry-6 data sets. In the Parity training
example, the average was 0.67 hidden neurons after 1000 generations,
indicating the existence of many perceptrons in the population. In the
Symmetry training example, the average number of hidden neurons
was 1.75 after 1000 generations.

the average number of hidden neurons in Figure 4, and the average train-
ing scores are shown in Figure 5. All distribution curves (Figure 3) start at
25% because of the uniform distribution of activation functions in the initial
population. As the population of nets evolved, the distribution of neuron
types, the average number of hidden neurons, and the average scores were
observed for each generation. Since the hybrid system is capable of adding
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Population average training score
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Figure 5: Average training score. In each of the two experiments,
average training score increased as the population evolved. In both
cases, the best net performance was 100%, and the average scores
were 95.3% for the Parity-6 training and 93.8% for the Symmetry-6
training after 1000 generations.

and removing neurons, the distribution of activation function types changed
over time, automatically adapting toward optimal net structure and neuron
composition.

For the Parity training example (Figure 3(a)), neurons operating with the
sin(tz) activation function gradually dominated the population, comprising
65% of the hidden and output neurons after 1000 generations. The average
size of the nets decreased (Figure 4(a)): after 1000 generations the average
was 0.67 hidden neurons, indicating the existence of many “perceptrons” in
the population.' The average training score increased over time (Figure 5(a)),

1A single node with a sinusoidal activation function represents a line that can separate
any set of points in any given way using a single parameter; such a node possesses poor
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Average number of hidden neurons
(All hidden and output neurons operate with the tanh(zx) activation function)
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Figure 6: Reference training. Average number of hidden neurons
is shown as a function of the generation count for two exhaustive
training experiments done by Parity-6 and Symmetry-6 data sets. All
nets in the population contained hidden and output neurons operating
with the tanh(¢z) activation function. The average number of hidden
neurons after 1000 generations was 5.2 for the Parity training set and
3.6 for Symmetry.

reaching 95.3% after 1000 generations.

For the Symmetry training example (Figure 3(b)), the population was
dominated by neurons operating with the tanh(tz) and exp(—tz?®) activa-
tion functions, consisting of (after 1000 generations) 39% and 41% of the
hidden and output neurons, respectively. The average size of the nets again
decreased (Figure 4(b)): after 1000 generations the average was 1.75 hidden
neurons. The average training score increased with each generation (Fig-
ure 5(b)); reaching 93.8% after 1000 generations. In both experiments, the
best net performance was 100%.

The size of the nets for both the Parity and Symmetry training experi-
ments was significantly smaller than the sizes required for nets where all hid-
den and output neurons operate with the tanh(¢z) activation function. The
results displayed in Figure 6 show the average number of hidden neurons for
all nets in a population utilizing the tanh(¢z) activation function, exhaus-
tively trained by the Parity-6 and Symmetry-6 data sets. The experiment
was performed using the same parameters as in the previous experiments.
The average number of hidden neurons after 1000 generations was 5.2 for the
Parity training set and 3.6 for Symmetry.

The results of these experiments demonstrate the capability of the pro-
posed algorithm to minimize net structure, choosing the most suitable ar-
chitecture and activation function for a given task. The versatility of the

generalization capabilities. When training is done for generalization purposes, as it is
in most cases, one should exclude sinusoidal decision functions to improve generalization
capabilities.
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Figure 7: Handwritten digits. This set of 1200 digits was written
by twelve people, ten times each. Due to computational limitations,
data resolution was reduced from the original sampling resolution of
16 x 16 pixels to 8 x 8 pixels for each digit.

proposed algorithm is therefore increased beyond a simple construction and
training algorithm, consisting of a method for adjusting internal neuron pa-
rameters (decision functions) throughout the process of training.

6.4 Handwritten digits recognition

The task of identifying handwritten digits provides a practical example of the
proposed training system and highlights its ability to automatically adapt to
diverse tasks. The data base includes 1200 digits written by twelve different
people, ten times each (the data base was prepared by I. Guyon). Due
to computational limitations, data resolution was reduced from the original
sampling resolution of 16 x 16 pixels to a resolution of 8 x 8 pixels for each
digit. The data set is displayed in Figure 7.

