
Complex Systems 8 (1994) 1-24

Covers: A Theory of Boolean Function
Decomposition

Scott E. Page
Division of Humanities and Social Sciences 228-77,

California Instit ute of Technology, Pasadena, CA 91125, USA

Abstract. In this paper, we develop a theory of covers for funct ions
defined over boolean str ings. Given a function , a cover is a decompo­
sition , though not necessarily a partition, of the bits into subproblems
that can be solved in parallel. In the paper , we formulat e th e notion
of cover size , which equals the size of the largest subproblem in a de­
composition for a parti cular function. Cover size is defined relative
to a function 's upper contour sets . An implicat ion of cover theory is
th at a problem's difficulty, as measured by its cover size, necessarily
decreases as the function value improves. We also show how cover
theory lends insight to the performance of hillclimbing algorithms and
genet ic algorithms, and present data from simulation s that support a
covers-based explanation for genet ic algorithm performance.

1. Introduction

This pap er int roduces t he theory of covers for funct ions defined over boo lean
st rings . Cover theory serves three purposes. First , covers form alize the fa­
miliar notion that complex problems defined over many variables can be de­
composed into simpler subproblems each containing fewer vari ab les. Each of
the subproblems can then be solved in parallel, thereby decreasing computa­
tion t ime. P ractical ap plications of t he benefits from decomposit ion include
the parallel architecture of supe rcomputers, the divisionalizati on of firm s,
and the decentralizati on of economic activity [24]. In this paper , we show
how cover theory might be applied to t he multiple public projects pro blem .1

Second , covers provid e a measure of decomposability wit h respect to upper
contour sets. Nonlinear effects that occur near the optimum are more rele­
vant than nonlinear effects arbit rarily located in the dom ain. Third, covers
can be used to analyze t he performanc e and optimize classes of search algo­
rithms. T his last po int requires clarifi cation. Locati ng a cover is difficult .
We do not mean to imply t hat locat ing a cover is an efficient opt imization
algorithm. What cover theory can do is shed light on the performanc e of

lSee [20J for a more complete analysis of the multiple publi c projects problem.

2 Scott E. Page

severa l search techniques including genet ic algorithms as discussed later in
this pap er .

In the problems we consider, a decision maker wants to maximi ze a func­
tion V that maps boolean st rings of fixed length onto th e real numb ers.? A
coveT represent s a decomp osition of th e st ring into subst rings that can be
solved in parallel. To explain the notion of a cover, we present a simple
example. This prob lem could be solved by enumerat ion rather easily. The
purpose of th is example is to explain what a cover is and not to demonstrat e
th e concept's usefulness.

Suppose th at a city is considering three publi c proj ects: an airport (a),
a botanical garden (b) , and a cable car syste m (c). Suppose t hat the city 's
value function is well defined and denoted by V , where V maps the power
set of {a,b,c} onto the real numbers. Let the empty set 0 denote the status
quo and let "ab" denote the state of the world where the airport and the
botanical garden are provided, bu t the cable car system is not. Suppose that
V satisfies t he following inequalit ies:

V (e) < V(0) < V(be) < V(b) < V(a) < V(ab) < V(a e) < V(a be)

If th e objective function V is not known ex ante but is revealed through
cost-benefit analysis, a complete decomposition of th e three pr oject decisions
so that each decision is made independently might not lead to the opt imal
choice of projects. In this scenario, the decision on the cable car system is
prob lematic: the cable car system should not be buil t if the airport is not
built :

V (e) < V (0) and V (be) < V (b)

However, if th e airport is bu ilt , then th e cable car syste m should be built
as well. It follows t hat coord ination on decisions is required to guarantee
the optimal choice over subsets of pro jects. Suppose that we decompose the
set of proj ects into the sets {a,e} and {b} and make decisions on these two
sets independently. Consider first the decision on t he botan ical garden. The
inequalities below follow from above:

V (0) < V (b) V (c) < V (bc) V (a) < V(ab) V (ac) < V(a bc)

These inequalit ies show that regardl ess of the decision on the other proj ects,
the botani cal garden should always be provided. Consider second the decision
on th e oth er set of pro jects:

max{V(0), V(a) ,V(e)} < V(ac)
max{V(b),V(ab), V(bc)} < V(abc)

T hese two inequalit ies show t hat provid ing both the airport and th e cable car
system is the preferred alternative, regardless of the decision on the botanical
garden. Combining the decisions on the subproblems {a,c} and {b} leads to

2Formally, all that we require is that ra nge of the function be a completely ordered set .

Covers: A Tli eoty of Boolean Function Decomposition 3

the optimal decision over the set of all pro jects, that is, providing all three
proj ects. More generally, a decomp osition into subproblems forms a cover if
(i) each decision (var iable) belongs to at least one subproblem and (ii) the
opt imal decisions on the subproblems "agree" with the optimal decision on
the larger prob lem. In the exam ple, {a,c} and {b} form a cover and also
part it ion the set of decisions. The lat ter need not be true in genera l; the
same variable may belong to more than one subproblem.

This example can also be used to demonstrate how covers measure de­
composability relative to th e function 's upper contour sets ." Suppose that
th e airport's value is known to be greater than the status quo value and
th at the airport 's external effect on th e other two pro jects is thought to be
posit ive. Suppose furt her th at , preliminar ily, the airpo rt is assumed to be
provided so that the starting point for opt imizat ion is "a." In this case, the
problem can be decomposed into t he sets {a} , {b}, and {c}. To understand
why, first consider the decision on the cable car system.

V(a) < V (ac)
V(ab) < V(abc)

T he value of the airport toget her with the cabl e car system, V (ac), exceeds
the value of the airport alone, V (a). And the value of all three pro jects,
V(abc), exceeds th e value of the airport and the botanical garden, V (ab).
It follows that the opt imal decision on t he subproblem {c} is to provide th e
cable car system. A similar argument establishes that the opt imal decision on
the botanical garden is to provide that proj ect as well. Finally, the optimal
decision on the airport is to not reverse the earlier decision . Regardl ess of the
decisions on the oth er two projects, the airport is always wort h providing.
Thus, we say that the sets {a}, {b}, and {c} form a cover for V on the
contour set above "a ."

In the formal mod el presented later in thi s pap er, the cover size of a
function equals the numb er of variables in the larg est subproblem of a de­
composit ion. T his measure is most relevant if the subproblems are to be
solved in parallel: th e t ime required to solve the problem equals the t ime
required to solve the largest subproblem. Alternatively, if the funct ion is to
be solved sequent ially, then another measure may be more appropriate. In
a companion pap er, we show how cover theory can be used to formulate a
measure of ascent size, which captures the difficulty of solving a problem
sequent ially [21].

