
Complex Systems 7 (1993) 445-467

U sing the Functional Behavior of Neurons for
Genetic Recombination in Neural Nets Training

N achum Shamir*
David Saad!

Emanuel Maro m
Fac ulty of Engineering, Tel Aviv University,

Ram at Aviv 69978, Israel

Abstrac t . We propose a new hyb rid genetic back propagation train­
ing algorithm based on a unique functional matching recombination
method. T he method is used to evolve pop ulations of neur al networks
and provides versatility in network architecture and activation func­
tions. Net reorganization and reconstruction is carried out prior to
genet ic recomb ina tion usin g a funct ional behavior correlation measure
to compare the functional role of the var ious neurons. Compar ison is
don e by correlating the intern al representations generated for a given
training set. Net st ruc ture is dynamically changed during the evolu­
tionary process, expanded by reorganization and reconstruct ion and
trimmed by pruning unnecessary neur ons. The ab ility to change net
structure throughout generations allows t he net population to fit itself
to the requirements of dynamic adaptation , performance, and size con­
siderations in the selection process , t hus generating smaller and mor e
efficient nets t hat are likely to have higher generalization cap ab iliti es.
A func t ional behavior corr elation meas ure is used exte nsively to ex­
plore and compare nets and neurons, and its ability is demonst rat ed
by investi gat ing the results of genetic recombination. The vit ality of
nets organized via the functional behavior correlat ion measure pr ior
to genet ic recombinati on is demonstrated by statist ical results of com­

puter simulat ions. The performance of t he proposed method and its
generalization capabilit ies are demonstrated using Parity, Symmetry
and handwrit ten digit recognit ion training tasks.

"Current address: Department of Electrical Engineering, Technion-I srael Institute of
Technology, Technion City, Haifa 32000, Israel.

tCurrent address: Department of Physics, University of Edinburgh, J. C. Maxwell
Building, Mayfield Road, Edinburgh EH9 3JZ, UK.

446 Nachum Shamir, David Saad, and Em anuel Marom

1. Introduction

Const ruct ive and dest ruct ive tra ining algorithms for neural nets have signif­
icant importance because of their ability to construct minimal nets that are
economical in te rms of hardware and software and powerful in ter ms of gen­
era lization capabilit ies. This work presents a novel approach for combining
genetic evolut ion, back propagat ion t ra ining, and various pruning methods
to provide a powerful t ra ining algorithm capable of dynamically modifying
net struct ure , functional composit ion, and weights , while adapting toward
minimal net st ructure .

The basic concepts of construction algorithms are demonstr ated by the
Tiling [7] and Upstart [8J algorithms that create a feedforward network of
binary neurons and a single output neuron. The more advanced Cascade
Corre lation [9, 10] algorithm uses continuous neurons with no limitat ion on
the numb er of output neurons. In these algorithms, a combined tra ining
algorithm and construction operator provide the capability of building the net
gradually. Neurons and layers are added to the net as needed and convergence
is guarant eed regardless of t he initi al net st ructure .

Such "forward progressing" algorithms suffer from significant drawbacks
in their ability to produce minim al nets. It has been suggested [1, 4, 5, 6] that
the most efficient and promising way to pro duce a minimal net is to t ra in a
sufficient ly large net that is pruned both during and after training. A "for­
ward progressing" algorithm is likely to produce nets that have more neurons
and layers than act ua lly needed; bu t due to the nature of t he construction
operator , it is difficult to remove redundant uni ts.

Extensive use of genet ic algorithms for neur al net tr aining and const ruc­
tion has been shown to improve exist ing t ra ining techniques and overcome
certain limit at ions such as local minima traps, network paralysis, and others .
Genetic algorit hms are based on various aspec ts of natural select ion and ge­
netics. Taking an opt imization problem and encoding its solut ion proposals
into a populat ion of artificial "chromosomes," one makes use of select ion and
reproduct ion operators similar to natural ones, and evolves a populat ion of
solut ion proposals. Using effective natural select ion criteria and efficient re­
produ ct ion methods, the popul at ion is enhanced with each generation. T he
result is a powerful stochas t ic optimization t echnique.

T he applicat ion of genet ic algorithms for neur al net t raining is done in a
variety of ways. In common applications, demonstrated successfully by the
GEN ITOR and GENITORII algorithms [12, 13, 14], network weights are
encoded into art ificial "chromosomes" represented by bin ary strings. Con­
vent ional tr aining techniques (rest ricted to a predefined network st ructure)
are then applied. A more globa l approach that encodes net connectiv ity was
demonst rat ed by Whi tley et al.[14], in which an evolut ionary pro cess was
used to create the interconnections map , and conventional training methods
were used to train the proposed nets. These training algorithms are confined
to a predefined network architecture where the number of layers and neurons
do not change during training.

Using the Functional Behavior of Neurons for Genetic R ecombin ation 447

An example of a genetic algorit hm th at searches for an appropriate net­
work architecture was presente d by Kitano [15]. Recognizing t he "scalability"
probl em of methods based on direct encoding of the interconnections map ,
Kit ano proposed the encoding of a graph generation gra mmar that encodes
the network const ruc t ion rules into th e artificial chromosomes. The encoded
gramm ar was significant ly shorter tha n direct encoding methods, and pro­
vided the means for dealin g with dyn amically changing configurati ons. It
is important to note that every offspring net crea ted by this algorit hm was
trained from a random initial state . Besides connect ivity pat terns, no weight
values were tr ansferr ed to the offspring net s and an expensive (in terms of
computational complexity) back propagation t raining was used. In a pro­
cedure similar to the introduction of priors a par ticular configuration was
chosen from a cert ain class of possible solutions. The exac t solut ion, that is,
the explicit weight matrix, is defined by a complementary t raining process
(such as gradient descent) tha t refines the solut ion within th e given class of
solut ions.

We propose a new functional mat ching recombinati on method for use
with genetic back propagation hybrids, where matching is done by comparing
the functional role of neuron pairs correlated by their corres ponding inter­
nal repr esentations. The represent ation of neuron functionalit y by a vector
of intern al representations for the ent ire training set is called the junctional
behavior o] neurons [1, 2] and is also used for observing the results of genet ic
recombination. The proposed recombination method t akes int o account the
fact that neurons performing equivalent tas ks may be located at different
positions in the hidd en layers and therefore encoded at different locati ons in
the genetic "chromosomes" (this is often called the problem oj hidden neu­
ron location permutat ion [20, 21]). By rearranging and reconstructing the
parent nets prior to geneti c recombinati on , the recombination efficiency is
significantly enhanced and vital intern al st ruct ures are preserved. In addi­
tion , since parent nets are reconstructed prior to genet ic recombination, the
population may include a variety of network st ruc tures.

