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Abstract. In this paper, we develop a theory of covers for functions
defined over boolean strings. Given a function, a cover is a decompo-
sition, though not necessarily a partition, of the bits into subproblems
that can be solved in parallel. In the paper, we formulate the notion
of cover size, which equals the size of the largest subproblem in a de-
composition for a particular function. Cover size is defined relative
to a function’s upper contour sets. An implication of cover theory is
that a problem’s difficulty, as measured by its cover size, necessarily
decreases as the function value improves. We also show how cover
theory lends insight to the performance of hillclimbing algorithms and
genetic algorithms, and present data from simulations that support a
covers-based explanation for genetic algorithm performance.

1. Introduction

This paper introduces the theory of covers for functions defined over boolean
strings. Cover theory serves three purposes. First, covers formalize the fa-
miliar notion that complex problems defined over many variables can be de-
composed into simpler subproblems each containing fewer variables. Each of
the subproblems can then be solved in parallel, thereby decreasing computa-
tion time. Practical applications of the benefits from decomposition include
the parallel architecture of supercomputers, the divisionalization of firms,
and the decentralization of economic activity [24]. In this paper, we show
how cover theory might be applied to the multiple public projects problem.
Second, covers provide a measure of decomposability with respect to upper
contour sets. Nonlinear effects that occur near the optimum are more rele-
vant than nonlinear effects arbitrarily located in the domain. Third, covers
can be used to analyze the performance and optimize classes of search algo-
rithms. This last point requires clarification. Locating a cover is difficult.
We do not mean to imply that locating a cover is an efficient optimization
algorithm. What cover theory can do is shed light on the performance of

1See [20] for a more complete analysis of the multiple public projects problem.
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several search techniques including genetic algorithms as discussed later in
this paper.

In the problems we consider, a decision maker wants to maximize a func-
tion V' that maps boolean strings of fixed length onto the real numbers.? A
cover represents a decomposition of the string into substrings that can be
solved in parallel. To explain the notion of a cover, we present a simple
example. This problem could be solved by enumeration rather easily. The
purpose of this example is to explain what a cover is and not to demonstrate
the concept’s usefulness.

Suppose that a city is considering three public projects: an airport (a),
a botanical garden (b), and a cable car system (c). Suppose that the city’s
value function is well defined and denoted by V', where V' maps the power
set of {a,b, ¢} onto the real numbers. Let the empty set () denote the status
quo and let “ab” denote the state of the world where the airport and the
botanical garden are provided, but the cable car system is not. Suppose that
V satisfies the following inequalities:

Vie) <V(0) < V(bc) < V(b) < V(a) < V(ab) < V(ac) < V(abec)

If the objective function V is not known ex ante but is revealed through
cost-benefit analysis, a complete decomposition of the three project decisions
so that each decision is made independently might not lead to the optimal
choice of projects. In this scenario, the decision on the cable car system is
problematic: the cable car system should not be built if the airport is not
built:

Vie) < V(D) and V(bc) < V(b)

However, if the airport is built, then the cable car system should be built
as well. It follows that coordination on decisions is required to guarantee
the optimal choice over subsets of projects. Suppose that we decompose the
set of projects into the sets {a,c} and {b} and make decisions on these two
sets independently. Consider first the decision on the botanical garden. The
inequalities below follow from above:

V(@) <V(b) V(c)<V(be) V(a)<V(ab) V(ac)< V(abc)

These inequalities show that regardless of the decision on the other projects,
the botanical garden should always be provided. Consider second the decision
on the other set of projects:

max{V(0),V (a), V(c)} < V(ac)
max{V (b), V(ab), V(be)} < V(abe)
These two inequalities show that providing both the airport and the cable car

system is the preferred alternative, regardless of the decision on the botanical
garden. Combining the decisions on the subproblems {a, ¢} and {b} leads to

2Formally, all that we require is that range of the function be a completely ordered set.
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the optimal decision over the set of all projects, that is, providing all three
projects. More generally, a decomposition into subproblems forms a cover if
(i) each decision (variable) belongs to at least one subproblem and (ii) the
optimal decisions on the subproblems “agree” with the optimal decision on
the larger problem. In the example, {a,c} and {b} form a cover and also
partition the set of decisions. The latter need not be true in general; the
same variable may belong to more than one subproblem.

This example can also be used to demonstrate how covers measure de-
composability relative to the function’s upper contour sets.> Suppose that
the airport’s value is known to be greater than the status quo value and
that the airport’s external effect on the other two projects is thought to be
positive. Suppose further that, preliminarily, the airport is assumed to be
provided so that the starting point for optimization is “a.” In this case, the
problem can be decomposed into the sets {a}, {0}, and {c}. To understand
why, first consider the decision on the cable car system.

V(a) < V(ac)
V(ab) < V (abc)

The value of the airport together with the cable car system, V' (ac), exceeds
the value of the airport alone, V(a). And the value of all three projects,
V(abc), exceeds the value of the airport and the botanical garden, V'(ab).
It follows that the optimal decision on the subproblem {c} is to provide the
cable car system. A similar argument establishes that the optimal decision on
the botanical garden is to provide that project as well. Finally, the optimal
decision on the airport is to not reverse the earlier decision. Regardless of the
decisions on the other two projects, the airport is always worth providing.
Thus, we say that the sets {a}, {b}, and {c¢} form a cover for V on the
contour set above “a.”

In the formal model presented later in this paper, the cover size of a
function equals the number of variables in the largest subproblem of a de-
composition. This measure is most relevant if the subproblems are to be
solved in parallel: the time required to solve the problem equals the time
required to solve the largest subproblem. Alternatively, if the function is to
be solved sequentially, then another measure may be more appropriate. In
a companion paper, we show how cover theory can be used to formulate a
measure of ascent size, which captures the difficulty of solving a problem
sequentially [21].