Given th is measure of cover size, we see in the example that by st arting
opt imizat ion from a better initi al set of projects (V (a) > V (0)) the cover size
decreased. The maximum numb er of decisions in anyone subproblem was
reduced from two to one. Interpreting cover size as a measur e of the difficulty
of optimizing, we can say that the problem becomes less difficult near the
opt imum. Later in this pap er we show that th is is a generic phenomenon :

3The upp er conto ur set above Bconsists of all elements of the domain whose values are
greater than or equal to B.

4 Scott E. Page

cover size decreases as t he initi al point of search improves for any junction
defined over binary st rings.

The remainder of this paper is organized as follows. In sect ions 2 and
3 we define covers for funct ions defined over binary st rings and construct a
decomposability vector. We also compare cover size with other measur es of
complexity and present data from test functions. In sect ion 4 we use covers
to select opt imal parameters for a class of hillclimbing algorithms and offer
an alternat ive explanat ion for the performance of genetic algorithms. The
lat ter discussion focuses on the "building block hypothesis" and its inter­
pretat ion through the lens of covers . In our discussion of genetic algorithm
per formance, we also present data from test funct ions t hat support a cover
theo ry interpret at ion. In t he conclusion, we discuss a more genera l not ion of
covers mentioned by Richardson [23].

2. B inary strings

A cover decomposes a problem into subproblems th at can then be solved
in parallel. This decomp osition is relat ive to the objective funct ion 's upp er
contour sets. We begin with some basic definit ions .

2.1 P relim ina ries

We refer to each binary variable as a bit and to a decision on each binary
variable as a strinq .

D efini tion 1. The set of bits, N = {I , 2, 3, . . . ,n }.

D efini tion 2. The set of strings, S = {s I s = S lS2 . .. Sn with s; E {O, I} }.

We assume t hat we are t rying to maximize V , which belongs to F , the
set of all functions whose domain can be encoded as binary st rings of lengt h
n and whose range is the real numbers.

D efin ition 3. T he set of objective junctions, F = {V IV : S -> R}.

A class of subsets of N called hyperplanes play a prominent role in the
analysis. A hyperpl ane can be represented by a ternary string of lengt h n
over the set {O, 1, *}.

D efini tion 4 . T he set of hyperplanes, H = {h I h = h1h2 . . . hn with hi E

{O,1,*n.
For ease of exposit ion, the ternary variables hi are also referred to as bits.

A bit in a hyperplane is defined if it takes on the value 0 or 1.

D efini tion 5. T he defined bits of h, d(h) = {i I hi E {O,In·

Covers: A Th eory of Boolean Function Decomp osition 5

A st ring lies in a hyperplane if the st ring and t he hyperplane have ident ical
values on th e defined bits of the hyperpl ane. We let S (h) equal th e set of
binary st rings that belong to h.

Definition 6. The set of binary strings belonging to h , S(h) = { s I s, = hi
if hi E {O, In.
Example 1. S (O*h) = {001O, 0011, 0110, 011l} .

The size of h equals t he number of defined bits of h.

D efinition 7. The size of h, O" (h) = Id(h)1

According to this measure, a hyperplane's size equa ls its co-dimension.
A hyperplane with a larger size cont ains fewer st rings.

2.2 String dominant hyperplanes

T he idea underlying the definit ion of a cover is th at "good" hyperplanes can
be combined to form "good" st rings. This same idea is the basis for the
Schema Theorem described in sect ion 4. We begin by defining the projection
operator /\ , which combines hyperplanes.

D efinition 8. T he proj ection operator /\ : H x H ---> H satisfies the following
rule: h /\ h= y , where

{
hi ifhi= *

Yi = hi if hi E {O,l} '

Example 2. 0** /\ hI = 0*1.

T he set of st rings S is contained in H , therefore /\ is also a map from the
Cartesian product of H and S into S . We think of h r.« as moving the st ring
s into the hyperplane h while making the minim al number of changes in bit
values.

Claim 2.1. Th e operator /\ is associative but not commuta tive.

Proof. /\ associative : h /\ (h /\ h) = Y, where

{

hi if hi = hi = *
Yi= hi ~f hi = * and hi E { O , l }

hi lf hi E {O, l}

It is st ra ight forward to show that Y = (h /\ h)/\h,which completes the pro of.
/\ not commutative: Let h = 00* and h = *h . Then h /\ h = 00*, bu t

ii r. h = oi-.•
Recall tha t a motivati on for covers is that "good" hyperplanes can be

combin ed to form "good" st rings. A st rong not ion of "good" hyperplane is
Greffenstette and Baker 's [7] dominant hyperplan e.

6 Scott E. Page

D efinition 9. A hyperplane h is dominantfor V if \;;Is E S(h) and \;;Is (j. S(h),
V(s) ~ V (s).

D efinition 10. A hyperplane h is strictly dominant for V if \;;Is E S (h) and
\;;Is (j. S (h), V (s) > V (s).

Claim 2.2 below states that , given two st rict ly dominant hyperplanes, one
must be a subset of t he other. This implies that there cannot exist st rict ly
domin ant hyperplanes with nonintersecting sets of defined bits. Therefore, it
is nonsensical to speak of combining strict ly dom inant hyperplanes to form
a good string.

C laim 2.2 . For any h, h strictly dominant for V , if h -I h and (J(h) :::; (J(h) ,
then S(h) c S(h) .

P roof. (by cont radict ion) Suppose :3s E S(h) such th at s (j. S(h) . It fol­
lows that :3s E S(h) such that s (j. S(h) . But h st rict ly dominant for V
implies V(s) > V(S), while h st rict ly domin ant for V implies V(S) > V (s) ,
a cont rad ict ion.•

A consequence of Claim 2.2 is that if hand hare dominant but not strict ly
dominant hyperplanes for V , then th e function V must take an ident ical value
for all st rings that belong to exact ly one of t he hyp erplanes. It appears then,
that requiring a hyperplane to be dominant is too restrict ive for our purposes.
As an altern at ive to dominant hyperplanes, we propose the weaker not ion of
string dominance, which is sufficient ly weak to allow for hyperplanes to be
combined but strong enough to ensure that th e hyperplanes combine to form
the optimal st ring. A hyperp lane h is said to be st ring dominant on a subset
of st rings T if the value of a st ring in T does not decrease when moved into
hyperplane h by the operator /\ . Formally,

D efini t ion 11. A hyperplane h is string dominant for V on T if V (h /\ s) ~
V (s), \;;Is E T.

