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Abstract. The processing performed by a feed-forward neural net-
work is often interpreted through use of decision hyperplanes at each
layer. The adaptation process, however, is normally explained using
the picture of gradient descent of an error landscape. In this paper
the dynamics of the decision hyperplanes is used as the model of the
adaptation process. An electro-mechanical analogy is drawn where the
dynamics of hyperplanes is determined by interaction forces between
hyperplanes and the particles that represent the patterns. Relaxation
of the system is determined by increasing hyperplane inertia (mass).
This picture is used to clarify the dynamics of learning, and goes some
way toward explaining learning deadlocks and escaping from certain
local minima. Furthermore, network plasticity is introduced as a dy-
namic property of the system, and reduction of plasticity as a neces-
sary consequence of information storage. Hyperplane inertia is used
to explain and avoid destructive relearning in trained networks.

1. Introduction

The back-propagation algorithm is normally explained and analyzed as a
gradient descent of an error landscape in weight space. However, for feed-
forward nets there is a degree of structure present in the organization of the
weights, and we may expect it to be possible to reparameterize the process
such that it may be represented as an optimization of a different, more mean-
ingful set of variables. Using the constraints that the net is feed-forward and
consists of layers of nodes that do not mutually interact, a common repa-
rameterization is in the form of the decision hyperplanes that determine the
input to each hidden and output unit of the network. This is generally
employed only to explain the mappings learned by the network, and not
the optimization process that-led to them. In this paper we use the actual
dynamics of the hyperplanes to shed more insight on the workings of the
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back-propagation algorithm in such networks. The optimization process is
viewed as a minimization of the interaction forces that influence the move-
ment of the hyperplanes in their respective spaces. The optimization process
is then seen as a shifting and anchoring of the hyperplanes. The interactions
are between learning-set patterns and hyperplanes and are directly related to
the delta error learning rule of back-propagation. This way of viewing back-
propagation allows better insight into the learning and reduction of plasticity
of a network.

The paper is organized as follows. In section 2 we consider the single-unit
case, building an analogy using ideas from a physical system in section 2.2.
The analysis is extended in section 3 to networks having a hidden layer.
In section 4 we discuss the picture of back-propagation learning from the
viewpoint of the hyperplane reparameterization. The meaning of hyperplane
mass is discussed in terms of network plasticity and information in section 5.
We are then in a position in section 6 to annotate a learning scenario, and in
section 7 to clarify descent into local minima and show how to escape from
some of them. In section 8 we demonstrate how destructive relearning may
be reduced when extending the capabilities of an optimized net.

2. Single-predicate case

Consider a single-predicate neural network with n input units, no hidden
units, and a single output unit that is connected to the input units via the
weights @ = {w;}, 1 <7 < n. The network has a threshold weight wy asso-
ciated with it. The output unit adopts states according to a monotonically
increasing nonlinear sigmoid function f (5 W — wp) of the input pattern 5—',
given by f(¢) = 1/(1+e7%%) where 3 represents the sharpness of the sigmoid
function. f(¢) has the properties

f(¢) € [0,1] (1)

f(@)+f(-¢)=1 (2)
>05 ifp>0

1(9) { < 0.5 otherwise. (3)

The output decision hyperplane determines the values of ¢ that cause the
output to lie on the transition between two logical interpretations. Normally
the interpretations are “yes” and “no,” where

yes = f(¢) > 0.5 (4)
no = f(¢) < 0.5, (5)

the transition between the two thus being f(¢) = 0.5, which is defined by the
locus ¢ = 0, or the points 7 on the hyperplane @ - ¥ = wy. The hyperplane
may be written in its minimal (standard) form

i-7=0, (6)
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Figure 1: The parameters that define a decision hyperplane in pattern
space.

where 7 is the unit vector parallel to @ that determines the orientation of
the hyperplane in the pattern space, and € is the perpendicular distance of
the hyperplane from the origin (see Figure 1).

0 :=wo /7y (7
7= w/y (8)
= |u]. 9)

The parameter 7 is positive and represents the sharpness of the logical output
decision. It plays a vital role in determining the hyperplane dynamics.

In the back-propagation algorithm the weights @ to the output unit are
changed by the following amount at each time step (assuming batch update!):

Ad =1 Z(t” o) 7 &, (10)

where f?' is the differential of the output node function, #” is the target value
for pattern &P at the output unit, and o” is the actual network output value
for this pattern. The threshold is changed as follows:

Awg = 772 o°) f¥. (11)

The hyperplane dynamics is determined by the changes in the parameters
7t and @ per time step. In the following sections we will derive the dynamics
equations resulting first from the back-propagation adaptation changes on
the system, and second from considering the system as electro-mechanical in
nature.