The main cont ribut ion of the proposed method is it s ability t o handle
het erogeneous populations of nets having different sizes and st ructures . It s
ability to t ra nsfer network infrastructures and their corresponding weight
values from parents to the offspring nets is also recognized. This enables a
smoot her evolution of the population between different classes of solut ions
(mainly configurat ions and act ivation functions) , thereby creating offspring
nets with enhanced initial performance that require fewer retraining cycles.
By adding a pruning phase, the hybrid algorithm adapt ively cha nges the
st ruct ure of the nets in the population. These changes are cont rolled by a
balance between expa nsion and pruning pro cesses.

2. Genetic algorithms

Genetic algorit hms are st ochas t ic optimization methods that imitat e natural
pro cesses by applying "evolut ion" to a population of solut ions proposed for

448 Nachum Shamir, David Saad, and Emanuel Marom

a given optimi zati on t ask. Each proposal in th e population is given a fitness
value representing its performance when applied to a specific task. During
evolut ion, pairs of individu al solut ions are chosen from the population (at
random), and together they produce an offspring representing a new solut ion
proposal. The offspring is given a fitness value with which it competes for
a place in the population. Similar to biological natural select ion, less fit
individu als generally do not survive and are removed from the population.
The fitn ess of t he ent ire populati on is enhanced with each generation until the
most fit individuals reach the global optimum. Several variat ions of genetic
opera to rs have been suggested and to clar ify the typ es of operators used in
t his work, we provide the following brief review.

Each individu al "chromosome" is represent ed by a st ring of encoded fea­
tures and parameters. Then the reproduction stage mentioned above is car­
ried out in the following mann er.

• Two parents are chosen at random from the population , using a non­
uniform prob abili ty dist ribu tion. Higher prob ability is given to more fit
individu als, thus adding selective pressure [11, 13] to the evolut ionary
process.

• A new offspring is crea ted by combining attributes (selected at ran dom
with equal probability) from each of the two parents.

• Mut ations are applied to the offspring by making small random changes
to the encoded features.

• According to the principle of natural select ion, the new offspring must
compete for a place in the population. A fitness value is given to t he
new offspr ing , which is then compared to the least fit individual in t he
population, result ing in th e surv ival of the more fit individual and the
eliminat ion of the ot her .

The parameters of thi s art ificial evolut ionary pro cess must be selected
carefully. The nonuniform distribution underlying t he select ion of parents
must be carefully chosen to avoid exaggerated preference of highly fit indi­
vidu als which may cause a premature popul ati on convergence and loss of
diversity. On the other hand, if more fit individu als are not gra nted a statis­
tical preference, the convergence rat e is slowed and pro cessing t ime is wasted.
The rate of mutation must also be carefully considered. High mutation rates
may slow the evolutionary pro cess by creat ing a mass of low-fit ness individ­
uals that can dest roy the evolution pro cess by transforming it into a random
search. An ext remely low mutation rat e, on the other hand , may result in
the loss of population diversity and prevent convergence in the vicinity of th e
global optimum.

When genet ic algorithms are used for evolving populations of neural net­
works, ma jor encoding difficulties are encountered. Neurons that perform
equivalent t asks wit hin different networks are located at different positions in

Using the Functional Behavior of Neuron s for Genetic Re combination 449

th e hidd en layers and therefore encoded at different locations in the "chromo­
somes" of a selected pair of parent nets. Recombining the two parent "chro­
mosomes," which are arbit ra rily ordered, may produce meaningless random
results as well as untrainable offspring nets. This obstacle is often called the
problem of hidden neuron location permutation and is known to have a disas­
trous effect on genet ic algorithm training proc esses [20, 21]. The dam age is
usually caused by the destruction of vital infrastructures of both parent nets
during recombination, since weight values belonging to different infrastruc­
tures are mixed. To minimize t he damage during recombin ation, one must
evaluate the infra structure functional similarity in both parent nets and en­
code the connectivity pa tterns and weight values of similar infrastructures at
similar locations in the parent "chromosomes." Since neuron act ivation func­
tions are nonlin ear , it is impossible to evaluate the similarity of neurons and
network infrastructures by comparing network connectivi ty or weight val­
ues. In th e next section, we present a measur e for evaluat ing infrastructure
functional similarit ies.

3. Functional behavior of neurons

The "funct iona l behavior" of a neuron describes how that neuron and its
corresponding subnet respond when variou s inpu t vectors are presented to
the net. The net is fully forward connected and has no feedback connections;
weight values are real and neuron act ivat ion functions are cont inuous. Each
subnet is a part of the net start ing at an inpu t layer and ending at a single
hidden or output neuron th at is th e output neuron of th at subnet . The sub­
net contains all relevant neurons in previous layers and all interconnections
leading to those neurons. Every subnet repr esent s a real function f: ~n ---+ ~

on the set of input vectors where n is the number of input neurons. (Not e
that a binary representation is a special case of the general continuous rep­
resent ation.) This function is the subnet response function. The output of
the sub net ending at neuron i is represented by

(1)

where VI , . . . , Vn are th e components of the input vector and Si is the output
value of neuron i. The neuron 's functional behavior is defined as the response
of the corresponding subnet to the set of input vectors

(2)

where p is the numb er of input vectors in the dat a set and sj represents the
output value of neuron i when input vector j is present ed to th e net .

To compare different neurons and functional behaviors, the latter is nor­
malized with respect to its overall norm E i = L~=I (Sj)2 , that is,

_ (Si Si). I p

B ' = -lEi'" '' -lEi . (3)

450 Nachum Shamir, David Seed, and Emanuel Marom

This norm alized representation simplifies both graph ic and numerical func­
t ional comparisons. The degree of matching between a pair of neurons i 1

and i 2 is given by the correlation of their corresponding normalized func­
t ional behaviors:

(4)

Thi s normalized matching factor lies in the interval [- 1,1]. Its magnitude
represents the funct ional similarity of the corresponding subnets, where the
negative sign indicates an opposite response. For linearly dependent func­
tional behavior vectors, the matching fact or is eit her 1 or -1:

where 0: denotes the linear dependence.

4. G enetic r ecombination opera tor

This secti on proposes a new genet ic recombination operator based on the
functional behavior correlation measure. The main obj ecti ves of the prop osed
operator are to increase neur al net recombination efficiency by rearranging
the intern al st ruct ure of parent nets, providing the capability to recombine
parent nets of different sizes and thus making the handling of heterogeneous
net popul ations possible. The two parent nets undergo internal rearrange­
ment and reconstruction, creating a pair of target nets that have identi cal
architecture and well-matched intern al order.

The mutual reordering process and reconstruction of the parent nets is
performed simultaneously on the two nets, layer by layer.

1. Input layer : The functional role of every inpu t neuron is uniquely
defined by its location in t he input layer, and all inpu t neurons are
copied to the same locat ions in the target nets.