D efinition 12. A hyperplane h is strictly string dominant for V on T if
V (h /\ s) > V(s) , \;;Is E T\h where T \h = {s I SE T , s (j. S(h)}.

Claim 2.3 below states th at the operator /\ preserves st ring dominance.

C laim 2.3. If h and h are string dominant for V on T and h /\ sE T for all
sET, then h /\ h is string dominant on T .

Proof. If h string dominant for V on T , then V(h /\ s) ~ V (s), \;;Is E T . By
assumption, h /\ sE T. Therefore, given th at h is st ring dominant for V on
T , it follows that V(h /\ (h /\ s)) ~ V(h /\ s) , which by the associat ivity of /\
implies that V ((h /\ h) /\ s) ~ V (s), which completes the proof. •

Covers: A Tb eoty of Boolean Function Decomposition

3. Covers

7

3.1 D efinition of covers

In this sect ion we formally define a cover. Before doing so, we need to define
the contour sets for the obj ect ive funct ion V. To simplify the analysis, we
assume that no two st rings have the same value under V . This assumption
allows us to ordinally define the upp er contour sets . T he exte nsion to car­
dinal charac terizat ion of the upper conto ur set s and non-inj ective objective
funct ions is st raightforward .

A ssumption 1. Vs, S E 5, if s i- S, then V (s) i- V (s).

Given Assumption 1, th e st rings can be ordered from 1 to 2n according
to th eir value under V.

D efinition 13. 5 ordered by V = {sl, . .. , S2
n

} where V (Si) > V(Si+1) for
i = 1 to 2n

- 1

D efinition 14 . The upper cont our set including s", T (ex) = {s,6 I (3 :::; ex }

The next claim states tha t st ring dominant hyperplanes map an upp er
cont our set onto itself.

Claim 3.1. If h is string domin ant for V on T (ex), then h /\ s E T (ex),
Vs E T (ex).

Proof. If h is st ring dominant for V on T (ex), then V (h /\ s) 2: V (s), Vs E
T (ex). If s E Z'(o) and V (h /\ s) 2: V (s), then by assumption h /\ s E T (ex). •

Coro llary 3.1 follows dir ect ly from Claim 2.3 and Claim 3.1.

Corollary 3.1. If h,h are string dominant for V on T (ex), then h /\ h is also
string dominant for V on T (ex).

We now define a cover for V . A cover is a finite set of string dominant
hyperplanes, t he unio n of whose defining bits cont ains all variables.

D efin it ion 15 . The collect ion of hyp erp lanes, C = {hI, h2 , . . . , hm
} , forms

a cover for V on T if (i) and (ii) hold :

(i) hi is st ring dom inant for V on T for all i ;

(ii) U~l d(hi
) = N .

This definition allows for two hyp erpl anes in a cover to be defined on
the same bit . The example below shows that a cover is not necessarily a
partit ion.

8 Scott E. Page

Example 3. Let n = 3 and V(8) = 381 + 82 + 83 - 281 8Z - 281 83' It is
straightforward to show that C = {1O*, 1 * O} is a cover for V on S .

Given Assumption 1, it can be shown that two hyperplanes in a cover must
agree on any bits that are defined for both hyperplanes . Anoth er consequence
of this definition is the following.

C laim 3.2. If C is a cover for V on T (a), then C is a cover for V on T ((3),
"1(3 :s; a.

Proof. If hi is st ring dominant for V on T (a) , then hi is also st ring dominant
for V on T ((3), "1(3 :s; a , which completes the proof. •

The next result below states that any string belonging to every hyperplane
in a cover for V must optimize V. In other words, the optimal st ring can
be located by forming a cover for V. A consequence of Claim 2.1 is that the
order in which the hyperplanes are located is irrelevant .

C laim 3.3. If C = {hI, hZ, . . . , hm
} is a cover for Von T (a), then h1 /\ (hz/\

(.. . hm
/\ (s) .. .)) = 8 1, "18 E S.

Proof. By Claim 3.2, C is a cover for V on T(l) = {81}. By Corollary 3.1, if
hi is st ring dominant for Von T (a), then V(h1 /\ (hz /\ (... hm

/\ (81) ...))) =

V (s"). It follows th at

h1
/\ (hZ

/\ (.. . hm
/\ (S 1) .. .)) = S l

Therefore, by (ii) in the definition of a cover ,

which completes the proof. •

We now describe how th e notion of a cover captures decomposability. If
the hyperplanes that compose the cover are defined on a small numb er of
bits-say if all the hyperplanes in a cover on S are of size one-then each bit
value can be determined in isolation, and th e problem can be solved quickly
by optimizing each bit in para llel. Of course, the cover size would have to be
known in order to guarantee that this locate s the opt imal string. If, on the
other hand , several hyperplanes in a cover have a large numb er of defined
bits , th en t he t ime required to solve the subproblems may be subst antial. To
capture t he intuit ion that a problem is as difficult as its largest subproblem,
we define a cover's size to be the max imal number of defined bits in any
hyperplane which belongs to t he cover.

D efini t ion 16 . The size of a cover C = {hI, hZ
, . •. hm

} for V on S is given
by Z(C) = maxi{o-(hi)}.

Examp le 4. C = {h **, *00*, **01} is a cover of size 2.

Covers: A Theory of B oolean Function Decomp osi t ion 9

Let n(a) equal the size of the smallest cover on T (a). From Claim 3.2 it
follows that n(a) is monoton ically increasing in a .

D efinition 17 . n(a) = min{Z (C) IC is a cover on T (a)}

Let aj(V) equal t he number of st rings in the largest upper conto ur set
that has a cover of size j . Each aj (.) can be thought of as a functional that
maps functions defined over binary strings into t he set {I , ... , 2n

} .

Definition 18 . aj (V) = max{a In(a) ::::: j }

Example 5. a 1(V) = 2n
-

1 implies there exists a cover of size 1 for V on
t he upp er contour set consist ing of all st rings with funct ion values above the
median .

Claim 3.4 states that for any funct ion V E F , aj (V) is weakly increasing
in j . In other words, as the funct ion value improves, the minimal cover size
decreases.

Claim 3.4. VV E F , the foll owing hold:

(i) aj+1(V) 2': aj(V);

(ii) an(V) = 2n

Proof.

(i) Let C be a cover for V of size jon T (aj (V)), Trivially, Z(C) ::::: j + 1.
The result follows.

