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Abstract. The processing performed by a feed-forward neural net­
work is oft en int erpreted through use of decision hyperplanes at each
layer. T he adaptation process, however, is normally explained using
the picture of gradient descent of an error land scape. In thi s paper
t he dynamics of t he decision hyperplanes is used as t he model of the
adaptat ion process. An electro-mechanical analogy is drawn where t he
dynamics of hyperplanes is determined by interaction forces between
hyperplanes and the particles that represent t he patterns. Relaxati on
of the system is determined by increasing hyperplane inerti a (mass).
This picture is used to clar ify the dynamics of learning, and goes some
way toward explaining learning deadlocks and escaping from certain
local minima. Furthermore, network plast icity is introduced as a dy­
namic property of the system, and reduction of plasticity as a neces­
sary consequence of informat ion storage . Hyperplane inertia is used
to explain and avoid destructive relearning in t rained networks.

1. Introduction

The back-propagation algorit hm is normally expla ined and analyzed as a
gradient descent of an erro r landscape in weigh t space. However , for feed­
forward net s there is a degree of structure present in t he organization of t he
weights, and we may expe ct it t o be possib le to repar ameterize t he pro cess
such that it may be represented as an optimization of a different , more mean­
ingfu l set of variables . Using the constraints that t he net is feed-forward and
consist s of layers of nodes that do not mutually interact , a common rep a­
rameterization is in the form of t he decisi on hyperplanes that determine the
input to each hidden and out put un it of the network . This is generally
employed only to exp la in the mappings learn ed by t he network, and not
t he opt im izat ion process t hat· led to t hem. In t his paper we use t he actual
dyn amics of t he hyperpl anes to shed more insight on t he workings of t he
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back-propagation algorithm in such networks. The opti mizat ion process is
viewed as a minimizatio n of the interaction forces that influence the move­
ment of the hyperplanes in their respect ive spaces . The optimization process
is th en seen as a shifting and anchoring of the hyperplanes. The inte ractions
are between learnin g-set pat terns and hyperplanes and are directly related to
th e delta error learning rule of back-propag at ion. This way of viewing back­
propagation allows better insight into th e learning and reduction of plasticity
of a network.

The pap er is orga nized as follows. In sect ion 2 we consider the single-un it
case, building an analogy using ideas from a physical system in sect ion 2.2.
The analysis is exte nded in sect ion 3 to networks having a hidden layer.
In sect ion 4 we discuss the picture of back-propagation learning from the
viewpoint of the hyperplane reparameterization. The meanin g of hyperplane
mass is discussed in terms of network plast icity and inform at ion in sect ion 5.
We are then in a posit ion in sect ion 6 to annotate a learning scenario, and in
sect ion 7 to clarify descent into local minima and show how to escape from
some of th em. In sect ion 8 we demonstrate how destructive relearning may
be reduced when extending the capabilit ies of an opt imized net.

2. Single-predicate case

Consider a single-predicate neur al network with n input uni ts, no hidden
units, and a single output unit that is connecte d to th e inp ut units via the
weights w= {Wi} , 1 ::; i ::; n . The network has a threshold weight Wo asso­
ciated with it . T he out put uni t adopts states according to a monotonically
increasing nonlinear sigm oid function f({ w- wo) of the input pat tern [,
given by j(¢) = 1/ (1+e-M ) where (3 represents the sharpness of the sigmoid
function. j (¢) has the properties

j (¢ ) E [0,1]
j (¢ ) + j (- ¢ ) = 1

{
> 0.5 if A, > 0j ¢ - If' _

() < 0.5 otherwise.

(1)
(2)

(3)

The output decision hyperplane determines the values of ¢ that cause the
out put to lie on the transit ion between two logical interpretations. Norm ally
th e interpretations are "yes" and "no," where

yes == j (¢ ) > 0.5

no == j (¢ ) < 0.5,

(4)

(5)

the tra nsit ion between the two thus being j (¢ ) = 0.5, which is defined by the
locus ¢ = 0, or the points r on th e hyperplane w·r = wo o The hyperplane
may be written in its minimal (standard) form

fi · r=8 , (6)
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hyperplane

Figur e 1: The parameters that define a decision hyp erp lane in pattern
space.

where fi. is the unit vector parallel to wtha t determines the orienta tion of
th e hyperplane in the pat tern space, and e is the perp end icular distance of
the hyperpl ane from the origin (see Figure 1).

e:=wah
fi.:=wh
'Y := Iwl·

(7)
(8)
(9)

T he parameter 'Yis positive and represent s the sharpn ess of the logical outp ut
decision. It plays a vital role in det erminin g the hyperplane dynamics.

