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Abstract . The relat ionship between the quality of state space re­
const ruction and the accuracy in time series forecast ing is analyzed.
The averaged scalar product of the dynamical system flowvectors has
been used to give a degree of determinism to the selected state space
reconst ruct ion. This value helps dist inguish between those regions of
the state space where predictions will be accurate and those where
they are not . A time series measured in an industri al environment
where noise is present is used as an example. It is shown that predic­
tion methods used to estimate futu re values play a less important role
than a good reconstruction of the state space itself.

1. Int roduct ion

Much work has recently been done in nonlinear time series pr edictio n [1-4] .
However , most of this effort has been focused on t ime series originat ing from
dyn amical systems where there is a well-defined, alt hough complex and ofte n
analytic, underlying model. For such systems, a great number of different
techniques have been developed to tackle the pr edict ion problem. These
techn iques include state space reconst ru ction of chaotic sys tems [5- 7] as well
as var ious methods to ap proximate future values from eit her local [2, 8] or
global models [1,9].

State space reconstruction is aimed at obtaining a trajectory in t he state
space leading to a determinist ic reconstru cti on of the t ime series. This is usu­
ally accomplished using Takens' theorem [10], which states that if the under­
lying dynam ical syst em has dimension d, t he reconstru ct ion , usually called
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an embedding, can be carr ied out using delay vecto rs in an m-dimensional
space (m 2': 2d + 1). Unlike the behav ior of irregular time series, the state
space usua lly demonst rates simplicity and regulari ty. Vector fields of the
state space are approximated to est ima te future values. The quality of the
predictions st rongly depend s on the quality of the state space reconstruction.
Furthermore, any lack of accuracy or defect in t he state space reconstruction
has consequences for t he prediction of t ime series. Therefore, a measure of
the quality of a state space reconst ruction gives an est ima te of the goodness of
the forecasting model. The average d scalar product P of the dynami cal sys­
tem flow vecto rs [5] has recently been used to determine optimal state space
reconstruction by maximizing the P -value as a function of both the state
space dimension and the time delay. The P-value can be used to qualify th e
"degree of determinism" of state space reconstruction ; tha t is, it provides
a measure of how para llel the local flow vectors are throughout th e state
space. It has been shown [5] th at for tim e series originating from ordinary
differential equa tions the P-value can be raised close to unity. This value
indic ates that the neighboring flow vectors in th e reconstructed state space
are para llel to each other. On t he oth er hand, neighboring flows for time
series contamina ted wit h noise or originati ng from ill-defined syste ms will be
far from par allel. This leads to lower P-values. This means that th e syste ms
are less determini stic than the former, since the flow of point s along the state
space are not so well-defined. Hence, the predict ion will not be as accurate .

This work highlight s the exist ing relati onship between the characteristics
of state space reconstruction of t ime series and t he quality of its predictions
in light of results derived from the P-value. Some of th e conclusions drawn
from state space analysis apply to both , substant iat ing t he results obtained
in the pr ediction and devising new prediction algorithms.

As an example, we will use the state space reconstruction and time series
prediction of a variable measured in an industrial environment . This t ime
series corresponds to an imp ortant temp erature measur ed in a petrochemical
plant. Forecasting is one of the techniques that has been int egrat ed into th e
HINT proj ect (ESP RIT) for int elligent control. The series is sampled every
five minutes and the time histor y over three month s (25,000 dat a points) is
used. Figure 1 illustrates 20 hour s of the act ua l time series and the filtered
signal obtained after removing th e high frequences using a low-pass filter .
The filtered signal will be used throughou t this paper .

Since the time series is measur ed in an industri al setting where a grea t
numb er of uncont rolled factor s are no doub t present , the und erlying mod el is
not well-defined. This lack of accuracy in the definit ion of the system leads
to various problems in both state space reconstructi on and the quality of the
prediction that would ot herwise not appear in sit uations where a well-defined
model existed .

The article is st ructured as follows. Section 2 describ es problems th at
arise when performing state space reconstructions of real tim e series. Section
3 ana lyses t he forecasting of t ime series using result s obtained in the previous
section, and finally, section 4 summarizes the conclusions of this pap er .
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Figure 1: Vari ation of the original t ime series (das hed line) versus a
filtered t ime series (solid line) as a function of t ime. Temp erature is
measur ed in Celsius and is sampled every five minutes.