“When online (or per-sample) learning is performed in small steps it approximates to
batch learning [13].
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2.1 Back-propagation kinematics

From equations (7) and (8), at each time step the hyperplane parameters are
changed according to

1 A

AR = ~AdG - g (12)
o %
1 A

Af = —Awo = TZWO. (13)
v

Substituting from equations (7), (8), (10), and (11):,

A= TS — o) b - /”’ (14)

(- o) - (15)

Both the above equations consist of one term (the first) that is concerned
with the change due to movement, and another (the second) concerned with
change due to a change in the constant y. We will see the meaning of this
later.

Since 7 is orthogonal to dii, by performing the operation “- 7" (scalar
product) on both sides of equation (14) we obtain an equation for the change
in v per unit time step:

v—nz o) f7 & - (16)

which can also be obtained by differentiating equation (9).
From equation (15) the rate of change of 6 is given by

= J L =) (1= &), (17)
From equation (14) the rate of change of 7 is given by
= ;z @) [7(& ~ (& - 7)i). (18)

In the three-dimensional case, because for small dri, dl:’ ~ dii A1l (A is the
vector product),

d‘” =1y - o) G an. (19)

This special case will be used for intuitive comparison with the mechanical
analogue to be described in the next section.

During back-propagation learning the decision hyperplane in our one-
node system is moved around: translationally as described in equation (17),
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Figure 2: Rotation of a hyperplane from position h to position A’
without change in 6. The rotation occurs about the origin, resulting
in the angle ¢ between 7 and 7.

and rotationally as described in equation (18). It is moved around because
“the system” tries to optimize the relative locations and orientations of pat-
tern vectors and hyperplanes. In other words, the algorithm attempts to
partition the patterns in such a way that the correct logical interpretations
at the output unit are achieved for all of them. The translational and ro-
tational equations express the process of the back-propagation algorithm in
terms of the hyperplane reparameterization. There are clearly three impor-
tant parameters associated with the hyperplane: 7, 6, and . The first two
can be pictured (see Figure 1), but what the third might represent is not so
obvious. From the equations it can be seen that increasing v reduces both
the translational and rotational velocity, all other parameters being held con-
stant. Furthermore, at each time step 7 is changed, and this removes part
of the translational velocity (equation (15)) and rotational velocity (equa-
tion (14)) that would have been transmitted.

For this reason it seems reasonable to imagine 7 as being an equivalent
to inertia, or mass. But movement of a mass requires a force, and therefore
if we are to develop a dynamical hyperplane model we will need to rewrite
the movement equations in terms of an interaction between hyperplanes and
patterns. To draw an analogy we will first need to derive some standard
dynamics equations in an analogous mechanical system.

2.2 Electro-mechanical dynamics

Assume for the sake of picturing the system that all interactions are pro-
jected into two dimensions. We consider the hyperplane to be equivalent to
a massive plate with uniform mass M and center of mass P. The center of
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Figure 3: During the interaction time At the force between fixed
particle p and plate h causes a rotation of the plate about the center
of mass P, resulting in a new orientation 7i’ of the plate.

mass for this system we define as that point on the plate nearest the origin,
a distance x from the origin (see Figure 3).

A useful analogy for an interaction is electrostatics (see, for example, [9]).
Let us distinguish the two plate surfaces using the vector 77, which points from
the negative to the positive surface. Imagine the plate h to possess an overall
uniform charge +q, on its positive surface and —g on its negative surface
(Figure 1). Consider a fized particle p possessing a charge g, situated a
perpendicular distance [, from the plate (see Figure 4). The electrostatic
force F is directed along the perpendicular and has the magnitude

F o gpqng(lp), (20)

where g(l,) is a function representing the range of the interaction.

The rotational interaction results in both a new orientation 7’ and a
new pivot distance z’ for the plate. The interaction is therefore sufficient
to explain the source of both rotational and (one) translational components
of plate motion. The translational component is, however, of second-order
magnitude and we may safely ignore it, and assume a stationary pivot for
the duration of the turning interaction. The main component of translational
motion comes from the linear component of the force acting at Q.

The form of the turning interaction is given by the torque T caused by
the force F' acting at the point @ about the center of mass P:

s —_—

T = FAQP, (21)
where the vector Cﬁ:’ is given by

QP= (& - )i — &, (22)
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Figure 4: Interaction force between particle p and a hyperplane.

and the force is given by F = —F'7i. Substituting in equation (21) we obtain
for the torque

T=-FAn(& A)i-§) (23)
=Fiing,. (24)

The effect of this instantaneous torque is a change in the rate of angular
momentum L:

ar . =

= =18=Fiing, (25)
The moment of inertia I of a uniform plate is proportional to its mass M,

I=kM.