In the back-propagation algorithm the weights w to the output unit are
changed by the following amount at each t ime step (assuming batch upd ate"):

t:.w = TJ LW- d' ) I " [P ,
P

(10)

where JP' is the different ial of the out put node function, tP is the target value
for pattern [P at the output unit , and oP is th e act ual network output value
for this pattern . The threshold is changed as follows:

t:.Wa= TJ LW- d') jP'.
P

(11)

The hyperplane dynamics is determined by the cha nges in th e parameters
ii and (j per t ime step. In the following sect ions we will derive the dynamics
equations resulting first from the back-prop agation adapt ation changes on
t he syst em, and second from considering t he system as elect ro-mechanical in
nature.

lWhen online (or per-samp le) learning is performed in small steps it approxima tes to
batch learn ing [13].







46 Frank J. Smieja

Figure 3: Dur ing t he interaction t ime t1t t he force between fixed
particle p and plat e h causes a rot at ion of the plat e about t he center
of mass P , result ing in a new orient at ion ii' of the plat e.

mass for thi s system we define as th at point on the plate nearest t he origin,
a distance x from the origin (see Figure 3).

A useful analogy for an interaction is electrostatics (see, for example, [9]).
Let us distin guish th e two plate surfaces using t he vector ii , which points from
the negative to the positive surface. Imagine the plate h to possess an overall
uniform charge +qh on its positive surface and - qh on its negative surface
(Figure 1). Consider a fixed part icle p possessing a charge qp, situated a
perpendicular distance Ip from t he plate (see Figure 4). The electrostat ic
force F is directed along th e perpendicular and has the magnitude

(20)

where g(lp) is a function representin g the range of t he interaction.
The rotational interacti on results in both a new orientat ion ii' and a

new pivot distance x' for the plate. T he interaction is therefore sufficient
to explain the source of both rotational and (one) t ranslational components
of plate motion. The t ranslational component is, however , of second-order
magnitude and we may safely ignore it , and assume a st at ionary pivot for
th e dur at ion of the turn ing interaction . T he main comp onent of tr anslat ional
motion comes from the linear component of the force act ing at Q.

The form of th e turn ing int eraction is given by the torque T caused by
th e force F act ing at t he point Q about the center of mass P :

(21)

where the vector QP is given by

(22)
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Figure 4: Interacti on force between particle p and a hyp erpl an e.
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and the force is given by F = - F ri . Substitut ing in equation (21) we obt ain
for the torque

T = -Fri 1\ ((C;: . ri )ri - C;: )

= Fri l\C;:.

(23)

(24)

The effect of this instantaneous torque is a change in t he rate of angular
moment um L:

dL 1 - F - -- = w = n 1\ C;P'
dt

(25)

The moment of inertia I of a uniform plate is proport ional to its mass M ,

I = k M .

Thus we have for the rate of change of plat e orientation .,j, or rot ational
velocity W, resul tin g from a fixed part icle wit h position vector C;: , charge qp,
and perp endicular dist ance Ip from the plate ,

(26)

where G is th e interaction constant .
The translational component of the force F is imparted as instantaneous

change in linear momentu m K:

dK = Mv = F.
dt

Thus the translat iona l velocity is

- _ di _ Gqpqh (1)-
v - dt - M 9 p n ,

(27)

(28)
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which determ ines how much the center of mass of the plate moves in an
infinitesimal tim e ste p, in th e direct ion of the force F.

Electrostatic interactions are addit ive; thus when more than one fixed
part icle is present , equations (26) and (28) change to (writ ing now in the
form of orientation angle 'lj;)

(29)

(30)

If the part icles are not fixed , they experience a recoil momentum, which
simply means that the same linear momentum in equa t ion (27) is received
by the part icle in the opposite direction .

2.3 R esults of the analogy

There is an obvious similarity between the first and second set of dynam­
ics equations . Specifically, comparing equations (17) and (19) (in the 3D
case) with (30) and (29), we ident ify the following analogues between the
hyp erplane system and the mechanical system:

mass M == 'Y

separation I == [ . ii - e
plate charge qh == 1

cente r of mass displacement dx == de

interaction range gO == t'0
particle charge qp == (tP - oP)
force constant G == 'T/

moment of inertia constant k set to 1

(31)

(32)
(33)

(34)
(35)
(36)
(37)
(38)

The range term g(lp) originates from the response funct ion f of the nodes.
It is illustr ated in Figure 5 for t he sigmoid case assumed here.

A complication arises in t rying to underst and the final terms in equa­
tions (17) and (18) for the general non-3D case. There is an addit ional
component in the motion of a back-propagation hyperplane arising from the
change in mass that occurs at each t ime step. The inst antaneous increase
of mass dur ing the interaction (as encapsulated in equat ion (16)) removes a
part of the linear moment um , and also causes a change of ii in th e direction
ii during the rotat ional interaction. T he components of change that result
from the presence of mass are the factors that cause the back-propagat ion
hyperplane system to differ from a finit ized physical system. T he nearer the
hyperplane reaches its optim al orientation , the more its mass increases.
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Figure 5: Form of the range function g(I). Part icles nearest the bound­
ary have the most effect .

