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Abstract. A cellular game is a dynamical system in which cells,
placed in some discrete structure , are regarded as playing a game
wit h their immediate neighbors. Individu al st rategies may be either
determin istic or stochastic. St rategy success is meas ured accord ing to
some un iversal and unchanging crite rion. Successful st rategies persist
and spread; unsuccessful ones disappear.

In this paper, two cellular game models are formally defined, and
are compared to cellular automata. Com puter simulations of these
models are presented.

Cond it ions providing maximal average cell success , on one- and
two-d imens ional lattices, are examined . It is shown that these con­
ditions are not necessarily stable; and an example of such instability
is analyzed. It is also shown that Nash equilibr ium strategies are not
necessarily stable.

1. Introduction

A cellular game is a dynamical system; that is, the variables it is composed
of are regar ded as changing over time. These variables or cells, arranged in a
discrete st ructure such as a ring, are thought of as repeatedly playing a game
with their neighbors . Most of this paper is concerne d with one-dimensional
cellular games, defined more formally as follows:

Definition 1.1. A one-dimensiona l cellular game consists of:

1. A one-dimensional discrete struct ure, uniform from the viewpoint of
each site; that is, a ring or doubly infinite path.

2. A variable, or cell, at each site . The components of this variable may
change at each discrete unit of time, or round . They consist of, at least:

(a) A move comp onent , which can take on a finite number k of values.

(b) A strategy component, which determ ines what move a cell makes
in a given round. A cell's strategy is based on past moves of it an d
its r nearest neighbors on each side. r is called the radius of the
game. Th e number of past rounds considered is called the depth
d of the strategy.
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3. A fitness criterion, which does not change and is the same for each cell.
This fitness crit erion is usually local; that is, a cell's fitness in each
round is based on its move and those of nearest neighbors within the
radius of the game .

4. A mechanism for strategy selection , under which more fit strategies
survive and spread. Strategy selection is usually nonlocal; that is, a
more fit strategy may spread arbitrarily far in a fixed number of tim e
units. An interval between strategy changes, which may be one or more
rounds, is called a generat ion.

Thus, a cellular game can be considered a proc ess in which cells make
moves each round, based on their st ra tegies, and strat egies are updat ed in
each generation , based on their fitn ess in preceding rounds.

Note that cellular game st rategies, based on kd (2r + 1) possibili ties, and
fitn ess crite ria , based on k(2 r +1) possibilities, are usually stored in the form
of a table. Also not e th at n-dimensional cellular aut omata, wit h one cell for
each n-t uple of integers or int egers mod k, can be similarly defined.

One-dimensional cellular games are studied in [18] , [2], [3], and [11]. Simi­
lar systems are discussed in [8], [9], and [10]; and games on a two-dimensional
lattice in [13] .

Cellular games satis fy a criterion for "art ificial life" as discussed by Lang­
to n [5], that is, "There are no rules in th e system tha t dictate global beh avior .
Any behavior at levels higher than the (indi vidual cells) is, therefore, emer­
gent. "

Cellular games are a generalization and exte nsion of well-known discrete
dynami cal syste ms called cellular automata. Cellular games were created
largely because of questions arising from the observation of cellular automata.
One-dimensional cellular automata are defined as follows.

Definition 1.2. A one-dimensional cellular aut omaton (CA) consists of:

• A one-dimensional discrete structure, uniform from the viewpoint of
each site; that is, a ring or doubly infinite path.

• A variable, or cell, a t each site, that can take on finitely many values
or states . The cell's initi al state may be specified as desired.

• A function that decides how each cell changes state from one genera­
tion, or discrete unit of time , to the next. This function , or cellular
aut omaton rule, is always the same for each cell, and depends entirely
on a cell 's state and that of it s r neighbors on each side in the past m
generations. Th e parameter r is referred to as the radius of the cellular
automaton, and m as its ord er. Cellular automaton rules are usually
stored and described in the form of a table.

It can be shown that an mth -order CA is equivalent to a first-order CA
having more states. This well-known proof, however, is dep end ent on the
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locality of cellular auto mata- that is, on the fact that cells are directly af­
fected only by their neighbors. For similar mathematical objects that are not
local, such as cellular games, this proof cannot be used.

Theorem 1. 3. Any m th-order, k-st ate, r -radius cellular autom aton is equiv­
alent to a first-order cellular automaton with radius m r , that has mk states.

Proof. Let C be an mth-order CA of k states and radius r . Let C' be a
first -order, mk-state, mr-radius CA constructe d as follows:

• Each m generations of C is considered a genera tion of Ct.

• Each state of C' is considered a vector of m k-valued components .

• The j th component of cell c's state is determined as follows:

• If j = 1, by components k - m + 1 through k of the states of cells
c - r through c + r in the previous generat ion.

• If 1 < j < m , by components k - m + j through k of the states of
cells c-r through c+r in t he previous generation, and components
1 through j - 1 of these cells in the current generation.

• If j 2 m , by components j - m through j - 1 of the states of cells
c - r through c + r , in th e current generation.

Automaton C' can simulate the act ions of C ; it is trivially true that C'
has mk states , and is first order. It thus suffices to show t hat C' has radius
mr. To show th is, however, it is enough to show th at th e j th comp onent of
cell c's state is ent irely determined by th e states of cells c - jr through c+ jr
in th e previous generation.

This statement is trivially t rue if j = 1. Now, assume t his statement
is t rue for 1, . .. , j - 1. Consider the jth component of cell c's state. T he
only t hing it is dependent on , which did not influence previously considered
components of this cell's state, is compo nent j - 1 of cells c - r through c+r
in this generation. And, by our induction hypothesis, these components are
determined by the states of cells c - r - (j - l )r through c + r + (j - l )r in
the previous generat ion. •

Thus, if a cellular automa ton of radius r operates on cells t hat can t ake
k possible states, there are k 2r +1 possible circumst ances that need to be
considered . The rule table, t herefore, has k 2r +1 ent ries; and there are kk2

,,+1

possible r -radius, k-state cellular aut omaton rules. An example of a cellular
aut omaton rule is the two-state, radius-one rule whose evolut ion is illust rated
below. In this rule, a cell can be in either state 0 or state 1. Any cell that in
genera tion 9 is in state 1, and has both of its neighbors in state 1, stays in
state 1 in genera t ion 9 + 1. Oth erwise, a cell is in state 0 in generation 9 + 1.
This rule is Rule 128 according to Wolfram 's [20] classificat ion system of the
256 two-state, radiu s-one rules.
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Generation 1:
Generation 2:
Generation 3:

1 a 1 1 1
a a a 1 1
a a a a a

1 a 1
a a a
a a a

Lenore Levine

a 1
a a
a a

Table 1: The action of Rule 128 on a circular ring of ten cells for three
generat ions.

D efinition 1. 4 . A stochastic cellular aut omaton is as above, except that
neighboring states do not determine the move made in the next generation,
but rather the probab ility that a particular move will be made.

Compute r experiments on one-dimensional cellular automata are usually
conducted wit h cells arranged in a ring. Cell stat es ar e indicated by colors;
thus, k-st ate cellular automat on rules are often referred to as k-color ru les.
Initial conditions are disp layed in a line on top of t he screen, with each gen­
era t ion being displayed below the pr evious generation. In such experiments,
initi al cond itions and rule table ent ries are often chosen wit h th e aid of a
pseudorandom number generator.

As a matter of fact , descriptions of computer experiments with cellular
automata and ot her discrete dyn amical systems often make reference, in­
formally, to "ra ndom" init ial condit ions. This concept actually applies to
math ematical mod els containing infinitely many variab les, such as a one­
dimensional cellular automaton wit h one cell for each integer. In such a case,
"random," "almost all," or "normal" initi al condit ions refer to condit ions
such that all kn n-t uples of k cell states are equally likely, for all n. Or, in
ot her words , if the states of the cells are construed as decimal places of two
real num bers, both numbers are normal to base k.

Such condit ions cannot be duplicated exactly in the finite case , no mat ter
how large the number of cells. However , condit ions can be created that ap­
pear disordered and sa tisfy certain statist ical tes ts of disorder. This is done
with th e aid of a pseudorandom number generator . Such initial condit ions
are often loosely referred to as "random." Computer simulat ions of discrete
dyn amical syste ms often use such initial condit ions as the most feasible in­
dicator of likely behavior.