Given this measure of cover size, we see in the example that by starting
optimization from a better initial set of projects (V' (a) > V()) the cover size
decreased. The maximum number of decisions in any one subproblem was
reduced from two to one. Interpreting cover size as a measure of the difficulty
of optimizing, we can say that the problem becomes less difficult near the
optimum. Later in this paper we show that this is a generic phenomenon:

3The upper contour set above @ consists of all elements of the domain whose values are
greater than or equal to 6.
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cover size decreases as the initial point of search improves for any function
defined over binary strings.

The remainder of this paper is organized as follows. In sections 2 and
3 we define covers for functions defined over binary strings and construct a
decomposability vector. We also compare cover size with other measures of
complexity and present data from test functions. In section 4 we use covers
to select optimal parameters for a class of hillclimbing algorithms and offer
an alternative explanation for the performance of genetic algorithms. The
latter discussion focuses on the “building block hypothesis” and its inter-
pretation through the lens of covers. In our discussion of genetic algorithm
performance, we also present data from test functions that support a cover
theory interpretation. In the conclusion, we discuss a more general notion of
covers mentioned by Richardson [23].

2. Binary strings

A cover decomposes a problem into subproblems that can then be solved
in parallel. This decomposition is relative to the objective function’s upper
contour sets. We begin with some basic definitions.

2.1 Preliminaries

We refer to each binary variable as a bit and to a decision on each binary
variable as a string.

Definition 1. The set of bits, N = {1,2,3,...,n}.
Definition 2. The set of strings, S = {s|s=s152...s, with s; € {0,1}}.
We assume that we are trying to maximize V', which belongs to F, the

set of all functions whose domain can be encoded as binary strings of length
n and whose range is the real numbers.

Definition 3. The set of objective functions, F ={V |V : § — R}.
A class of subsets of N called hyperplanes play a prominent role in the
analysis. A hyperplane can be represented by a ternary string of length n

over the set {0, 1, *}.

Definition 4. The set of hyperplanes, H = {h | h = hihs... h, with h; €
{0, 1, %}}.

For ease of exposition, the ternary variables h; are also referred to as bits.
A bit in a hyperplane is defined if it takes on the value 0 or 1.

Definition 5. The defined bits of h, d(h) = {i | h; € {0,1}}.
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A string lies in a hyperplane if the string and the hyperplane have identical
values on the defined bits of the hyperplane. We let S(h) equal the set of
binary strings that belong to h.

Definition 6. The set of binary strings belonging to h, S(h) = {s | s; = h;
if h; € {0,1}}.

Example 1. S(0x1x) = {0010, 0011, 0110, 0111}.
The size of h equals the number of defined bits of h.
Definition 7. The size of h, o(h) = |d(h)]

According to this measure, a hyperplane’s size equals its co-dimension.
A hyperplane with a larger size contains fewer strings.

2.2 String dominant hyperplanes

The idea underlying the definition of a cover is that “good” hyperplanes can
be combined to form “good” strings. This same idea is the basis for the
Schema Theorem described in section 4. We begin by defining the projection
operator A, which combines hyperplanes.

Definition 8. The projection operator A : Hx H — H satisfies the following
rule: h A h =y, where

_ R ifhi=x
Y=k ifhie{0,1}

Example 2. 0xx A 1x1 = 0x1.

The set of strings S is contained in H, therefore A is also a map from the
Cartesian product of H and S into S. We think of A A s as moving the string
s into the hyperplane h while making the minimal number of changes in bit
values.

Claim 2.1. The operator A is associative but not commutative.
Proof. A associative: h A (b A h) =y, where

It is straightforward to show that y = (hA f:z) Ah, which completes the proof.
_ N\ not commutative: Let h = 00% and h = x1x. Then h A h = 00%, but
hAh=01x 1

Recall that a motivation for covers is that “good” hyperplanes can be
combined to form “good” strings. A strong notion of “good” hyperplane is
Greffenstette and Baker’s [7] dominant hyperplane.
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Definition 9. A hyperplane h is dominant for V if Vs € S(h) and V§ & S(h),
V(s) > V(3).

Definition 10. A hyperplane h is strictly dominant for V' if Vs € S(h) and
Vs € S(h), V(s) > V(3).

Claim 2.2 below states that, given two strictly dominant hyperplanes, one
must be a subset of the other. This implies that there cannot exist strictly
dominant hyperplanes with nonintersecting sets of defined bits. Therefore, it
is nonsensical to speak of combining strictly dominant hyperplanes to form
a good string.

Claim 2.2. For any h, h strictly dominant for V, if h # h and o(h) < o(h),
then S(h) c S(h).

Proof. (by contradiction) Suppose 35 € S(h) such that § ¢ S(h). It fol-
lows that 3s € S(h) such that s & S(h). But h strictly dominant for V
implies V(s) > V/(8), while h strictly dominant for V implies V(3) > V(s),
a contradiction. B A

A consequence of Claim 2.2 is that if 4 and h are dominant but not strictly
dominant hyperplanes for V, then the function V' must take an identical value
for all strings that belong to exactly one of the hyperplanes. It appears then,
that requiring a hyperplane to be dominant is too restrictive for our purposes.
As an alternative to dominant hyperplanes, we propose the weaker notion of
string dominance, which is sufficiently weak to allow for hyperplanes to be
combined but strong enough to ensure that the hyperplanes combine to form
the optimal string. A hyperplane A is said to be string dominant on a subset
of strings 7" if the value of a string in 7" does not decrease when moved into
hyperplane h by the operator A. Formally,

Definition 11. A hyperplane h is string dominant for V.on T if V(hAs) >
V(s),VseT.

Definition 12. A hyperplane h is strictly string dominant for V on T if
V(hAs)>V(s), Vs € T\h where T\h = {s | s € T,s & S(h)}.

