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Abstract. The relationship between the quality of state space re-
construction and the accuracy in time series forecasting is analyzed.
The averaged scalar product of the dynamical system flow vectors has
been used to give a degree of determinism to the selected state space
reconstruction. This value helps distinguish between those regions of
the state space where predictions will be accurate and those where
they are not. A time series measured in an industrial environment
where noise is present is used as an example. It is shown that predic-
tion methods used to estimate future values play a less important role
than a good reconstruction of the state space itself.

1. Introduction

Much work has recently been done in nonlinear time series prediction [1-4].
However, most of this effort has been focused on time series originating from
dynamical systems where there is a well-defined, although complex and often
analytic, underlying model. For such systems, a great number of different
techniques have been developed to tackle the prediction problem. These
techniques include state space reconstruction of chaotic systems [5-7] as well
as various methods to approximate future values from either local [2, 8] or
global models [1, 9].

State space reconstruction is aimed at obtaining a trajectory in the state
space leading to a deterministic reconstruction of the time series. This is usu-
ally accomplished using Takens’ theorem [10], which states that if the under-
lying dynamical system has dimension d, the reconstruction, usually called
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an embedding, can be carried out using delay vectors in an m-dimensional
space (m > 2d + 1). Unlike the behavior of irregular time series, the state
space usually demonstrates simplicity and regularity. Vector fields of the
state space are approximated to estimate future values. The quality of the
predictions strongly depends on the quality of the state space reconstruction.
Furthermore, any lack of accuracy or defect in the state space reconstruction
has consequences for the prediction of time series. Therefore, a measure of
the quality of a state space reconstruction gives an estimate of the goodness of
the forecasting model. The averaged scalar product P of the dynamical sys-
tem flow vectors [5] has recently been used to determine optimal state space
reconstruction by maximizing the P-value as a function of both the state
space dimension and the time delay. The P-value can be used to qualify the
“degree of determinism” of state space reconstruction; that is, it provides
a measure of how parallel the local flow vectors are throughout the state
space. It has been shown [5] that for time series originating from ordinary
differential equations the P-value can be raised close to unity. This value
indicates that the neighboring flow vectors in the reconstructed state space
are parallel to each other. On the other hand, neighboring flows for time
series contaminated with noise or originating from ill-defined systems will be
far from parallel. This leads to lower P-values. This means that the systems
are less deterministic than the former, since the flow of points along the state
space are not so well-defined. Hence, the prediction will not be as accurate.

This work highlights the existing relationship between the characteristics
of state space reconstruction of time series and the quality of its predictions
in light of results derived from the P-value. Some of the conclusions drawn
from state space analysis apply to both, substantiating the results obtained
in the prediction and devising new prediction algorithms.

As an example, we will use the state space reconstruction and time series
prediction of a variable measured in an industrial environment. This time
series corresponds to an important temperature measured in a petrochemical
plant. Forecasting is one of the techniques that has been integrated into the
HINT project (ESPRIT) for intelligent control. The series is sampled every
five minutes and the time history over three months (25,000 data points) is
used. Figure 1 illustrates 20 hours of the actual time series and the filtered
signal obtained after removing the high frequences using a low-pass filter.
The filtered signal will be used throughout this paper.

Since the time series is measured in an industrial setting where a great
number of uncontrolled factors are no doubt present, the underlying model is
not well-defined. This lack of accuracy in the definition of the system leads
to various problems in both state space reconstruction and the quality of the
prediction that would otherwise not appear in situations where a well-defined
model existed.

The article is structured as follows. Section 2 describes problems that
arise when performing state space reconstructions of real time series. Section
3 analyses the forecasting of time series using results obtained in the previous
section, and finally, section 4 summarizes the conclusions of this paper.
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Figure 1: Variation of the original time series (dashed line) versus a
filtered time series (solid line) as a function of time. Temperature is
measured in Celsius and is sampled every five minutes.

2. State space reconstruction

State space reconstruction is necessary before applying forecasting methods.
This analysis provides a framework in which to make state space reconstruc-
tions, which enables us to approximate the flow vectors.

State space reconstruction starts with a univariate time series z; such as
temperature values. This series is transformed into a vector x;. A map that
transforms z; into x; must be chosen in such a way that points and flows
maintain their individuality in the reconstruction: that is, a deterministic and
smooth reconstruction is desired. The most accessible and robust method
to perform state space reconstruction is the delay-coordinate map [6] given
by X = (& Bierysss ,ajt,(m,m) where 7 is the time delay and m is the
state space dimension. Hence, the map is parameterized by two variables,
7 and m that are chosen so that a deterministic reconstruction is obtained.
Takens [10] showed that if d is the dimension of the underlying dynamical
system, an embedding of the original time series z; can be obtained in a m-
dimensional space where m > 2d+1 and 7 is arbitrary. However, the presence
of noise in any experimental measure makes it difficult to realize the result
of the theorem. In practice, we are faced with an optimization problem that
pursues the ideal {7, m}-parameters to obtain the best system reconstruction.
The state space points are rotated using the principal component axis and
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each coordinate is scaled to the standard deviation of the new axis [5, 11].
The new state space points are called z;.