From now on we can write the back-propagation hyperplane equat ions in
a form tha t uses the electro-mechanical analogy:

(39)

(40)

(41)

3. Nets having a hidd en layer

We now insert a hidden layer of N H nodes, fully connected to each input
node via th e weights W i j , and fully connected to the output node via the
weight s Wj. T he index j labels th e hidden hyperp lanes. Hidden-unit (HU)
space [16] is cartesian and defined by the ort honormal set of vectors {ej} ,
j = l , . . . , NH .

The situa t ion is now more interest ing because instead of a single hy­
perpl ane in a system that tries to optimize its position , there are now N H

hyp erpl anes optimizing their positi ons toge ther in the input pat tern space,
and one hyperplane optimizing it s position in the HU spa ce.

The same hyp erpl ane equations (39)-(41) are used for the hidden hyper­
planes and th e out put hyperplane. The only quanti ty that changes is the
form of the part icle charge qp, which also varies according to the hyperp lane
being considered.

From the back-prop agat ion equations we have for the weight-change 6 wj
per update for weights leading into hidden hyperplane j , when just one out ­
pu t hyperplane 0 is considered,

6 wj = 7J L f; j (tp - op)f;owjo f pj · (42)
p
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This produces, after some manipulation (which it is not necessary to repro­
du ce here), the following for the charge of a par ticle p in t he input space with
respect to the hidden hyperplane j:

(43)

0' is the positi on vector of the par ticle p in hidden space and 0 lab els t he
output hyp erpl ane. Not ice the effect of the output hyperplane: One with a
high mass induces a correspondingly large charge in t he input particle with
respect to the hidden hyp erplane j . The induced charge is in the direc­
tion away from the outp ut hyperplane and represent s the recoil th at would
be effected in a rea l physical system. In t he network system th e par ticles
themselves can only be moved indirectly, and this is in the form of a higher
charge on the equivalent particles in t he next higher layer tha t , by shift ing
hyperpl anes in th eir space , change the location of the origin al par ticle (see
Figure 6) .

4. Remarks

The rewriting of th e back-propagation equations in the form of hyp erplane­
par ticle interaction allows an original insight into the optimization pro cess.
In this sect ion we list some characterist ics of the opt imization as seen from
this viewpoint .

• The particles that have the most effect on t he dynami cs of the hyper­
plane are those near est to it. This observation is also known as the
"boundary-pat tern" effect and has been empirically st udied by other
research ers [1, 14]. Fur th ermore, it is worth noting that , in Figure 5,
lp is measured in uni ts of M . Thus, as th e mass of the hyperpl ane
increases, its range of influence decreases. This explains in part th e
redu ction of network plasticity (sect ion 5).

• From the form of th e charge in equat ion (36), incorre ctly sided par­
ticles will cont ribute more to t he forces on the hyp erplane than th e
correct ly sided ones. This is because when a par ticl e has a like charge
it has a lower repulsive force than the attrac t ive force of a particl e with
an unlike charge in the same position . This is how back-propagation
places a greate r priority on getting particles onto the right side of the
hyp erplane than on mapping them bet ter once there .

• From equations (39) and (41) it can be seen t hat th e hyp erpl ane stops
turn ing and shift ing as M ---> ()() and/or g(lp) ---> 0 and/or qp ---> 0 \/p .
The lat ter option is only possible in this perceptron-like network for
linearly separa ble problems [8], which indi cat es "problem solved." The
second condit ion is sat isfied when the first condit ion is already being
satisfied, because t he forces all become shor ter range as M increases
(Figure 5).
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Input space I

Hyperplaneo-;
maps to e1 '''\ \" ,.

t
HU space I

Figure 6: A hyperplane in the HU space (output hyperplane) imparts
a recoil to the particle that interacts with it , through translat ing the
components of the force Hand F2 into charges between th e input
space representation of the particle and the hyperplanes that are re­
sponsible for the respect ive dimensions of the HU space.
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• One can pr edict a "deadlocking" situat ion for the output hyp erplan e
whereby two par ticl es wit h opposite charges cause the following for a
given hyp erpl an e configuration:

g(ll ) = g(12 )

ql (&;\ n) = - q2(G ;\ n)

(44)

(45)

The resul t of this is that , from equ ations (39) and (41), t he hyp er­
plan e will not be moved to produce the required mappings, and from
equat ion (40), the hyp erpl an e will just grow in mass.