In such experiments , there are roughly three types of asymptot ic behav­
ior . First of all, all cells may become and remain one color , or change color
periodically, with a small and easily observab le period. Second , cells may
display "chaotic" behavior ; that is, cell color choice may appear to be dis­
ordered , or to result from some other simple st ochastic algorit hm. Third,
cell color choice may be neither period ic nor chaotic, but appear to display
organi zed complexity. That is, the cell evolut ion diagrams may look like bio­
logical st ructures, such as plant s, or social st ruct ures, such as city maps. As
a mat ter of fact , such diagrams are often quite aesthet ically pleasing . These
ru le types are discussed in [21]; for more on the concept of "complexity," as
it applies to cellular automaton ru les, see [19].
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On a finite ring of cells, of course , all such evolut ion is eventua lly periodic.
But , if cells can be in two states, and there are 640 cells, t hen there are 2640

possib le ring st ates. Therefore the period of ring states could conceivably be
quit e high ; and "chaotic" or "complex" rules do indeed seem to have very
high period s.

Visual represent at ions of cellular aut omata can exhibit a soph ist ication
remini scent of living st ruc tures. However , the numb er of k-state, r -radius
cellular aut omaton rules is very large (kk

2r
+

l
) for all but the smallest k and

r; and "interest ing" rules are not common and difficult to find. This leads to
the question, therefore, of wheth er there is some way of "evolving" cellular
automaton rules in a desired direction.

To this quest ion , th ere are two possible avenues of approach. One is
to select rules based on their global propert ies. That is, some computable
measure of the desired characte rist ics is devised , and rules are chosen by th eir
ability to meet t his measure. Such select ions are discussed in [15] and [12].

The other way is to select rules based on their local propert ies. That is,
each cell uses a different rule; and th ere is some universal and unchanging
criterion for rule success. This approach is more like the way living systems
evolve, for t he evolution of a planetary ecology is not due to constra ints placed
directly on the ecology. It is an emergent property of const raints placed on
the individual organisms. For this reason , such mod els may potent ially reveal
not only t he nature of "complex" rules, bu t also how their global prop erties
emerge from local interactions.

An evolut ionary mod el of this sort is equivalent to a cellular game; th e
only difference is the terminology. That is, a cell's stra tegy can be regard ed
as the individual rule used by each cell; the dept h of the strategy as the ru le's
order ; cell moves as states; and instead of referring to the smallest unit of
t ime as a round , and a possibly larger unit as a generation, the smallest unit
can , as with cellular aut oma ta, be referred to as a genera t ion. The fitness
criteria and evolut ionary process stay the same.

A cellular game differs from a cellular aut omaton not only in the precise
definitions used, bu t also in the philosophy under which these definitions
were constructed. T hat is:

• Cellular automata are often regard ed as physical models; for example,
each cell may be seen as an individual atom. Thus, the rules by which
each cell operates are the sam e. Cellular games, on the other hand,
are seen as evolut ionary mod els. Each cell uses an individu al rule, or
strategy, that can be thought of as the "genet ic code" of the cell.

• Cellular automata are usually thought of as determ inist ic, beyond th e
init ial generat ion, th ough stochastic CA's have also been studied. Cel­
lular games operate stochastically; that is, the evolut ionary process
under which st rategies are modified is stochastic. Often the st rategies
themselves are too.

• Cellular automata are local; that is, a cell's st ate is affected only by the
st at es of its r nearest neighbors on each side in th e previous generation.
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In other words, cell information cannot travel more th an r units per
generation. This speed is often called "the speed of light ." Cellular
games, on the other hand , typically use nonlocal st rategy select ion
criteria. That is, a more fit st rategy may propagate arbit ra rily far in
one generation .

• In Theorem 1.3, it is shown that mth-order CAs are behaviorally equiv­
alent to first-order CAs wit h larger radius and more states. However ,
this proof doys not work for cellular games with nonlocal select ion cri­
teria. Moreover, cellular games are often const ructed with st rategies
that look more th an one generat ion back.

It can be shown th at if a cellular game has a local fitness criterion and
local rule select ion pro cess, it is act ually equivalent to a cellular aut omaton
with a large numb er of states. This aut omaton, of course, will be stochas tic
if the game is stochast ic.

Theorem 1.5. Let G be a cellular game with a local fitness criterion an d
local rule selection process, which operates every 9 generations. Let all fitness
measurement s start over aga in after this process. Th en G is equivalent to a
cellular automaton G' with a much larger number of states.

Proof. Let G' be const ructed as follows. Let the state of a cell c in G' be a
vector with th e following components:

1. The state of c in G.

2. T he individu al rule used by c in G.

3. A g-valued count ing variable, which starts out as 1 in the first genera­
tion , and thereafter corresponds to the current generation mod g.

4. A fitness variable, which corresponds to a cell's accumulated fitn ess.

Since th ese components enable G' to simulate the act ion of G, it suffices
to show th at G' is a cellular automaton. That is, each component must have
only finitely many possible values, and be locally determined . Examining
each component, in t urn:

1. By definition of G, the first component has only finitely many values;
and is determined by a cell's rule, and the states of it and its neighbors
in preceding generations.

2. By Definition 1.1, even if stochast ic rules are used, only finitely many
are considered. Wh ether or not a cell keeps its ru le, afte r 9 genera t ions,
is based on its own fitness, and th e process of select ing new rules is
assumed to be local.
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3. The countin g component can be in any one of g different states. The
rul e for it s chang e is simple: If it is in st ate 8 in genera t ion d, it is
in state (8+ 1) mod g in generation d + 1. Note t hat to run G' as a
simulat ion of G, this count ing component must be initially set to th e
same value for all cells.

4. The fitness component is set to zero afte r every g generations, and can
be incremented or decremented in only finitely many different ways.
How it cha nges in each generation , for a given cell c, depend s on the
first components of cells c - r through c + r .•

Given this equivalence, why, then, is a cellular game so different from
a cellul ar automaton? For one thing, a cellular game usually does use a
nonlocal st ra tegy select ion pro cess. For anot her, CA rul e spaces are ty pically
very larg e. Therefore, even if only syste ms wit h a local selecti on process
are considered , the evolutionary par adigm of cellul ar gam es may st ill be
valu abl e. It may be a pr acti cal method of select ing memb ers of these spaces
with interesting properti es.

In this pap er , two different models of cellular gam es are defined. The
original Arthur-Packard-Rogers model is discussed first in Section 3. This
model is quite extensive and uses many different param eters . The second,
simplified model is mor e amenable to mathemati cal analysis. This model is
discussed in Section 5.

Computer simulati ons of both models are pr esented. T hese simulat ions
are similar to those of cellul ar automata, bo th in t he way they are conducte d
and in the way they are displ ayed . That is, cell moves are indi cat ed by
colors . Strategies are usually not pictured , du e to the larg e size of st ra tegy
spaces. Thus, a cell's move may also be referr ed to as its color . Initial moves
of a finit e ring of cells are displ ayed in a line on top of the screen, and each
genera ti on is displayed below the pr eviou s generation. Initial moves and
strateg ies, as well as other stochastic choices during the course of the game ,
ar e implemented wit h the aid of a pseudorandom number generator.

Computer simulat ions of the first mod el displ ay sophisticate d behavior
reminiscent of living systems , or "complicated" cellular automata. These
behavior s, which include such phenomena as zone growt h and "punct uated
equilibria ," are discussed and extensively illustrated in Section 4.

The second model admits only det erministi c st ra tegies of depth zero;
that is, st ra te gies of the form , "Do move m , without regard to pre viou s
rounds." Thus, in this model, moves and st rategies can be considered equiv­
alent . Though this model is simpler , there are st ill counterint uit ive resul ts
associated with it. Even if only two st rategies are allowed under this model, it
is extremely difficul t to pr edict which, if eit her , will be stable under invasion
by the other. There are no simple algorithms for determining this.

For example, consider ring viability , discussed in Section 6. For finit e
rings this concept , Definition 6.1, refers to the average success of all cells in
the ring. In this section, it is shown that under any local fitness criterion
G, rin gs in which the cells have made periodic move sequ ences have the
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highest possible viability. It is also shown that a similar result is false in the
two-dimensional case.