Claim 2.3 below states that the operator A preserves string dominance.

Claim 2.3. If h and h are string dominant for V on T' and hAseT forall
s €T, then h A h is string dominant on T.

Proof. If / string dominant for V on 7', then V/(h A s) > V(s), Vs € T. By
assumption, haseT. Therefore, given that h is string dominant for V' on
T, it follows that V(R A (R A s)) > V(h A s), which by the associativity of A
implies that V' ((h A h) A s) > V(s), which completes the proof. i
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3. Covers
3.1 Definition of covers

In this section we formally define a cover. Before doing so, we need to define
the contour sets for the objective function V. To simplify the analysis, we
assume that no two strings have the same value under V. This assumption
allows us to ordinally define the upper contour sets. The extension to car-
dinal characterization of the upper contour sets and non-injective objective
functions is straightforward.

Assumption 1. Vs, § € S, if s # §, then V(s) # V(3).

Given Assumption 1, the strings can be ordered from 1 to 2" according
to their value under V.

Definition 13. S ordered by V = {s',...,s*"} where V(s') > V(s"*!) for
=14 2"=1

Definition 14. The upper contour set including s, T(a) = {s? | 8 < a}

The next claim states that string dominant hyperplanes map an upper
contour set onto itself.

Claim 3.1. If h is string dominant for V on T(«), then h A s € T(a),
Vs € T(a).

Proof. If h is string dominant for V on T'(«), then V(h A s) > V(s), Vs €
T(a). If s € T(a) and V(R A s) > V(s), then by assumption hAs € T(a). B

Corollary 3.1 follows directly from Claim 2.3 and Claim 3.1.

Corollary 3.1. If h, h are string dominant for V on T(a), then h A h is also
string dominant for V on T'(«).

We now define a cover for V. A cover is a finite set of string dominant
hyperplanes, the union of whose defining bits contains all variables.

Definition 15. The collection of hyperplanes, C' = {h', h?,..., h™}, forms
a cover for V on T if (i) and (ii) hold:

(i) R?is string dominant for V on T for all i
(i) UZ, d(A) = N.

This definition allows for two hyperplanes in a cover to be defined on
the same bit. The example below shows that a cover is not necessarily a
partition.
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Example 3. Let n = 3 and V(s) = 3s1 + s2 + s3 — 25152 — 2s183. It is
straightforward to show that C' = {10%,1 %0} is a cover for V on S.

Given Assumption 1, it can be shown that two hyperplanes in a cover must
agree on any bits that are defined for both hyperplanes. Another consequence
of this definition is the following.

Claim 3.2. If C is a cover for V on T'(a), then C' is a cover for V on T(f),
VA < a.

Proof. If A' is string dominant for V on T'(a), then h? is also string dominant
for V on T'(8), V3 < a, which completes the proof. B

The next result below states that any string belonging to every hyperplane
in a cover for V must optimize V. In other words, the optimal string can
be located by forming a cover for V. A consequence of Claim 2.1 is that the
order in which the hyperplanes are located is irrelevant.

Claim 3.3. IfC = {h', h%,... h™} is a cover for V on T(c), then h* A (R% A
(...hmA(s)...))=s',VseS.

Proof. By Claim 3.2, C is a cover for V on T'(1) = {s'}. By Corollary 3.1, if
h' is string dominant for V on T'(a), then V(R A (K2 A (... R™ A (s1)...))) =
V(s!). Tt follows that

REA(RPA(..R™A(sY)...)) = s
Therefore, by (ii) in the definition of a cover,
REAMEA(..R™A(s)..)=R'A(RPA(..A"A(sY)..)=s' VseS,
which completes the proof. B

We now describe how the notion of a cover captures decomposability. If
the hyperplanes that compose the cover are defined on a small number of
bits—say if all the hyperplanes in a cover on S are of size one—then each bit
value can be determined in isolation, and the problem can be solved quickly
by optimizing each bit in parallel. Of course, the cover size would have to be
known in order to guarantee that this locates the optimal string. If, on the
other hand, several hyperplanes in a cover have a large number of defined
bits, then the time required to solve the subproblems may be substantial. To
capture the intuition that a problem is as difficult as its largest subproblem,
we define a cover’s size to be the maximal number of defined bits in any
hyperplane which belongs to the cover.

Definition 16. The size of a cover C' = {h!,h?,...h™} for V on S is given
by Z(C) = max;{c(h%)}.

Example 4. C = {Lssx, x00%, %01} is a cover of size 2.
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Let n(c) equal the size of the smallest cover on T'(a). From Claim 3.2 it
follows that n(c) is monotonically increasing in .

Definition 17. n(a) = min{Z(C) | C is a cover on T'(c)}

Let (V) equal the number of strings in the largest upper contour set
that has a cover of size j. Each «;(-) can be thought of as a functional that
maps functions defined over binary strings into the set {1,...,2"}.

Definition 18. «;(V) = max{« | n(a) < j}

Example 5. a;(V) = 2"! implies there exists a cover of size 1 for V on
the upper contour set consisting of all strings with function values above the
median.

Claim 3.4 states that for any function V' € F, o;(V) is weakly increasing
in 7. In other words, as the function value improves, the minimal cover size
decreases.

Claim 3.4. YV € F, the following hold:

(i) aj+1(V) = o5(V);
(ii) an(V) = 2.

Proof.

(i) Let C be a cover for V of size j on T(a;(V)). Trivially, Z(C) < j+ 1.
The result follows.

(i) C = {s'} is a cover of size n on T'(2"). B

An implication of Claim 3.4 is that covers distinguish between encoded non-
linear interactions, those that may affect optimization, and relevant nonlinear
interactions, those that do. A function may contain nonlinear terms but still
have a cover of size one. A similar distinction between potential and relevant
nonlinearities has been made in economics by Buchanan and Stubblebine [3].
If an encoded nonlinear effect does not create problems for optimization, then
heuristics, optimization techniques, mechanisms, and algorithms developed
to overcome the nonlinear effect may be unnecessary.

