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Abst ract . Th e Vapn ik-Chervonenkis dimension has proven to be of
great use in the theoret ical study of generalizat ion in artificial neural
networks. Th e "probably approximately correct" learning framework
is described and the importance of the Vapnik-Chervonenkis dimen­
sion is illustrated. We then investigate the Vapnik-Chervonenkis di­
mension of certain types of linearly weighted neural networks. First ,
we obtain bounds on the Vapnik-Chervonenkis dimensions of radial
basis function networks with basis functions of several types. Sec­
ondly, we calculate the Vapnik- Chervonenkis dimension of polynomial
discriminant funct ions defined over both real and binary-valued in­
puts.

1. Linearly weig hted n eural networks

In this art icle we are interested in the st udy of two specific neural networks,
t aken from a very simple and ext remely effect ive class of networks called
linearly weighted neural networks (LWNNs) . We are interest ed in using these
networks to solve the standard two-class pattern classificat ion problem, where
as usu al we assume that a sequence of labeled training examples is available
wit h which we can train a network. We concern ourselves only with pat tern
classification problems; we do not consider t he use of neur al networks for
tasks such as function approximation .

A LWNN computes a fun ctio n fw : R" -> {O, I} given by

(1)
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(2)

where w T = [wo W ) .. . wm ] is a vector of weights, th e basis junctions
¢i : R " ----> R are arbit ra ry, fixed functions, and th e funct ion p is defined as

p(x) = {I if x ;:::: 0,
o otherwise.

We define the class F!: of functions comp ut ed by th e network in the obvious
manner as

(3)

where <f> = {¢) , . .. , ¢m} is the set of basis functions being used .
Networks of this general form have been st udied extensively since the

early 1960s (see, for example, Nilsson [29]). The genera l class of LWNNs
describ ed cont ains various popular network types as special cases , th e most
notab le bein g th e modified Kanerva mode l [36], regularizat ion networks [32],
and the two networks that we consider here: th e rad ial basis funct ion net­
works (RBFNs ) int roduced by Broomhead and Lowe [9] and the polynomial
discrim inant funct ions (P DFs ) [12].

In the case of RBFNs we use a set of m basis funct ions of the form

(4)

where Y: E R " is a fixed center , II . II is th e Euclidean norm, and ¢ : R + U
{O} ----> R is a fixed function. These networks are discussed in det ail in
sect ion 3, where we also consider more general RBFNs. In the case of PDFs
the basis funct ions are formed as products of elements of th e input vector x ;
for example,

(5)

These networks are discussed in full in sect ion 4.
A simple interpret ation of th e way in which LWNNs operat e is available.

Inpu t vectors are mapp ed into an extended space) using the basis functions;
extended vectors in the new space are of the form

(6)

The aim here is to produce extended vectors in such a way tha t the classifica­
tion problem is a linearly separable one in the ext ended space, because clearly
training th e network by choosing a suitable w now corresponds to choosing a
hyperplane (in the extended space) tha t correct ly divides th e extended vec­
tors. Several fast t ra ining algorit hms are available (see, for exa mple, [14]).

The reader may be surprised th at we consider networks of t he form of
equa t ion (I) - are these network s not complete ly outperform ed by multi layer
perceptrons? The answer is in fact a definite no; th ese networks have proved
to be highly successful in pract ice and we believe that any casual dismissal
of t his typ e of network, although quite common, is definite ly misguided. We

i We use this term since usually m > n.
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do not discuss this issue at length here; however, the reader is referred to
Broomhead and Lowe [9], Niranjan and Fallside [30], Lowe [24], Renals and
Rohwer [38] , KreBel et al. [22] and Boser et al. [8] for exa mples of the use
of RBFNs, PDFs, and other linearly weighted neura l networks in pr actical
applicat ions. A complete review is given in Holden [20].

2. The Vapnik-Chervonenkis dimension and the theory
of generalization

In this section we int roduce t he Vapn ik-Chervonenkis (VC) dimension and
the growth funct ion, and give a brief review of t he associated computational
learning theory in order to illustr ate the importance of these parameters.
A comprehensive review of the use of the VC dimension in neural network
theory is given in Ant hony [1] and in Holden [19].