(ii) C = {Sl} is a cover of size n on T (2n
) . •

An implicat ion of Claim 3.4 is that covers dist inguish between encoded non­
linear interact ions, those that may affect opt imizat ion, and relevant nonlinear
interactions, those that do . A function may contain nonlinear terms but sti ll
have a cover of size one. A similar distin ction between potent ial and relevant
nonlinearities has been made in economics by Buchanan and Stubb lebine [3].
If an encoded nonlin ear effect does not crea te problems for opt imizat ion, then
heur ist ics, optimization techniques, mechanisms, and algorithms developed
to overcome the nonlinear effect may be unnecessary.

The following claim addresses the simplest cover :

Claim 3.5. a1(V) = 2n if and only if :3C = {h I, h2, . .. , hn
} form ing a cover

for V on S that satisfi es:

(i) h:E {O, I }

(ii) h{ = * for i =I- j

10 Scott E. Page

Proof. Suppose al(V) = 2n . Let C {hl,h2, . . . ,hn } form a cover of
size one for V on S. Choose T E <P , the permutation group on m elements,
such th at h~(i) E {O, I} . It follows tha t C = C. The ot her direction follows
immediately from the definit ion . •

Claim 3.5 can be interpreted as a decentralization (or par allel processing)
result . Beginning with any string , maximizing each bit with respect to th at
string leads to the optimal st ring. Decisions as to which values to assign
to bits need not be coord inated . This does not mean that V contains no
nonlin ear effects . In the next sect ion, we const ruct functions with non linear
terms th at nonetheless sat isfy t he assumptions of Claim 3.5. Such functions
have been characterized by Liepins and Vose [14] as easy.

The aj (')'s can be combined to form the decomposability vector, which
measur es the size of the upper conto ur sets that have covers of various sizes.

D efinition 19. The decompo sability vector a(V) = (al(V), a2(V)" ",
an(V)).

The decomposability vector a(V) can be considered as a fun ct ional that
maps the set of all functi ons defined on S into integer-valued vect ors of length
n. Functions mapped to decomposability vecto rs with larger- values are less
difficult , that is, more decomposable, as measured by cover size, than t hose
mapped to vectors with smaller values. Some simple examples demonstr ate
how a(V) measures decomp osabi lity.

E xample 6 .

\IJ. (s) = 8s 1 + 4s2 + 2s3 + S4 - 10s1 . S4

a(V1) = (4, 16, 16, 16)

V2 (s) = SI + S2 + S3 + S4 + 8(1 - SI) . (1 - S2) . (1- S3)
a(V2) = (2, 2, 16, 16)

V3(s) = 8(SI . S2 . S3 + S I . S2 . S4 + S2 . S3 . S4) - S I - S2 - S3 - S4

a("V3) = (5,5 , 16, 16)

Four features merit attent ion. First , VI has a cover of size two on all of
S while the ot her two functions have covers of size three on S. Thus, at
least according to this measure, \IJ. appears most decomposab le. Second , the
fun ction V3 has a cover of size one on a larger upper contour set than either
V2 or \IJ. , which implies th at as t he funct ion value impro ves, V3 becomes
easiest . Third , while V2 has a unique cover of size 3 on S, "V3 has mult iple
covers of size 3. Finally, alt hough the vector a(·) does not create a complete
ordering of fun ct ions, a funct ion V might be said to be more decomposable
than a funct ion 11 if ai(V) ~ ai (V), for i = 1, . . . ,n . According to t his
crit erion , \IJ. and V3 could be said to be less decomposable t han V2 , but no
such comparison can be made between VI and V3 .

Covers: A Th eory of Boolean Function Decomposi tion 11

At thi s point , we should clarify tha t cover size measures th e decomp osabil­
ity of a particular function. In the current formul ati on , we make no at tempt
to exte nd this measur e to classes of functions. Our intuition suggests that
members of a class of functions might have similar cover sizes; simulat ions
describ ed later in this pap er st rongly support such an hyp othesis.

3.2 Decomposability as a measure

Cover size differs from other measures of nonlinearity/ compl exit y by focus­
ing on decomposability. Standard nonlinearity/ compl exity measures count
the numb er and size of encoded nonlinear effects [11, 14]. We refer to these
measures as domain based. In thi s sect ion, we show tha t dom ain-b ased mea­
sures can be misleading. On the one hand, simple nonlinear int eractions
may combine to form complex problems. On the ot her hand , compli cated
nonlinear int eractions may collapse to form easy problems. Decomposition
size is perh aps the simplest dom ain-based complexity measure for functions
defined over binary st rings. Before we define decomposition size, we need to
introduce th e decomp osition basis coefficients , which attach a value to each
subset of N = {I , 2, 3, ... , n } [15]. If O(s) equa ls the subset of bits in s t ha t
have the value 1, then the value of a st ring equals th e sum of the values of
the subsets contained in O(s) .

Definition 20. Given V E F , th e decomposition basis coefficients (!3v,0, . . . ,
!3V,I , ... !3V,N) E ar2n

sati sfy

V(s) = L !3V,I
leO(s)

where O(s) = {i I s, = I}.

The decomposit ion size equals the size of the largest subset I tha t has a
nonzero coefficient.

Definition 21. The decomposition size of V, sized(V)
O} .

max{II I I !3V,I

Using decomposition size as a measure, it is possible for simple nonlinear
effects to combine to form probl ems t ha t would be difficult to optimize for
many search algorit hms. In the example below, we construct a function with
decomposition size equa l to two th at forms a problem with a cover of size n.
This example can be understood in the context of a multiple public proj ects
model [20]. Suppose th ere are n potenti al public proj ects and t hat proj ect
values are int erdependent as in the introductory example with th e airport ,
botanical gard en , and cable car system. Decisions on public projects can be
modeled as discrete choices, where "yes" is denoted by 1 and "no" is denot ed
by O. If we let s, represent the decision on proj ect i, then a st ring represents
a decision on each proj ect .

In th e example below, each individual proj ect has a negati ve isolated value
and each pair of projects has a positi ve complementarity. By inspection , the

14 Scott E. Page

As might be expected , the smaller nonlinear effects result in smaller cover
sizes and as before, t he prob ability of the cover size being greater than or
equal to six increases with the number of bits . Two hypoth eses may be
formulated from th ese data. First , we see th at decomposit ion size and cover
size may differ substantially. Second, for a fixed n , functions drawn from the
same class have similar cover sizes. In the next sect ion, we discuss how t hese
similarit ies may be exploited .

4. Covers a nd optimization theory

In this sect ion, we show how covers can be used to select optimal par am­
ete rs for a class of hillclimbing algorit hms. We also provide an alte rnative
explanation for t he performance of genet ic algorit hms in te rms of covers.