The usual method of determining the dimension of the state space re-
construction is by means of the correlation dimension Dy. This dimension is
a lower limit for the box counting dimension Dy. According to Mané [12],
m > 2Dy + 1 is a good estimate, but Sauer et al. [7] suggest that m > Dy is
typically sufficient (see Ott [13] for a review). We calculate the correlation
dimension in rotated and scaled coordinates z; as follows:

D= limM, (1)

0 Jlog,€
where C/(e) is the correlation integral

N
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and 6(-) is the Heaviside function, N is the number of points in the time
series, and || - || is the Euclidean norm.

Experimentally, D, is obtained by studying the convergence of log, C(e)
versus log, € as a function of m. In Figure 2, log, C(e) is shown as a function
of both log,e and m. The plateau observed in the figure is due to the
limited number of points within a sphere of small radius for large dimensions.
When the e-value is increased, the number of points within the sphere also
increases and a more accurate value of C(e) is obtained. In Figure 3, the
slopes of various log, C(€) versus log, € curves are plotted as a function of m
and log, e. We see from this figure that there is no clear convergence to a
constant slope. The only thing we can be sure of is that Dy > 8, that is, we
need at least eight dimensions for the state space reconstruction (m > 8).

In conclusion, this analysis does not yield solid evidence with which to
model the system. It should be noted that the correlation dimension Dy
is an indirect measure of the embedding dimension and does not take into
account the dynamics of the time series, but only the points. Moreover, this
time series corresponds to an ill-defined system. These problems account for
the unreliable estimate obtained for the underlying dynamical system of this
series.

On the other hand, a deterministic reconstruction can be obtained using
the averaged scalar product P. This value gives a measure of the number of
self-crossings and tells how smooth the reconstruction is. A value close to
unity implies a highly deterministic and smooth reconstruction, whereas a
value close to zero implies a completely random reconstruction. The P-value
is calculated by averaging the scalar product between the flow vector of a
trajectory point and the normalized flow vectors inside a ball of radius e for
all points of the trajectory. The P-value is calculated as follows (see [5] for
a more detailed description).
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Figure 2: Three-dimensional plot of the variation of logy C'(€) as a
function of both log, € and the state space dimension m.

Define O(z;) as the set of neighboring points belonging to a closed ball
of dimension m and radius e, that is,

O(z:) ={z; : |lzi —zl| < e, 5 =1,...,N,j #1} (3)
where g; is the number of points in O(z;). The normalized flow vectors at
each point are calculated as

Zii1 — 2
f(z;) = — (4)
7z — 2l

and the mean flow vector value V; inside the set O(z;) is given by

: (5)
Hi z;€0(z;)

Finally, the scalar product is averaged along the trajectory using the
expression

SN
Ni:l

(6)
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Figure 3: Three-dimensional plot of the variation of the slopes of the
various curves of Figure 2 as a function of both log, € and the state
space dimension m.

Think of the above calculations as a trip along the trajectory within a
tube of radius ¢, averaging the scalar product with all the flows inside this
tube.

Since this time series has some isolated points for either small radius € or
high dimension m, we arbitrarily fix a default value of f(z;) - V; = 0.2 when
no average is performed due to the lack of points within the sphere. This
serves to discriminate between the spurious results due to isolated points and
the correct P-values. If P converges to 0.2 as m increases, we must increase
€ in such a way that the number of points does not vanish for large m.

Figure 4 illustrates the variation of P for the original time series as a
function of both m and 7. A value of e = 0.2 is used. (Recall that a P-value
close to unity means that the system is highly deterministic, while a P-value
close to zero indicates a random system.) A maximum P-value (P = 0.55) is
obtained for m = 4 and 7 = 1. From this result, we conclude that the time
series is not too deterministic. This P-value contrasts with those obtained
for systems originating from ordinary differential equations where P-values
close to unity have been obtained [5]. The reason for this is twofold. On the
one hand, there may be noise (high frequencies) coming from the sensor used
to measure the time series. On the other hand, there are many uncontrolled
factors that make the system ill-defined and give rise to random sequences
in the time series.
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Figure 4: Three-dimensional plot of the variation of the averaged
scalar products P of the original time series as a function of both the
state space dimension m and time delay 7.