The following claim addresses the simplest cover:

Claim 3.5. o;(V) = 2" if and only if 3C = {h', k2, ... h"} forming a cover
for V on S that satisfies:

(i) ki € {0,1}

(i) hi=xfori#j



10 Scott E. Page

Proof. Suppose a;(V) = 2*. Let ¢ = {h!,h2,...,h"} form a cover of
size one for V on S. Choose 7 € ®, the permutation group on m elements,
such that A7® € {0,1}. It follows that C = C. The other direction follows
immediately from the definition. B

Claim 3.5 can be interpreted as a decentralization (or parallel processing)
result. Beginning with any string, maximizing each bit with respect to that
string leads to the optimal string. Decisions as to which values to assign
to bits need not be coordinated. This does not mean that V contains no
nonlinear effects. In the next section, we construct functions with nonlinear
terms that nonetheless satisfy the assumptions of Claim 3.5. Such functions
have been characterized by Liepins and Vose [14] as easy.

The «a;(-)’s can be combined to form the decomposability vector, which
measures the size of the upper contour sets that have covers of various sizes.

Definition 19. The decomposability vector a(V) = (aa(V),a2(V),...,
an(V)).

The decomposability vector (V') can be considered as a functional that
maps the set of all functions defined on S into integer-valued vectors of length
n. Functions mapped to decomposability vectors with larger values are less
difficult, that is, more decomposable, as measured by cover size, than those
mapped to vectors with smaller values. Some simple examples demonstrate
how (V') measures decomposability.

Example 6.

Vi(s
(1

s)=81+8+s3+51+8(1—s1)-(1—s52)-(1—s3)

) = 881 + 489 + 253 + 84 — 1087 - 84
)

2(s)
a(VQ) (2,2,16,16)
Va(s)

3) =

= (4,16,16, 16)

—8(51 S9+83+ 818284+ S9-83- 34)—51—52—53—54

a(Vs) = (5,5, 16, 16)

Four features merit attention. First, V; has a cover of size two on all of
S while the other two functions have covers of size three on S. Thus, at
least according to this measure, V; appears most decomposable. Second, the
function V3 has a cover of size one on a larger upper contour set than either
Vo or Vi, which implies that as the function value improves, V3 becomes
easiest. Third, while V5 has a unique cover of size 3 on S, V3 has multiple
covers of size 3. Finally, although the vector «(-) does not create a complete
ordering of functions, a function V' might be said to be more decomposable
than a function V' if «;(V) > oy(V), for ¢ = 1,...,n. According to this
criterion, V4 and V3 could be said to be less decomposable than V5, but no
such comparison can be made between V; and Vj.
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At this point, we should clarify that cover size measures the decomposabil-
ity of a particular function. In the current formulation, we make no attempt
to extend this measure to classes of functions. Our intuition suggests that
members of a class of functions might have similar cover sizes; simulations
described later in this paper strongly support such an hypothesis.

3.2 Decomposability as a measure

Cover size differs from other measures of nonlinearity/complexity by focus-
ing on decomposability. Standard nonlinearity/complexity measures count
the number and size of encoded nonlinear effects [11, 14]. We refer to these
measures as domain based. In this section, we show that domain-based mea-
sures can be misleading. On the one hand, simple nonlinear interactions
may combine to form complex problems. On the other hand, complicated
nonlinear interactions may collapse to form easy problems. Decomposition
size is perhaps the simplest domain-based complexity measure for functions
defined over binary strings. Before we define decomposition size, we need to
introduce the decomposition basis coefficients, which attach a value to each
subset of N = {1,2,3,...,n} [15]. If O(s) equals the subset of bits in s that
have the value 1, then the value of a string equals the sum of the values of
the subsets contained in O(s).

Definition 20. Given V € F, the decomposition basis coefficients (Bvg, ...,
Bvr,...Bvn) € R?" satisfy

V()= > Bvr where O(s) = {i | s; = 1}.

ICO(s)

The decomposition size equals the size of the largest subset I that has a
nonzero coefficient.

Definition 21. The decomposition size of V, sizeq(V) = max{|I| | By,

# 0}

Using decomposition size as a measure, it is possible for simple nonlinear
effects to combine to form problems that would be difficult to optimize for
many search algorithms. In the example below, we construct a function with
decomposition size equal to two that forms a problem with a cover of size n.
This example can be understood in the context of a multiple public projects
model [20]. Suppose there are n potential public projects and that project
values are interdependent as in the introductory example with the airport,
botanical garden, and cable car system. Decisions on public projects can be
modeled as discrete choices, where “yes” is denoted by 1 and “no” is denoted
by 0. If we let s; represent the decision on project 4, then a string represents
a decision on each project.

In the example below, each individual project has a negative isolated value
and each pair of projects has a positive complementarity. By inspection, the
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decomposition size of this problem equals two. However, only when all n
projects are undertaken does the combined value of the complementarities
outweigh the negative project values, that is, the problem has a cover of
size n.

Example 7. Assume n > 2, and choose the decomposition basis coefficients
as follows:

1 if |7 = 1

1 1
Bv,1 e e if [I] =2
0 if |[I] > 2

Choose s € S. It is straightforward to show that V(s) < 0if s-:s = k < n and
that V(s) > 0 if s - s = n. Therefore, the highest-valued string of projects
equals the set of all projects, and the second highest-valued string of projects
equals the set of no projects. It follows that n equals the minimal cover size
for any upper contour set containing more than two strings.