Now, if cellular games did indeed always evolve towards highest ring vi­
ability, this would make their course relatively easy to predict . However, in
Sect ion 7, a two-st rategy cellular game is presented , in which the best st rat­
egy for the ring as a whole-that is, the strategy that, if every cell follows
it , maximizes ring viability- is not stable under invasion. This instability is
illustrated by computer simulations. It is also proved math ematically. T his
is done by showing that if a small number of cells using the invading strategy
are surrounded by large numbers t hat are not , the invading strategy tends to
spread in t he next generat ion. The reason for th is is that the first st rategy,
though it does well against itself, does poorly aga inst the second one.

On th e other hand , a winning st ra tegy may not necessari ly be stable
eit her . T hat is, stra tegy A may defeat st ra tegy B, but st ill be unable to
resist invasion by it. The reason , in this case, is that st rategy B does so
much better against itself. This result can also be demonst rated by computer
simulat ions and proved, using th e same met hod. These results are also in
Section 7.

Finally, consider a situation in which, if its neighbors use st ra tegy A, a
cell has greatest success if it uses st rategy A, too. It seems logical that , in
this case , strategy A would indeed be stable. As a matter of fact , such a
situation is called in game theory, a symmet ric Nash equilibrium . However ,
it can be demonstrated by computer simulat ions, and also proved, that some
symmet ric Nash equilibrium st rategies are not st able under invasion. The
reason, in such cases, is that strategy B has somewhat less probability of
surv iving in a st rategy A environment , but is very good at causing st rategy
A not to survive. Therefore strategy B is somewhat less likely to persist , bu t
a lot more likely to spread. This result is also considered in Section 7.

T hus, the three theorems in Sect ion 7 show how difficult it is to predict
the course of cellular games, even under a very simple model. The counter­
intuitive nature of the results obtained suggests t he potential math ematical
interest of this paradigm.

2. G ame theory and ce llu la r games

Success criteria in tabular form, or score tables, are extensively used in game
t heory. T hey describ e the course of any game that can be exact ly modeled,
for which st ra tegy success can be num erically describ ed, and in which all
st rategies are based on finite, exact informat ion . For example, consider the
game of Scissors, Pap er, Stone; t hat is, Scissors beats Pap er, Pap er beats
Stone, and Stone beats Scissors. Suppose t his game is played for one round,
and the only possible st rategies are determinist ic. Then th e table for th is
game is (if a win scores 1, t ie at .5, and loss at 0):
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Opp onent

Player
Scissors
Pap er
Stone

Scissors Pap er Stone

.5 1 0
o .5 1
1 0 .5

The following definit ion is used in game t heory.

Definition 2.1. A mixed strategy is a stochastic strategy ; that is, one under
which, in some speciiied circumstances, more than one move has positive
probability.

A table can also be devised for mixed st ra tegies, and for games of more
than one round. For mixed st rategies the table ent ry describ es the expected
success .

For example, suppose the game of Scissors, Paper, Stone is played for two
rounds, and there are three possible st rategies: Strategy A is to choose each
move with probabili ty 1/3, St rategy B is to choose Stone for the first move,
and th e move chosen by the other player for the second , and Strat egy C is
always to choose Pap er. Suppose, as above, the score is 1 per win per round
and .5 per tie. Then the t able for thi s game is:

Opponent Strat egy A Strat egy B Strategy C

Pl ayer
Strategy A 1 1 1
Strategy B 1 1 .5
Strat egy C 1 1.5 1

Definition 2.2 . A table depicting stra tegy success as described above is
called the normal form of a game.

Norma l form can be used , at least theoreti cally, to describ e extremely
sophist icated games. For example, if only a fixed finit e number of moves is
allowed, and st rategies consider only the history of th e cur rent game, then
there are only finit ely many deterministic st ra teg ies for the game of chess.
Hence normal form could , at least theoret ically, be used to describ e this game.
Of course, there are so many possible chess st ra tegies, this form cannot be
used for practical purposes. For more on normal form , see [7].

Not e that this form is ambiguous if mixed st rategies are allowed. For
example, consider the above table. Does it indicate the actua l success levels
of deterministi c st ra teg ies, or the expected success levels of stochastic ones?
It is not possible t o tell without fur ther information .

Such a normal form can also be used to describ e three-player games. For
example, this table describes a game in which there are two moves, you score
1 if you make th e same move as both other players and 0 otherwise. Thi s
game is called the Join or Die game.
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Your Move: B Your Move: W

Pl ayer 1: B W P layer 1: B W

Player 2: Player 2:
B 1 0 B 0 0
W 0 0 W 0 1

Now consider cellular games. If the success criterion, or score, is local­
that is, if it is based enti rely on a cell's state and that of its neighbors- it
can also be encoded as a table. As a matter of fact , any game table for 2r +1
players can be used as the score t able for a cellular game of radius r. For
example, th e Join or Die process is a cellular game of radius 1, in which each
cell plays the Join or Die game with its two nearest neighbors. T he following
table is used for this pro cess:

Cell's Move: B Cell's Move: W

Right Neighbor: B W Right Neighbor: B W

Left Neighbor: Left Neighbor:
B 1 0 B 0 0
W 0 0 W 0 1

However, cellular games differ from the situations most analyzed by game
theo rists , or the vernacular notion of a game, in the following ways:

• Each cell interacts with different neighbors, as det ermined by the dis­
crete st ructure on which the cellular game is run. That is, cell O's score
is based on its move, and those of cells 1 and - 1. Cell 1's score is based
on th e moves of cells 0 and 2, not cells 0 and - 1.

• The "game" is considered to be played repeatedly, for many rounds.
Thus, the main focus is on opt imal move behavior in the long run, not
for one round only.

• There is an explicit mechanism for determining how successful st rate­
gies thr ive and spread. T he cellular game is not completely described
without this mechanism ; no assumptions about asymptot ic behavior
can be made just on the basis of the score table.

3 . The Arthu r-P ackard-R oger s model

The idea of cellular games was first developed by Packard and Arthur [14],
and first written up by Rogers [18]. In this mode l, cells arranged in a ring
playa game, such as the well-known Prisoner 's Dilemma, with each of their
nearest neighbo rs. They play for a fixed numb er of rounds. At the end of
these rounds, or of a generation, st ra teg ies may change. Successful st rategies
are most likely to spread and persist. (T he Pri soner 's Dilemma is discussed
in [16], [1], and App endix B.)
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The Arthur-Packard-Rogers mod el can be summarized as follows. Cells,
arranged in a one-dimensional st ructure , play a game, such as th e Pri soner 's
Dilemma, with t heir neighbors, for a predetermined number of rounds. The
criteria for success in each round do not change, and are the same for each
cell. Since the degree of success is based only on a cell's moves and tho se
of its r nearest neighbors on each side, this criterion can be encoded in the
form of a table.

For detail s of this mod el, see App endix C. The terms used are describ ed
in Definition 1.1.

The st rategies that govern cell move choices may be different for each cell,
may be determini sti c or st ochas tic, are based on past move history, and are
stored in the form of a table. Strat egies may have depth zero, one, or more.

At the end of these rounds-th at is, at the end of a generation- t he
probability th at a cell keeps its st rategy in the next generation is proport ional
to the size of its reward variable, which measures its success in the game.

Definition 3.1. Cell death: A cell is said to die if its strategy is so unsuc­
cessful it must be replaced. The replacing strategy is usually derived from
the strategies of other cells.

Finally, if a cell dies at the end of a genera t ion, th e st ra tegy chosen is some
combinat ion of the st ra teg ies of its nearest living neighbors. If it contains
elements of both neighbors, crossover is said to occur.

Definition 3.2 . Crossover is the existence, in a new strategy, of elements
from more than one "parent" strategy.

Definition 3.3. Those cells whose strategies contribute to a cell's new strat­
egy are called its parents.

There may also be a small probability of st ra tegy table mutation.

Definition 3.4. A mutation is said to occur when, after a strategy table
entry has been chosen from a parent cell, it is arbitrarily changed.

In computer simulat ions, thi s is often done with the aid of a pseudoran­
dom numb er generator .