• Deadlocking can be overcome when a hidden layer is pr esent by utilizing
the fact t hat two wrongly mapped par ticl es on opposite sides with
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Figure 7: Success rate on the XOR problem as a funct ion of the mass
of the hyperplanes used to initialize the network (2 hidden hyper­
planes, all hyperplanes have same initial mass).

orthogonal posit ion vectors will pass back opposit e charges, and (thanks
to the ~ .no term in equation (43)) will encourage their representations
in the HU space to be reversed. Dead lock then will not occur when
the two particles are on th e same side of th e hidden hyp erp lane: The
par ticl es themselves can be moved instead of th e output hyp erp lane!
The sense of th e movement in the input space is to separate them
by pulling one closer to th e hidd en hyp erp lane and th e other further
away, such as to swap their cur rent represent at ions in the HU space.
(Dead lock of this form can sti ll occur, bu t it is more unlikely because
the particles would need to be placed equally on opposite sides of the
hidden hyp erp lane, and this would need to be th e case for about half
the population of hidden hyperplanes.)

• If the hyp erpl ane is initialized to have too large a mass, it may be
very difficult for it to be moved to an optimal posit ion and orient ation
because th e force ranges are too small. This is demonstr at ed in Figure 7
where the success rate of findin g a solut ion for t he XOR problem is
plot ted as a funct ion of th e initial mass used for th e hyp erp lanes. If
an attempt is made to counte rac t th e drawback of a large mass by
increasing th e st rengt h of the forces in the syste m, given by G (in
back-propagati on parl ance "step size" ) , th en equat ion (40) sees to it
that the mass changes m ore quickly , eit her in a positi ve dir ection, or
unst ab ly in large steps about its present large value. This explains
why forced escape from local min ima through temporary increase in
step size is not terr ibly successful. If the hyp erp lane is initialized to
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Figure 8: Final optimal state of the hyperplane when two particles
with position vectors 6 and .& are mapped to opposite sides. The
back-propagat ion algorithm looks for the orientation that gives it the
maximum perpendicular distance from each particle.
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have too small a mass, a solut ion will also be hard to find , because the
interact ion potenti al is too flat .

• The change in hyp erpl ane orientation angle is such as to minimize the
acute angle between th e hyperplane perp endi cular and the weighted
vecto r addit ion of the par ticle vectors. Consider two particles & and
.s.Assume t hey have opposite charges, and that they are both on the
corr ect sides of th e hyperp lane in question (set ql to be negat ive). At
dynami cal equilibrium they are the same perp end icular distance from
the hyp erp lane (because equat ion (41) says th e t ranslational movement
is stable when g(ll ) = g(l2))' Also, it can be seen that at equilibrium
th e hyp erp lane adopts th e orient ation (from equation (39)) , which says
th e hyp erplane perpendicular ii should be parallel to th e vector .s -&,
when the perpendicular dist ances {llpl} of the parti cles from th e hy­
perp lane are maximized (see Figur e 8) . In ot her words, th e hyp erp lane
looks for the position th at would be found by a least-squares approxi­
mation through the point s specified by the part icle posit ions. This is
prec isely the claim made in the perceptron convergence theorem [12],
and could be shown here in an intuitive way using the hyperplane inter­
pret at ion. This important par t of the back-propagati on iteration goal
has been shown in genera l to have t his form [3].

• Once the orientation of th e hyp erp lane has been optimized as described
above, one sees that the dot product in equation (40) has reached
its maximum value, thus increasing th e mass of the (now) stationary
hyp erpl ane until the ranges {g(lp)} decay to zero.
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• One can view the optimizat ion process as focusing the sensi tivi ty of
the hyperp lane: at t he start , all the particles in th e unit hypercube
(we assume they are all defined here) cont ribute to the movement of
the hyperplane; bu t as the hyperplane starts to increase in mass it loses
sensit ivity to distant part icles (force becomes more short range) and is
cont rolled to a greater exte nt by the closer part icles. It appears that
back-propagation has an automatic form of annealing that allows it to
relax its sensit ivity, or "temperature," from high to low. We equate
this in the next sect ion with its adaptation plasticity.

• From equation (43) , th e heavier the out put hyperplane the greater the
induced charge on the par ticles in the inpu t space. This is the recoil
f orce on a part icle from a hyperplane th at is itself not able to move
further . This effect is known as the "moving-targe ts problem" in back­
propagation learning [4]. The output hyperplanes try to solve as much
as possible through th eir own positioning, but a few particles are left on
the wrong sides because the prob lem is not linearly separable. When
t he majority of particles have been correct ly sided, the mass of the
out put hyperplanes will increase anyway, leaving the incorrectly sided
patterns no chance to move t hem. However , a larger output hyperplane
mass means a greater magnitude of charge than t he inpu t part icles
would otherwise have, which allows the particles to produce more force
on t he hidden hyperpl anes. T his makes it easier for t he hyperplanes to
change their configurations and thus separate th e inpu t par ticles.