If we want to remove the noise due to the presence of high frequencies
a low-pass filter may be used. The use of such a filter, however, has two
disadvantages. First, the filtered signal obviously corresponds to a different
system. Secondly, these filters introduce a delay in the signal [14] inversely
proportional to the passband width that may be important in real time ap-
plications. Despite these disadvantages, a low-pass filter was used to remove
high frequencies.

In Figure 5, we display the P-value for the filtered time series as a function
of 7 for different m-values. A value of € = 0.2 was used in the calculation of
P. The maximum value is obtained for m =4 and 7 = 1 or 3. Although the
maximum P-value is nearly the same for both the original and filtered time
series, the average P-value is much larger in the filtered series than in the
original one.

A careful inspection of the reconstruction gives better insight into what
is happening in this time series. Figure 6 shows a plot of the second coordi-
nate as a function of the third for a 4-dimensional state space reconstruction.
The coordinate order is the one given by the principal component transfor-
mation. From this figure we conclude that there are two well-defined regions.
The first one is an inner region corresponding to a sphere of radius r ~ 1.0
centered at the origin that is characterized by a great number of crossing
trajectories. This region corresponds to the mean value of the time series
and the excessive number of crossing trajectories might be due to the pres-
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Figure 5: Variation of the P-value of the filtered signal as a function of
7 for different state space dimensions, ranging from m =2 to m = 5.

ence of a higher-dimensional movement or to random fluctuations around the
mean, that is, noise. The second region, the outer one, is characterized by
a low level of crossing trajectories. This observation makes clear the need
to perform two different estimates of P, one inside and another outside the
sphere. In Figure 7, one can see that in the outer region the P-value reaches
its maximum value for m = 3 while in the inner region a value of m = 6 is
obtained. Unlike the inner region, trajectories in the outer region are highly
parallel leading to a more deterministic reconstruction. This implies that
there is a more deterministic system in the outer region of the state space,
suggesting the possibility that the system could be modeled with different
dimensions depending on the region where the points are located.

3. Forecasting

In this section, we analyze the inherent prediction limitations of this particu-
lar series in light of the results obtained from the state space reconstruction.
The quality of the prediction is expressed in terms of the following value:

Zt(xt - ‘%t)g (7)
D selaty — T )P

This ratio is the normalized mean-squared error whose value is unity when
each of the predicted values correspond to the average. A ratio above unity

E=
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Figure 6: Variation of the second coordinate of the state space re-
construction z as a function of the third coordinate z3 for a Four-
dimensional state space reconstruction obtained from the filtered time
series.

corresponds to a prediction that is worse than the average; a ratio below
unity is an improvement over the average.

For a given point in the time series x; we wish to predict the next n points
into the future Z;.x, K = 1,...,n, where n is the prediction horizon. These
estimates are determined using the previous points in the time series z;,
1 =1,...,t, which are then used to build the state space reconstruction. We
use both the predicted values Z;,; and the actual values x4, to determine
the E-value and thus to measure the performance of different models.

We see that the characteristics of the state space derived using the P-value
(6), have their counterparts when examining the prediction behavior. These
results highlight the relationship between the P-value and the prediction
error F.

First of all, we determine the optimum state space dimension using the
prediction error. In addition to the methods used in the previous section to
determine the state space dimension, another possibility is to determine the
performance of the reconstruction when estimating the time series prediction
error [1]. In order to do this, we choose the simplest prediction method, that
is, a local approach using linear predictors [2, §].
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Figure 7: Variation of the P-value as a function of the state space
dimension for both those points that lie outside a sphere of unit radius
(solid line) and those that are inside (dashed line).

The procedure used to determine the prediction is described as follows.
For each point of the time series, locate 50 nearby m-dimensional points in
the state space. The prediction is obtained by fitting a linear predictor to
these 50 points together with the points where they end up after one step
into the future. The predicted value is now taken as the new point to be
predicted and the procedure is repeated until the prediction horizon n is
reached. The linear fit is obtained using singular value decomposition to
avoid ill-conditioned situations.

Figure 8 shows the prediction error, calculated for a prediction horizon
of n = 1, as a function of the state space dimension m. It is seen that the
error decreases as m increases, to a minimum value at m = 4. That m =4
is the optimum dimension for making predictions is in agreement with the
results obtained in the previous section using averaged scalar products. The
prediction error F decreases as the state space dimension is increased up
to the point where self-intersections are avoided. For this dimension, the
best local fit is obtained. However, when increasing the m-value beyond
the optimum, even though self-crossing trajectories are thus avoided, points
in the resulting high-dimensional space are too distant from each other to
ensure a good local approximation.
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Figure 8: Variation of the prediction error £ obtained for a prediction
horizon of n = 1 as a function of the state space dimension m.