Thus we have for the rate of change of plate orientation 1/;, or rotational
velocity o, resulting from a fixed particle with position vector &,, charge g,
and perpendicular distance [, from the plate,

pQn sy T
3= G0 o1,) (7 ), (26)
where G is the interaction constant.

The translational component of the force Fis imparted as instantaneous
change in linear momentum K:

dK
dt
Thus the translational velocity is

=M#=F. (27)

L dT IpAn -
== =GZ™ y1)i 28
YT a I (28)
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which determines how much the center of mass of the plate moves in an
infinitesimal time step, in the direction of the force F.

Electrostatic interactions are additive; thus when more than one fixed
particle is present, equations (26) and (28) change to (writing now in the
form of orientation angle 1)

du _ 9pqn
dt GZ kM 9(lp) (7L A Ep) (29)
gg _ GZ qpqh 7 (30)

If the particles are not fixed, they experience a recoil momentum, which
simply means that the same linear momentum in equation (27) is received
by the particle in the opposite direction.

2.3 Results of the analogy

There is an obvious similarity between the first and second set of dynam-
ics equations. Specifically, comparing equations (17) and (19) (in the 3D
case) with (30) and (29), we identify the following analogues between the
hyperplane system and the mechanical system:

mass M = (31)

separation | = E n—0 (32)

plate charge ¢, = 1 (33)

center of mass displacement dx = df (34)
interaction range g() = f'() (35)

particle charge ¢, = (t* — o”) (36)

force constant G =7 (37)

moment of inertia constant k set to 1 (38)

The range term g(l,) originates from the response function f of the nodes.
It is illustrated in Figure 5 for the sigmoid case assumed here.

A complication arises in trying to understand the final terms in equa-
tions (17) and (18) for the general non-3D case. There is an additional
component in the motion of a back-propagation hyperplane arising from the
change in mass that occurs at each time step. The instantaneous increase
of mass during the interaction (as encapsulated in equation (16)) removes a
part of the linear momentum, and also causes a change of 7 in the direction
7i during the rotational interaction. The components of change that result
from the presence of mass are the factors that cause the back-propagation
hyperplane system to differ from a finitized physical system. The nearer the
hyperplane reaches its optimal orientation, the more its mass increases.
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Figure 5: Form of the range function g(I). Particles nearest the bound-
ary have the most effect.

From now on we can write the back-propagation hyperplane equations in
a form that uses the electro-mechanical analogy:

o S o) 0o (6 ~ G- (39)
d;;[_czg(l CIp fp ). (40)
R O IS (a)

3. Nets having a hidden layer

We now insert a hidden layer of Ny nodes, fully connected to each input
node via the weights w;;, and fully connected to the output node via the
weights w;. The index j labels the hidden hyperplanes. Hidden-unit (HU)
space [16] is cartesian and defined by the orthonormal set of vectors {€;},
] = 1 aiy N, H-

The situation is now more interesting because instead of a single hy-
perplane in a system that tries to optimize its position, there are now Ny
hyperplanes optimizing their positions together in the input pattern space,
and one hyperplane optimizing its position in the HU space.

The same hyperplane equations (39)—(41) are used for the hidden hyper-
planes and the output hyperplane. The only quantity that changes is the
form of the particle charge g,, which also varies according to the hyperplane
being considered.

From the back-propagation equations we have for the weight-change Awj;
per update for weights leading into hidden hyperplane j, when just one out-
put hyperplane o0 is considered,

= Z fp] —O0p fpaw]o Joj- (42)
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This produces, after some manipulation (which it is not necessary to repro-
duce here), the following for the charge of a particle p in the input space with
respect to the hidden hyperplane j:

@ = Mo gollp)2(Gp - 7o) (71 - €7). (43)

EP is the position vector of the particle p in hidden space and o labels the
output hyperplane. Notice the effect of the output hyperplane: One with a
high mass induces a correspondingly large charge in the input particle with
respect to the hidden hyperplane j. The induced charge is in the direc-
tion away from the output hyperplane and represents the recoil that would
be effected in a real physical system. In the network system the particles
themselves can only be moved indirectly, and this is in the form of a higher
charge on the equivalent particles in the next higher layer that, by shifting
hyperplanes in their space, change the location of the original particle (see
Figure 6).