2. Hidden layer: There is no dependency between t he functional role of
hidden neurons and th eir locat ions in the hidden layers. Therefore one
must identi fy related neurons in both nets and place them in the same
locat ion in the hidden layers of the corresponding target nets. Neurons
are copied to target nets togeth er wit h their entire set of int ernal pa­
ramete rs, input connect ions, and weight values.
Hidden layer process ing is done in th e following mann er:

• All neurons from th e current ly pro cessed hidden layer of the first
net are copied to the corresponding target net .

• For each neuron in the first net , the neuron wit h t he highest func­
t ional similarity is identified in th e second net and copied to the

Using the Functional Behavior of Neurons for Genetic Recombination 451

equivalent location in th e second target net , parallel to th e orig­
inal neuron in th e first net . The functional similarity of neurons
is evaluated by equation (4), th e functional behavior correlation
measure.

• If the matching factor (4) is negat ive, invert the activation func­
tion and th e outgoing connections of th e second neuron. When
the act ivat ion function is ant isymmetric, one simply inverts the
incoming connections instead of the act ivat ion function.

• When all neurons from the first net have been pro cessed , repeat
the process for t he second net by identifying and copying neurons
with th e highest funct ional similarity from the first net .

• During th e reord ering pro cess and reconstruction, neurons are du­
plicat ed and may therefore appear more than once in the hidden
layers of th e target nets. The functional performance of the target
net s is restored by comp ensating the outgoing connect ions of th e
duplicat ed neurons. The compensat ion is carried out by dividing
th e amplitudes of th e corresponding output connections by the
numb er of duplications.

The number of neurons in the hidden layer crea ted in the target nets
is t he sum of hidden layer sizes of th e two original nets.

3. Out put layer: The functional role of each output neuron is uniquely
defined by its location in the output layer. All output neurons are
copied tog ether wit h their ent ire set of int ern al parameters, input con­
nections, and weight values, to the same locations in th e t arget nets.

After t he two parent nets are reordered and reconstructed , and the target
nets have been crea ted, an offspring net is creat ed. Each building block of
the recombinat ion pro cess consist s of a neuron, its internal par ameters (for
example, an act ivat ion function) , a set of input connec tions , and the corre­
sponding weight values. It th erefore represents a specific function performed
by that neuron (on the spa ce of net inputs as well as outp ut of neurons in
previous layers). The function is kept int act throughout recombination and
transferr ed to th e offspring net. The offspring net is created by parsing the
two reconstructed nets simultaneously, select ing at random which of them
will supply the next building block , which is then copied to the same lo­
cation in the offspring net . Mutat ions are applied by adding random noise
to the offspring weights. The offspring net is retrained and submitted to
pruning [1, 4, 5, 6] and ret raining cycles.

5. The hybrid training system

We will now describ e an ent ire training algorit hm utilizing genetic algorit hms,
back propagation , pruning, and the recombination operator defined in sec­
tion 4. Training is divided int o two st ages:

452 Nachum Shamir, David Saad, and Em anuel Marom

1. initial population generat ion; and

2. genet ic population evolut ion.

Initial population generation is done by training, pruning, and ret raining
nets seeded wit h rand om initial weights. The meth od used for training is
back prop agation with moment um (ex = 0.4) and weight decay (E: = 0.005).
Back propagat ion t raining continues unt il all out put polarit ies are correct
or the epoch limit of 100 epochs is reached, whichever comes first . Network
pruning is done using three different methods:

1. neuron merging using functional behavior corre lation to find and merge
matchable pairs of neurons [1];

2. neuron pr uning by removing irrelevant neurons (see, for example, [5]);
and

3. interconnect ions pruning by measuring the interconnection relevance
and removing irrelevant interconnections (see, for example, [6]) .

Functional matching is evaluat ed by (4) for all pairs of neurons, and those
pairs having matching magnitudes great er th an or equa l to 0.75 are marked as
merging candidates. This parameter has been determined experimentally [1].

The relevan ce of each neuron k is evaluated by calcu latin g the influence
of its removal on net output

q P

Rk = L L (0 ; - 0 (k);)2
;= 1 j=l

(6)

(7)

where OJrepresents t he net outp ut bit i when input vecto r j is fed to the net .

The term O(k); is the net output generated for the same data when neuron
k is removed. T he constan t p is the number of vectors in the data set , and
q is the number of output neurons. In our simulat ions we used t he relevance
measure defined at equation (6), but it should be noted that the amount of
computat ion can be reduced by using approximations such as those describ ed
in [5, 6, 17J.

The relative relevance of neuron k is defined by:

Rk
Pk = 1 N

N 2:;=1R;

where N is the total numb er of neurons. The relat ive relevance of intercon­
nections is calculated similarly. In all experiments, we used a relat ive neuron
relevance pruning threshold of 0.3 and a relative int erconnect ions relevance
pruning threshold of 0.2. The three pruning methods are used together:
the merging and pruning candidat es are first marked, and then the nets are
pruned and retrained.

The fitness of each individu al net is determined by counting the numb er
of correct outputs generated for t he set of t ra ining or testin g vectors. When

Using the Functional Behavior of Neurons for Genetic Recombination 453

the fitness of two nets is equal, priority is given to the smaller net . The
numb er of initi ally tr ained nets must be larger than t he target population
size. This ensures populations of nets with enhanced initi al perform ance
exceeding that of random net selection.

Once the initi al population is created, th e evolut ionary pro cess may be­
gin. For each evolutionary step , two individu al nets are chosen at random
from th e population such that fitt er individu als have a greater chance of be­
ing selected (thi s is called selective pressure [11, 13]). The selected pair of
individuals recombines and crea tes a new offspring as describ ed in secti on 4.
The new offspr ing is trained , pruned, and retrained. Its fitness is calcul at ed
and compared to the most similar net in the population, which is replaced
if the offspring is found to be more fit. Such a method of select ion [2] shows
better perform ance and preserves th e diversity of an evolving pop ulat ion of
neural networks.

6. Experimental results

The performance of the proposed hybrid training system is illustrat ed by four
examples. In the first example, the influence of functional reorganization on
genet ic recombination efficiency is examined by comparing the recombin ation
performance with and without reorganization, using the Parity-6 dat a set .
In the second example, the genera lization enhancement prop erties of the
proposed syste m are demonstrat ed using the Symm etry-16 dat a set , whose
perform ance is comp ared to that of a computationally equivalent non-genet ic
training program. The third is a unique experiment involving heterogeneous
populations of nets, each implementin g a variety of decision functions. In
the last experiment, nets are t ra ined to identify handwritten digit s.

6.1 The influence of functional reorganization on genetic
recombination efficiency

This experiment was designed to isolate and investigat e the effects of hidd en
neuron funct ional reorganization on the efficiency of genetic recombin ation.
Two typ es of recombination methods were compared. In the first , hidd en
neuron s were not reorganized prior to recombin ation; in th e second, hidd en
neurons were reorganized as describ ed in section 4. All other recombin ation
and retraining parameters, including net growt h factors, were identi cal in the
two experiments.