We now examine the consequences this reconstruction has on both short
and long-term predictions.

We have used different prediction algorithms to estimate future values
of the time series, including both global models (neural networks) and local
methods that use both linear and nonlinear approximations. In all cases,
the prediction errors were not significantly different. These results highlight
the fact that the prediction algorithm was not as important as the state
space reconstruction. Consequently, the method previously described was
singled out. Although the optimal state space dimension was determined for
a prediction horizon of n = 1, we assume that this dimension is not far from
the optimum for larger prediction horizons.

Figure 9 illustrates short-term predictions (n = 10) for several time series
compared with the actual values. The conclusions drawn from this figure are
twofold. On the one hand, predicted values compare quite favorably with
the actual values for those points of the time series that correspond to large
peaks. On the other hand, predictions for those values close to the average
T = —12.8°C are not so good. The reason for this is clear if one takes
into account the state space reconstruction. It was shown that the core of
the state space corresponds to higher-dimensional movement while the outer
region is more deterministic (Figure 6). Therefore, it is difficult to obtain
a deterministic reconstruction for the inner region of the state space and,
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Figure 9: Variation of the original time series (dashed line) and the
filtered time series (solid line) along with the predicted values for a
prediction horizon of n = 10 (circles).

as a consequence, predictions are inaccurate. On the other hand, the outer
region of the state space, which corresponds to the various peaks that appear
in the time series, can be deterministically reconstructed and are therefore
quite reliable. This result can be highlighted if we do not make predictions
for those values that are located in the core of the state space. Taking into
account the overall time series we find that £ = 0.092. On the other hand,
if only those values of the time series whose state space points lie outside
a sphere of radius r = 1.0 are predicted, the error decreases to a value of
E = 0.074. This means that the mean-square error decreases by a factor
of 20% if the inner region of the state space (representing 30% of the total
number of points) is ignored.

We now tackle the problem of long-term predictions. Figure 10 shows
the predictions for n = 100 steps into the future compared with the original
and filtered time series. In this figure, two complete 100-step predictions
are shown. The predictions start at ¢ ~ 3h and at ¢ & 11h, respectively,
for a duration of 100 points each. It is seen that both peaks are accurately
predicted. These peaks correspond to closed orbits in the state space recon-
struction (Figure 6). The remaining peaks of the figure are not accurately
estimated due to the fact that when the prediction reaches the average value
T = —12.8°C after approximately 15 steps into the future (which corresponds
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Figure 10: Variation of the original time series (dashed line), the
filtered time series (solid line), and the predicted values with a pre-
diction horizon of n. = 100 (circles).

to entering the inner region of the state space) it can not escape and begins
to oscillate. Thus, the prediction horizon for this system is limited by the
time required to reach the inner region of the state space. Once there, due to
the great number of crossing trajectories, there is no way out of the region,
and hence the remaining peaks are poorly estimated.

Driven by the discovery that two well-defined regions with different di-
mensions are distinguished in the state space, we built a model that takes this
into account. In this model, either a three or a six-dimensional state space
is used depending on whether the state space point lies outside or inside the
core region. The E-value obtained for this prediction model is only 5% better
than the former. This slight difference is not significant and suggests that
the inner region is mainly dominated by noise instead of being a movement
embedded in a higher dimension. The model might be more successful for
those systems characterized by a low presence of noise.

4. Discussion

The results obtained suggest that the P-value can be interpreted as a measure
of the degree of determinism of the state space reconstruction. Furthermore,
the P-value gives a measure of the quality of the reconstruction for differ-
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ent regions of the state space that distinguishes between non-deterministic
regions dominated by noise and highly deterministic regions.

It has been shown that the results obtained in the state space reconstruc-
tion have their counterpart in the prediction error method indicating the
similarities between the local averaged scalar product value and the predic-
tion error. This result suggests the possibility of using this value to estimate
a local prediction error.

The procedure described in this paper outlines a method for modeling
high-dimensional systems where due to the lack of points a bad estimate of
D, is obtained. However, a degree of determinism and hence a degree of
smoothness of the reconstruction may be obtained using the averaged scalar
products of flow vectors.

In this work and for this particular time series, different prediction model
including global models using neural networks, local models using both non-
linear approximations such as neural networks and linear methods have been
tested, leading in all cases to almost the same result. However, local mod-
els using linear approximations outperform the others in terms of execution
time, along with the possibility to use it in adaptive real time systems. This
result emphasizes the fact that a good reconstruction is critical, whereas the
method used to model the local flow vectors is not so important.
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