This mod el is not quite the same as the origin al one used in [18]. In
that construction, st rategy replacement was not govern ed by locality; th at
is, paren t cells were the most successful in the ring. Thus, the progenitor of
a cell's strat egy was not particularly likely to be nearby.

In t his model, however , parent cells are not necessarily t he most success­
ful cells in the ring. Inst ead , they are a cell's nearest living neighbors. Such
a model is more comparable with living systems, because it bases system
evolution more completely on local properties. It is also more easily gener­
alizable to the infinite case, in which there is one cell for each integer. And
it is only through such a mod el th at one can see the evolution of different
st ra tegy zones.
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4. Computer experiments

The Arthur-Packard-Rogers mod el has been simulated in computer experi­
ments wit h the aid of a pseudorandom number generator. Cell moves are
displayed on screen, in a form similar to the display of cellular automaton
states. That is, initial moves for each generation are shown in a line on top of
th e screen; and moves for each round are shown below the preceding round.
In experiments simulat ing t he Prisoner 's Dilemma, or variat ions, lighter areas
indi cate cooperative moves; dark areas , defectin g moves. In particular , in the
games illustrated below, all st rategies are mixed, or stochas t ic. That is, th ere
is a small probabili ty that a move is made, other t han the one called for by
the st ra tegy.

T he experiment illustr ated at the end of this paper , in Figures 1 through
14, simulates a variat ion of the Pri soner 's Dilemma, the Stag Hunt. The Stag
Hunt is modeled on the dilemma of a member of a pack of hunting animals,
such as wolves or coyotes . If the whole pack hunts together, th ey can bring
down a stag, which is th e highest reward. If a member defects, it will be able
to get a rabbi t alone . If the other animals do not defect , they will have a
smaller chance of bringing down a stag, but it may st ill be possible; but it is
very unlikely that one anima l can bring down a stag all by itself. Thus, the
highest expected reward is for mutual cooperation; next highest, for defectin g
while the other members of the pack cooperate; next , for mutual defection,
and four th , for cooperating while t he other members of the pack defect. See
[16] for more information on th e Stag Hunt , and Appendix A for a more
technical discussion of the experiments .

T hese computer experiments fully suggest the math emati cal interest of
the subject. They reveal many kinds of thought-provoking behavior , such as:

• Zone growth. Strategies may not evolve in the same manner in all
areas of t he ring. Zones of cooperative, defecting, or other consistent
behavior may arise and persist for generat ions.

• Periodic structures. Cells may alte rnate between cooperati on and de­
fection, or waves of cooperation may spread through some or all zones
of th e ring.

• "Complexity." Move pat terns may display a sophist icat ion reminis­
cent of living st ruct ures, or the patterns found in "complex" cellular
automata.

• Long transients. Strat egies predominant for hundr eds of genera t ions
may ultimately disapp ear , and be replaced by completely different be­
havior.

• "Punctuated equilibria." Move behavior t hat appears to be stable for
many generat ions may suddenly change very quickly- and then become
stable again, for a long tim e.
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Figur e 1: Computer simulat ion of the Stag Hunt , a modified Arthur­
Packard- Rogers cellular game model, with 75 cells and 150 genera­
tions per round. Program cg2 . pas , random seed 824709136, genera­
t ion 1. In this program , all initi al strateg ies are depth 1, but st rategies
of depth up to 3 may be introduced as t he system evolves.

F igure 2: The same program , paramet ers, and seed as in Figure 1,
generation 27. Notice the rightward-moving waves of coopera t ive be­
havior in t he right-hand part of the displ ay. Here some zones exhibit
cellular automaton-like triangular patterns .
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Figure 3: Generation 139 of the run begu n in Figure 1. Cellular
automaton-like t riang les predominate in this figure.

Figure 4: Generation 165. There are now leftward-moving waves of
coope rative behav ior in the midd le of the display.
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Figure 5: Generat ion 305.

Figur e 6: Generati on 483. Cellular automaton-like t riangles appear
again.
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Figur e 7: Generation 560. Move behavior does not appear to have
changed much in many generat ions.

Figur e 8: Generation 561. An all-cooperat ive zone appears. The next
t hree figures show the rapi d growt h of t his zone.
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Figur e 9: Generation 612.
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Figur e 10: Generation 658.
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Figur e 11: Generation 662. The all-coop erative zone has almost com­
pletely taken over th e ring .

Figur e 12: Generation 930. Large all-coop erative zones have predomi­
nated in t he past several hundred generati ons. However , at this point ,
a pertu rbation in st ra tegy- t hat is, an unexpecte d defect move-can
set off many defect moves in other cells.
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Figur e 13: Generat ion 982. Recovery of an all-cooperative zone.
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Figure 14: Generation 1262. At t his point , perturbations do not set
off much defect ing behav ior in ot her cells. That is, st rategies are no
longer "cooperate un less t here are defectors in t he neighborhood," bu t
"cooperate, whatever hap pens."
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5. The zero-depth model

These experiments well suggest th e richness of behavior cellular games offer .
The sophisti cat ion of patterns displayed provides ample justification for fur­
ther study of this paradigm. But the Arthur-Packard-Rogers mod el does not
lend itself well to mathemat ical analysis. Its implementat ion as a computer
program is lengt hy, and it contains many modifiable parameters . It is diffi­
cult to decide if any behavior exhibited is general, or just an art ifact of th e
specific algorithms used .

To facilitate math emat ical discussion of cellular game behavior , it is hence
appropriate to simplify the model. Ext ensive study has been performed on
such a model exhibit ing the following simplificat ions:

• Elimination of crossover. The Arthur-Packard- Rogers model allows
crossover. (Definit ion 3.2.)

In the simplified model, crossover is eliminated and each new st rategy
is an exact copy of one that already exists . A rat ionale for this sim­
plificat ion , in terms of living systems, is that one is considering the
evolut ion of a specific gene, which spreads on an either-or basis. How­
ever , a par ticular gene may be significant only in the context of other
factors. It may thus not be appropriate to consider th is gene on its own.

ate t hat computer experiments using genetic algorithms reinforce the
significance of crossover (see [6]).

• Elimination of mu tation. Anoth er simplificat ion is the eliminat ion of
mutat ion (Definition 3.4). That is, after t he initi al round, any st rategy
is new for a specific cell only, and is a copy of the st ra tegy used by an
exist ing cell. T he elimina t ion of mutat ion is quite likely to change the
long-term behavior of the system, especially in the absence of crossover.
For exam ple, suppose st rategy A is successful against all other st rate­
gies, including itself. If a ring of cells is originally free of strategy A,
but mut ation is allowed, st rategy A will event ually take over the ring.
If there is no mutation , t he ring will st ay free of it . However , the be­
havior of a cellular game that allows mutation may best be understood
in terms of, and in comparison to, the behavior of the simpler system.

• One round per generation. That is, cell st rategy may change afte r each
round of play.

• Elimin ation of mixed strategies. Strategies are deterministi c, not sto­
chast ic.

• Elimin ation of depth. The final simplificat ion is the elimination of
depth . That is, all st rategies are executed without regard to past moves.
Since th ere are no mixed st rategies, the st rategy, then, just becomes
"do move m," and the move variable can thus be eliminated from the
descript ion of the game.
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The quest ion of how depth and round restrictions affect process behavior
is a sub ject for future research; however , these restri ctions are not as severe
as th ey seem. From game theory, we learn that all information about games
with extr emely sophist icated st rategies can be conveyed in table form; that
is, the "normal" form of a game. The only restriction is that st ra tegies must
take into account only a finite amount of information , for inst ance, the course
of the game, but not anyt hing before or beyond. As previously discussed ,
such tables can be used as the score table for a cellular game; in particular ,
for a zero-depth, one-round-per-generation cellular game.

As a matter of fact , cellular games of many rounds per generation, and
wit h high-depth st rategies, can be rewritten as zero-depth one-round games
if all strategies take into account the current generation only.

Note that t he Arthur -P ackard-Rogers model does take into account moves
in the previous genera tion. However , it could easily be mod ified not to do
so, by providing table entries to use when there is limited inform ation about
previous rounds . For example, there could be an ent ry for the move used if
not hing is known about previous moves.