Along similar lines, Goldberg [6] has shown that complex problems can
arise from simple interactions. Using the Walsh Basis, Goldberg combines
nonlinear interactions of decomposition size two and three to form problems
that are deceptive for genetic algorithms. Roughly speaking, a problem is de-
ceptive if hyperplanes whose strings have above average value do not contain
the optimal string.

Measuring a function’s difficulty by encoded effects may also overstate
the amount of relevant nonlinearity. In the decomposition basis, maximum
difficulty occurs when the coefficient of the subset of all variables has a posi-
tive coefficient, that is, when sizeq(V') = n. The example below is a function
of the decomposition size n which has a minimal cover over S of size one.

Example 8. Choose V' € F such that gy, > 0,VI C N. It is straightfor-
ward to show that size4(V') = n, but that V has a cover of size 1.

Though these examples suggest that cover size may be a more appro-
priate measure of the difficulty’ of decomposing a problem in order to solve
it in parallel, they do not imply that cover size is a better measure than
decomposition size regardless of the particular search algorithm.

3.3 Test functions

In this section, we report data from numerical simulations on test functions.
We created two classes of test functions each with a decomposition size of
two. We then measured the cover size of randomly drawn functions from the
two classes of functions. Functions from each class have decomposition sizes
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equal to two with probability one. The difference between the test functions
is that the first class has smaller nonlinear terms.

n

VI(S) = Zﬁi -8 + ZZ ’31']' © 8 S 0B; € [—2, 2] ‘31']' S [—1, 1]
1

= i=1j=1

In the simulations both 3; and ;; were uniformly distributed. We varied
n, the number of bits, and found that cover size tended to increase with n.
The table below shows that for n = 6, only 10% of the randomly generated
functions of type Vi had a cover size of six or greater, but that for n = 10,
88% of the functions had a cover size of six or greater. This occurs because
the number of nonlinear effects increases more than linearly with n. The
data from one hundred simulations are given below:

% of functions of type V}

# Bits Cover Size
n 1 2 3 4 5 >6
5 1 25 34 30 10 O
6 1 11 25 31 22 10
7 0 2 10 27 34 27
8 0 0 3 24 29 44
9 0O 0 2 8 9 81
10 o 0o 2 2 8 88

100 trials in each row

In the second class of functions, the nonlinear terms are only one fourth
as large as the linear terms:

n

VQ(?) = Zgz © 85 "r‘ZZﬁU © 8 S B; € [—4,4], 3U € [—1, 1]

i=1 i=1j=1

As before, 3; and 3;; are uniformly distributed. The data from test functions
randomly drawn from the second class of function are given below:

% of functions of type V2

# Bits Cover Size
n 1 2 3 4 5 >6
5 13 37 27 17 6 0
6 4 33 33 17 12 1
7 2 16 19 30 21 12
8 0 7 27 25 20 21
9 0 2 11 24 24 39
10 0 2 4 7 30 57

100 trials in each row
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As might be expected, the smaller nonlinear effects result in smaller cover
sizes and as before, the probability of the cover size being greater than or
equal to six increases with the number of bits. Two hypotheses may be
formulated from these data. First, we see that decomposition size and cover
size may differ substantially. Second, for a fixed n, functions drawn from the
same class have similar cover sizes. In the next section, we discuss how these
similarities may be exploited.

4. Covers and optimization theory

In this section, we show how covers can be used to select optimal param-
eters for a class of hillclimbing algorithms. We also provide an alternative
explanation for the performance of genetic algorithms in terms of covers.

4.1 ALGO(r,p)

In this section we define a class of hillelimbing algorithms called ALGO(r, p)
where r equals the maximum number of bits selected in one iteration and
p equals the probability that each bit is switched. The term ALGO is bor-
rowed from the work of Reiter and Sherman [22]. The algorithms used here
differ slightly from their algorithms. We choose to investigate simple hill-
climbing algorithms for several reasons. First, hillclimbing algorithms enjoy
widespread use because of their simplicity and effectiveness. For example,
Lin [16] has applied variants of hillclimbing algorithms to the traveling sales-
person problem with great success. Second, the number of bits that have to
be flipped in combination is a crude approximation of a function’s decompos-
ability. Finally, many other algorithms such as simulated annealing rely on
hillclimbing algorithms. Insights gained from analyzing the latter may also
apply to the former.

In our formulation, ALGO(r, p) begins with a randomly generated string.

Definition 22. The search algorithm ALGO(r, p) is defined as follows:

Step 1: Choose s* € S
Step 2: Randomly select / C N such that |I| =r
Step 3: Create st as follows:

g ifigl
t = (1 — s') with probability p ifiel
g = g with probability (1 —p) ifi € I

Step 4: If V(s*) > V(s%), then s* := s*
Step 5: Go to Step 2

ALGO(r, p) compares the current best string, s4, to a chosen string, s,
which differs by at most r bits. A string s* belongs to the set of local optima
with respect to ALGO(r, p) if any string differing by r bits or fewer has a
strictly lower value under V.

4Recall that we assume that no two strings have the same value.
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Definition 23. A string s* belongs to the set of local optima with respect
to ALGO(r,p), denoted LO(r,p), if Vs # s*, [{i : s; # s} < rand V(s) <
V(s*).

Claim 4.1 below provides a sufficient condition for an ALGO(r, p) to con-
verge to a string that belongs to a string dominant hyperplane.

Claim 4.1. For any h € H, if o(h) < r and h is string dominant for V on
S, then LO(r,p) C S(h).

Proof. Choose s* € LO(r,p). By assumption o(h) < r. Therefore, it follows
that {i | h A sf # si} <r. The proof is by contradiction. Suppose that s* &
S(h). By assumption, h is string dominant. Therefore, V (h A s%) > V(s*), a
contradiction. B

A corollary of Claim 4.1 is that if a function has a cover of size less than
or equal to r, then ALGO(r,p) locates the optimal string.