A given neural network computes a class F offunct ions fw : R" -> {O, I},
t he actu al function computed depen ding on the specific weight vector used.

D efinition 1. We define the hypo thesis hw associated with a function fw
as the subset of R" for which fw (x ) = 1, that is,

hw = {x E R" I fw(x ) = I}.

Th e hypothesis space H computed by the network is the set

H = { hw I W E R W
}

(7)

(8)

of all hypotheses, where W is the total number of weights used by the net­
work. (In the case of LW NNs, we have W = m + 1.)

2.1 The VC dimension

The VC dimension can be regarded as a measure of the 'capacity ' of a net­
work, or of the 'expressive power' of its hypoth esis space . It was introduced
along with the growth funct ion by Vapnik and Chervonenkis [43] in their
study of the uniform convergence of relative frequencies to proba bilit ies, and
has recently become important in machine learning. The reasons for its im­
portance in this field are presented below.

D efinition 2. Given a finite set S ~ R " and some function fw E F , we
define the dichotomy (S+ , S- ) of S induced by fw to be the partition of
S into the disjoint subsets S+ and S- where S+ U S- = S and x E S+ if
fw(x ) = 1, whereas x E S - if fw(x ) = O.

D efinition 3. Given a hypothesis space H and finit e set S ~ R ", we define
6J-{(S) as the set

(9)

We say that S is shat tered by H if 6 J-{(S) = 2s where 2s is the set of all
subsets of S.
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Note that in equation 9 in this definition, each hw n S induces a dichotomy
on 5, and 6H(5) is t he set of dichotomies induced on 5 by H . The growth
function and the VC dimension are now defined as follows.

D efinition 4 (G r owt h Function) Th e growth function is defined on the
set of posit ive integers as

(10)

D efinition 5 (Vapnik-Chervonenki s Dimension) The VC dimension
V (H ) of a hypothesis space H is the largest integer i such that 6 H(i) = 2i ,

or infinity if no such i exists.

The growth funct ion thus tells us the maximum numb er of different di­
chotomies induced by F for any set of i points, and the VC dimension tells us
the size of the largest set of point s shattered by H . Note th at due to the close
relat ionship between H and F and the act ual neural network with which we
are dealing, we can refer to the growth funct ion and the VC dimension of F
and of the neural network , and can define the quant it ies 6;:(5) , 6 ;:(i) , and
V(F ) in the obvious way.

We now give three examples tha t, since we shall use th em later , we present
as lemmas. Consider first the class of funct ions of the form

F = U w(x) = p(wo+ W1Xl + ...+ wnxn) Iw E Rn+1 }, (11)

known as the class of linear threshold junctions (LT Fs). The following result
is well-known; a proof may be found in Wenocur and Dudley [45].

Lemma 6. When F is the class of linear threshold funct ions V(F ) =
n + 1. Furthermore, the class of homogeneous LTFs- those linear thresh­
old functions for which Wo = O-has VC dimension n .

As a more interesting example, consider the class of feedforward networks
of LTFs having W weights and thresholds and N computation nodes. A full
definit ion of t his type of network is given in [5]; it corresponds to the standard
multi layer perceptron network. ote that such networks are genera lly not
LWNNs. The upp er bound in the following result is proved by Baum and
Haussler [5], and the lower bound by Maass [25, 26] .

Lemma 7. Let F W,N be the class of functions computed by a feedforward
network of LTFs having W weights and thresholds and N comp utation nodes.
Th en

(12)

Furthermore, there are such networks having VC dimension D(W log2W) .
Thu s the upp er bound is asymptotically optimal up to a constant.
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Various oth er bounds on the VC dimension for specific networks in this
class can be found in Bartlett [6]; see also [1].

Consider again t he definition of F!:. , t he class of functions compute d by
th e networks we will consider, given in equat ion (3) . We have the following
result [21, 15]. (See also the th eorem of Dudley in sect ion 4.)