T heorem 5.1. Let G be a cellular game of radius r , with R rounds per
generation, and stra tegies of depth d, except that all strategies take into
account only moves in the current generation. Then the action of G can be
exactly sim ulated by a cellular game G' of zero depth and one round per
generation.

Proof. It suffices to show tha t for every such game G there is a zero­
depth, one-round cellular game G', and a mapp ing 1 from stra tegies in G to
st rategies in G' , such that life probabili ties correspond. Act ions made after
cell surv ival is decided can be the same in each case.

That is, suppose t here are two rings of k cells each, 1 :S k :S 00. Let
the first ring run G in genera t ion g, and let each cell c use st rategy Se. Let
the second ring run G' in that generation, and let each cell c' use strategy
1(Se). T hen the probability, at the beginning of g, that c survives into th e
next generation should be th e sam e as th e probability that c' does .

To show that such an 1 can be const ructed, it suffices to show that the
prob abili ty under G, at the beginning of a generation, that a cell will live
through to the next generat ion is ent irely dependent on its strategy and those
of its (R-l )r nearest neighbors on each side. For if thi s is true, a t able can be
constructed , giving the life probabili ty for cell c if it and its neighbors follow
st rategies S e- (R -l )r , . .. , S e, .. . , S e+(R-l )r ' This table can be used to create a
zero-depth, one-round cellular game with corresponding life probabilities.

Now life probabilities in G, at t he end of a generation, are ent irely depen­
dent on that generation 's move histories. Therefore, to show such st ra tegy
dependence, it is only necessary to show that th e probability, at the begin­
ning of g, th at cell c will make move m in some subsequent generation q, is
ent irely dependent on c's st rategies and those of its (q - l )r neighbors on
each side.



490 Lenore Levine

This fact is trivially true in the first round of a generation. Since a cell
has no information about past moves, the probability it makes move m is
ent irely dependent on its own st ra tegy.

Now, suppose t his fact is true for the first q - 1 rounds. In round q, the
probability a cell makes move m is entirely dependent on its st rategy, and
the moves made by it and its r neighbors on each side in preceding rounds of
this generation. T herefore, by the induction hypo th esis, this proba bility at
the beginning of a generat ion is ent irely dependent on the st rategies of the
(q- 2).,. neighbors of these cells, namely, cells c- (q- 1).,. through c+ (q- 1)r . •

We are thus left with t he following model in which, associated with each
cell c, in each generation g , are:

• A move/strategy variable m c,g from some finite alphabet ~ of k char­
act ers.

• A binary-valued life var iable L c,g. This variable can be set to either
living, or not living.

After each generat ion , cell st ra tegies change as follows:

• The probability that a cell's life variable is set to 1, so tha t it "lives"
into the next generation, is determined by a universal and unchanging
game matrix G. T hat probability is based on a cell's move/ strategies
and those of its r nearest neighbors on each side, in that generation.

• A live cell keeps its st ra tegy in th e next generation .

• A cell th at does not live is given a new stra tegy in the next generation.
This st rategy is either t hat of its living nearest neighbor to the left ,
or to t he right , with a 50% probability of each. If there are no living
neighbors to either side, all possible st ra tegies are equally likely.

This model lends itself easily to computer simulat ion, wit h the differ­
ent st rategies represented by different colors . T hus, in descript ions of this
model, "move," "st rategy," and "color" are equivalent . Such a simulat ion is
presented at the end of this paper in Figure 15. In this simulation, a cell
has prob ability 0.27 of living if it is the same color as both of its neighbors
and 0.53 otherwise. Note that t hese probabilit ies do not necessarily sum to
1. Due to the shapes of the space-t ime zones produ ced, this process is called
the Cloud Process.

Note that in the fifth generation, there are no more living white cells.
Therefore, the nearest living neighbors of each cell are black, and every cell
will become black in th e sixt h generat ion and stay th at way from that point
on.

We now discuss a theorem pert inent to this model; that is, a simple
characterization of identi ty games. An ident ity game is a game in which,
out side of cert ain pathological cases, no cell can change color . To avoid
complications arising from these cases, the identi ty game is forma lly defined
as follows:
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Figure 15: Computer simulation of a one-round cellular game, the
Cloud Process, on a ring of 640 cells. The table for this game
is: G(B B B ) = G(WWW) = 0.27, G(B BW) = G(BWB) =

G(B WW) = G(W B B ) = G(W BW) = G(W W B ) = 0.53. Program
cloud. pas , random seed 118950941. Initial condit ions were chosen
with the aid of a pseudorandom number generator .
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D efinition 5.2. An identi ty game is a game in which, under at least some
circumstances, cells have positive probability of living; and in which no cell
can change stra tegy unless there are no living cells either to the left or right
of it .

The char acterization alluded to is:

Theorem 5.3. Under the zero-depth model, a cellular game is the identi ty
game if and only if the probability that a cell stays alive is 1, provided its
strategy is different from at least one of its neighbors.

Proof. Suppose G is a zero-depth cellular gam e of rad ius T , with life proba­
bilities fit t ing t he above descript ion. Suppose a cell has living neighbors on
each side . Then either :

1. T he cell is not the same color/ st rategy as both of its neighbors and it
will stay alive.

2. The cell c is the same color as both of its neighbors, but has neighbors
on both sides of different colors, the nearest ones being cells c - Tl on
the left and c + T2 on th e right. Then cells c - Tl + 1 and c + T2 - 1 are
alive. Therefore, if c dies, c's left parent will be cell c - Tl + 1, or a cell
closer to c; and c's right parent will be cell c + T2 - 1, or a cell closer
to c. Thus if c dies, both parents will be the same color as c.
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On the other hand , suppose G is such that there is posit ive probability
a cell CI of color a, next to a cell C2 of color b, may not live. Let there be a
configuration of cells giving posit ive life probability to t he center cell. Thus,
since life probabili ties are determined locally, it is possible that there may
be living cells on either side of CI . Let CI die, and let it have living neighbors
on each side. If either of th ese neighbors is not the same color as CI , CI may
change color ; if both are, C2 will change color. •

Finally, if cellular games, as described above, are intended to model liv­
ing systems, two questions arise. First , why is a new st rategy a symmetric
function of the st rategies of both parents, instead of, for example, being more
influenced by th e st ra tegy of th e nearest parent?

One answer is that thi s process is intended to model sexual reproduction,
in which a gene has an equal possibility of coming from each parent . Anot her
is t hat if there is positive probabili ty that each gene comes from each parent ,
t he model may act ually not behave very differently. Fut ure research may
set t le th is question.

The second question is, why non locality? That is, why not say that if a
cell has no living neighbors near enough, it just stays dead in the succeeding
generation? In this case, comparison with living ecosystems suggests that
locality is more appropriate, but with a very large radius. That is, suppose
there's a large die-off of organisms in one par ticular area . Then orga nisms
from surrounding areas will rush in very fast , to fill th e vacant area- but they
cannot rush in infinit ely far in one generation. Once again, fut ure research
may settle whet her the simplified assumpt ion of nonlocality act ually creates
different long-term behavior.

6 . Ring and torus viability

The following t heorem describes move behavior t hat results in opt imal cell
viability, for a whole ring of cells. It applies to all cellular games wit h a
local life prob ability matrix; that is, all games in which the probability a
cell "lives" into the next generation is determined by its moves, and those of
its neighbors less t han a given number r uni ts away. It thus applies to the
Art hur-Packard-Rogers model. However , it is here describ ed in ter ms of the
one-round mod el given in the previous sect ion.

D efin it ion 6.1. The ring viab ility of a finite ring of cells C running a one­
round game G, in generation g, is the average life probability of these cells
in that generation after moves are made, but before the cells' life variable is
act ually set.

Since C has finitely many cells, whose moves are from a specific finite
alphabet, there is some combination of moves which will maximize t his vi­
ability. For example, in a one-round version of th e Stag Hunt game, ring
viability will be max imized if all cells cooperate ; and in some versions of
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the Prisoner 's Dilemm a, ring viability will be maximized if cells alt ernate
between cooperat ion and defection .