The population included ten nets. All nets were fully forward connected
and had an initial st ructure of 6:6:6:1. The nets were exhaustively t rained
by the Pari ty-6 data set , subjected to pruning (by the three methods dis­
cussed in sect ion 5), and retrained. The initi al population evolved for 2000
genera t ions. Population evolut ion was performed according to the guide­
lines describ ed in sect ion 5, using all three pruning methods and functionally
matched recombin ation. It is import ant to not e that all nets in the pop­
ulatio n had perfect performance throughout t he generations, since all nets

454 Nachum Shamir, David Saad, and Emanuel Marom

in the init ial pop ulation had perfect performance and t hese were replaced
by offspring nets that had equivalent or better scores. Both recombin ati on
experiments were performed using the same populat ion of nets. For the first
pair of tes ts we used the nets of the initial population, for the second pair we
used the nets of the populat ion after 1000 genera t ions of evolut ion, and for
the last pair of tests we used the nets of the population after 2000 genera t ions
were performed.

Recombinat ion efficiency was measured by the number of retraining
epochs needed to achieve perfect performance of an offspring. An adequate
recombin ation meth od was one that efficiently t ransferred vital infrastruc­
tures from parent to offspring nets, giving high initial perform ance to the
offspring and reducing th e amount of retraining. Note that dur ing recombi­
nat ion tests offspring were not subjected to pruning and did not participate
in the evolut ion of the pop ulation.

For each histogram in Figures l (a) and l (b), 900 recombin at ions were
made, each tim e selecting a pair of nets from the pop ulati on (with uniform
prob abi lity) and ret raining th e newly created offspr ing. The results are dis­
played as a histogram of the requir ed number of ret raining epochs needed
to achieve perfect training , where retraining was limited to 100 epochs. The
peaks shown in the histograms at 100 epochs represent the amount of untrain­
able offspring created by the corresponding recombina tion meth od , while the
peaks at zero epochs represent offspring created with perfect init ial perfor­
man ce. The experiments were performed three t imes: for non-evolved, for
1000 generation-old, and for 2000 genera t ion-old populat ions, exploring the
effect of population aging upon th e performance of the correspo nding recom­
bination met hod. The results of recombination witho ut functional reorga­
nization are displayed in Figure l (a), while the results for the funct ionally
matched recombinat ion meth od are displayed in Figure l (b). For t he initi al
non-evolved pop ulat ion, the two experiments presented in Figure l (a) and
Figure l (b) show a minor advantage for the functio nally matched recombi­
nat ion method: the numb er of untrainable nets is 137 (out of 900), while 153
of t he nets were untrainable for th e recombin ation without functional reor­
ganizat ion. The convergence properties of the functionally matched recom­
bination method are clearly bet ter for the 1000 and the 2000 generation-old
populations.

As popu lat ions grow older , superior infrastructures gradually dominat e
th e "chromosomes." Recombin ation without functional reorganizat ion fails
to preserve and transfer th ese superior st ructures to the created offspring, as
is evident by th e fact that th e histograms have similar shapes (Figure 1(a)).
We find t hat vital infrastruct ures are destroyed during recombination , re­
training success is reduced, and the numb er of untrain able offspring is in­
creased. The functionally mat ched recombinat ion method, on th e ot her hand,
preserves th ose infrastructures as the population evolves. The numb er of nets
that require less retraining to achieve the desired performan ce is increased ,
as is the numb er of nets with perfect initial performan ce (represented by th e
peaks at zero epochs in Figure 1(b)) .

Using the Functional Behavior of Neurons for Geneti c Recombination 455

Retraining epochs histogram for non-evolved population .

5025 75 100
Retrainin g epochs

Retraining epochs histogram for 1000 generation-old population.

16

12
J!l
"c:: 80'+-<
0

'* 40

0
0

75 100
Retrain ing epochs

75 100
Retrainin g epochs

50

50

25

25

Retra ining epochs histogram for 2000 generation-old population.

'""c::
13'+-<

0

'* 65

0
0

28

'"
21

"c::
14'+-<

0

'* 70

0
0

Figure 1: Recombination performance benchmark. Recombination
performance was t este d for t he initial, 1000 generati on-old , and 2000
generation-old populations of ten nets, perfect ly t rained by the Parity­
6 dat a set. Each of the t hree tes ts included 900 independent recombi­
nations and retrainings. The histo grams show the dist ribution of the
number of ret raining epochs required to restore perfect performan ce
of the genera ted offspring. The peak at 100 epochs repre sent s those
nets that could not be retrained , while the peak at zero epochs (if any)
repr esent s nets that were produced wit h perfect initial performance.
(a) Performance benchmark for recombinat ion without functional re­
organization.

6.2 Generalization enhancement

Generalization cap abi lity is the most important prop erty of neur al networks,
and efforts are being made to improve it . Learning from a set of examples
(called the training vectors) , nets are capable of responding corre ct ly to new
inputs that were not present ed previously during training. However, not all

456 Nachum Shamir, David Seed, and Emanuel Marom

Retraining epochs histogram for non-evolved population.

5025 75 100
Retraining epochs

Retraining epochs histogram for 1000 generation-old population.

14

10
~
t:: 704-<
0

'**' 35

0
0

15
lJg
'0 10

'**'

75 100
Retraining epochs

5025

o -l.lli1illilltJlliIJ:l:I:H:nIT~=dbill!D..,""""",,,==.~......J:b-=>-_--.--_ _ ~_~-.l.\

o

Retraining epochs histogram for 2000 generation-old population.

75 100
Retraining epochs

5025

O ..j.LLWlli1lJ.t1J=-c>£l.<"",",,,,",,,,,"",,,,,~~_ _,... ~_..,-- ---.l.\

o

Figure 1: Re combination performance benchmark (continued).
(b) P erformance benchmark for functionally matched recombination.

trained nets have good gener alization capabilities and additional steps-such
as pruning, weight decay, and so forth [19]-must be taken to improve gener­
alizat ion. Generalization cap ability is a function of the capacity of the trained
net configuration and the complexity of the task itself [22, 23]. Training a
powerful net to perform a simpl e task results in perfect training but poor
generalization, while training an over-simplified net to perform a complicated
task may result in an incomplet e training. Many generalization failures are
due to overfitting or "t uning to the noise," a situation where nets learn th e
noise as well as the data. Pruning and other generalization enhancement
techniques help alleviate these problems by reducing net cap acity, usu ally by
minimizing the number of free parameters in t he net.

This experiment demonstrates the generalization capabilit ies of the pro­
posed algorithm and compares its performance with that of a computation-

Using the Functional Behavior of Neurons for Genetic Recombination 457

ally equivalent non-genetic training algorit hm. Genet ic evolut ion was carr ied
out by the algorithm describ ed in sect ion 5, while non-genetic tra ining was
done using randomly created nets instead of genet ically created offspring.
We refer to the second meth od as selective back propagat ion . The randomly
created nets had an initi al st ructure of 16:14:1 (fully forward connected) ,
were t ra ined, pruned, and ret rained, and had to comp ete for a place in the
populat ion. In both cases , the initi al population included the same 20 nets
that were pruned and retrained by the selected training dat a set , and th e
same train ing and pruning parameters were used.