Lemma 8. Regardless of the functions in if> ,

(13)

(14)

Furth ermore, if th e set of functions if> = {I ,qh,. .,<Pm } is linearly ind epen­
dent , then equality holds in equation (13).

As is easily seen, if we let if>1 = {<Pr , <P2, " " <Pm } then V(F,;') ::; m .
There is a well-known result , commonly known as Sauer 's lemma, th at,

given the VC dimension of some class F of function s, provides an upp er
bound on the growth funct ion.

Lemma 9 (Sauer [40J, Blum er et a l. [7]) Given a class F of functions
for which V(F) = d 2: 0 and d < 00,

6:F(k) < \lJ(d, k) = 1 +~ (:),

where k 2: 1. Wh en k 2: d 2: 1,

(
ek)d

\lJ (d,k) < d .

A fur ther useful result , from [7] (see [3]), is t hat eit her 6:F(k) = 2k or

6:F(k) ::; kV( :F)+l

Clear ly, if V(F) = 00 , then 6:F(k) = 2k for all k.

(15)

(16)

2.2 Using the gr owt h function a nd the VC di mension
to a na lyze ge neralizat ion

Consider a neur al network that computes a class F of functions. We can
regard t he pro cess of t ra ining t his network as the process of t rying to find
some fw E F th at is a "good approximation" to a given target function Jr
on a set of t ra ining examples. Let x E R" be chosen at random according
to some arbitra ry (but fixed) probab ility dist ribution P on R", We define
ttfw as th e probab ility that f w agrees with th e t arget function on an example
chosen at random according to t he distribution P ; that is,

rrfw = Pr (fw(x) = Jr (x )) ,

where th e probability is taken over all possible examples x . Let

(17)
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(18)

be a sequence of k tra ining examples where the inputs X i are picked inde­
pendent ly according to P , and define vfw as the fract ion of the inpu ts in Tk
that are classified correctly by f w , that is,

Vfw = ~ I{i I j~ (Xi ) = Jr(xin l ·

Wh en we train a neur al network , we choose a part icular vector of weights
w on the basis of the value of vfw ' and we thus need to know whether v fw

converges to 'Trfw in a uniform way for all f w E F as k becomes large. If this
is not t he case then we may end up choosing a function f w for which the
value of 'Trfw is in fact relatively low. An inequality derived in [42J yields a
bound on the probability that there is a funct ion f w E F for which 'Trfw and
vfw differ significant ly. Specifically, given a par ticular value of 0,

Pr [there is f w E F such that vfw - 'Trfw > 0)1 - 'Trfw]

~ 46:F(2k) exp ( ~2 k ) .

Here the probability referred to is the dist ribut ion, over all sequences Ti; of
k t ra ining examples, obtained by choosing each of th e k examples indepen­
dent ly and at random from R" according to the probability distributi on P .
(The result quoted here is based on a slight improvement of the original re­
sult of Vapnik; see Anth ony and Shawe-Taylor [4] .) Now, by equation (16),
if V(F) is finite, then 6:F(k) is bounded above by a polynomial funct ion of
k and thus, since exp( - 0 2kj 4) decays exponent ially in k, we can make the
right-hand side of equat ion (18) arbitrarily small by choosing k large enough.
Fur th ermore, equation (18) provides a bound on the rate of convergence that
is independent of the parti cular probability dist ribut ion P and the particular
target function Jr . The usefulness of this result will soon become apparent .
Roughly speaking, it tells us that , given any 8 between 0 and 1, then pro­
vided k is larger than some constant that does not depend on either [r or P ,
the following holds wit h probability at least 1 - 8: for any target funct ion h
and for any probability distribut ion , 'Trfw and v fw are close for a randomly
chosen sample. T he VC dimension influences the speed of convergence of the
quant ity on the right-hand side of equat ion (18).