4. Remarks

The rewriting of the back-propagation equations in the form of hyperplane—
particle interaction allows an original insight into the optimization process.
In this section we list some characteristics of the optimization as seen from
this viewpoint.

e The particles that have the most effect on the dynamics of the hyper-
plane are those nearest to it. This observation is also known as the
“boundary-pattern” effect and has been empirically studied by other
researchers [1, 14]. Furthermore, it is worth noting that, in Figure 5,
l, is measured in units of M. Thus, as the mass of the hyperplane
increases, its range of influence decreases. This explains in part the
reduction of network plasticity (section 5).

e From the form of the charge in equation (36), incorrectly sided par-
ticles will contribute more to the forces on the hyperplane than the
correctly sided ones. This is because when a particle has a like charge
it has a lower repulsive force than the attractive force of a particle with
an unlike charge in the same position. This is how back-propagation
places a greater priority on getting particles onto the right side of the
hyperplane than on mapping them better once there.

e From equations (39) and (41) it can be seen that the hyperplane stops
turning and shifting as M — oo and/or g(I,) — 0 and/or g, — 0 Vp.
The latter option is only possible in this perceptron-like network for
linearly separable problems [8], which indicates “problem solved.” The
second condition is satisfied when the first condition is already being
satisfied, because the forces all become shorter range as M increases
(Figure 5).
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Figure 6: A hyperplane in the HU space (output hyperplane) imparts
a recoil to the particle that interacts with it, through translating the
components of the force F; and F; into charges between the input
space representation of the particle and the hyperplanes that are re-
sponsible for the respective dimensions of the HU space.

e One can predict a “deadlocking” situation for the output hyperplane
whereby two particles with opposite charges cause the following for a
given hyperplane configuration:

g9(h) = g(l2) (44)
@1 (& A7) = —q2(&2 A7) (45)
The result of this is that, from equations (39) and (41), the hyper-

plane will not be moved to produce the required mappings, and from
equation (40), the hyperplane will just grow in mass.

e Deadlocking can be overcome when a hidden layer is present by utilizing
the fact that two wrongly mapped particles on opposite sides with
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Figure 7: Success rate on the XOR problem as a function of the mass
of the hyperplanes used to initialize the network (2 hidden hyper-
planes, all hyperplanes have same initial mass).

orthogonal position vectors will pass back opposite charges, and (thanks
to the C; -Ti, term in equation (43)) will encourage their representations
in the HU space to be reversed. Deadlock then will not occur when
the two particles are on the same side of the hidden hyperplane: The
particles themselves can be moved instead of the output hyperplane!
The sense of the movement in the input space is to separate them
by pulling one closer to the hidden hyperplane and the other further
away, such as to swap their current representations in the HU space.
(Deadlock of this form can still occur, but it is more unlikely because
the particles would need to be placed equally on opposite sides of the
hidden hyperplane, and this would need to be the case for about half
the population of hidden hyperplanes.)

If the hyperplane is initialized to have too large a mass, it may be
very difficult for it to be moved to an optimal position and orientation
because the force ranges are too small. This is demonstrated in Figure 7
where the success rate of finding a solution for the XOR problem is
plotted as a function of the initial mass used for the hyperplanes. If
an attempt is made to counteract the drawback of a large mass by
increasing the strength of the forces in the system, given by G (in
back-propagation parlance “step size”), then equation (40) sees to it
that the mass changes more quickly, either in a positive direction, or
unstably in large steps about its present large value. This explains
why forced escape from local minima through temporary increase in
step size is not terribly successful. If the hyperplane is initialized to
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Figure 8: Final optlmal state of the hyperplane when two particles
with position vectors 51 and 52 are mapped to opposite sides. The
back-propagation algorithm looks for the orientation that gives it the
maximum perpendicular distance from each particle.

have too small a mass, a solution will also be hard to find, because the
interaction potential is too flat.

e The change in hyperplane orientation angle is such as to minimize the
acute angle between the hyperplane perpendicular and the weighted
vector addition of the particle vectors. Consider two particles f_; and
§;. Assume they have opposite charges, and that they are both on the
correct sides of the hyperplane in question (set ¢; to be negative). At
dynamical equilibrium they are the same perpendicular distance from
the hyperplane (because equation (41) says the translational movement
is stable when g(l;) = g(l2)). Also, it can be seen that at equilibrium
the hyperplane adopts the orientation (from equation (39)), which says
the hyperplane perpendicular 7 should be parallel to the vector 52 —f_;,
when the perpendicular distances {|l,|} of the particles from the hy-
perplane are maximized (see Figure 8). In other words, the hyperplane
looks for the position that would be found by a least-squares approxi-
mation through the points specified by the particle positions. This is
precisely the claim made in the perceptron convergence theorem [12],
and could be shown here in an intuitive way using the hyperplane inter-
pretation. This important part of the back-propagation iteration goal
has been shown in general to have this form [3].