The task selected for th e demonstration consist ed of t ra ining a net to
perform a Symmetry test for binary st rings, returning +1 if half th e st ring
is a mirror reflection of the other half, and -1 otherwise. The input st rings
were 16 bits long, spanning an input space of 216 vectors. From this set, three
disjoint subsets were creat ed at random, each containing 200 vectors. The
first was used as a t raining set, the second for resolving the fitness of newly
created and ret ra ined offspr ing , while t he last set was used as a measure of
the generalizat ion ability of the nets . Note that t he last set was used only
for performance testing, and did not influence the training.

The results shown in Figure 2 give t he average fitness and genera lizat ion
scores for all the net s in t he two populations, th e first having evolved by
genetic evolut ion and t he other by select ive back propagation. The average
fitness and generalizat ion scores are displayed as a function of the gener­
at ion/ iteration count . The average t ra ining scores of both popu lations are
approximately 100% at all t imes and therefore not displayed. The superiority
of genet ic evolution is demonstrated by the improvement of both fitn ess and
generalization scores throughout generations, while only minor improvement
is found for select ive back propagation . After 1000 generations, genet ic evo­
lution achieved a population t ra ining score average of 99.5%, a fitness score
average of 91.5%, and a genera lizat ion score average of 90%. The best net
achieved tra ining, fitn ess, and generalizat ion scores of 100%.

After 1000 iterations the select ive back propagation algorithm achieved
a training score average of 99.5%, a fitness score average of 83.5%, and a
genera lizat ion score average of 83%, while the best net achieved a t raining
score of 98.5%, and fitness and generalization scores of 96.5%. The increase in
both fitness and genera lization scores and the results obtained by comparison
with the selective back propagation method demonstrates the sup eriority of
genet ic evolut ion and the success of its implementation for evolving neural
net populat ions.

6.3 A ctivation function adaptat ion

We now demonstrate t he versatility of the proposed hybrid algorithm by
showcasing its ability to automatically choose an appropriate neuron acti­
vation function. Populations of heterogeneous nets were evolved, each com­
posed of a mixture of neurons where the activation function was randomly
selected from four different types of functions:

458 Nachum Shamir , David Saad, and Emanu el Marom

Genetic evolution
Selective back propagation

Population fitness score average:

95%

85%
~~-~--------,~----------,--.

90%

100%

750 1000

Generations/Iterations
500250

80%+-- - - - - - ---,- - - - - - -----,,--- - - - - - --,-- - - - - - --,
o

Populationgeneralizationscore average: Genetic evolution
Selectiveback propagation

85%

90%

95%

100%

750 1000
Generations/Iterations

500250
80%+-- - - ------,-------,----------,---------,

o

Figure 2: Generalization benchmark. Th e average fitn ess and gen­
era lizati on scores of all 20 nets in the population are displayed as
a function of the generat ion count for both a genet ically evolving
populati on of nets and a population evolving by selective back prop ­
agation. Nets were tr ained by the Symmetr y-16 dat a set, where 200
vectors were used for tr aining, 200 for resolving fitness of results, and
200 for testi ng th e generalization capability of the nets. Th e average
tr ainin g scores of both populations was approximate ly 99.5% at all
t imes and therefore not displayed. The superiority of genet ic evolu­
tion is demonstrat ed by the marked improvement of both fitness and
generalizat ion scores throughout th e generat ions , while only minor
impro vement is evident for th e selective back prop agation method.

• f(x) = t anh(t x) , most commonly used for neural net training.

• f(x) = exp(- tx 2
) , commonly used for classification t asks.

• f (x) = xexp(- tx 2
) , provides higher versatility t han t he exp(-tx2

)

function.

• f(x) = sin (tx) , whi ch separates any given set of point s on the real ax is
using a sing le par ameter.

The two tasks selecte d for the demonstration were exhaustive training
by both t he Parity -6 and Symmetry-6 data sets . A population of 24 nets
was randomly initialized and an act ivat ion function was chosen at random,

Using the Functional Behavior of Neurons for Genetic Recombination 459

Activation function distribution:

(Training by Parity-6 data set)

! (x) =tanh(tx)
! (x) = exp(-tx 2)

! (x) = sin(tx)
! (x) = x ' exp(- tx 2)

... ,.. . .
- - - - - - - - - - - - - - --

c: 100%
,:2
:; 75%
~
1:l
</)

50%is
25%

250 500 750 1000

Generations

(a)

75%

50%

1000

Generations

! (x) = tanh(tx)
!(x) = exp(- tx2)

! (x) = sin(tx)
!(x) = x ' exp(-tx 2)

750500250

(Training by Symmetry-6 data set)

Activation function distribution :

c: 100%
,:2
:;
.D
'5

</)

is

(b)

Figure 3: Evolution of activat ion funct ion distribution. The distr i­
bution of neuron types in the population is displayed as a function
of the generation count for the two exhaustive tr aining experiments
done by (a) Parity-6 and (b) Symmetry-6 data sets, In the Parity
tra ining exercise, neurons operating with t he sin(tx) activat ion func­
t ion dominated the populat ion, compr ising 65% of the hidden and
out put neurons in the ent ire populat ion after 1000 generations. In
the Symmetry training example, the population was dominated by
neurons operating wit h the tanh (tx) and exp(-tx2) activat ion func­
tions, composing (after 1000 generations) 39% and 41% of the hidden
and output neurons, respectively.

thereby forming net s composed of a mixture of neuron types, T he selection
process was evenly dist ributed among all participating neuron typ es, resul t­
ing in a uniform distribution of types in t he in iti al population, Each net in
the initial population was trained by back propagation and training was lim­
ited to 100 epochs. The choice of activa t ion function is displ ayed in F igur e 3,

460 Nachum Shamir, David Saad, and Emanuel Marom

Population average number of hidden neurons

(Training by Parity-6 data set)

10

7.5

5

2.5

1000

Generations

750500250
ot----=:==:=:==~=======;========,
o

(a)

Population average number of hidden neurons

(Training by Symmetry-6 data set)

10

7.5

5

2.5

1000

Generations

750500250
o +------~------__,_------.__-----__,

o

(b)

Figure 4: Average number of hidden neurons in t he populat ion. The
average number of hidden neurons is displayed as a function of the
generation count for t he two exhaust ive training experiments done by
(a) Parity-6 and (b) Symmetry-6 data sets . In t he Parity tra ining
example, t he average was 0.67 hidden neurons after 1000 generations,
indicating the existence of many perceptrons in the population. In t he
Symmet ry tra ining example, the average number of hidden neurons
was 1.75 after 1000 generations.