The result obtained is t hat this optimal arrangement is periodic. T he
following lemma is used in the pro of:

Lemma 6.2 . Let G be a one-round cellular game of radius r , in which there
are k possible moves from some finite alphabet 2::; . Let t be any string in 2::;*.

Let L(t) be the average life probability of all cells in a ring of It I cells, such
that the move of the i th cell is the i th character oft . Th en, if b, W I , and W2
are strings in 2::;*, Ibl 2: 2r ,

L(bwIbw2) = L(bwI) + L(bw2) (1)
2

Proof. Consider a ring of cells consecut ively makin g t he moves in bWIbw2'
Cells making moves from W I are more th an r units away from cells making
moves from W2. Therefore, these cells cannot influence each other 's life prob­
abilit ies. In th e same way, b is large enough so th e life probabilities of cells
making moves in either copy of b can be influenced by cells makin g moves
in W I or in W2, but not by both . Therefore t he average life probab ility of all
cells is the same as if they were considered to be in two different rings. •

The main result follows.

Theorem 6.3. Let G be a one-round cellular game as above. Th en there is
some nonnegative m and some sequence t of m moves, such that rings ofnm
cells, in which the moves of t are repeated n times , have the maximum ring
viability for finite rings of any size.

Proof. There are only a finite number of strings in 2::;* that either cont ain
no more than 2r let ters, or, when circularly arr anged , contain no duplicate,
nonoverlapping 2r-tuples. Let such st rings be called "good" ; and let t be any
"good" st ring that maxim izes L(t). We wish to show that

L(t ) = maxL(s)
sEI;*

(2)

because, then , rings repeat ing the moves of t one or more t imes would have
maxim al viability.

Now, this is t rivially t rue for 8 such that 181::; 2r , because all such s are
good . Suppose it is true for all 8 such that 181< n . We wish to show th at it
is true for 8 such that 181= n.

If s is good , th is is trivially true. Suppose 8 is not good. Then 8 = bWIbw2,
IWII, IW212: 0, Ibl = 2r. By Lemma 6.2,

L(wIbw2b) = L(bwI) + L(bw2) (3)
2

And , by our induction hyp othesis, we know th at L(bwI ) ::; L(t ) and
L(bw2 ) < L(t ).•

A corollary to this theorem is concerned with asymptot ic viability of
doub ly infinit e arr ays of cells.
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D efin ition 6.4. Let the asymptot ic viability L(1) of a doubly infinite array
of cells I be measured as follows:

L (I ) I· '£7:-nl(1i)= lm sup
n~oo 2n + 1

(4)

Corollary 6.5. Let I be a doubly infinite array of cells, and let l(c) be the
life probability of a cell c, given its move and those of its r neighbors on each
side. I l t is that finite string that maximizes L(t), then L(1 ) :::; L(t ).

P roof. Consider what life probabili ty cells n through - n would have if th ey
were arranged in a ring, instead of part of a doubly infinite lattice. The only
cells that might have different life probability are cells -n through - n + r-1
and n through n - r + 1. And as n becomes larger, the cont ribut ion of these
2r cells to ring viability goes to O. •

In the two-dimensional case, however , a result similar to Theorem 6.3 is
false. That is, th ere are two-dimensional cellular games, for which no finit e
torus can achieve maxim al torus viability. This is not proven direct ly, but is
a corollary of results about Wang tiles.

A Wang tile is a square t ile with a specific color on each side. A set of
Wang tiles is a finite number of such t iles, along wit h rules for which colors
can match. For example, a red edge may be pu t next to a blue edge, but
not a white edge. Such a set is said to tile the plane, if t he ent ire plane can
be covered by copies of tiles in th e set , so that all edge matchings follow the
rules. Robinson [17] showed that there are sets of Wang t iles that can t ile
the plane, bu t permit no periodic t iling.

Note th at the set of ti les described by Robinson admits an "almost pe­
riodic" t iling. That is, for any positive integer N , the plane can be covered
with these t iles periodically so th at , under the given rules, the proportion of
t iles having unmatching edges is less than l / N .

Now a two-dimensional cellular game can be made from a k-colored set of
Wang tiles as follows. Let a cell be considered a tile , let there be k4 possible
moves, and let these moves be considered direct products of th e colors of the
Wang tiles. Let a cell's life probabili ty be increased by 1/ 4 for every match of
a component of its move, with the corresponding component of its neighbor's
move. For example, 1/ 4 would be added to a cell's life probability, if the left
comp onent of its move were compatible to the right component of its left
neighbor 's move.

Suppose a cellular game were made in this manner from th e set of t iles
described by Robinson. Then no torus could have viability one, because
otherwise there would be a periodic t iling of the plane using these t iles.
However, there are periodic til ings of the plane for which only an arbit rarily
small propor t ion of the t iles have unmatching edges. Therefore, since a
periodic t iling of t he plane can be considered a t iling of a to rus, there are
torus tilings having viabili ty 1 - E, for any 0 < E < 1.
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The compar ison of cellular games and Wang tilings suggests other possi­
bilit ies for future research on tilings. For example, instead of a Wang tiling in
which two colors either match or not , one could consider a t iling in which two
colors partially match. T his would correspond to a cellular game in which
more than two different levels of success were possible.

7. Strategy stability

In th e preceding sect ion, the concept of ring viability was discussed. That
is, for each cellular game, there is some periodic combination of moves which
maximi zes average cell viability. One might assume that all cellular games
would stabilize with cells exhibit ing , or mostly exhibit ing , such a combina­
tion of moves. If t his assumption were t rue, questions about the long-term
evolut ion of cellular games could be trivially resolved.

However, comput er experiments simulating t he Prisoner 's Dilemma as a
cellular game suggest th at this is not necessar ily th e case. Specifically, a
one-round cellular game is simulated in which each cell plays th e Pri soner 's
Dilemma with each of its neighbors. Specifications are:

• Radius. The game is of radiu s one.

• Strategies. There are two st ra tegies, or colors: "C," cooperate, or
white ; and "D," defect , or black.

• Game Table. The game life probabi lity table is: G(CDC) = 1,
G(CDD ) = G(DDC ) = 7/10 , G(CCC ) = 6/10, G(DDD ) = 4/10 ,
G(CCD ) = G(D CC ) = 3/ 10, G(D CD ) = 0. (That is, G(mlm2m3)
is a cell's prob abili ty of surv ival, if its right neighb or 's move is ml , its
own move is m 2, and its left neighbor's move is m3')

Under these circumst ances , maxima l ring viability is achieved by a ring of
all-cooperat ing cells. And yet , computer experiments simulat ing this game
do not show t he most ly cooperative state to be stable. In t he simulat ion
depicted in Figure 16, if a small numb er of defecting cells are pu t in the
middl e of a large ring of cooperators, the defectin g st rategy quickly takes
over the ring.

T he answer to this puzzle is that , altho ugh defectors do badly against
each other, they do extremely well against cooperators . Thus , if a small
zone of defecting cells is placed in a large ring of cooperating cells, the zone
between th e leftmos t and rightmost defecting cells tends to expand .

To address such questi ons more formally, we use the concept of a dom ain:

Definit ion 7.1. A domain is a cont iguous row of same-colored cells.

We would like to exam ine what happens when a small defectin g domain
is placed between two very large cooperat ing domains. Is the numb er of
defecting cells in the vicinity of that dom ain likely to go up or down? If it is
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Figure 16: Computer simulat ion of a one-round Prisoner's Dilemma
game on a ring of 600 cells. Initially, two defectors are placed side­
by- side; all other cells are cooperator s. (Black indicat es defecting
cells, and white, cooperating.) Program prisoner .pas , random seed
424479774. Note that the rate of expansion of the black domain ap­
pears roughly similar on each side, suggesting an informal est imate of
the expected rate.

more likely to go up , we can reasonabl y say t hat cooperative behavior is not
stable under invasion .

Con ceivabl y, of course, each st rategy could be unst abl e under invasion by
the other ; that is, there could be a tendency for large domains of each color
to break up into smaller ones.