2.3 VC d imension a nd com p ut a t ional learning theory

The above discussion illustrates one reason for th e importance of th e VC
dimension and growt h funct ion in the analysis of generalizatio n in neural
networks and other systems. In their analysis of valid generalization in gen­
eral feedforward networks of LTFs, Baum and Haussler [5] used a modified
form of Probably Approximately Correct (PAC) learning theory, int roduced
by Blumer et al. [7] and based on the work of Valiant [41], to relate network
size to generalization ability. This work has recent ly been exte nded to a class
of networks described in sect ion 1 by Holden and Rayner [21], to networks
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with more than one output node by Anthony and Shawe-Taylor [4], and to
networks with real-valued out puts by Haussler [18]. In th is sect ion we give a
brief int roduct ion to th e formalism.

2.3 .1 Standard P A C lea rning

Consider a neural network having a hypoth esis space H. We define a concept
class C in a similar mann er as a set of subsets of R", In genera l, we also
impose some furth er restrictions on C and H , details of which can be found
in [7]; these are rath er technical and do not introduce problems for the neural
networks likely to be used in pract ice. The concept class C mayor may not
be equa l to the hypothesis space H . Now, given a target concept CT E C,
training corresponds to choosing a weight vector w such that the hypoth esis
hw is a good approxima tion to CT .

Once again we have a sequence Tk = ((Xl , 01)"' " (Xk' Ok)) of k tr ain ing
examples where the inputs X i are drawn independently from an arbitra ry
distribution P on R " , and 0 i is equal to 1 if X i E CT and 0 otherwise. vVe
define a learning fun ction for C as a function that , given a Ti; for large
enough k and any CT E C, will return a hypoth esis hw E H that is, with high
probability, a good approximation to CT. Formally, the error of a hypothesis
hw with respect to CT and P is the probab ility, over R " , according to P of
the symmetric difference hw 6 cT. Given small, fixed values of E and 8, we
demand tha t there is some k, which does not depend on either the probability
distr ibut ion P or CT, such that the hypothesis hw prod uced by the learn ing
function satisfies

Pr (Error of hw > E) :::; 8. (19)

The probability referred to here is that distribution on all possible sequences
of k tra ining examples that results when each of the k examples is chosen from
R " according to the distri bution P , independently of the ot her examples. It
is wort h emphas izing again that we require there to be a suitable k that
depends only on E and 8. The sample complexity of the learnin g function is
the smallest value of k gua ranteed to achieve this, and any concept class for
which there is such a learning function is said to be uniformly learn able.

An important result proved in [7] is tha t C is uniformly learnable if and
only if V(C) is finite. An account of PAC learning theory can be found in [3].

2.3.2 Extended P A C lear n ing

Some shortcomings of PAC learning as describ ed above should immediately
be apparent. In this formalism, there is no satisfact ory way in which to deal
with a sequence Tk that contains misclassifications. There is also no way
in which to deal wit h a target concept that has been defined in a stochas­
t ic manner- a common assumption in pat tern recognit ion- as opp osed to a
deterministic concept CT.

PAC learning is exte nded in [7] in such a way that Tk is generat ed by
drawing examples independently from an arbit rary distribution p i on R " x
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{O , I}. The err or with respect to pi of a function fw computed by a neur al
network is th en defined as

Pr(fw (x ) i- 0), (20)

where the probab ility is over all (x ,0). In genera l, we might not have a deter­
ministi c target concept , since given some x E Rn, both (x , 1) and (x , O) may
have nonzero probab ility. Note , however , that a (determinist ic) target con­
cept , toget her with a probab ility distribu t ion P on R" , may be represented
as such a distribution pi (see [7, 1]). Thus, t he present mod el encompasses
t he basic mod el. vVe are now able to mod el t he sit uation in which examples
in Tk are generated as in the standa rd PAC learni ng model, but where X i or
o, are subsequently modified by some random pro cess.