4.1 ALGO(r ,p)

In this sect ion we define a class of hillclimbing algorithms called ALGO(r,p)
where r equals the maximum number of bits selected in one ite ration and
p equals th e probability th at each bit is switched. The term ALGO is bor­
rowed from t he work of Reiter and Sherman [22]. The algorithms used here
differ slight ly from their algorit hms. We choose to investigate simple hill­
climbing algorithms for severa l reasons. Fir st , hillclimbing algorithms enjoy
widespread use because of their simplicity and effect iveness . For example,
Lin [16] has ap plied variants of hillclimbing algorit hms to the traveling sales­
person problem with great success . Second , the numb er of bits that have to
be flipped in combina tion is a crude approximation of a function 's decomp os­
ability. Finally, many other algorit hms such as simulated annealing rely on
hillclimbing algorit hms . Insights gained from analyzing th e lat ter may also
apply to the form er.

In our formulat ion, ALGO(r,p) begins with a randomly genera ted st ring.

D efinition 22. The search algorit hm ALGO (r , p) is defined as follows:

Step 1: Choose SA E S
Step 2: Randomly select l e N such t hat II I = r
Step 3: Create st as follows:

st = sA if i ~ I
s~ = (i - sf) with prob abi lity p if i E I
s; = sf with probab ility (1 - p) if i E I

Step 4: If V(st) > V (sa), th en SA := st
Step 5: Go to Step 2

ALGO(r,p) compares the current best st ring, SA , to a chosen string, st,
which differs by at most r bits. A string s' belongs to th e set of local opt ima
with respect to ALGO (r,p) if any st ring differing by r bits or fewer has a
strict ly lower value und er V 4

4Recall that we assu me that no two st rings have the same value .

Covers: A Th eory of Boolean Function Decomposition 15

Definition 23 . A string s* belongs to the set of local optim a with resp ect
to ALGO(r ,p), denoted LO (r ,p), if vs -=J s', I{i : S i -=J s:}1 :::; rand V (s) <
V (s*).

Claim 4.1 below provides a sufficient condition for an ALGO (r , p) to con­
verge to a string that belongs to a st ring dom inant hyp erp lane.

Claim 4 .1. For any h E H , if a (h) :::; rand h is string dominant for V on
S , then LO (r, p) S;;; S (h).

Proof. Choose s* E LO (r ,p). By assumpt ion a (h) :::; r . T herefore, it follows
that {i I h 1\ si -=J s:} :::; r. The proof is by cont radictio n. Suppose that s· (j.
S(h) . By assumption, h is st ring domina nt. Therefore, V (h 1\ s») > V(s') , a
cont radict ion.•

A corollary of Claim 4.1 is that if a funct ion has a cover of size less than
or equal to r , then ALGO(r,p) locates the optimal string.

Corollary 4 .1. If V has a cover of size j and j:::; r , then LO (r ,p) = {S1 },
the optim al st ring.

Proof. Follows directl y from Claim 4.1. •

From Corollar y 4.1 we see that the vect or a(V) reveals informat ion about
how r should be chosen. A function Vi. that sa t isfies a 1(Vi.) = 2n can be solved
with ALGO(l ,p) for any posit ive p. Altern atively, a fun ct ion 112 such that
azo(V) = 1 probably would not be optimized by ALGO(r ,p) for r small.

An impli cation of Corollary 4.1 is that if the distribu t ion of cover sizes
for a par t icular class of functions is known or approximate d, then a(V) can
be used to compute the probab ility that a local optimum is global. In the
previous sect ion , the data suggested that 99% of fun ct ions of type Vz have
covers of size n or less. Suppose further that 99% of the functions of type 112
sat isfy az (V) > IS I/ 10. A search algor it hm that randomly generat es thirty
strings and applies ALGO (2, p) to the st ring wit h the highest value would
yield a global optimum wit h a probabili ty strict ly greater than (.99) . [1 ­
(.9)30] = .948. This lower bound is strict given that each new local opt ima
moves the search to a higher contour set and incr eases the probability that
ALGO (2, r) finds the globa l optimum.

Cover size may help to explain why simple algorit hms are often effect ive
at finding solut ions. For example, findin g an optimal tour for a t raveling
salesp erson problem (T SP) is NP-ha rd . Reiter and Sherm an [22] and Kauff­
man and Levin [12] attempted to solve TSPs using algorit hms similar to our
ALGO s. Their algorit hms switch cit ies wit hin a tour . Both st udies found
that increasing the number of cit ies switched in a given iteration improved
performan ce but that these improvements dropped off sharply. For inst an ce,
Kauffman and Levin showed that a variant of ALGO (3, 1) performed almost

16 Scott E. Page

as well as a variant of ALGO (4, 1). In other words, t heir TS Ps may have had
covers of size 3 for large portions of the domain.

T he performance of ALGO(r,p) depends both on the parameter p and on
r , the maximal numb er of bits switched . T he following example shows how
changing r changes the probability of locating a particular hyperplane.

Example 9 . Let n = 5 and suppose h = 1h** is string dominant for V on
S. Let S A = 00000 and consider the perform ance of ALGO(2, 1/ 2):

ALGO (2,1 / 2):

In Step 2, Pr{d(h) C I} = 0.1

In Step 3, Pr{s~ = 1 {:} i E d(h)} = 0.25

Therefore, after Step 3, Pr { s~ E h} = 0.025.

Claim 4.3 states a more genera l resul t. The idea of the claim is that to
maximize the proba bility of switching bit values on a given subset of size
k, the optimal r for a given ALGO(·,p) varies direct ly with k and inversely
with p. We first define the prob ability of switching a given subset using
ALGO(r,p).

D efinition 24 . The probability of switching h in ALGO(r, p) is given by

Pr(h,ALGO(r,p)) = Pr{d(h) = {i : s~ i- sn IALGO(r,p)}.

Claim 4.2. If O' (h) = k and r 2 k, then

(A GO())
k ()r- k r !(n - k) !

Pr h; L r,p = p . 1 - p " (_)"
n . r k .

Proof. In Step 2 of ALGO(r,p),

r !(n - r)(n - k)! r l (n - k)!
Pr{O' (h) C I} = I (_) 1(_ k) 1 I (_ k) 1n . n r. r . n . r .

In Step 3 of ALGO(r,p), Pr{s~ = st {:} i E d(h)} = pk . (1 - p)(r-kJ, which
completes the proof. •

C la im 4 .3. If O' (h) = k , then argmax Pr(h, ALGO(·,p)) = Lk/pJ, where LaJ
equals the great est integer less than or equal to a.