• The procedures can be exte nded layer-wise upwards through the hidden
layers of the network , presentin g the picture of a learning process where
there are fewer part icles with high charges the higher up (i.e., the nearer
the input layer) one is. This is because more and more part icles are
mapped correctly as one propagates up through the network. T his is
the reverse of the way most construct ive algorithms [4, 10, 5] go about
the tas k of mapping: They start at the top, mapp ing more and more
pat terns as the networks grow in the direction nearer the out put [15].

• To extend to the No output-un it case, the only change needed is to
perform a summation in equation (43) over t he output hyperpl anes k
for the mass and potential terms:

No
q~ = L Nh gk ( lp )q~ (~ . iik) (iik . e;j ).

k

(46)

5. The significance of hyperplane m ass

5.1 N etwork plasticity

T he receptivity of the network to adaptation is known as its plast icity. The
plasticity is direct ly related to the degree to which the hyperpl anes are freely
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moveable. This freedom is hindered by a high hyp erplane mass. Equa­
tion (43) reveals that the degree of the induced charge is proportional to
the mass of th e hyperplane j from which t he particl e is recoiling. Wh en
substituted in the dynamics equat ions (39)-(41) th e induced charge serves
to provide the temp ering fact or MolMj . This allows free movement of the
hidden hyperplanes despite their high masses, when the out put hyperplane
has a similar mass.

There is, however , an addit ional factor in the dynamics equat ions, and
this is t he interaction range: Higher masses reduce the range of the interac­
tion (Figure 5), and thus th e charge of the part icles. Thus the free motion
of the hidd en hyperplanes is limited to the par ticles in input space that lie
near the hidden hyp erplanes, and to the part icles in the HU space tha t lie
near t he output hyperplane.

This would provoke the notion tha t an overall high hyperplane mass is an
indication of low network plasticity. More exact ly, the plastic ity has an in­
verse relat ion to the lowest mass of t he remaining usable hidden hyperplanes.
A "usable" hyp erplan e is one that is posit ioned so that it can respond to par­
t icle charges.

5. 2 Information

The increase of a hyperplane mass is very significant for the system. T he
anchor ing of a hyperplane in this way is equivalent to the long-term st orage
of information. In a similar way to the Shannon information measur e, the
probability of a parti cle being on one or the other side of a hyperplane can
be t aken as its resultant representation in the successive space, which be­
comes more boolean as t he mass of the mapping hyperplane increases. Thus
the information content of t he syst em increases as th e order in the system
increases and as th e plast icity decreases.

A lower mass indicates plasticity and is typified by more "fuzzy" output
decisions. Long-term memories are only held in the network by anchoring
the hyperplanes using high masses. The relative orientations of the hyper­
planes provides the pat tern corre lat ion information, which, togeth er with the
relative hyperplane masses, allows weak or strong generalizat ions to be made
on unseen pat terns. Lower hyperplane masses result in more fuzzy mapp ings
and consequent ly lower Shannon information content of t he system. Trained
networks are generally very good at gracefully degrading with respect to ex­
tra noisy or uncorrelated learning, precisely because of the resistance offered
by the heavy hyperplanes t hat have been evolved.

6. A success fu l learning sce nar io

To illust rate the dynamics of hyperp lanes we consider a successful learning
scenario. The problem used is XOR using a network with two hidden uni ts.
This simple problem was chosen for ease of illust ration. First we consider
how best to init ialize t he network.
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(a) (bJ

Figure 9: Example correct initial distribution of hyperplanes in (a)
input space, (b) HU space.

6.1 Optimal network init ializat ion

An untrained network has an optimal start ing point when the hyperplane
vectors are chosen rand omly from a spherical dist ribution , and th e origin
distances are chosen around the cente r of the pattern dist ribut ion. This
can best be explained wit h a pict ure. Figure 930 shows a set of hyperplanes
initialized in the inpu t space . T he point at which the perp end icular from t he
origin meets the hyperplane is shown by a star . T hese stars should remain
within the largest hypersphere that can be drawn completely within the input
space , which gives a good range of hyperplanes that slice the dist ribut ion of
inpu t pat terns. The orientations are rand omly initialized. Figure 9b shows
a set of hyperplanes init ialized in the hidden space. The distances from the
origin are small, and the orientations chosen random ly.