Corollary 4.1. IfV has a cover of size j and j < r, then LO(r,p) = {s'},
the optimal string.

Proof. Follows directly from Claim 4.1. B

From Corollary 4.1 we see that the vector a(V') reveals information about
how r should be chosen. A function V; that satisfies a;(V}) = 2" can be solved
with ALGO(1,p) for any positive p. Alternatively, a function V5 such that
ago(V) = 1 probably would not be optimized by ALGO(r, p) for r small.

An implication of Corollary 4.1 is that if the distribution of cover sizes
for a particular class of functions is known or approximated, then a(V') can
be used to compute the probability that a local optimum is global. In the
previous section, the data suggested that 99% of functions of type V5 have
covers of size n or less. Suppose further that 99% of the functions of type V5
satisfy as(V) > [S|/10. A search algorithm that randomly generates thirty
strings and applies ALGO(2,p) to the string with the highest value would
yield a global optimum with a probability strictly greater than (.99) - [1 —
(.9)*] = .948. This lower bound is strict given that each new local optima
moves the search to a higher contour set and increases the probability that
ALGO(2,r) finds the global optimum.

Cover size may help to explain why simple algorithms are often effective
at finding solutions. For example, finding an optimal tour for a traveling
salesperson problem (TSP) is NP-hard. Reiter and Sherman [22] and Kauff-
man and Levin [12] attempted to solve TSPs using algorithms similar to our
ALGOs. Their algorithms switch cities within a tour. Both studies found
that increasing the number of cities switched in a given iteration improved
performance but that these improvements dropped off sharply. For instance,
Kauffman and Levin showed that a variant of ALGO(3, 1) performed almost
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as well as a variant of ALGO(4, 1). In other words, their TSPs may have had
covers of size 3 for large portions of the domain.

The performance of ALGO(r, p) depends both on the parameter p and on
r, the maximal number of bits switched. The following example shows how
changing r changes the probability of locating a particular hyperplane.

Example 9. Let n =5 and suppose h = 11k is string dominant for V' on
S. Let s = 00000 and consider the performance of ALGO(2,1/2):

ALGO(2,1/2):
In Step 2, Pr{d(h) C I} =0.1
In Step 3, Pr{st =1 < ied(h)} =0.25
Therefore, after Step 3, Pr{s! € h} = 0.025.
Claim 4.3 states a more general result. The idea of the claim is that to
maximize the probability of switching bit values on a given subset of size
k, the optimal r for a given ALGO(+,p) varies directly with k& and inversely

with p. We first define the probability of switching a given subset using
ALGO(r, p).

Definition 24. The probability of switching h in ALGO(r, p) is given by
Pr(h, ALGO(r,p)) = Pr{d(h) = {i : st # s} | ALGO(r,p)}.
Claim 4.2. Ifo(h) =k and r > k, then

rk T (n—K)!

Pr(h, ALGO(r,p)) = p* - (1 — p) 1

Proof. In Step 2 of ALGO(r, p),

rl(n—r)(n—k)! rl(n—-k)!

Prig{h) € I}= nl(n—r)l(r—k)! nl(r—k)

In Step 3 of ALGO(r,p), Pr{st = s & i € d(h)} = p*- (1 — p)"®, which
completes the proof. B

Claim 4.3. Ifo(h) = k, then argmax Pr(h, ALGO(-,p)) = |k/p|, where |a|
equals the greatest integer less than or equal to a.

Proof. From Claim 4.2,

Pr(h, ALGO(r,p)) =p*- (1 —p)" - :T({%}Z—;

Let

g(r k,p) =p*-(1—p)*-
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It follows that

Pr(h, ALGO(r,p)) = g(r, k,p) - (n— k)!.

n!

Therefore, it suffices to maximize g(r, k, p) with respect to r. Let

_ g(r7k7p) _ l_p
G(T) B g(’f’—l,k’,p) - r—k

Therefore, G(r) > 1 < r < k/p, and further, G'(r) < 0, which completes
the proof. B

The corollary below states that p should be set equal to one and r equal
to o(h) to maximize Pr(h, ALGO(r,p)).

Corollary 4.2. If o(h) = k, then Pr(h,ALGO(k, 1)) > Pr(h, ALGO(r, p))
forallr € N and p € [0,1].

Proof. From Claim 4.3,

(n—k)!
n!

Pr(h, ALGO(r,p)) = g(r, k,p) -

where

g(T,k,p) :pk : (1 _‘p)T_k : (T‘—k)'

Note that g(r,k,p) = (1/k!) - f(k : r,p), where f(k : r,p) is the standard
binomial distribution. It follows immediately that r = k and p = 1 maximizes
f, which completes the proof. B

Corollary 4.2 does not prove how quickly a particular algorithm will lo-
cate the optimal string. It merely provides intuition as to how 7 should be
chosen in ALGO(r, p) in conjunction with the decomposability vector a(V).
If a function V has a cover on S of size 8, and a cover on T(2"~2) of size 4,
then initially, 7 should be large to find the hyperplanes of larger size. Once
these hyperplanes are located and the function value has improved, r should
be decreased. This same idea underpins the simulated annealing algorithm
[18, 4] in which a temperature is lowered over time. The decrease in temper-
ature decreases the number of bits that are likely to be flipped. This idea is
discussed at length in Page [21].
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4.2 Genetic algorithms

A genetic algorithm (GA) is a constant-size population based search algo-
rithm [8, 5]. Recently, GAs have been used in economics [1, 17, 9], political
science [13], and in the study of inductive learning [10]. In this section we
provide a brief introduction to GAs and use cover theory to develop an al-
ternative explanation for their performance.