Proof. From Claim 4.2,

(GO ()) k ()r-k r!(n-k)!
Prh,AL r,p = p' 1 - p 'n!(r -k) !'

Let

k r- k r!
g(r,k,p)=p .(1 -p) ' (r -k)!

Covers: A Th eory of Bo olean Fun ction Decomp osition

It follows that

(n - k) !
Pr(h,ALGO(r,p)) = g(r, k ,p) . I '

n .

Therefore, it suffices to maximi ze g(r, k ,p) with respect to r . Let

G(r)= g(r,k ,p) = r . 1 - p

g(r-1 , k ,p) r -k

17

Therefore, G(r) > 1 .;=} r ::; kip, and fur th er , G'(r) < 0, which completes
the proof. •

The corollary below states that p should be set equa l to one and r equal
to (J (h) to maximi ze Pr(h ,ALGO(r,p)).

Corollary 4 .2 . If (J (h) = k , then Pr(h,ALGO(k,l)) :::: Pr(h,ALGO(r,p))
for all r E Nand p E [0, 1].

Proof. From Claim 4.3,

(n - k)!
Pr(h ,ALGO(r, p)) = g(r, k, p) . I

n .

where

(k) k ()r-k r!
g r" p =p' 1 - p '(r -k) !

Note t hat g(r, k,p) = (11k!) . f(k : r,p) , where f(k : r,p) is the standard
binomial dist ribution. It follows immediat ely that r = k and p = 1 maximizes
f, which completes th e proo f. •

Corollary 4.2 does not prove how quickly a particular algorithm will lo­
cate the optimal st ring. It merely provides intuition as to how r should be
chosen in ALGO(r,p) in conjunct ion with t he decomposability vector o:(V) .
If a function V has a cover on S of size 8, and a cover on T (2n - 2) of size 4,
t hen initially, r should be large to find the hyp erplanes of larger size. Once
these hyperpl anes are located and the function value has improved, r should
be decreased. This same idea und erpins the simulated annealing algorit hm
[18, 4] in which a te mperature is lowered over time. The decrease in temp er­
ature decreases the number of bits that are likely to be flipped . This idea is
discussed at length in Page [21].

18 Scott E. Page

4 .2 Genetic algorit hms

A genet ic algorit hm (GA) is a constant -size popul at ion based search algo­
rithm [8, 5]. Recent ly, GAs have been used in economics [1, 17, 9], polit ical
science [13], and in the study of indu ctive learn ing [10] . In this sect ion we
provide a brief int roduction to GAs and use cover theory to develop an al­
ternative explana t ion for t heir performance.

A GA begins with a popu lation of M st rings that it tr ansforms into a
new pop ulat ion. Each iteration of a GA is called a generation. We denote
the popu lation in generation t by Pt. The transit ion from Pt to Pt+! occurs in
three st ages: reproduction , crossover, and mutation. Reproduct ion chooses
a new popu lation of M st rings from the existing population according to the
funct ion values of the strings. The idea is tha t bet ter (more "fit") st rings are
reproduced with greater frequency, thus increasing the fitness of the popu­
lation. Let Pt' be the population after reproduction . The reproduct ion we
describe relies on a tournament to select strings.

Tournament S election: M pairs of st rings from Pt are randomly crea ted. The
higher valued of t he two st rings in each pair belongs to Pt"

A crossover operat or creates new st rings by "crossing" strings from among
those reproduced. The analogy to be kept in mind is genet ic recombinat ion
with the bit values thought of as alleles. The bit value of a string created
dur ing crossover may come from eit her parent . Crossover randomly creates
M pairs of st rings, and each pair independent ly crosses bits wit h probability
P (typically P E [.25, .75]). The crossing or exchanging of bit values occurs
on a subset of the posit ions. The posit ions which cross bit values can be
chosen in many ways. T hree typical crossover rules are on e point, two point ,
and uniform crossover. In the simulat ions describ ed later in this sect ion, we
employ uniform crossover."

Uniform crossover: A "switching ru le" x is created by selecting a st ring from
the set S. If Xi = 1, th en the strings s and t switch th eir ith bit values. If
X i = 0, then the strings s and t do not switch their i th bit values.

Bit :
Switching ru le:
new s
new t

Xl X 2 X3 X n

o 1 1 0
S l t2 t3 S n

t l S 2 S3 tn

5T here are two reasons for this decision. First , with one- or two-point crossover , hyper­
planes with large distances between defined bits are more likely to get destroyed , making
the distance between defined bits a more natural definition of hyperpl ane size. With uni­
form crossover , it can be shown that the more defined bits in a hyperplane, the measure
used in cover size, the greater the probability that the hyperp lane is destroyed during
crossover. Second, uni form crossover treats all bit s symmet rically, one and two-point
crossover have endpoint bias effects . For a more complete discussion of crossover ru les see
Goldberg [5J .

Covers: A Theory of Boolean Function Decomposition 19

Crossover can "dest roy" hyp erpl anes. A hyp erplane h is destro yed during
crossover if one of th e st rings belonged to h prior to crossover , bu t neither
string belongs to h after crossover .

Example 10. Suppose h = *0*1. Let 8 = 0011 and t = 0110. It follows
that 8 E hand t (j. h. Suppose that 8 and t are uniformly crossed using the
switching rule 1100. Neither resultin g string, 8 ' = 0010 or t' = 0111 belongs
to h.

Finally, mutation may occur at the bit level or the string level. Bit muta­
tion switches the value of each bit of each st ring with a very small probability
(p < 0.1). Bit mutation , which is ana logous to biological mutation , crea tes
both short and long te rm effects . In the short te rm, a mutant represent s a
single random search for a better st ring. In th e long ter m, a bit mutation
may spread through th e population and slow the rate of convergence of bit
values . In cont rast to th e milder bit mutation, st ring mutation creates an
ent irely random st ring. Typically, th e probability of st ring mutation is also
small (p < 0.05). String mutation allows for random searches in ent irely
different regions of th e domain, which prevent s the GA from get ting st uck
at a local peak. After mutation , the new populati on, Pt+l , is compl eted ;
reproduction, crossover, and mutat ion are reapplied to creat e Pt+2. The ran­
domness created in th e mutation stage guara ntees that the population never
converges to a single st ring replicated M t imes.

The performance of GAs has been th e focus of a great deal of resear ch in
recent years . To date, the most import ant resul t in the theory of GA perfor­
mance is th e Schema Theorem [8], which says th at hyperplanes whose st rings
consistently have higher than average funct ion values will increase in num­
ber in th e populati on proportionat e to their fitn ess advantage in the popula­
tion. Decreasing a hyp erpl ane's size (or defining length for one and two-point
crossover) increases the probabili ty th at a hyp erpl ane surv ives crossover.