e Once the orientation of the hyperplane has been optimized as described
above, one sees that the dot product in equation (40) has reached
its maximum value, thus increasing the mass of the (now) stationary
hyperplane until the ranges {g(l,)} decay to zero.
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e One can view the optimization process as focusing the sensitivity of
the hyperplane: at the start, all the particles in the unit hypercube
(we assume they are all defined here) contribute to the movement of
the hyperplane; but as the hyperplane starts to increase in mass it loses
sensitivity to distant particles (force becomes more short range) and is
controlled to a greater extent by the closer particles. It appears that
back-propagation has an automatic form of annealing that allows it to
relax its sensitivity, or “temperature,” from high to low. We equate
this in the next section with its adaptation plasticity.

e From equation (43), the heavier the output hyperplane the greater the
induced charge on the particles in the input space. This is the recoil
force on a particle from a hyperplane that is itself not able to move
further. This effect is known as the “moving-targets problem” in back-
propagation learning [4]. The output hyperplanes try to solve as much
as possible through their own positioning, but a few particles are left on
the wrong sides because the problem is not linearly separable. When
the majority of particles have been correctly sided, the mass of the
output hyperplanes will increase anyway, leaving the incorrectly sided
patterns no chance to move them. However, a larger output hyperplane
mass means a greater magnitude of charge than the input particles
would otherwise have, which allows the particles to produce more force
on the hidden hyperplanes. This makes it easier for the hyperplanes to
change their configurations and thus separate the input particles.

e The procedures can be extended layer-wise upwards through the hidden
layers of the network, presenting the picture of a learning process where
there are fewer particles with high charges the higher up (i.e., the nearer
the input layer) one is. This is because more and more particles are
mapped correctly as one propagates up through the network. This is
the reverse of the way most constructive algorithms [4, 10, 5] go about
the task of mapping: They start at the top, mapping more and more
patterns as the networks grow in the direction nearer the output [15].

e To extend to the Ny output-unit case, the only change needed is to
perform a summation in equation (43) over the output hyperplanes k
for the mass and potential terms:

NO — o
@ = My gi(lp)a (G - k) (7ig - €9). (46)
k

The significance of hyperplane mass

5.1 Network plasticity

The receptivity of the network to adaptation is known as its plasticity. The
plasticity is directly related to the degree to which the hyperplanes are freely
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moveable. This freedom is hindered by a high hyperplane mass. Equa-
tion (43) reveals that the degree of the induced charge is proportional to
the mass of the hyperplane j from which the particle is recoiling. When
substituted in the dynamics equations (39)—(41) the induced charge serves
to provide the tempering factor M,/M;. This allows free movement of the
hidden hyperplanes despite their high masses, when the output hyperplane
has a similar mass.

There is, however, an additional factor in the dynamics equations, and
this is the interaction range: Higher masses reduce the range of the interac-
tion (Figure 5), and thus the charge of the particles. Thus the free motion
of the hidden hyperplanes is limited to the particles in input space that lie
near the hidden hyperplanes, and to the particles in the HU space that lie
near the output hyperplane.

This would provoke the notion that an overall high hyperplane mass is an
indication of low network plasticity. More exactly, the plasticity has an in-
verse relation to the lowest mass of the remaining usable hidden hyperplanes.
A “usable” hyperplane is one that is positioned so that it can respond to par-
ticle charges.

5.2 Information

The increase of a hyperplane mass is very significant for the system. The
anchoring of a hyperplane in this way is equivalent to the long-term storage
of information. In a similar way to the Shannon information measure, the
probability of a particle being on one or the other side of a hyperplane can
be taken as its resultant representation in the successive space, which be-
comes more boolean as the mass of the mapping hyperplane increases. Thus
the information content of the system increases as the order in the system
increases and as the plasticity decreases.

A lower mass indicates plasticity and is typified by more “fuzzy” output
decisions. Long-term memories are only held in the network by anchoring
the hyperplanes using high masses. The relative orientations of the hyper-
planes provides the pattern correlation information, which, together with the
relative hyperplane masses, allows weak or strong generalizations to be made
on unseen patterns. Lower hyperplane masses result in more fuzzy mappings
and consequently lower Shannon information content of the system. Trained
networks are generally very good at gracefully degrading with respect to ex-
tra noisy or uncorrelated learning, precisely because of the resistance offered
by the heavy hyperplanes that have been evolved.