Training was divided into ten different runs, each dedicated to producing
a single net capable of identifying a particular digit and rejecting all others.
The original data set was split at random into two disjoint sets of 600 digits
each. The first set was used for training and fitness evaluation and the
second set was used to evaluate the quality of the final results by measuring
the generalization ability of the fabricated nets. All trainings used the same
parameters. The initial net structure was 64:6:1 (fully forward connected)
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Digits identification results
Structure Results
Number of hidden Number of Train Test Errors

Digit neurons interconnections || Success | Success
0 0 8 100.0% | 99.2% 5
1 7 100.0% | 98.0% 12
2 1 24 100.0% | 98.3% 10
3 2 24 100.0% | 97.7% 14
4 0 15 100.0% | 97.8% 13
5 1 19 100.0% | 97.7% 14
6 1 19 100.0% | 97.8% 13
7 1 15 100.0% | 99.7% 2
8 1 32 100.0% | 96.7% 20
9 3 150 100.0% | 96.3% 22

Table 1: Result of digit-identification experiment. The structures and
performance are presented for each of the 10 nets. All nets performed
with a 100% success rate on the 600 training digits, and had extremely
high test scores on the remaining 600 test digits. The resulting nets are
very small; in particular, the nets for digits 0, 1, and 4 are perceptrons
(with no hidden neurons).

where hidden and output neurons operated with a tanh(z) decision function.
Back propagation initial training, retraining after genetic recombination, and
retraining after pruning were limited to 100 epochs. The population size for
each training was 10 nets. The initial population was created by choosing
the best results from 50 random trainings, which we then let evolve for 200
generations.

The results are summarized in Table 1, which describes the dimension,
final training score (identical with the fitness score), and the test performance
for the entire digit set of each of the ten nets. All nets performed with a
100% success rate on the 600 training vectors and had extremely high testing
scores for the remaining 600 vectors. The resulting nets were very small. In
particular, the nets trained to recognize digits 0, 1, and 4 are perceptrons
(with no hidden neurons).

The results in Table 1 show the performance of each net trained to ac-
cept a single digit and reject all others. One identifies the actual digit by
feeding the same data to each of the ten nets and selecting the net giving
the highest output value. For the entire set of 1200 digits, the number of
correct identifications was 1160, which is 96.7% of the entire data set. Gen-
eralization performance was calculated for the 600 digits that were not used
for training, giving a success rate of 93.3%. One should note that no param-
eter optimization was carried out and no special net structure was created
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prior to training. Thus, all structural refinements were automatically done
by genetic training and evolution rules.

7. Conclusion

In this paper, we propose a new hybrid genetic back propagation training al-
gorithm based on a unique functional matching recombination method. The
method is used to evolve heterogeneous populations of neural networks and
provides versatility in network architecture and activation functions. The
performance of the proposed algorithm was tested on a wide variety of experi-
ments, showing its ability to overcome the problems originating from location
permutations of hidden neurons and to efficiently handle heterogeneous pop-
ulations of nets having diverse structure and functional composition. Vital
infrastructures are preserved throughout recombination and transferred to
the next generation, thereby improving the quality and initial performance
of the generated offspring.

We performed four experiments that demonstrate the utility of the pro-
posed hybrid. The first experiment demonstrates the importance of func-
tional reorganization of nets during genetic recombination, showing that vital
infrastructures are transferred from parent to offspring nets only when func-
tional reorganization is carried out. Functional reorganization was therefore
found to have a critical influence on the success of genetic implementation
and the ability to preserve and improve “genetic characteristics” throughout
the evolutionary process.

In the second experiment, the generalization properties of the proposed
hybrid algorithm were tested using the Parity-16 data set, and the results
were compared to a computationally equivalent non-genetic training example,
showing indisputably the advantage of genetic evolution by producing more
efficient nets with higher generalization capabilities. The third experiment
demonstrated the ability of the hybrid to handle a population of nets with
heterogeneous functional composition, dynamically adapting both the struc-
ture and composition of the population. In the last experiment, we trained
nets to identify handwritten digits where all structural refinements were au-
tomatically done by genetic training and evolution rules. These experiments
demonstrate the efficiency and success of the implementation, highlighting
the enormous contribution of genetic search to the success and adaptability
of neural network training.
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