Let there be a doubly infinite lat t ice of cells, ru nn ing the Prisoner 's
Dilemma game describ ed above. Let B be a small, bu t greater than one­
cell, black domain in this lat ti ce, bordered , in generation 0, by two large
white domains W l and Wr . Let Bo be the number of black cells in B in
generation 0. Let B1 equal Bo plus the number of cells that were white in
generation 0, and , in generation 1, have black st rategies descended from the
strategies of cells in B ; and minus the number of cells that were in B in
generation 0, and are white in generation 1. Thus, B1 is rou ghly the number
of black cells in the vicinity of B in the next generation. Finally, let Cl be
the rightmost memb er of WI, C2 the leftmost member of B , C3 the rightmost
member of B, and C4 the leftmost memb er of Wr , in generat ion 0.

Now, some te rms used in t his proof are defined.

Definiti on 7.2 . Let a black incursion be a sit uation in which a black cell c
in D, becomes in the nex t generation the parent of newly black cells in WI
or Wr . If it becomes the parent of cells in both, let it be regarded as two
incursions.
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D efinition 7. 3. Let the cell c, the parent of the newly black cells in the
incursion, be called the parent of the incursion .

D efinition 7 .4. Let a white incursion, and its parent , be defined in a similar
manner; that is, a sit uation in which a white cell becomes the parent of cells
formerly in E .

D efinition 7.5. Note that there cannot be a black incursion into WI, unless
Cl dies (or into Wr unless C4 dies); and, similarly, there cannot be a white in­
cursion into E , with parent in WI, unless C2 dies (or with parent in Wr , unless
C3 dies). Let such sit uations be called black (white) incursion possibilit ies.

We now show that as the size of the bordering white domain becomes
arbit rarily large, t he expected size of a black incursion into that doma in (if
possible, as explained above) should go to 5/6.

Lemma 7.6 . Let En be the expected size of a black incursion into a white
domain W , given that there is a black incursion possibility with parent in E ,
and that IWI= n . Th en, under G,

lim En =~ .
n -eco 6 (5)

Proof. Suppose the nearest cell w , in W , to E to stay alive is such that
there are k dead cells in W between wand E . Then cells in W between w
and E have parents of both colors , and their probabi lity of becoming black
is thus 1/2. Now, the probability of there being k such cells to die, under G,
given the incursion possibility, is

G(CCC) [l - G(CCC) ]k-l = ~ G) k-l

(T hat is, each white cell with two white neighbors has probability G(CCC ) =
3/ 5 of living.) Thus

•

n (k) (3) (2) k- l 00 (k) (3) ( 2) k- lJl.IlJo En = Jl.IlJo {; 2 5 5 = {; 2 5 5

We also bound th e expected size of a white incursion.

5 (6)
6

Lemma 7.7. Let Em be (under G) the expect ed size ofa whit e incursion into
E , from a white domain W, given that there is a white incursion possibility
with parent in W , and that lEI = m. Th en Em < 5/4.
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Proof. Suppose the nearest cell b, in E , to W to stay alive is located so
that there are k dead cells in E between b and E. Then cells in E between b
and W have parents of both colors, and their probability of becoming white
is t hus 1/ 2. Now, the probability of there being k such cells to die, under G,
given the incursion possibility, is

G(DDD )[l - G(DDDW - I = ~ G)k-l

(Since each black cell with two black neighbors has probab ility 2/ 5 of living.)
Thus

(7)

•
The main th eorem follows.

Theorem 7.8. Let E be a small black domain on a doubly infinite lattice,
on which tile Prisoner's Dilemm a game G is run. Let all variables be as
described above. Th en, if Eo 2: 2, and W l and W r are large enough, the
expected value of E I - Eo, which is roughly the expected change in the
number of black cells in the vicinity of W , is positive.

Proof. We examine eight cases , depend ing on the life of CI, C2, C3 , and C4.

Note that CI and C4 have pro bability G(CCD) = G(DCC) = 3/10 of living;
and C2 and C4, G(CD D) = G(DDC) = 7/10.

1. All four cells live. T hen E I - Eo = O.

2. Cl, C2 , C3 live, C4 does not (or th e reflect ion of this case) . The probability
of th is is 2(3/ 10)(7/10)3. There is one black incursion possibility (with
C3 as the parent) of expected size that goes to 5/6, as the neighboring
domain becomes arbit rarily large.

3. CI , C2 live, C3 dies, C4 lives (or the reflection). The probab ility of t his
is 2(3/10)(7/10)(3/10)2 There is one white incursion possibility (with
C4 as the parent ) of expected size less than 5/ 4.

4. CI, C2 live, C3, C4 die (or the reflection). The probabi lity of this is
2(3/10)(7/1 0)(3/10)(7/ 10). There is one black incursion possibility
(with C2 or a cell between C2 and C3 as the parent) of expe cted asymp­
totic size 5/6; and there may be one white incursion possibility (with
a cell to the right of C4 as the parent ), of expected size less than 5/4.

5. CI dies, C2 lives, C3 lives, C4 dies. This case has probability (7/ 10)4.
There are two black incursion possibilities (with C2 and C3 as th e par­
ents) of expected asymptot ic size 5/6 each.
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6. CI dies, C2 lives, C3 dies, C4 lives (or the reflection). The prob ability of
thi s is 2(7/10)2(3/10)2. There is one black incursion possibility (wit h
parent C2) of expected asympt ot ic size 5/6; and one whit e incursion
possibility (with parent C4 ) of expected size less tha n 5/4.

7. CI dies, C2 lives, C3 and C4 die (or the reflection). The probability of
this is 2(7/10)2 (3/10)(7/10) . There is one black incursion possibility
(with parent C2 ) of asymptotic size 5/6; and there may be one white
incursion possibility (with parent to the right of C4) of expected size
less than 5/4.

8. C2 and C3 both die. The probability of this is (3/10)2. There may not
be a black incursion if every cell in D dies . There are at most two white
incursion possibilities of expected size less than 5/4 each.

Thus, if IBI ::::: 2, and Wz and Wr are large enough, under all cases the
expected value of B I - Bo must be at least

However, it is not always t he case th at , in a two-strategy system, the
"dominant" st rategy will prevail. One st rategy may lose aga inst another,
but do so well against itself that its use tends to expa nd. This happ ens in
zero-dept h versions of the previously discussed Stag Hunt , a game similar
to the Pri soner 's Dilemma, except th at successful cooperation is more prof­
itable than exploitat ion. If computer experiments (Figure 17) simulate this
game, giving a high enough premium for mutual cooperation, then coopera­
tive behavior does tend to prevail. Specifically, the game has the same radius
and numb er of moves as the Pri soner' s Dilemma game describ ed above. Its
table is: G(CDC) = 10/16, G(CDD ) = G(DDC) = 7/16, G(CCC ) = 1,
G(DDD ) = 4/16 , G(CCD) = G(DCC) = 8/16 , G(DCD) = O.

It is possible, using the same techniques as above, to show that black
dom ains are unstable in thi s game.

Theorem 7.9. Let W be a small whit e domain on a doubly infinite lattice,
on which the St ag Hunt game as described above is run . Let B, and B; be
its neighbors, and Wo be it s size in generation O. Let WI equal: Wo plus the
number of cells that were black in generation 0, and, in generation 1, have
white strategies descended from the strategies of cells in W; and minu s the
number of cells that were in W in generation 0, and are black in generation
1. If Wo ::::: 2, and B, and B; are large enough, then the expected value of
WI - Wo, roughly the exp ected change in the number of white cells in the
vicinity of W , is positive.
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Figure 17: Computer simulation of a zero-depth, one round per gen­
eration Stag Hunt game on a ring of 600 cells. Init ially, four cooper­
ators are placed cont iguously; all other cells are defectors. Program
stag. pas , random seed 941165838. Note that, in this case, the rate
of expansion of the white domain appears to vary considerably.

Proof. The same calculations as describ ed above are carr ied out, except
tha t white and black are excha nged , and the probabilities of the St ag Hunt
game are used. The asymptot ic expected size of a white incursion , given the
possibili ty of such, turns out t o be 2. The expected size of a black incursion,
given the possibility of such, t urns out to be at most 1/2 (since cells that
are white and bordered on both sides by white neighbors cannot die). The
asymptot ic expected change in the number of white cells in the vicinity of
W turns out to be at least 223/256.•

Nash equilibria of cellular games have also been analyzed [2].