6. A successful learning scenario

To illustrate the dynamics of hyperplanes we consider a successful learning
scenario. The problem used is XOR using a network with two hidden units.
This simple problem was chosen for ease of illustration. First we consider
how best to initialize the network.
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(a) (b)

Figure 9: Example correct initial distribution of hyperplanes in (a)
input space, (b) HU space.

6.1 Optimal network initialization

An untrained network has an optimal starting point when the hyperplane
vectors are chosen randomly from a spherical distribution, and the origin
distances are chosen around the center of the pattern distribution. This
can best be explained with a picture. Figure 9a shows a set of hyperplanes
initialized in the input space. The point at which the perpendicular from the
origin meets the hyperplane is shown by a star. These stars should remain
within the largest hypersphere that can be drawn completely within the input
space, which gives a good range of hyperplanes that slice the distribution of
input patterns. The orientations are randomly initialized. Figure 9b shows
a set of hyperplanes initialized in the hidden space. The distances from the
origin are small, and the orientations chosen randomly.

The importance of initial weight configurations has been often noted (see,
for example, [6]). With our representation of the system it is easier to see
what kind of a difference they can make. The above suggestion ensures
that the hidden hyperplanes have a range of orientations and are positioned
anywhere within the largest hypersphere that can be drawn in the space that
is contained by the set of possible input patterns. The output hyperplanes,
on the other, hand start off somewhere near the middle of the HU space and
have a range of orientations. It makes sense to start off near the middle of
HU space because the low initial masses of the hidden hyperplanes mean that
the particles in the HU space will all have representations around the origin.

The masses of the hidden hyperplanes should be set at initial values such
that the influence of each hyperplane, as indicated by the range function
shown in Figure 5, covers the whole input space. For a [0, 1]? input space a
good value would appear to be about 0.25. The output hyperplane, on the
other hand, can start with a higher value because the patterns are initially
very close. We set it to 2.
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Figure 10: Hyperplane movements during the iteration to a successful
solution to the XOR problem. The hyperplanes start with a light
shade and become darker with iteration time. (a) hidden hyperplane
1, (b) hidden hyperplane 2, (c) output hyperplane. The four input
points are shown in the HU spaces.

6.2 The learning process

Initially the potential is broad, encompassing all the patterns, and the light
hidden representations feel little recoil force. Figures 10 and 11 show the
pictorial and graphical scenarios for the successful case.

The first stage of optimization is the output hyperplane orienting such
as to get as many patterns as possible on the correct side. It begins settling
to an optimal position, determined by all the patterns (because they all
have about the same importance at this stage, and are all about the same
distance from the hyperplane) and an unweighted average. It then begins
to get more massive due to the forces from correctly sided patterns in range
giving repulsion (equation (40)), the variation in ¢ becoming small, and
consequently the incorrectly sided patterns experiencing larger recoil forces.
These negative and positive (but now smaller) forces from correctly sided
patterns then control the dynamics of the hidden-layer hyperplanes. Patterns
still on the wrong side of the output hyperplane when it is becoming quite
massive will receive stronger forces that demand reorientation of the hidden
hyperplanes. This is more favorable because there is now less chance of the
output hyperplane being reoriented.

The recoil forces on the HU particles cause the hidden hyperplanes to
seek optimal positions and orientations, defined by minimizing the sum of
forces from all directions against the hyperplane (to end with little turn and
shift). This can be seen in Figures 11a, 11c, 11d, and 11f. After this process
has been optimized the hidden hyperplanes may begin to grow in mass. It
can be seen from Figure 11 how this triggers the simultaneous mass increase
for all hyperplanes. As they get more massive, the patterns that are correctly
sided (all of them) decay in terms of charge and importance (equation (43)),
thus slowing down the hyperplane rotational and lateral motion.
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Figure 11: Progress of the three hyperplane parameters during iter-
ation to a successful solution. (a)-(c), hidden hyperplane 1; (d)—(f),
hidden hyperplane 2; (g)—(i), output hyperplane; (j), learning error.
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Figure 12: Descent into a local minimum of type 1. The hyperplanes
start with a light shade and become darker with iteration time. (a)
hidden hyperplane 1; (b) hidden hyperplane 2; (c) output hyperplane.
The four input points are shown in the HU spaces. The culprit is
hyperplane 1, which hits a deadlock.
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Figure 13: The corresponding hyperplane mass change during the
scenario of Figure 12.

7. Unsuccessful scenarios: local minima and escaping from them

We identify two criteria that lead to the system getting stuck in local minima.
They both involve the hyperplanes losing “contact” with incorrectly mapped
patterns: (1) premature increase of hyperplane mass causing shorter range
interactions, (2) too low hyperplane mass causing disappearance of interac-
tion gradient. Both can be understood from equations (39)-(41).