In a similar manner to that describ ed above, this extended PAC learning
formalism requires us to search for a (deterministic) hypoth esis hw E H that ,
with high probab ility, is a good approximation to a par t icular stochas tic
target concept. To illust rate th e import ance of the growth function and the
VC dimension , we state t he following th eorem t hat , like equation (18), follows
from a genera l result of Vapnik. Some measurability condit ions on th e class F
of fun ct ions computed by the network must be satisfied (see Blumer et al. [7]
and Pollard [33] for det ails) . These are, once again , not a cause for concern
in practice. (For applications of this theorem, see Baum and Haussler [5],
Holden and Rayner [21], and Ant hony and Shawe-Taylor [4].) Before stating
the th eorem, it is useful to introduce some not at ion . For fw E F , and for
Ti; = ((Xl, 01)' . . . ' (Xk' Ok)) E (R " x {O, l }) k, we define vfw to be

1 .
vfw = k I{z I f w (Xi ) = Oi} ] ,

the fracti on of examples (x , o) in the sample that "agree" with f~ . Fur th er,
let 1rfw = pi {(x , 0) I f w( x ) = o}. Thus, vfw is a sample-based est ima te of
1rfw . The following result enables us to boun d the probability that a sample
is mislead ing , in the sense tha t vfw is large, yet 1rfw is substantially smaller.
More specifically, given two numbers 1 and E between 0 and 1, we should like
it to be t he case tha t, with high probab ility, if th e "agreement" of a function
on a random sample sat isfies vfw > 1 - (1 - I )E , then t he "t rue agreement "
ttfw satis fies 1rfw > 1 - E. The following result is a consequence of the result
of Vapnik described in equation (18).

T heorem 10 (Vapnik [42], Blumer et al. [7]) Consider the class F of
functions fw : R" ---> {O, I} and a sequence Ti, of examples as described
above. Let 1 and E be such that 0 < I ' E :::; 1 and define P as the probability
that every function fw E F such that vfw > 1 - (1 - I )E also satisfies
ttfw > 1 - E. Th en P satisfies

(21)
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This theorem is important because, clearly, if we can find an upper bound on
the growt h function of th e network- for example, by finding its VC dimension
and applying Sauer 's lemma- th en we can say somet hing about its ability
to genera lize. Specifically, if our network can be t ra ined to classify correctly
a fraction 1 - (1 - 1')Eof the k t ra ining examples, then th e probability tha t
its error is less than E is at least P . This is exac tly the type of analysis
carried out in [5, 21], and as the growt h funct ion and VC dimension tend
to depend quite specifically on the size of the network measured in terms
of, for example, the total numb er of parameters adapted during t raining ,
this type of analysis genera lly allows us to relate th e size of a network to the
numb er of examples on which the network should be tra ined in order to obtain
valid genera lization with high probability. We remark that such analysis is
independent of th e partic ular learning funct ion or learning algorithm being
used; in this sense, Theorem 10 may app ear to be st ronger than is necessary
in pract ice. Nonetheless, t here are results [7, 17, 3] showing that , no matter
wha t learning funct ion is used, the requir ed numb er of t ra ining samples for
PAC learn ing must still be bounded below by a quant ity that depends on
the VC dimension.

3 . Radial basi s function n etworks

Radial basis func tion networks in t heir most general form (when used for
classificati on , ra ther t han funct ion approxima tion) compute functions fw :
R n ----+ {O, I } where

f w = p(Jw(x)).

The func tion 1w : R" ----+ R is of the form
p q

1w(X) = L Ai¢(llx - v.ll )+ L ei7/Ji(X) where q :s: p
i =1 i = 1

(22)

(23)

in which w T = [AI A2 . . . Ap e1 e2 . . . eq ] is a vector of weights , Y«E

R" are th e centers of t he basis funct ions, ¢ : R + U {O} ----+ R , II . II is a
norm (which in this art icle is assumed to be the Euclidean norm), and {7/Ji I
i = 1, ... , q} is a basis of the vector space 7rd-l (Rn) of algebra ic polynomials
from R " to R of degree at most (d - 1) for some specified d.

Network ' of this type were originally int roduced by Broomhead and
Lowe [9], whose work should be consulted for fur th er details. T heir main
mot ivat ion was that , as we shall see below, networks have a sound theo­
retical basis in interpolat ion theory. The networks can also be regarded
as a special case of the regular izat ion networks int roduced by Poggio and
Girosi [32] and thus have a th eoret ical just ificat ion in terms of standard reg­
ularizat ion theory. Networks of this general type have been shown to perform
well in comparison to many available altern at ives (see, for example, Niran­
jan and Fallside [30]) and training algorithms are available that are consid­
erably fast er than hidden-layer back-propagat ion (see, for example, Moody
and Darken [28] and Chen et al. [11]).