A GA begins with a population of M strings that it transforms into a
new population. Each iteration of a GA is called a generation. We denote
the population in generation ¢ by p;. The transition from p; to ps1 occurs in
three stages: reproduction, crossover, and mutation. Reproduction chooses
a new population of M strings from the existing population according to the
function values of the strings. The idea is that better (more “fit”) strings are
reproduced with greater frequency, thus increasing the fitness of the popu-
lation. Let py be the population after reproduction. The reproduction we
describe relies on a tournament to select strings.

Tournament Selection: M pairs of strings from p; are randomly created. The
higher valued of the two strings in each pair belongs to py.

A crossover operator creates new strings by “crossing” strings from among
those reproduced. The analogy to be kept in mind is genetic recombination
with the bit values thought of as alleles. The bit value of a string created
during crossover may come from either parent. Crossover randomly creates
M pairs of strings, and each pair independently crosses bits with probability
p (typically p € [.25,.75]). The crossing or exchanging of bit values occurs
on a subset of the positions. The positions which cross bit values can be
chosen in many ways. Three typical crossover rules are one point, two point,
and uniform crossover. In the simulations described later in this section, we
employ uniform crossover.?

Uniform crossover: A “switching rule” x is created by selecting a string from
the set S. If x; = 1, then the strings s and ¢ switch their ith bit values. If
z; = 0, then the strings s and ¢ do not switch their ith bit values.

Bit: T1Zo T3 Tn,
Switching rule: 0 1 1 0

new s S1to t3 S,
new t t1 So S3 t,

5There are two reasons for this decision. First, with one- or two-point crossover, hyper-
planes with large distances between defined bits are more likely to get destroyed, making
the distance between defined bits a more natural definition of hyperplane size. With uni-
form crossover, it can be shown that the more defined bits in a hyperplane, the measure
used in cover size, the greater the probability that the hyperplane is destroyed during
crossover. Second, uniform crossover treats all bits symmetrically, one and two-point
crossover have endpoint bias effects. For a more complete discussion of crossover rules see
Goldberg [5].
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Crossover can “destroy” hyperplanes. A hyperplane A is destroyed during
crossover if one of the strings belonged to h prior to crossover, but neither
string belongs to h after crossover.

Example 10. Suppose h = x0x1. Let s = 0011 and t = 0110. It follows
that s € h and t & h. Suppose that s and t are uniformly crossed using the
switching rule 1100. Neither resulting string, s’ = 0010 or ¢’ = 0111 belongs
to h.

Finally, mutation may occur at the bit level or the string level. Bit muta-
tion switches the value of each bit of each string with a very small probability
(p < 0.1). Bit mutation, which is analogous to biological mutation, creates
both short and long term effects. In the short term, a mutant represents a
single random search for a better string. In the long term, a bit mutation
may spread through the population and slow the rate of convergence of bit
values. In contrast to the milder bit mutation, string mutation creates an
entirely random string. Typically, the probability of string mutation is also
small (p < 0.05). String mutation allows for random searches in entirely
different regions of the domain, which prevents the GA from getting stuck
at a local peak. After mutation, the new population, p;i1, is completed;
reproduction, crossover, and mutation are reapplied to create piro. The ran-
domness created in the mutation stage guarantees that the population never
converges to a single string replicated M times.

The performance of GAs has been the focus of a great deal of research in
recent years. To date, the most important result in the theory of GA perfor-
mance is the Schema Theorem [8], which says that hyperplanes whose strings
consistently have higher than average function values will increase in num-
ber in the population proportionate to their fitness advantage in the popula-
tion. Decreasing a hyperplane’s size (or defining length for one and two-point
crossover) increases the probability that a hyperplane survives crossover.

One interpretation of the Schema Theorem is the “building block” hy-
pothesis, which says that GAs increase the number of hyperplanes of small
size whose strings have above average value and combine them to form above
average strings. These hyperplanes are commonly referred to as “building
blocks.” A hyperplane is above average if the strings in the population that
lie in the hyperplane have, on average, higher value than the strings not in
the hyperplane.

Cover theory offers an alternative perspective on GA performance.
Claim 4.3 states that to maximize the probability of switching exactly the
defined bits in a hyperplane h, the optimal size of r ALGO(r,p) depends
upon the number of defined bits of k. Claim 3.4 states that for any function,
the cover size decreases as the function value improves. Taken together these
two claims suggest that a good search algorithm should switch fewer bits as
the search climbs up the contour sets and the cover size decreases.

Ideally, a search algorithm would adapt the number of bits that it switches
as it climbs the upper contour sets. Optimal adaptation of the number of bit
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flips requires information about the function’s contour sets. We hope to show
that a GA learns the function’s contour sets and adapts the number of bits it
switches. To summarize, there are two hypotheses that we investigate: first,
that a genetic algorithm reduces the number of bits switched as it moves up
a function’s contour sets; and second, that the rate at which this decrease
occurs depends on the function. Specifically, if the cover size is small or if
it decreases rapidly as the function value increases, then a genetic algorithm
should decrease the number of bits switched.

We construct three test functions and one class of random functions on
binary strings of length fifty. The function V] is linear, so it has cover of size
one on all of S. We would expect that the number of bits a genetic algorithm
switches would decrease rapidly as the function value improves. To inves-
tigate arbitrarily difficult functions we create a class of random functions,
V5. Functions in V, assign values to strings randomly using the uniform
distribution on [0,1]. The cover size for such functions should be close to
n, the number of bits, for fairly large upper contour sets. The number of
bits switched by a genetic algorithm should decrease slowly as the function
value improves. The linear function and the class of random functions by
themselves are not very informative. Their value is in providing benchmarks
that let us compare a genetic algorithm’s rate of convergence on the other
two functions.

The other two functions we consider are constructed from a linear func-
tion, f(s), and a nonlinear function g(s).