2 . State space reconstruction

St ate space reconstruction is necessary before appl ying forecasting methods.
This analysis provides a framework in which to make state space reconstruc­
tions , which enables us to approximate the flow vectors .

State spa ce reconstruction starts with a univariat e t ime series x; such as
tempera ture values. This series is tra nsformed int o a vector X t. A map tha t
transforms X t into x , must be chosen in such a way that points and flows
maintain th eir ind ividu ality in the reconstruction: th at is, a determinist ic and
smooth reconst ru ction is desired. The most accessible and robust method
to perform state space reconstruction is the delay-coord inate map [6] given
by x; = ( X t , Xt -r, . . . ,Xt-(m-l)r ) where T is the time delay and m is the
state space dimension. Hence, the map is par ameterized by two variables,
T and m tha t are chosen so that a deterministic reconstruction is obtained .
Takens [10] showed that if d is th e dimension of the underlying dynami cal
system, an embedding of the original t ime series Xt can be obtained in a m­
dimensional space where m ~ 2d+ 1 and T is arbit ra ry. However , the presence
of noise in any experimental measure makes it difficult to rea lize the result
of the th eorem . In practice, we are faced with an optimization problem that
pursues the ideal {T,m }-par ameters to obtain the best system reconstruction.
The state space points are rot at ed using the principal component axis and
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each coordina te is scaled to t he standa rd deviation of the new axis [5, 11].
T he new state space points are called Z t .

The usual method of determin ing t he dimension of the st at e space re­
construct ion is by means of the corre lat ion dimension D 2 . Thi s dimension is
a lower limit for the box count ing dimension Do. Accordi ng to Mane [12],
m > 2Do+ 1 is a good estimate, but Sauer et al. [7] suggest that m > Do is
typically sufficient (see Ot t [13J for a review). We calculate the corre lat ion
dimension in rotated and scaled coordinates z, as follows:

(1)

where C(E) is the correlat ion integral

(2)

and ()(.) is the Heaviside funct ion , N is the number of points in t he t ime
series, and II . II is t he Euclidean norm.

Experiment ally, D 2 is obtained by st udying t he convergence of log2C(E)
versus log, Eas a functio n of m. In Figure 2, log, C(E) is shown as a funct ion
of both log2E and m . T he plateau observed in the figur e is due to the
limited numb er of points within a sphere of small rad ius for large dimensions.
When the e-value is increased , the number of points within the sphere also
increases and a more accurate value of C(E) is obtained. In Figure 3, the
slopes of various log, C(E) versus log, Ecurves are plot ted as a funct ion of m
and log2E. We see from this figure that there is no clear convergence to a
constant slope . The only t hing we can be sure of is that D2 > 8, that is, we
need at least eight dimensions for the state space reconst ruction (m> 8).

In conclusion, this analysis does not yield solid evidence with which to
model th e syste m. It should be not ed that the correlat ion dimension D 2

is an ind irect measure of the embedding dimension and does not take into
account the dynamics of the t ime series, but only t he points. Moreover , this
time series corresponds to an ill-defined system. These problems account for
the unreliable est imat e obtained for the un derlying dynamical system of this
series.

On the other hand , a deterministic reconstruct ion can be obtained using
th e averaged scalar product P . This value gives a measure of t he numb er of
self-crossings and tells how smooth t he reconstruction is. A value close to
unity implies a highly deterministic and smoot h reconst ruct ion, whereas a
value close to zero implies a completely random reconst ruction. The P-value
is calculated by averaging the scalar product between the flow vecto r of a
t rajecto ry point and t he normalized flow vectors inside a ball of radius E for
all points of the t ra jectory. The P -value is calculated as follows (see [5] for
a more detailed descrip t ion).
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Figure 2: Three-dimensional plot of the variat ion of log2 C(E) as a
function of both log2E and th e state space dimension m .