The importance of initial weight configurations has been often noted (see,
for example, [6]) . With our repr esentat ion of the system it is easier to see
what kind of a difference they can make. The above suggest ion ensures
th at the hidden hyperpl anes have a range of orientations and are posit ioned
anywhere within the largest hypersphere that can be drawn in the space that
is contained by the set of possible input patterns. T he output hyperplanes,
on th e other , hand start off somewhere near the midd le of the HU space and
have a range of orientations. It makes sense to start off near th e midd le of
HU space because the low initial masses of t he hidd en hyperplanes mean that
the part icles in the HU space will all have representat ions around the origin.

The masses of the hidden hyperplanes should be set at initial values such
that th e influence of each hyperpl ane, as indicated by the range function
shown in Figure 5, covers the whole input space . For a [0, IF input space a
good value would appear to be about 0.25. T he out put hyperplane, on the
oth er hand, can start with a higher value because t he patterns are init ially
very close. We set it to 2.
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Figure 10: Hyperplane movements during the iteration to a successful
solut ion to the XOR problem. The hyperplanes start with a light
shade and become darker with iterat ion time. (a) hidden hyperplane
1, (b) hidden hyperplane 2, (c) outp ut hyperplane. The four input
points are shown in the HU spaces.

6 .2 The learning process

Init ially the potent ial is broad , encompass ing all the pat terns, and the light
hidden representations feel little recoil force. Figures 10 and 11 show the
pictorial and graphical scenarios for the successful case .

The first stage of opt imization is t he out put hyperplane orient ing such
as to get as many pat terns as possible on the correct side . It begins set t ling
to an optimal position, det ermined by all t he patterns (because they all
have about t he same imp ortance at this st age, and are all about the same
dist ance from the hyperplane) and an unweighted average . It then begins
to get more massive due to the forces from correct ly sided patterns in range
giving repulsion (equation (40)) , the variat ion in ¢ becoming small, and
consequent ly the incorrectly sided patterns experiencing larger recoil forces.
These negative and positive (but now smaller) forces from correctly sided
patterns then contro l the dynamics of the hidden-layer hyp erplanes. Patterns
st ill on the wrong side of the output hyp erp lane when it is becoming quite
massive will receive stronger forces th at demand reorientation of the hidden
hyp erplanes. T his is more favorable because there is now less chance of the
outp ut hyperp lane being reorient ed.

The recoil forces on the HU part icles cause the hidden hyperplanes to
seek optimal pos it ions and orientat ions, defined by minimizing the sum of
forces from all directions aga inst the hyp erp lane (to end with little turn and
shift) . This can be seen in Figures 11a, 11c, 11d , and llf. After this pro cess
has been optimized the hidden hyp erp lanes may begin to grow in mass. It
can be seen from Figur e 11 how this t riggers the simultaneous mass increase
for all hyp erpl anes. As t hey get more massive, the patterns that are correct ly
sided (all of them) decay in terms of charge and importance (equation (43)) ,
thus slowing down the hyperp lane rot ational and lateral mot ion.
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F igure 11: P rogress of t he t hr ee hyp erp lan e param eters during iter­
at ion t o a successful solut ion . (a) -(c) , hid den hyp erplane 1; (d )- (f) ,
hidden hyp erp lane 2; (g)-( i), output hyp erplan e; (j), learn ing err or.
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(a)

Figure 12: Descent into a local minimum of type 1. The hyperplanes
sta rt with a light shade and become darker with iteration t ime. (a)
hidden hyperplane 1; (b) hidden hyperplane 2; (c) output hyperplane.
Th e four input points are shown in the HU spaces. The culprit is
hyperplane 1, which hits a deadlock.

(a) (b) (c)

Figure 13: The corresponding hyperplane mass change durin g the
scenario of Figure 12.

7. Unsuccessful scenarios: local m inima and escaping from them

We identify two crite ria t hat lead t o the system getting st uck in local minima.
They both involve the hyp erplan es losing "contact" wit h incorrectl y mapped
patterns: (1) pr emature increase of hyp erpl an e mass causing shorter range
interacti ons, (2) too low hyp erpl an e mass causing disappear an ce of interac­
tion gra dient . Bot h can be un derstood from equations (39)-(41 ).

7. 1 Local minimum of type 1

If, for the set of pat terns PE S , symmet ry condit ions develop such that
d;j ~ 0 and di / dt ~ 0, then the sit uation is a deadlock. It will often be the
case that dm/dt I' 0 in such situations , because it requires solely that the
hyp erpl ane lie off t he cent er of the pat tern cluster.

An example of such a local mini mum is illustrated in Figure 12, and the
pro gress of hyperpl an e mass in Figure 13. It can be seen that hyperplan e
1 (Fi gur e 12a) gets st uck in a deadl ock situation where its angle and dis­
tan ce (x) changes are zero, and its mass increases regardless. It is no longer
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Figure 14: Escape from the local minimum of Figure 12.