50
f(s) = 251‘

8
g(s) = 23 * 89i * 82i+1
i=1
The function V3 equals f — g if the value of f is less than or equal to n/2
and f otherwise:

Va(s) = {f(S) —g(s) 1if f(s) <n/2
f(s) if f(s) >n/2
The function Vj is linear at the top but rugged for smaller function values.
In contrast, the function Vj is linear for small values and rugged near the
peak. The function Vj equals f — g if the value of f is greater than n/2 and
f otherwise:

o) = {16 if f(s) <n/2
! f(s) —g(s) if f(s) >n/2

The data presented comes from a tournament selection genetic algorithm
using uniform crossover with probability 0.5 and bit mutation with proba-
bility 0.04. We have carried out computations with many other parameter
choices and similar findings obtain. Table 1 contains means over 100 tri-
als with standard errors of the distribution, not of the estimated mean, in
parentheses. The data is shown graphically in Figure 1.
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Figure 1: Average number of bits s

witched.

Gen Linear Random Low Rugged Up Rugged
# Wi VeW V3 Vi
1] 12119 (1.075) | 12.295 (0.871) | 11.435 (1.217) | 11.342 (2.225)
10 | 5.652 (1.213) | 10.558 (1.026) | 7.774 (2.105) 8.480 (1.063)
20| 1.373 (0.842) | 9.288 (1.011) | 1.871 (0.284) 7.424  (0.438)
30| 0.143 (0.223) | 8,748 (1.212) | 0.711 (0.653) 5.074 (1.796)
40| 0.163 (0.213) | 8.206 (1.158) | 0.407 (0.706) 5.099 (2.334)
50 | 0.241 (0.234) | 8.069 (1.352) | 0.516 (0.383) 3.284 (1.574)
60 | 0.282 (0.298) | 7.859 (1.352) | 0.289 (0.269) 4.200 (2.356)
70 | 0.270 (0.293) | 7.786 (1.312) | 0.529 (0.804) 3.140 (2.002)
80| 0.285 (0.333) | 7.890 (1.286) | 0.435 (0.142) 1.925 (0.956)
90 | 0.269 (0.279) | 7.864 (1.371)| 0.377 (0.318) 1.813 (0.979)
100 | 0.315 (0.330) | 1.908 (1.164) | 0.520 (0.373) 1.320 (0.452)
110 | 0.329 (0.332) | 7.860 (1.287) | 0.601 (0.399) 1.643  (1.459)
120 | 0.332 (0.306) | 7.714 (1.362) | 0.536 (0.531) 1.065 (1.308)
130 | 0.357 (0.295) | 7.873 (1.381) | 0.184 (0.193) 1.475 (2.253)
140 | 0.355 (0.323) | 7.820 (1.361) | 0.382 (0.352) 1.415 (2.319)
150 | 0.353 (0.321) | 7.771 (1.296) | 0.346 (0.300) 1.104 (1.912)
160 | 0.302 (0.330) | 7.712 (1.361) | 0.379 (0.483) 1.049 (1.752)
170 | 0.282 (0.303) | 7.563 (1.324) | 0.224 (0.204) 1.356  (2.348)
180 | 0.283 (0.303) | 7.765 (1.311) | 0.215 (0.290) 1.633  (2.829)
190 | 0.339 (0.323) | 7.721 (1.302) | 0.128 (0.160) 1.800 (3.118)
200 | 0.344 (0.310) | 7.768 (1.358) | 0.342 (0.346 )| 0.975 (1.631)
Table 1: Number of bits switched.
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These data capture several features worth mentioning. Most obvious is
that the average number of bits flipped decreases for all functions while the
average value of strings in the population increases for all functions (data
not shown). As is normally the case, the genetic algorithm switches fewer
bits as the function value improves. From Claim 3.4, we know that the cover
size decreases as the function value improves, which partially explains why
genetic algorithms have been so successful. More importantly, these data
support our hypothesis that a genetic algorithm adapts the number of bits
switched during crossover in response to the function’s cover size.

The number of bits switched is largest for the random functions in V3,
which have the largest cover size over S, and smallest for the linear function
V1 as predicted. The number of bits switched on average during crossover for
functions V3 and V is less than the number switched for the random function
but greater than the number switched for the linear function. A compari-
son between the number of bits flipped by these two functions also yields
the expected result: more bits are flipped for function V} than for function
V3. Applied to Vi, the genetic algorithm locates strings above the rugged
foothills (f(s) > n/2) and within seventy generations, the number of bits
switched averages approximately one-half, which is only double the number
switched for the linear function. Applied to Vj, the genetic algorithm con-
tinues to switch many bits for many generations. In generation seventy, on
average about three bits are switched during each application of the crossover
operator. This occurs because of the ruggedness in the upper contour sets.
Although these simple examples give reason to be optimistic about a rela-
tionship between the decomposability vector and the rate of convergence of
a genetic algorithm, more test functions should be examined before drawing
any firm conclusions.

5. Discussion

In this paper, we have shown how cover theory formalizes the idea that
functions can be decomposed into simpler subproblems that can be solved
in parallel. Covers can be used to construct a decomposability vector that
measures a function’s difficulty relative to its contour sets. Finally, we have
seen that covers can be used to explain the performance of search algorithms.
A potential shortcoming of cover theory is the severity of its assumptions. In
response, Richardson [23] has advanced the idea of e-covers, a less restrictive
construction. An e-cover consists of “almost” string dominant hyperplanes—
hyperplanes that are string dominant except on a small subset. To formalize
this notion, define h as e-string dominant on 7T'(«) if, for any & < «, the
proportion of strings in T'(&) that satisfy V(h A s) > V(s) is greater than
(1 —€). A consequence of this definition is that the number of strings for
which an e-string dominant hyperplane is not string dominant must decrease
as the search moves to higher contours. An e-cover is a collection of e-string
dominant hyperplanes the union of whose defined bit is N.
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