Define O(z;) as the set of neighboring poin ts belonging to a closed ball
of dimension m and radius E, that is,

O(Z;) = {Zj : liz; - Zj ll ::; E,j = 1, ... , N , j i- i} (3)

where JL; is the numb er of points in O(z;). T he normalized flow vectors at
each point are calculated as

(4)

and the mean flow vector value V ; inside th e set O(z;) is given by

(5)

Finally, the scalar product is averaged along the trajectory using the
expression

1 N
P = N L:f(z;) . V i.

;= 1
(6)



30 C. Santa Cruz, R. Huerta, J. R. Dorronsoro, and Vicente Lopez

10

8

6

2

o

o

Figure 3: Thr ee-dimensional plot of the variation of the slopes of the
various curves of Figure 2 as a function of both log2E and the state
space dimension m.

Think of the above calculations as a t rip along the t rajectory wit hin a
tube of rad ius E, averaging the scalar product wit h all the flows inside this
tube .

Since this time series has some isolated points for eit her small radius E or
high dimension m, we arbitrarily fix a default value of f (Zi) . V i = 0.2 when
no average is performed due to the lack of po ints wit hin the sphere. This
serves to discriminate between the spur ious resul ts du e to isolated points and
t he correct P-values. If P converges to 0.2 as m increases, we must increase
E in such a way that t he number of points does not vanish for large m .

F igure 4 illustrates the var iat ion of P for the original t ime series as a
funct ion of both m and T . A value of E = 0.2 is used . (Recall that a P -value
close to unity means that the sys tem is highly determinist ic, while a P -value
close to zero indicates a random syste m.) A maximum P -value (P = 0.55) is
ob tained for m = 4 and T = 1. From t his resul t , we conclude t hat the time
series is not to o deterministi c. T his P-value cont rasts wit h those obtained
for sys tems originat ing from ordinary differential equations where P -values
close to un ity have been obtained [5]. T he reas on for this is twofold . On the
one hand , there may be noise (high frequencies) coming from t he sensor used
to measure the t ime series. On t he ot her hand , t here are many uncontrolled
fact ors t hat make the system ill-defined and give rise to random sequences
in the t ime series.
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Figure 4: Three-dimensional plot of the variation of the averaged
scalar products P of the original t ime series as a function of both the
state space dimension m and t ime delay T.

If we want to remove th e noise due to the presence of high frequencies
a low-pass filte r may be used. T he use of such a filter , however, has two
disadvantages. First , the filtered signal obviously corres ponds to a different
system. Secondly, th ese filters int roduce a delay in the signal [14] inver ely
proport ional t o the passband width that may be important in real t ime ap­
plications. Despite th ese disadvantages, a low-pass filter was used to remove
high frequencies.

In Figur e 5, we display the P-value for the filtered t ime series as a fun ct ion
of T for different m-values. A value of e = 0.2 was used in the calculation of
P. The maximum value is obt ained for m = 4 and T = 1 or 3. Although the
maximum P -value is nearly the same for both the original and filtered t ime
series, the average P -value is much larger in th e filtered series than in the
origina l one.

A careful inspection of the reconst ruct ion gives better insight into what
is hap pening in this t ime series. Figure 6 shows a plot of the second coordi­
nate as a function of the third for a 4-dimensional state space reconstruct ion.
The coordinate order is the one given by the principal component t ransfor­
mation. From t his figure we conclude that there are two well-defined regions.
The first one is an inner region corres ponding to a sphere of radius r ::::: 1.0
cent ered at the origin that is characterized by a grea t number of crossing
t ra jectories. This region corresponds to t he mean value of the t ime series
and the excessive numb er of crossing t ra jectories might be du e to the pres-
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Figure 5: Variat ion of the P -value of the filtered signal as a function of
T for different state space dimensions, ranging from m = 2 to m = 5.

ence of a higher-dimensional movement or to random fluctuations around th e
mean , tha t is, noise. The second region, the out er one, is charac terized by
a low level of crossing trajectories. This observat ion makes clear th e need
to perform two different est ima tes of P , one inside and anot her outside the
sphere . In Figure 7, one can see tha t in the out er region t he P -value reaches
its maximum value for m = 3 while in the inner region a value of m = 6 is
obtained . Unlike t he inner region, t ra jectories in t he out er region ar e highly
parallel leading to a more det erminist ic reconstruction . This implies that
there is a mor e deterministic syste m in the out er region of the state space ,
suggest ing the possibility tha t the system could be mod eled with different
dimensions depending on the region where the points are located .