"" (

(a) (b) (e)

Figure 15: The corresponding parameter change of hyperplane 1 dur­
ing the escape scenario of Figure 12.

moveable. Hyp erpl ane 2 (Figure 12b), on the ot her hand, has successfully
separated a pat tern. At deadlo ck th e mass increase stops.

Such a local minimum can be escaped from simply by redu cing the mass
of the deadlocked hyperpl ane. Thus we set the mass of hyp erpl ane 1 in Fig­
ure 12a to 0.25 and cont inued the learning. T he ensuing scenario is depicted
in Figure 14. It can be seen that hyp erpl ane 1 immediately escapes from
the deadlo ck situa t ion. How? The symmetry leading to deadlo ck was only
present at the beginning, bu t long enough for hyperpl ane 1 to over-in crease
its mass so tha t it could not come out aga in. Meanw hile hyp erpl ane 2 had
separated some par ticles, thus cha nging the symmetry condit ion . On redu c­
t ion of its mass hyp erpl ane 1 was able to finish off the particle separation.
Figur e 15 shows the cont inued developm ent of hyp erpl ane 1's para meters .

7.2 Local minimum of typ e 2

Figur e 16 shows the pictorial scenario for anot her type of unsuccessful itera­
tion. This tim e the hidden hyp erpl ane masses (Figure 17) drop to very low
values, and hyp erpl ane 2 flies right out of the pattern space . The reason why
hidden hyp erpl anes fly out of the area (and this is a very common occurrence
when many hyp erplanes are available) is that the probability of having angle
and distance rapidly changed increases at the beginning of the adaptation,
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(e)

Figure 16: Descent into a local minimum type 2. The hyperplanes
sta rt with a light shade and become darker with iterat ion time. (a)
hidden hyperplane 1, (b) hidden hyperplane 2, (c) output hyperplane.
The four input points are shown in the HU spaces. Hidden hyperplane
2 leaves the pat tern definition area early on (pictur e is zoomed out to
show th is).

(a) (b) (e)

Figure 17: The correspondin g hyperplane mass change dur ing th e
scenario of Figure 16.

and once (by chance) thrown out of t he pat tern cluster it is possible that
an overall repu lsion from the patterns will be bui lt up . This happens when
the term ([. ii) is negati ve (see equat ion (41)) . T his pushes the hyp erplane
further out , which also reduces the mass (equ ation (40) ) . As soon as mass
becomes low, the lateral motion increases in size (thanks to the 1/ M factor).

T he only way of escaping from such a minimum is to start again . The lost
hyp erp lan e indicates eit her that nothin g or every thing is corre ct ly mapped
(because there is no net bias pulling it). That is why when many hyp erp lan es
are used to solve an easy problem many are thrown out early on. The solution
to th is obvious dr ain on t ime and resources is to add properly initi alized
hyperplan es successively, as descr ibed in [2].

7.3 Difficult problems

Some problems may be of such a typ e that they may be repr esented by super­
position of a much easier problem and a small (in te rms of input pat terns)
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also easy "perturbing" problem. For example, one oddly mapped pat tern
may be hidden in a large region of regularly mapp ed pat terns. Then the
forces of the larger problem will be acted on first , and those from the per­
turbing prob lem may be so small that they will be ignored until mass increase
has reduced the repulsive forces from the correct ly sided pat terns. Then it
may be too late. One such example is the "= 1" problem [11] . All patterns
with one bit on must be mapp ed to 1, and the rest to O. The main problem
(in terms of interaction strength) here is the separat ion of all the> 'l-bit pat­
terns from the I-bit pat terns. After t his is done successfully, there remains
a single pattern (0, 0, 0, . .. , 0) that has to be mapped. This is the perturba­
tion. Wh at is seen is a rapid learni ng of all the other patterns (steep drop
in lear ning curve) followed by a long, slight ly sloping port ion as t he nearest
free hyperplane is dragged over to perform the final separation. It takes a
long t ime because the hyperplane is already quite massive due to t he many
other correct ly mapp ed pat terns.

In such except ional circumst ances, the minimal solut ion (defined in [11])
consists of one hyperp lane that separates this single pat tern from the oth er
pat terns, in the input layer . T he best way to avoid the slow learning is either
to realize before learning th at the single pattern is an except ion, or to discover
t hrough t he learning itself t hat the pat tern is an except ion, in that it is the
only pat tern that has not been mapped correctly. Then this pat tern should
be isolated and learned using an ext ra hyperplane after all the others have
been learned. In the simulations we carr ied out we were frequent ly successful
by letting the system solve all the pat terns apart from the except ion (which
it does aut omatically) , and then, when it was clear that mass increase had
set in, choosing any hidden hyperplane and reducing its mass by about a
factor 10. Fur th er learning had the effect of using th is suddenly mobile
hyperplane to separate the remaining pattern . All the other patterns were
reasonably well accounted for by t he other hyperplanes, which had merely
shifted slight ly to accommodate the loss of the suddenly lighter hyperplane.
The effect of such cont rolled "interfering" was startling in such experiments:
long plateaux of steady error suddenly dropped to zero in a mat ter of a few
cycles-a very clear demonstration of the effect of hyperplane mass.