7.1 Local minimum of type 1

If, for the set of patterns p € S, symmetry conditions develop such that
dip ~ 0 and dZ /dt = 0, then the situation is a deadlock. It will often be the
case that dm/dt # 0 in such situations, because it requires solely that the
hyperplane lie off the center of the pattern cluster.

An example of such a local minimum is illustrated in Figure 12, and the
progress of hyperplane mass in Figure 13. It can be seen that hyperplane
1 (Figure 12a) gets stuck in a deadlock situation where its angle and dis-
tance (z) changes are zero, and its mass increases regardless. It is no longer
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Figure 14: Escape from the local minimum of Figure 12.
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Figure 15: The corresponding parameter change of hyperplane 1 dur-
ing the escape scenario of Figure 12.

moveable. Hyperplane 2 (Figure 12b), on the other hand, has successfully
separated a pattern. At deadlock the mass increase stops.

Such a local minimum can be escaped from simply by reducing the mass
of the deadlocked hyperplane. Thus we set the mass of hyperplane 1 in Fig-
ure 12a to 0.25 and continued the learning. The ensuing scenario is depicted
in Figure 14. It can be seen that hyperplane 1 immediately escapes from
the deadlock situation. How? The symmetry leading to deadlock was only
present at the beginning, but long enough for hyperplane 1 to over-increase
its mass so that it could not come out again. Meanwhile hyperplane 2 had
separated some particles, thus changing the symmetry condition. On reduc-
tion of its mass hyperplane 1 was able to finish off the particle separation.
Figure 15 shows the continued development of hyperplane 1’s parameters.

7.2 Local minimum of type 2

Figure 16 shows the pictorial scenario for another type of unsuccessful itera-
tion. This time the hidden hyperplane masses (Figure 17) drop to very low
values, and hyperplane 2 flies right out of the pattern space. The reason why
hidden hyperplanes fly out of the area (and this is a very common occurrence
when many hyperplanes are available) is that the probability of having angle
and distance rapidly changed increases at the beginning of the adaptation,
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Figure 16: Descent into a local minimum type 2. The hyperplanes
start with a light shade and become darker with iteration time. (a)
hidden hyperplane 1, (b) hidden hyperplane 2, (c) output hyperplane.
The four input points are shown in the HU spaces. Hidden hyperplane
2 leaves the pattern definition area early on (picture is zoomed out to
show this).
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Figure 17: The corresponding hyperplane mass change during the
scenario of Figure 16.

and once (by chance) thrown out of the pattern cluster it is possible that
an overall repulsion from the patterns will be built up. This happens when
the term (€ - 7) is negative (see equation (41)). This pushes the hyperplane
further out, which also reduces the mass (equation (40)). As soon as mass
becomes low, the lateral motion increases in size (thanks to the 1/M factor).

The only way of escaping from such a minimum is to start again. The lost
hyperplane indicates either that nothing or everything is correctly mapped
(because there is no net bias pulling it). That is why when many hyperplanes
are used to solve an easy problem many are thrown out early on. The solution
to this obvious drain on time and resources is to add properly initialized
hyperplanes successively, as described in [2].

7.3 Difficult problems

Some problems may be of such a type that they may be represented by super-
position of a much easier problem and a small (in terms of input patterns)
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also easy “perturbing” problem. For example, one oddly mapped pattern
may be hidden in a large region of regularly mapped patterns. Then the
forces of the larger problem will be acted on first, and those from the per-
turbing problem may be so small that they will be ignored until mass increase
has reduced the repulsive forces from the correctly sided patterns. Then it
may be too late. One such example is the “= 1" problem [11]. All patterns
with one bit on must be mapped to 1, and the rest to 0. The main problem
(in terms of interaction strength) here is the separation of all the > 1-bit pat-
terns from the 1-bit patterns. After this is done successfully, there remains
a single pattern (0,0,0,...,0) that has to be mapped. This is the perturba-
tion. What is seen is a rapid learning of all the other patterns (steep drop
in learning curve) followed by a long, slightly sloping portion as the nearest
free hyperplane is dragged over to perform the final separation. It takes a
long time because the hyperplane is already quite massive due to the many
other correctly mapped patterns.