3. Fo r ecasting

In this sect ion, we analyze the inherent predict ion limit ations of this particu­
lar series in light of the results obt ained from the state space reconstruction.
T he qual ity of the predict ion is expressed in terms of the following value:

E = Lt(Xt - £t)2 (7)
Lt(Xt - Xt F

This rat io is the normalized mean-squared erro r whose value is unity when
each of the predicted values corres pond to the average. A rat io above uni ty
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Figure 6: Variation of the second coordinate of the state space re­
construction Z2 as a funct ion of the third coordinate Z3 for a Four­
dimensional state space reconstru ction obtained from the filtered time
series.

corresponds to a prediction th at is worse than the average ; a rat io below
uni ty is an improvement over the average.

For a given point in the t ime series X t we wish to predict the next n point s
into the future Xt+k, k = 1, ... ,n, where n is th e prediction horizon . These
est ima tes are determined using th e previous po ints in th e t ime series Xi ,

i = 1, ... . t, which are then used to bui ld th e state space reconstruct ion. We
use both the predicted values Xt+k and the actual values Xt+k to determine
the E- value and th us to measure th e performance of different mod els.

We see that the char acterist ics of the st ate space derived using th e P -value
(6), have their counterparts when examining the prediction behavior . These
results highlight th e relationship between the P -value and the predict ion
err or E.

First of all, we determine the opt imum state space dimension using the
prediction erro r. In addition to the met hods used in the previous section to
determine the state space dimension , another possibility is to determine the
performance of t he reconstruction when est imat ing the t ime series prediction
err or [1]. In order to do this, we choose the simplest predict ion method , that
is, a local approach using linear predictors [2, 8].
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Figure 7: Variation of the P -value as a function of the sta te space
dimension for both those points that lie outside a sphere of unit radius
(solid line) and those that are inside (dashed line).

T he procedure used to determine the prediction is describ ed as follows.
For each point of the time series, locat e 50 nearby m-dimensional points in
the state space . The prediction is obtained by fitting a linear predictor to
these 50 points together with th e points where t hey end up afte r one step
into the future. The predicted value is now t aken as the new point to be
predicted and the pro cedure is repeated unt il the prediction horizon n is
reached. The linear fit is obtained using singular value decomposition to
avoid ill-condi tioned situa t ions .

Figur e 8 shows the prediction error, calculated for a prediction horizon
of n = 1, as a function of the state space dimension m. It is seen that the
error decreases as m increases, t o a min imum value at m = 4. Tha t m = 4
is the optimum dimension for makin g predictions is in agreement wit h th e
results obtained in the previous sect ion using average d scalar products. The
prediction erro r E decreases as the state space dimension is increased up
to the point where self-inte rsect ions are avoided. For this dimension , the
best local fit is obtained . However , when increasing the m-value beyond
th e optimum, even though self-crossing t ra jectories are thus avoided , points
in the result ing high-dim ensional space are too dist ant from each other to
ensure a good local approxima tion.
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Figure 8: Variation of the prediction error E obtained for a prediction
horizon of n = 1 as a funct ion of the state space dimension m.

We now examine the consequences this reconstruct ion has on both short
and long-term predict ions.

We have used different predict ion algorit hms to est ima te future values
of the t ime series, including both global models (neural networks) and local
meth ods that use both linear and nonlinear approximat ions. In all cases,
the predict ion err ors were not significant ly different. These results highlight
the fact tha t the prediction algorithm was not as important as the state
space reconstruct ion. Consequent ly, the method previously described was
singled out . Alth ough the optimal state space dimension was det ermined for
a predict ion horizon of n = 1, we assume that this dimension is not far from
the optimum for larger prediction horizons.