One int erpretation of the Schema Theorem is the "building block" hy­
pothesis, which says th at GAs increase the number of hyp erpl anes of small
size whose st rings have above average value and combine th em to form above
average strings. These hyp erpl anes are commonly referred to as "building
blocks." A hyp erpl ane is above average if the st rings in the population tha t
lie in the hyperpl ane have, on average, higher value than the st rings not in
the hyp erpl ane.

Cover th eory offers an alte rnat ive perspective on GA performance.
Claim 4.3 st ates t hat to maximize t he probabili ty of switching exact ly the
defined bits in a hyp erplane h, the optimal size of r ALGO (r , p) depends
upon the numb er of defined bits of h. Claim 3.4 states tha t for any function ,
th e cover size decreases as th e function value improves. Taken toget her th ese
two claims suggest that a good search algorit hm should switch fewer bits as
the search climbs up the contour sets and the cover size decreases.

Ideally, a search algorithm would adapt the number of bits tha t it switches
as it climbs the upp er contour sets. Optimal adaptation of th e number of bit

20 Scott E. Page

flips requires information about the function's contour sets . We hope to show
tha t a GA learns the function 's contour sets and adapts the numb er of bit s it
switches. To summarize, there are two hypotheses that we invest igate: first ,
that a genet ic algorithm reduces the number of bits switched as it moves up
a function 's contour sets; and second, that the rate at which th is decrease
occurs depends on the function. Specifically, if the cover size is small or if
it decreases rapidl y as the funct ion value increases, th en a genet ic algorithm
should decrease the number of bits switched.

We construct three test functions and one class of rand om funct ions on
binary st rings of length fifty. T he function Vi is linear , so it has cover of size
one on all of S. We would expect that the numb er of bits a genet ic algorit hm
switches would decrease rapidly as the function value improves. To inves­
t igate arbitra rily difficult functions we create a class of random functions,
112 · Functions in V2 assign values to strings randomly using the uniform
distribution on [0, 1]. T he cover size for such funct ions should be close to
n , th e number of bits, for fairly large upper contour sets . The number of
bits switched by a genet ic algorithm should decrease slowly as the function
value impro ves. The linear funct ion and th e class of rand om functions by
themselves are not very informative. Their value is in providing benchmarks
that let us compare a genet ic algorithm's rate of convergence on the other
two funct ions.

The oth er two funct ions we consider are constructed from a linear func­
tion , f (s), and a nonlinear function g(s).

50

f(s) = L S i
i=l

8

g(s) = L 3 · S 2i ' S2 i+ 1
i= l

The function 113 equals f - g if the value of f is less than or equal to n/2
and f otherwise:

v (s) _ { f (S) - g(s)
3 - f (s)

if f (s) :::: n/2
if f (s) > n/2

The funct ion V3 is linear at the top bu t rugged for smaller function values.
In cont rast , the funct ion 114 is linear for small values and rugged near the
peak. The funct ion 114 equals f - g if the value of f is grea ter than n/2 and
f otherwise:

v; (s) - { f (S)
4 - f (s) - g(s)

if f (s) :::: n/2
if f(s) > n/2

The data presented comes from a tournament selection genet ic algorithm
using uniform crossover with probabili ty 0.5 and bit mutation with proba­
bility 0.04. We have carr ied out computations with many other parameter
choices and similar findings obtain. Table 1 contains means over 100 tri­
als with standard errors of the distribution, not of the estimated mean, in
parent heses. The data is shown graphically in Figure 1.

Covers: A Theory of Boolean Function Decomposition 21

Gen Linear Random Low Rugged Up Rugged

VI V E V2 V3 V4

1 12.119 (1.075) 12.295 (0.871) 11.435 (1.217) 11.342 (2.225)

10 5.652 (1.213) 10.558 (1.026) 7.774 (2.105) 8.480 (1.063)

20 1.373 (0.842) 9.288 (1.011) 1.871 (0.284) 7.424 (0.438)

30 0.143 (0.223) 8,748 (1.212) 0.711 (0.653) 5.074 (1.796)

40 0.163 (0.213) 8.206 (1.158) 0.407 (0.706) 5.099 (2.334)

50 0.241 (0.234) 8.069 (1.352) 0.516 (0.383) 3.284 (1.574)

60 0.282 (0.298) 7.859 (1.352) 0.289 (0.269) 4.200 (2.356)

70 0.270 (0.293) 7.786 (1.312) 0.529 (0.804) 3.140 (2.002)

80 0.285 (0.333) 7.890 (1.286) 0.435 (0.142) 1.925 (0.956)

90 0.269 (0.279) 7.864 (1.371) 0.377 (0.318) 1.813 (0.979)

100 0.315 (0.330) 1.908 (1.164) 0.520 (0.373) 1.320 (0.452)

110 0.329 (0.332) 7.860 (1.287) 0.601 (0.399) 1.643 (1.459)

120 0.332 (0.306) 7.714 (1.362) 0.536 (0.531) 1.065 (1.308)

130 0.357 (0.295) 7.873 (1.381) 0.184 (0.193) 1.475 (2.253)

140 0.355 (0.323) 7.820 (1.361) 0.382 (0.352) 1.415 (2.319)

150 0.353 (0.321) 7.771 (1.296) 0.346 (0.300) 1.104 (1.912)

160 0.302 (0.330) 7.712 (1.361) 0.379 (0.483) 1.049 (1.752)

170 0.282 (0.303) 7.563 (1.324) 0.224 (0.204) 1.356 (2.348)

180 0.283 (0.303) 7.765 (1.311) 0.215 (0.290) 1.633 (2.829)

190 0.339 (0.323) 7.721 (1.302) 0.128 (0.160) 1.800 (3.118)

200 0.344 (0.310) 7.768 (1.358) 0.342 (0.346) 0.975 (1.631)

Ta ble 1: Numb er of bits swit ched .

12

10

6

4

2

-- - Linear
---------- Random
- - - - - - Lowe r rugged
- - - - Upper rugged

5 10 15 20

Figure 1: Average number of bits switched.

22 Scott E. Page

T hese dat a capt ure severa l features wort h mentioning. Most obvious is
th at t he average numb er of bits flipped decreases for all funct ions while the
average value of st rings in the population increases for all functi ons (dat a
not shown). As is normally th e case, the genetic algorithm switches fewer
bits as the function value improves. From Claim 3.4, we know th at the cover
size decreases as the functi on value improves, which par tially explains why
genet ic algorit hms have been so successful. More imp ortantly, these data
support our hypo th esis th at a genetic algorithm adapts th e number of bit s
switched during crossover in response to the function 's cover size.