Definition 7.10. In the context of a cellular gam e, a symmetric Nash equi­
librium (SNE) arises if, when a cell's r nearest neighbors on each side use
stra tegy s, its best response is also to use s.

For example, in the Stag Hunt game describ ed above, both unilateral
cooperation and defection give rise to such equilibria. T hat is, if a cell's
neighbors always cooperate (defect ) , a cell is best off coopera t ing (defecting)
too.

As with ring viability, it is easy to assume that Nash equilibria det ermine
th e cour se of a game; th at is, a st rategy giving rise to a symmetric Nash equi­
librium is stable und er invasion by differently behaving st rategies. However,
while th e st udy of Nash equilibria is a promising avenue to understanding
cellular games, such an automatic assumption is not necessaril y the case.
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Figure 18: Computer simulat ion of a zero-depth, one round per gen­
eration Stag Hunt game on a ring of 600 cells. Initially, four defec­
tors are placed cont iguously; all other cells are cooperators. Program
stag2 .pas , random seed 90049811.
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For example, in the St ag Hunt , unil ateral coopera tion gives rise to a SNE.
However, in some versions of this game, cooperating dom ains are unstable
because isolated defecting cells are quit e likely to kill off t heir neighbors de­
spite the fact they t end to die off themselves. Thus, they tend to have mor e
descendants than th eir neighbors.

The par amet ers used in this version of t he St ag Hunt are not exactly
the same as above. They are: G(CD C ) = 16/1 8, G(CDD ) = G(DDC) =
15/18 , G(CCC) = 1, G(DDD ) = 14/1 8, G(CCD) = G(DCC) = 9/18 ,
G(DCD ) = O.

Computer experiments simulating thi s process (F igure 18) do ind eed show
that white dom ains are unstable. This result can also be proved using the
same techniques as above.

Theorem 7.11. Let B be a small black domain on a doubly infinite lat tice,
on which the second St ag Hunt game as described above is run. Let WI
and VV;. be it s neighbors, and let Bo be its size in generation O. Let B 1

equal: Bo plus the number of cells that were whit e in generation 0, and, in
generation 1, have black strategies descended from the strategies of cells in
B ; and minus the number of cells that were in B in generation 0, and are
white in generation 1. If Bo 2': 2, and WI and Wr are large enough, then the
expected value of B 1 - Bo, roughly the expected change in the number of
black cells in the vicinity of B , is positive.

Proof. The same calculat ions as describ ed for the Prisoner 's Dilemma case
are carried out, except that the probabilities of th e second Stag Hunt gam e
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are used. The asymptotic expected size of a black incursion , given the pos­
sibility of such, t urns out to be 1/2 , since cells t hat are white and bordered
on both sides by white neighbors cannot die. The expected size of a whit e
incursion , given the possibility of such, turns out to be at most 9/14 . The
asympt ot ic expected cha nge in the number of black cells in the vicinity of B
turns out to be at least 311/1008. •

Thus we see that cellular game behavior is difficult to ant icipate. These
systems reflect the richness of living ecologies, in which how well a species
surv ives is determined by how well t he organisms of t hat species compete
wit h others, how well they cooperate among t hemselves, and how many de­
scendants they have. No one factor automatically decides t he issue.
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Appendix A. Com puter experiments

All computer experiments were done in Turbo Pascal, Version 4.0, using
the buil t-in pseudorand om numb er genera tor. Source code is available from
l evine©symcom.math .uiuc . edu.

The program simulat ing t he modified Arthur-P ackard-Rogers model, with
Stag Hunt parameters, is cg2 . pas . Note that in t his program all st rategies
are mixed; that is, there is a small probability of actions other t han tho se
called for by the pure strategy.

The implementations of one-round mod els are as follows: The Cloud
Process, cloud .pas , the Prisoner 's Dilemma, prisoner .pas , t he Stag Hunt
(first version) , stag. pas , and the Stag Hunt (second version), stag2 .pas .

Appendix B. The Prisoner's Dilemma

The Pri soner 's Dilemma is a two-person game in which two types of moves
are possible: cooperate and defect . This game models the options of two
prisoners held in separate cells for t he same crime, who are being pressur ed
to confess to that crime. If both prisoners keep silent-that is, they cooperate
with each other-they will both get a sma ll sentence for a lesser crime. If they
both talk- that is, they both defect- they both get the standard sentence. If
one talks and the oth er does not , the one that kept silent gets a very severe
sente nce and the ot her goes free. Thus, Pri soner 's Dilemma is a game in
which a player 's reward for defecting, while the other player cooperates, is
highest. Next highest is the reward for mutu al cooperation; th en, the reward
for mutual defection. Lowest of all is the reward for cooperating while the
other player defects. The Prisoner 's Dilemma can also be genera lized to
three-person games.
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Appendix C. The A rt hur-Packard-Rogers model
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The computer experiments present ed in sect ion 3 use a mode l very similar
to t he one described in [18]. That is, there exists a circular ring, or doubly
infinite lattice, of cells C. Associated with each cell c, in each round i of each
generation g, are:

• A move variable m e,i,g from some finite alphabet I; of k characters.

• A st rategy variable S e,g. This is a table, in which ent ries are from I;.
. If strategies are of depth d and radius r (that is, moves of a cell's r

nearest neighbors, up to d rounds back, are take n into account) , then
thi s table contains k d(2r+l) entries. Hence there are kk

d
(2r + l ) possible

strategies. Note that st ra tegies do not change in a genera t ion, bu t
they do take into account rounds in previous generat ions . In computer
experiments, move and st rategy variables are initialized with the aid of
a pseudorandom number generator .
A finite number of mixed, that is, stochast ic, st rategies may also be im­
plement ed; that is, st rategies in which, given at least one game history,
there is posit ive probability of a cell making two different moves. For
example, a mixed st rategy for Prisoner 's Dilemma would be to cooper­
ate 95% of the t ime, and defect the other 5%. If a given game allows k
moves, and k' mixed courses of action, t here are (k + k')k

d
(2r + l ) possible

st rategies. Again, mixed st rategies, and all other st ochastic act ions,
are implemented with the aid of a pseudorandom numb er generator.

• A reward , or payoff variable W e,i,g. T his variab le starts out at 0 in t he
first round of each generation: its change in each round measures the
cell's success in t hat round.

Changes to th e reward variable are determined by a matrix G that defines
the game and does not change during its course . That is, if a cellular game
has radius r , and i > 1,

W e,i,g = We ,i-l ,g+ G (me-r,i,g, . . . , m e,i,g, . .. , me+r,i,g ) (8)

An example of a game matrix is the following table for a Prisoner 's
Dilemma game. If "D" is defect , and "C" is cooperate: G(CDC ) = 100,
G(CDD) = G( DDC) = 70, G(CCC ) = 60, G( DDD) = 40, G(D CC ) =
G(CCD) = 30, G(CDC ) = O. For this game, k = 2 (that is, there are two
possible moves, cooperat e or defect ); and r = 1 (only the moves of a cell's
nearest neighbors affect its reward variable) .

In the Arthur-Packard-Rogers model, a fixed numb er of rounds R (e.g.,
150 rounds), is regarded as const itut ing a genera t ion. After each generation,
cell st rategies change, as follows:

• A cell's probabil ity of "living" into the next generation is an increasing
function of t he size of its reward variable. Usually the reward matrix
contains only posit ive ent ries, and life probability is proportional to the
size of a cell's reward variable.
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• A live cell keeps its st rategy in the next generat ion .

• A cell that does not live is given a new strategy in the next generation .
This st rategy is chosen as follows:

• New ent ries in t he st rategy table are taken from correspo nding ent ries
from eit her one ofthe two parent cells (t he cell 's near est living neighbors
on each side) . T he new strategy table can contain elements from bo th
parent cells (crossover, Definit ion 3.2) or one parent (no crossove r). The
exact details of how such a select ion is carr ied out is par t of the genetic
algorithm used in the program . For a discussion of genetic algorit hms,
see [4]. Note, however , that all such algorithms are symmetric between
the left and right parent ; and that if a cell has no living neighbors on
eit her side, all st rategy possibilit ies are equally likely.

• After t he basic new st rategy is chosen, each tab le ent ry is subject to
mu tation (Definit ion 3.4). That is, t here is a small probab ility it may
change.
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