t he average nu mber of hidden neurons in F igur e 4, and t he average t rain­
ing scores are shown in Fi gure 5. All distribution curves (F igur e 3) start at
25% because of t he uniform distribution of ac t iva t ion functions in t he ini ti al
populat ion . As t he populat ion of nets evolved, t he distributio n of neuron
types, t he average number of hidden neur ons, and the average scores were
observed for each generation. Since t he hybrid system is capable of adding

Using the Functional Behavior of Neurons for Genetic Recombination 461

Population average training score

(Training by Parity-6 data set)

100%

75%

50%

25%

0%
0 250 500 750 1000

Generations

(a)

Population average trainingscore

(Training by Symmetry-6 data set)

100%

75%

50%

25%

0%
0 250 500 750 1000

Generations

(b)

Figure 5: Average training score. In each of th e two experiments ,
average t raining score increased as the population evolved. In both
cases, the best net performance was 100%, and the average scores
were 95.3% for the Pa rity-6 training and 93.8% for th e Symmetr y-6
training after 1000 generations.

and removing neurons, t he dist ributi on of activation fun ction ty pes changed
over time, au tomat ica lly adapting toward optimal net st ruc t ure and neuron
composit ion .

For the Parity training example (Figure 3(a)), neurons operating with the
sin(tx) act ivat ion func ti on gradua lly dominated the population, comprising
65% of the hidden and ou tput neurons after 1000 generati ons. The average
size of the net s decreased (Figure 4(a)) : after 1000 generations the average
was 0.67 hidden neurons, indicating t he existe nce of many "percept rons" in
the p opulat ion .1 The average t ra ining score increased over t ime (Fi gure 5(a)),

1A single node with a sinusoidal activation function representsa line that can separate
any set of points in any given way using a single parameter; such a node possesses poor

462 Nachum Shamir, David Saad, and Emanuel Marom

Average numberof hidden neurons
(All hidden and output neurons operate with the tanh(tx) activation function)
---- Parity data set

Symmetry data set
12

9

6

3

1000
Generations

750500250
0 +-- --- ------,--- ------,-- ----- ,-------- -,

o

Figure 6: Reference training. Average number of hidden neurons
is shown as a function of the generation count for two exhaust ive
training experiments done by Parity-6 and Symmetry-6 data sets. All
nets in the populat ion contained hidden and output neurons operat ing
with the tanh(tx) act ivat ion function. The average number of hidden
neurons after 1000generations was 5.2 for the Parity training set and
3.6 for Symmetry.

reaching 95.3% after 1000 generations.
For the Symmetry tr ain ing example (Figure 3(b)), the populat ion was

dominated by neuro ns operating with the tanh(tx) and exp(-tx2
) act iva­

t ion functions, consist ing of (after 1000 generat ions) 39% and 41% of the
hidden and output neurons, respectively. T he average size of the nets again
decrease d (Fig ure 4(b)): aft er 1000 generations t he average was 1.75 hidden
neurons. The average t ra ining score increased wit h each genera t ion (Fig­
ure 5(b)); reaching 93.8% after 1000 generations. In both expe riments , the
best net perform ance was 100%.

The size of the nets for both the Parity an d Symmet ry t ra ining experi­
ments was significant ly smaller than the sizes required for nets where all hid­
den and output neurons operate with the tanh(tx) activation function. T he
resul ts displayed in Figure 6 show th e average number of hidden neurons for
all nets in a population utilizing the t anh(tx) activat ion func tio n, exhaus­
t ively t ra ined by the Pari ty-6 and Symmetry-6 data sets . The experiment
was performed using the same para meters as in the previous experiments.
The average number of hidden neurons aft er 1000 generations was 5.2 for the
Parity training set and 3.6 for Symmetry.

The results of these experiments demonstrat e the capability of the pro­
posed algorithm to minimize net st ructure , choos ing t he most suitable ar­
chitect ure and act ivat ion funct ion for a given task. T he versat ility of t he

generalization capabilities. Wh en trai ning is done for gener alizati on purposes, as it is
in most cases, one should exclude sinusoidal decision functions to improve general izat ion
capabilit ies.

Using the Functional Behavior of Neurons for Genetic Recombin ation 463

m 2~'-l567f! "1 01 2.3<Cf.,&7S'l CH 2dlfS"67lJ? or 23'tSb7lt't
01 21l~'5r;;7<!i'9 DI '7..3<fS-'::;7Bo<f O/2.3"fr6?l! 1' orZ3<jost;,7~~

01 2~"'5l:.1""~ 01 '7.3"fS"b78'" (}/2iJ~r67li' 'P Of .z3'f"~78q
or 21>~"'b 7 8"" 01 2.3"i'5678'1' ()/ ;;'lYfjtf7e'i' 0IZ3'f-S'-78"i
at 2.3 " S EJ 7~'" 01 234S"679., CU ;;'.3(i..rtf ? ll' ~ 01 2-3'f-S"b7a-9
01 23.Lt",r; 7g Of Cll "-345'"67:B"l t')/;;;".3~r6.?lt~ OIZ..34-~"78'';lI
01 2"..4'::::iEJj'l!"t m 2.3q.S£.78'9' Q r:2~~J"'tf?ltl' 0 1 2.3,+r;"7~9
1)[2.3"1 SIS"1 El9 or .23q.~{;7B"t () / 2.d r.L S" 6?R' 'ii' 0 1 2.3'+'1>'-78'9
01 2345b-''il.~ 01 23"'~ '7;!'l"t {} /,2d~.r~7R" e>1 2..3'fS""-78"'f
OJ 2~/';'::::i~7El'l OL 2.3 'H· "'7~"'l "/L~ fftS ~'? 1i'? 01 Z-3r.t""7lr'l'

01 'l?4St;'l?q 01 23If-S&7fi:'l 01 2~ 'is l.Til'f (")1 2.3 '1 S"r:;795'
(~H 2.~CfS"6. ,Siq 01 Z34.567i?"7 01 'J."l'f5~7 fl'1 OI23'1~~7'i1 "
01 2..Yi~b ,5<'<;1 0'2~'l-S67~'7 01 z J vsc 7fl "l 0 1 23't'5"&;7B7
01 2.~'f"6Igq 01 2.3't-567Ii'~ m '23'f~€.7fl '1 012.3'1'S'{;7'8",/
or 2.~lI-~~j~'t 01 23'f.3&7117 ('JI as Ifrd . 7 t!., Q/23"1S"C7B'T
01 2~q.'b7B.<J OI2~'+Sf>7.!J':I Dl 2~'I!i("72'l O'Z3"1S"r:;78»
O! 2.~Q"~78't 012.3"-567117 CI 2:J'fS1.7117 ot 23-'Y~{;7~~
m 2.3q.-,(,,/~'j 01234.5(,,73'1 01 :23"',5"1:: »er en 2Y/J~7'jj't'
Of 2:!,,(fr:l:.7R'1 (J/ .2..3l.j.S " 7lJ 'l OI2;lyS"7tlY ot 23'15"&.7~?
01 2~4.s-6/li'q 01 Z3~567k"1 CI23'fSli.7N'l' 01 2.3'1" J ~7lJ'''