Figure 9 illust rates short-t erm predictions (n = 10) for severa l time series
compa red with the actua l values. The conclusions drawn from this figur e are
twofold . On the one hand , predicted values comp are quite favorably with
the actua l values for those points of the t ime series that correspond to large
peaks. On the ot her hand , predictions for t hose values close to the average
T = - 12.8°C are not so good. The reason for this is clear if one takes
into account the state space reconstruct ion. It was shown that the core of
the state space corresponds to higher-dimensional movement while the out er
region is more determ inistic (Figure 6). Therefore, it is difficult to obtain
a determinist ic reconstruction for the inner region of the state space and,
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Figure 9: Vari ati on of t he origina l t ime series (das hed line) and t he
filtered t ime series (solid line) along with the predicted values for a
predicti on horizon of n = 10 (circles).

as a consequence , predictions are inaccurate. On the oth er hand , the outer
region of the state space , which corresponds to th e various peaks that appear
in the tim e series, can be determini sti cally reconstructed and are therefore
quite reliable. Thi s result can be highlighted if we do not make predictions
for those values that are located in the core of th e state space. Taking into
account the overa ll t ime series we find that E = 0.092. On the oth er hand ,
if only those values of the t ime series whose state space poin ts lie outside
a sphere of radiu s r = 1.0 are predicted , the error decreases to a value of
E = 0.074. Thi s means that t he mean-square error decreases by a factor
of 20% if the inner region of the state space (representing 30% of the total
numb er of point s) is ignor ed.

We now tackle the problem of long-term predictions. Figure 10 shows
the predicti ons for ti = 100 steps into the fut ure compared with the original
and filtered t ime series. In t his figure, two complete 100-step predictions
are shown. The predictions start at t :::::; 3h and at t :::::; llh, respectively,
for a dur ation of 100 points each. It is seen that both peaks are accurately
predicted. These peaks correspond to closed orbits in the state space recon­
st ruction (Figure 6) . The remaining peaks of t he figure are not accurately
est imated due to th e fact that when the prediction reaches t he average value
T = - 12.8°C after approximate ly 15 steps into the future (which corresponds
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Figure 10: Variation of the original time series (dashed line), the
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to ente ring the inner region of th e state space) it can not escape and begins
to oscillate. Thus, the prediction hor izon for this system is limited by the
t ime required to reach the inner region of the state space . Once there, due to
the grea t numb er of crossing trajectories, there is no way out of the region,
and hence the remaining peaks are poorly est imated .

Driven by the discovery that two well-defined regions wit h different di­
mensions are distingu ished in the state space , we buil t a model t hat takes this
into account . In this model, eit her a t hree or a six-dimensiona l state space
is used dependi ng on whet her the state space point lies outsi de or inside the
core region. The E -value obtained for this prediction model is only 5% better
than t he former. T his slight difference is not significant and suggests tha t
the inner region is mainly domin at ed by noise instead of being a movement
embedded in a higher dimension. The model might be more successful for
those systems characterized by a low prese nce of noise.

4. Discussion

T he results obtained suggest tha t th e P-value can be interpreted as a measur e
of the degree of determinism of the state space reconstruction. Furthermore,
the P-value gives a measur e of the qualit y of t he reconstruction for differ-
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ent regions of the state space th at dist inguishes between non-det erminist ic
regions dom inated by noise and highly determ inist ic regions.

It has been shown that the results obtained in the state space reconstruc­
tion have th eir counterpart in the prediction err or method indicating the
similarit ies between the local averaged scalar pro duct value and the predic­
tio n erro r. This result suggest s the possibili ty of using th is value to est imat e
a local prediction error.

The procedure described in this paper out lines a method for modeling
high-dimensional systems where due to the lack of point s a bad est imate of
D z is obtained. However , a degree of det erminism and hence a degree of
smoothness of the reconstruction may be obtained using the averaged scalar
prod uct s of flow vectors.

In this work and for t his particu lar tim e series, different prediction model
including global models using neur al networks, local models using both non­
linear approximat ions such as neural networks and linear methods have been
teste d, leading in all cases to almost the same resul t. However, local mod­
els using linear approxima tions outperform the ot hers in terms of execution
tim e, along with the possibility to use it in adapt ive real t ime systems. This
result emp hasizes the fact that a good reconstructi on is crit ical, whereas th e
method used to mode l the local flow vectors is not so impo rtant .
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