Wh at happ ens if we then wish to perform additional learning using the
weights of a tra ined network? Is this possible without dest roying previous
knowledge?

8 . Relearnin g in trained networks

Consider a new pattern t hat is to be learn ed in a t rained network consist ing
of heavy hyperplanes. How can destructive relearning be avoided? T here are
th ree cases to consider.

1. T he new pattern represents an example of the ru le already self­
contained in previous learned pat terns, and adds no new information
other than perhaps a more exact placement of decision regions.
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2. The new pattern provides new inform ation th at can neverth eless be
learned when the hyp erpl anes already placed are soft ly rearranged (by
thi s is meant that th e entire problem does not have to be relearned) .

3. The new pattern can only be learned when a completely new configu­
ration of the hyp erp lanes is created, or cannot be learn ed together with
th e current patterns in the current network.

The third case can only be handled by either comp lete resetting of th e
network, or as a special case. Neither option is pleasant , but drast ic action
cannot be avoided when the informat ion really is new and important .

More promising are the first two cases. To minimize th e small destruct ive
effects of the extra learning only manipulation in the hidden layer should
be required , and the output hyp erp lane should be held fixed. Increasing
th e output hyp erp lane mass, however, will not damage the other pattern
mappings, assuming they were all properly mapp ed before. We suggest the
following method.

The hidden hyp erp lanes can be shifted singly for the particular pat tern .
The one th at is chosen is that with respect to which the hidden particle in
quest ion has th e greatest charge (obtainable from equat ion (43)). The others
are held fixed. After every movement th e progress of th e pattern is mon itored.
This continues until the charge for th is hyp erp lane is no longer the greatest,
at which point the new hyp erp lane whose charge is th e highest is taken and
moved singly. This method utilizes th e fa vored directions of change in the
syst em in order to reduce the damage to the information current ly in the
syst em.

Of cours e, it may not always be possible to learn a new pattern without
damaging the network's past information , and t he above merely outlines
heur ist ic ideas of how to ease the effects of a new pat tern.

From the hyp erp lane perspective, a new pattern will generally have a de­
st ruct ive effect on a network when th e movements it wishes to enforce on the
hyperplanes are large, but unable to be communicated because the ranges are
too low and masses too high. The correlat ion of a great at t rac t ion (charge)
for a hyp erpl ane, and a low range to enforce it (related to the high hyp er­
plane mass) together with a heavy hyp erpl ane to move, signifies probable
destruct ive behavior. Destruct ive learn ing means large alterations in hyp er­
plane structures, which is seen as large movements of heavy hyp erp lanes. A
heavy hyp erpl ane holds more information th an a light one, and its movement
thus more easily destro ys information.

9 . Conclusion

In this pap er it has been demonstrated how multi layer perceptron learning
using sigmoid response functions and th e back-propagation learni ng algo­
rithm can be interpreted usefully in terms of hyp erp lane dynamics and mass
increase of the system. The parameters describing rot ation, translat ion , and
mass of th e hyp erp lane were used for th is int erpret at ion . We believe th e idea
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of a hyperplane mass has not been employed explicit ly before in any descrip­
tion of back-propagat ion . Normally it is mentioned th at "weights just get
ever larger," without really understanding how importan t t his is. We are
aware of only one other technique [7] that indirect ly makes use of a quantity
similar to mass.

The interpretation was used to explain pictorially the learning dynamics
of back-propagat ion with hidden layers, and how the information is stored in
the network in the form of hyperplane mass. The importance of weight ini­
tialization was made intuit ively obvious. The descent into local minima was
also described and explained using the interpretation. It was shown how es­
cape from certain types of local minima may be enacted pain lessly. Plasticity
of a network was defined , and a meth od of gent ler relearning in non-plast ic
networks was suggested. It is useful to know whether , in a t ra ined , non­
plast ic network, fur ther learn ing of a new pat tern will be very dest ruct ive.
This was viewed in terms of easy and hard rearrangements of the hyperplane
syst em.

This type of detailed network analysis is worthwhile because not only can
th e prob lems during learning and genera lizat ion be better understood and
dealt wit h, and performance improved, but it also allows a number of useful
network state and learning parameters, such as plasticity, pat tern charge,
interact ion range, to be defined and used advantageously in the systemat ic
const ruct ion of specific neural networks.
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