The numb er of bits switched is largest for the ra ndom functions in 112 ,
which have th e largest cover size over S, and sma llest for the linear funct ion
VI as predicted. The number of bits switched on average during crossover for
functions V3 and 114 is less than t he numb er switched for the random function
bu t greater th an th e number switched for the linear function. A compari­
son between the number of bits flipped by th ese two functions also yields
the expected result: more bits are flipped for function 114 t han for function
V3 . Appli ed to V3 , the genet ic algorit hm locates st rings above th e rugged
foothills (1(8) > n/2) and within seventy generations, t he numb er of bit s
switched averages approxima tely one-half, which is only double the numb er
switched for the linear function. Appli ed to V4 , th e genet ic algorithm con­
tinues to switch many bits for many genera t ions. In generation seventy, on
average about t hree bits are switched during each application of the crossover
operator. This occurs because of the ruggedn ess in the upp er contour sets .
Although these simple examp les give reason to be optimi stic about a rela­
tionship between th e decomposab ility vector and th e rate of convergence of
a genet ic algorit hm, more tes t functions should be examined before drawing
any firm conclusions.

5. Discussion

In this paper , we have shown how cover theory formalizes the idea th at
functions can be decomposed into simpler subproblems that can be solved
in parallel. Covers can be used to const ruct a decomposability vector th at
measures a function's difficulty relat ive to its contour sets. Fin ally, we have
seen that covers can be used t o explain the perform ance of sear ch algorit hms.
A potent ial shortcoming of cover theory is the severity of it s assumptions. In
response, Richardson [23] has advanced the idea of e-covers, a less restrictive
construct ion. An E-cover consists of "almost" st ring domin ant hyperplanes­
hyp erpl anes that are st ring dominant except on a small subset . To formalize
this notion , define h as E-st ring dominant on T (0:) if, for any 0; :::; 0: , t he
proportion of st rings in T(0;) t ha t sa t isfy V (h /\ 8) 2:: V (8) is great er than
(1 - E). A consequence of this definition is t hat the numb er of strings for
which an E-string domin ant hyp erpl ane is not st ring domin ant must decrease
as the search moves t o higher contours. An E-cover is a collection of E-st ring
dominant hyp erpl anes the union of whose defined bit is N .

Covers: A Theory of Boolean Funct ion Decomp osition 23

Acknowledgments

The author would like to t hank Stan Reiter , David Richardson , and Jim
J ordan for the ir insigh ts .

References

[1] J. Arifovic, "Learn ing by Genetic Algorithms in Economic Environments ,"
Santa Fe Institute Working Paper 90-001 (1989).

[2] A. Bethke, "Genet ic Algorithms as Function Optimizers," Doctoral Disserta­
tion , The University of Michigan. Dissertation Abstracts International, 41(9)
(1988) 3503B.

[3] J . Buchanan and C. Stubbl ebine, "Externality," Economica, (1962) 371-384.

[4] L. Davis, Genetic Algorithms and Simulated An nealing (San Mat eo, CA: Mor­
gan Kauffman , 1987).

[5] D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning (Reading, MA: Addison-Wesley, 1989).

[6] D. Goldberg, "Const ruct ion of High-order Decept ive Functions Using Low­
order Walsh Coefficients ," IlliGAL Report No. 90002, Depart ment of General
Engineering, University of Illinois (1990).

[7] J. Greffenstette and J. Baker, "How Geneti c Algorithms Work: A Crit ical
Look at Implicit Parallelism," in Proceedinqs of the Third International Con­
ference on Genetic Algorithms, edited by J. Schaffer (San Mateo, CA: Morgan
Kauffman, 1989).

[8] J. Holland, Adaptation in Natural and Artificial Systems (Ann Arb or: Uni­
versity of Michigan P ress, 1975).

[9] J. Holland and J. Miller, "Art ificial Adapt ive Agents in Economic T heory,"
P roceedings of th e American Economic Association (1991).

[10] J . Holland, K. Holyoak , R. Nisbett, and P. T hagard, Induction: Processes of
Inference, Learning, and Discovery (Cambridge, MA: MIT Press, 1989).

[11] S. Kauffman , "Ada ptat ion on Rugged Fitness Landscapes," pages 527-619 in
Lectures in the Sciences of Complexity (Reading, MA: Addison-Wesley, 1989).

[12] S. Kauffman and S. Levin, "Towards a General Theory of Adaptive Walks on
Rugged Land scapes," Journal of Theoretical Biology, 12 8(11) (1987).

[13] K. Kollman , J. Miller, and S. Page, "Adapt ive Part ies in Spatial Elect ions,"
American Political Science Review, 86 (4) (1992) 929- 937.

[14] G. Liepins and M. Vose, "Representat ional Issues in Genet ic Opt imizat ion,"
Journal of Experimental and Theoretical Artificial Intelligence, 2(2) (1990)
4- 30.

24 Scott E. Page

[15] G. Liepins and M. Vose, "Polynomials, Basis Set s, and Deceptiveness in Ge­
netic Algorithms," Complex Systems, 5 (1991) 45- 62.

[16] S. Lin , "Computer Solutions of t he Trave ling Salesman P roblem," The Bell
System Technical Journal (1965) 2245- 2269.

[17] R. Marimon , E. McGrat tan , and T. Sargent , "Money as a Medium of Ex­
change in an Economy wit h Artificially Intelligent Agents," Journal of Eco­
nomic Dynamics and Control (1990).

[18] R. Otten and L. van Ginn ekan , The Annealing Algorithm (Boston: Kluwer ,
1989).

[19] S. Page and D. Richard son , "Walsh Functions, Schema Var iance, and Decep­
tion," Complex Systems, 6 (1992) 125-135.

[20] S. Page, "A Bottom-up Efficient Algorith m for Allocating P ub lic Projects
wit h Positive Complement arities," Californi a Institute of Technology working
pap er # 885 (1994).

[21] S. Page, "Two Measures of Difficult y," California Institute of Technology
(1994).

[22] S. Reiter and G. Sherman, "Discrete Optimizing," Journal of the Society of
Industrial and Applied Math ematics, 13(3) (1965).

[23] D. Richardson, private commu nication 1991.

[24] H. Simon , Th e Sciences of the Artificial (Cambridge, MA: MIT Press, 1969).