or 23<t5~7"lf" Ol2"!: '1Hi7 'BCI 01 .;;I,34!;"c,,7<;lQ QI2~(,l5"' '1:S9
(J(2"3'f S"-'''B'9 Of ;U'1~&.7 lf'! m 23'i5"'7~q OI.2..31J6(",i9Q
('.J (2:3'1~157if9 O/J.~ "i~67lJ 9 01 23'iS,"7'1!i'1 O'2..3o(15~"89
O/2"34,!j~7lf~ eli 23 '1rl;,] 1l9 01 ;l.3"l5C:;7~,) {J12 ..'J ""5"~7 29'
Of'22l J"t.7Pc;> f::j':l:i ~lt'~78" 01 ;;l. '3 '-lS ,- j 'il"t 0/234£5""18'11'
(j/Z~""'S"7T" 01 ~3"1!:" &.n/' 'i m ,~,:3'i5 '" 7'il."l 0 1 23(J.!>",.,8<f
a '7..3"f S 67 K"J 0 1 il.3'1 t'€.711'i 01 ;1. 3 '-\5 " 7 'il:'1 01 2 3«1S& 7,.. "I
QI 2. ~"'51G. 7k"i' O f 23 'f ~"7 1/" Ol ;1.. 3 'i S," 7';l;<J C / Z.34!J{,7 '8"1
Cd 2 ,!;'I<;' 678 ~ Of:J.3'1s'E: 7 lf 'l 0 1 :;)' 3'iS"7~q DI2 .34S-"'789
CJt :J.~ Y!i"7lf" 01 :/3'fr cr e» Ol :l3'-i5 (;'j"i!:q DI.l..3Q S "'7Sl''T

Figure 7: Handwritt en digits. This set of 1200 digits was written
by twelve people, ten times each. Due to computational limitat ions,
data resolution was reduced from the original sampling resolution of
16 x 16 pixels to 8 x 8 pixels for each digit.

proposed algorit hm is therefore increased beyond a simple const ruct ion and
train ing algorit hm, consisting of a method for adjusting intern al neuron pa­
rameters (decision functions) t hroughout the pro cess of t ra ining.

6 .4 Handwritten digit s recogni tion

The t ask of identifying handwritten digits provides a prac t ical example of the
proposed training syste m and highlights its ability to automatically adapt to
diverse tas ks. The dat a base includes 1200 digits writ ten by twelve different
people, ten times each (the dat a base was prepared by 1. Guyon) . Due
to computationa l limitations, dat a resolution was redu ced from the original
sampling resolution of 16 x 16 pixels to a resolution of 8 x 8 pixels for each
digit. The dat a set is displayed in Figure 7.

Training was divided into ten different runs, each dedicated to producing
a single net capable of identifying a particular digit and rejecting all ot hers .
The origina l data set was split at random into two disjoint sets of 600 digits
each. The first set was used for t ra ining and fitness evalua t ion and th e
second set was used to evalua te th e quality of the final results by measuring
the genera lizat ion ab ility of the fabricated nets. All t rainings used the same
parameters. The init ial net st ructure was 64:6:1 (fully forward connected)

464 Nachum Shamir, David Seed, and Emanuel Marom

Digits identi ficat ion results

Structure Results
Numb er of hidden Number of Train Test Errors

Digit neurons interconnect ions Success Success

0 0 8 100.0% 99.2% 5

1 0 7 100.0% 98.0% 12

2 1 24 100.0% 98.3% 10

3 2 24 100.0% 97.7% 14

4 0 15 100.0% 97.8% 13

5 1 19 100.0% 97.7% 14

6 1 19 100.0% 97.8% 13

7 1 15 100.0% 99.7% 2

8 1 32 100.0% 96.7% 20

9 3 150 100.0% 96.3% 22

Table 1: Result of digit-identification experiment . The st ructures and
performance are presented for each of the 10 nets. All nets performed
with a 100% success rate on the 600 training digits, and had extremely
high test scoreson the remaining 600test digits. The resulting nets are
very small; in particular, the nets for digits 0, 1, and 4 are perceptrons
(with no hidden neurons).

where hidden and out put neurons operated with a tanh(x) decision function.
Back propagation initial training, ret raining after genet ic recombin at ion, and
ret raining afte r pruning were limited to 100 epochs. The pop ulation size for
each t ra ining was 10 nets. The init ial population was created by choosing
the best results from 50 random trainings, which we th en let evolve for 200
generations.

The result s are summ ar ized in Table 1, which describ es th e dimension ,
final training score (ident ical with the fitness score), and the test perform ance
for the ent ire digit set of each of th e ten nets. All nets performed with a
100% success rate on the 600 tr aining vectors and had ext remely high test ing
scores for the remaining 600 vectors. The result ing nets were very small. In
part icular , t he nets t ra ined to recognize digits 0, 1, and 4 are percept rons
(with no hidden neurons).

The results in Tab le 1 show the performance of each net t rained to ac­
cept a single digit and reject all others . One identifies the actua l digit by
feeding the same dat a to each of the ten nets and selecting t he net giving
t he highest out put value. For the ent ire set of 1200 digits, the number of
correct identifications was 1160, which is 96.7% of t he ent ire data set. Gen­
era lization performa nce was calculated for the 600 digits that were not used
for t ra ining, giving a success rate of 93.3%. One should note that no param­
eter optimization was carried out and no special net st ruct ure was created

Using the Functional Behavior of Neurons for Genetic Recombination 465

prior to tra ining. Thus, all st ruc tural refinements were automa tically done
by genet ic t ra ining and evolut ion rules.

7. Conclus ion

In this paper, we propose a new hybr id genet ic back propagat ion t ra ining al­
gorithm based on a unique functional matching recombin ation method. The
method is used to evolve heterogeneous populations of neur al networks and
provides versatility in network architec ture and activation functions. The
performan ce of the proposed algorit hm was tested on a wide variety of experi­
ments, showing its ability to overcome th e problems originat ing from locat ion
permutations of hidden neurons and to efficient ly hand le heterogeneous pop­
ulat ions of nets having diverse st ructure and functional composit ion. Vit al
infrast ructures are preserved throughout recombination and transferred to
the next generation, thereby impro ving the quality and initial performance
of the generate d offspr ing.

We performe d four experiments t hat demonstrat e th e utility of th e pro­
posed hybr id. T he first experiment demonstrates the importance of func­
tional reorganization of nets duri ng genetic recombinat ion, showing t hat vital
infrastructures are transferred from parent to offspring nets only when func­
tional reorganizat ion is carr ied out. Functional reorganization was therefore
found to have a critical influence on the success of genet ic implementation
and the ability to preserve and improve "genet ic charact erist ics" throughout
the evolut ionary pro cess.