In such exceptional circumstances, the minimal solution (defined in [11])
consists of one hyperplane that separates this single pattern from the other
patterns, in the input layer. The best way to avoid the slow learning is either
to realize before learning that the single pattern is an exception, or to discover
through the learning itself that the pattern is an exception, in that it is the
only pattern that has not been mapped correctly. Then this pattern should
be isolated and learned using an extra hyperplane after all the others have
been learned. In the simulations we carried out we were frequently successful
by letting the system solve all the patterns apart from the exception (which
it does automatically), and then, when it was clear that mass increase had
set in, choosing any hidden hyperplane and reducing its mass by about a
factor 10. Further learning had the effect of using this suddenly mobile
hyperplane to separate the remaining pattern. All the other patterns were
reasonably well accounted for by the other hyperplanes, which had merely
shifted slightly to accommodate the loss of the suddenly lighter hyperplane.
The effect of such controlled “interfering” was startling in such experiments:
long plateaux of steady error suddenly dropped to zero in a matter of a few
cycles—a very clear demonstration of the effect of hyperplane mass.

What happens if we then wish to perform additional learning using the
weights of a trained network? Is this possible without destroying previous
knowledge?

8. Relearning in trained networks

Consider a new pattern that is to be learned in a trained network consisting
of heavy hyperplanes. How can destructive relearning be avoided? There are
three cases to consider.

1. The new pattern represents an example of the rule already self-
contained in previous learned patterns, and adds no new information
other than perhaps a more exact placement of decision regions.
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2. The new pattern provides new information that can nevertheless be
learned when the hyperplanes already placed are softly rearranged (by
this is meant that the entire problem does not have to be relearned).

3. The new pattern can only be learned when a completely new configu-
ration of the hyperplanes is created, or cannot be learned together with
the current patterns in the current network.

The third case can only be handled by either complete resetting of the
network, or as a special case. Neither option is pleasant, but drastic action
cannot be avoided when the information really is new and important.

More promising are the first two cases. To minimize the small destructive
effects of the extra learning only manipulation in the hidden layer should
be required, and the output hyperplane should be held fixed. Increasing
the output hyperplane mass, however, will not damage the other pattern
mappings, assuming they were all properly mapped before. We suggest the
following method.

The hidden hyperplanes can be shifted singly for the particular pattern.
The one that is chosen is that with respect to which the hidden particle in
question has the greatest charge (obtainable from equation (43)). The others
are held fixed. After every movement the progress of the pattern is monitored.
This continues until the charge for this hyperplane is no longer the greatest,
at which point the new hyperplane whose charge is the highest is taken and
moved singly. This method utilizes the favored directions of change in the
system in order to reduce the damage to the information currently in the
system.

Of course, it may not always be possible to learn a new pattern without
damaging the network’s past information, and the above merely outlines
heuristic ideas of how to ease the effects of a new pattern.

From the hyperplane perspective, a new pattern will generally have a de-
structive effect on a network when the movements it wishes to enforce on the
hyperplanes are large, but unable to be communicated because the ranges are
too low and masses too high. The correlation of a great attraction (charge)
for a hyperplane, and a low range to enforce it (related to the high hyper-
plane mass) together with a heavy hyperplane to move, signifies probable
destructive behavior. Destructive learning means large alterations in hyper-
plane structures, which is seen as large movements of heavy hyperplanes. A
heavy hyperplane holds more information than a light one, and its movement
thus more easily destroys information.

9. Conclusion

In this paper it has been demonstrated how multilayer perceptron learning
using sigmoid response functions and the back-propagation learning algo-
rithm can be interpreted usefully in terms of hyperplane dynamics and mass
increase of the system. The parameters describing rotation, translation, and
mass of the hyperplane were used for this interpretation. We believe the idea
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of a hyperplane mass has not been employed explicitly before in any descrip-
tion of back-propagation. Normally it is mentioned that “weights just get
ever larger,” without really understanding how important this is. We are
aware of only one other technique [7] that indirectly makes use of a quantity
similar to mass.

The interpretation was used to explain pictorially the learning dynamics
of back-propagation with hidden layers, and how the information is stored in
the network in the form of hyperplane mass. The importance of weight ini-
tialization was made intuitively obvious. The descent into local minima was
also described and explained using the interpretation. It was shown how es-
cape from certain types of local minima may be enacted painlessly. Plasticity
of a network was defined, and a method of gentler relearning in non-plastic
networks was suggested. It is useful to know whether, in a trained, non-
plastic network, further learning of a new pattern will be very destructive.
This was viewed in terms of easy and hard rearrangements of the hyperplane
system.

This type of detailed network analysis is worthwhile because not only can
the problems during learning and generalization be better understood and
dealt with, and performance improved, but it also allows a number of useful
network state and learning parameters, such as plasticity, pattern charge,
interaction range, to be defined and used advantageously in the systematic
construction of specific neural networks.
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