In the second experiment, the genera lizat ion propert ies of the proposed
hybrid algorithm were tested using the Pari ty-16 data set , and the results
were compared to a computat ionally equivalent non-genetic tra ining example,
showing indispu t ably the advantage of genetic evolut ion by producing more
efficient nets with higher generalizat ion capabilit ies. T he third experiment
demonst rated the ability of the hybrid to handle a populat ion of nets with
heterogeneous functional composition, dynamically adapting both th e st ruc­
ture and composit ion of the populat ion . In t he last experiment, we tra ined
nets to ident ify handwritten digits where all struct ural refinements were au­
tomat ically done by genet ic training and evolut ion rules. These experiments
demonstrate the efficiency and success of the implementat ion, highlighting
the enormous contribut ion of genetic search to the success and adaptability
of neur al network t raining.

Acknowledgments

We th ank J. Shamir for helpful discussions, advic e, and supp ort, and to
1. Guyon for providing the data set for the handwritten digits.

R eferences

[l] N. Sharnir , D. Saad , and E. Marom, "Neur al Net Pruning Based on Fun ctional
Behavior of Neurons," International Journal of Neural Systems, 4 (1993) 143­
158.

466 Nachum Shamir, David Saad, and Emanuel Marom

[2] N. Shamir , D. Saad , and E. Marom, "Preserving th e Diversity of a Geneti­
cally Evolving Populati on of Nets Using the Functional Behavior of Neuron s,"
Complex Systems (in press, 1994).

[3] D. E. Rumelhart , G. E. Hinton, and R. J. Williams, "Learn ing Internal Rep­
resentations by Error P ropagation ," pages 318-362 in Parallel Distributed
Processing: Explorations in the Microstructure of Cognition , edited by D. E.
Rum elhar t and J. L. McClelland (Cambr idge: MIT Pr ess, 1986).

[4] J. Sietsma and R. J. F. Dow, "Neural Net Pruningv-W hy and How?" pages
325-332 in Proceedings of the IEEE International Conference on Neural Net­
works, 1, San Diego, CA (1988).

[5] M. C. Mozer and P. Smolensky, "Skeletoni zat ion: A Techniqu e for Trimming
the Fat from a Network via Relevance Assessment ," pages 107- 115 in Ad­
vances in Neural Inform ation Processing, 1, edited by D. S. Tour etzky (San
Mateo, CA : Morgan Kaufmann, 1989).

[6] E . D. Karnin , "A Simple Pr ocedure for Pruning Back-P ropagat ion Trained
Neural Networks," IEEE Transactions On Neural Networks, 1 (1990) 239­
242.

[7] M. Mezard and J. P. Nadal, "Learn ing in Feedforward Layered Networks:
Th e T iling Algorit hm ," Journal Physics A , 22 (1989) 2191-2203.

[8] M. Frean , "The Upst art Algorithm: A Met hod for Const ructin g and Training
Feedforward Neural etworks," Neural Computation, 2 (1990) 198- 209.

[9] S. E. Fahlm an and C. Lebiere, "T he Cascade-Correlat ion Learn ing Architec­
ture," pages 524-53 2 in Advances in Neural Inform ation Processing Systems,
2, edited by D. S. Touretzky (San Mateo, CA: Morgan Kaufmann, 1990).

[10] S. E. Fahlman, "The Recur rent Cascade-Correlation Archit ecture," pages
190-1 96 in Advances in Neural Information Processing Systems, 3, edited
by R. P. Lippmann , J. E. Moody, and D. S. Tour etzky (San Mateo , CA :
Morgan Kaufman n, 1991).

[11] D. E. Goldberg, "Genet ic Algorithms in Search, Optimizat ion , and Machine
Learning" (Reading, MA: Addison-Wesley, 1989).

[12] D. Wh it ley and T . Hanson, "T he GE NITOR Algorithm: Using Geneti c Re­
combination to Optimize Neural Networks," Technical Report CS-89-107, De­
par tment of Comput er Science, Colorado State University (1989).

[13] D. Whi tl ey and T . St arkweather, "GENITORII : A Dist ribu t ed Genet ic Algo­
rithm," Journal of Experim ental Theoretical Artificial Intelligence, 2 (1990)
189- 214.

[14] D. Wh itl ey, T . Starkweath er , and C. Bogar t "Genet ic Algorithms and Neural
Networks: Optimizing Connect ions and Connect ivity," Parallel Computing,
14 (1990) 347-361.

Using the Functional Behavior of Neurons for Genetic Recombination 467

[15] H. Kitano "Designing Neural Networks Using Genet ic Algorithms wit h Graph
Genera tion Syst em," Compl ex Systems, 4 (1990) 461-476.

[16] D. J . Mont ana and L. Davis, "Training Feedforward Networks Using Genetic
Algorithms ," pages 762-767 in Eleventh Inte rnational Joint Conference on
Artificial Intelligence (Detroit 1989) , edited by N. S. Sridharan (San Mateo,
CA: Morgan Kaufmann, 1989) .

[17] Y. Le Cun, J . S. Denker , and S. A. Solla , "Opt imal Brain Damage," pages
598-605 in Advances in Neu ral Info rmation Processing Systems, 2, edite d by
D. S. Touretzky (San Mateo, CA: Morgan Ka ufmann, 1990).

[18] B. Hassibi, D. G. Stork, and G. J. Wolff, "Optimal Brain Surgeon and Gen­
era l Network Pruning," pages 293-299 in IEEE Intern ational Conference on
Neural Netwo rks, San Francisco (P iscat away, NJ : IEEE Press , 1993).

[19] A. S. Weigend, D. E. Rumelhart, and B. A. Huberman, "Generalizat ion by
Weight -Elimination with App lication to Forecasting," pages 875-883 in Ad­
vances in Neural Information Processing Systems, 3, edited by R. P. Lipp­
mann, J. E. Moody, and D. S. Touretzky (San Mateo , CA: Morgan Kaufmann ,
1991) .

[20] N. Radcliffe, "Geneti c Neural Networks on MIMD Machines ," Ph.D. Thesis,
University of Edinburgh (1990).

[21] N. J . Radcliffe, "Genetic Set Recombination and its App lication to Neur al
Network Topo logy Optimization," Neural Computing fj Application, 1 (1993)
67-90.

[22] V. N. Vapn ik and A. Y. Chervonenkis, "On the Uniform Convergence of
Relative Frequ encies of Event s to Their Probabilities," Theory of Probability
and Its Applications , 16 (1971) 264-280.

[23] V. N. Vapnik , "Est imat ion of Dependences Based on Empirical Data,"
(Berl in : Spr inger-Verlag , 1981).