100 Mart in A nthony and Sean B. Hold en

It is usual in pr act ice not to inclu de the polynomial terms in the network,
so that t he network comp utes funct ions

fw(x) = p(E,\ ¢ (llx - Yi ll)) . (24)

A single constant offset term Ao is often added to the summation, bu t is
omitted here.

In this sect ion we investigate the VC dimension of radial basis funct ion
networks, using various standard choices for the basis function ¢ . We will
most ly be interested in networks where t he centers Y: are fixed, alt hough
we briefly mention networks with variable cente rs in sect ion 3.3. Our pro of
technique relies on the int erp olat ion propert ies of the functi ons 1w : and in
par t icular on t he use of two well-known theorems due to Micchelli [27].

3 .1 Interpolati on and Micchelli ' s t heorems

Why use functions of the form in equatio n (22)7 Broomhead and Lowe [9]
introduced RBFNs on the basis that functions of the form of 1w had previ­
ously proved very useful in the theory of mult ivar iab le interpolation (a review
is given by Powell [34,35]; see also [32], on which our review is based).

Consider the problem of finding a function 9 : R " ----> R tha t is a member
of a given class of functions 9 and that exac tly interpo lates a set Ti; of k
examples, namely,

(25)

where Xi E R " are dist inct vectors and o, E R are arbitra ry. T his mea ns
that 9 must satisfy

g(Xi ) = 0i for i = 1, . .. ,k. (26)

Now let 9' denote t he class of fun ct ions 9' = {p 0 gig E 9} where 0 denotes
function composition. Suppose we have a particular set Sk = [x j, .. . , xd of
k point s where Xi E Rn , and form a corres ponding set Ti, hav ing arbitra ry
o., Clearly if we can prove that given such a set Tk there exists , regard less
of the 0i used , agE 9 that performs the interpolation, then V (Q' ) 2: k.
This is because, given any part icular dichoto my (S: ,SI;) of the initial set
Sk , we may simply pick o, to be an arbit ra ry positive quanti ty when Xi E
S: and an arbit rary negative quant ity when Xi E SI;. Because there is a
9 E 9 that int erpo lates the corres ponding Tk , the corresponding g' = po 9
induces the required dichotomy; and because th is applies to any dichot omy,
9' shatters s. .

The funct ions 1w are useful because it is always possible to interpolate k
point s in such a set Sk using a fun ction

k q

1w(X) = L Ai¢ (llx - x.]' ) + L (){l/Ji (X) where q < k,
i=l i= l

(27)
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regardless of the values chosen for 0i, provided ¢ satisfies some simple con­
ditions that we discuss below. T he class of functions (} is now simply

(28)

where 1w is as defined in equa tion (27). Notice that in equat ion (27) th e
original cente rs Yi of 1w have been made to correspond to the points Xi.
Not ice also th at when using functions 1w in this manner , th e const ra ints of
equation (26) give us a set of k linear equations with (k +q) coefficients. The
remaining degrees of freedom are fixed by requiring that

k

:LAi'l/Jj (Xi ) = ° for j = 1, . . . , q.
i=1

(29)

A sufficient condition on ¢ for the existence of an interpolat ing fun ction of
the form of equat ion (27) is that ¢ E P d(R") where the lat ter is th e set of
stric tly conditionally positive definite (S CPD) junctions oj order d, defined
as follows.

D efin ition 11. Suppose h is a continuous functi on on [0,(0). This function
is strictly condit ionally posit ive defini te of order d 2: 1 on R" if for any k
distinct points XI, ... , Xk in R" and Cl , ... ,Ck E R (not all 0) tiie: satisfy

k

:LCi'l/J(Xi) = °
i=1

(30)

for all 'l/J E 7fd-l(R"), the quadra tic form 2:~= 1 2:;=1c;cjh( II Xi - Xj ll) is posi­
tive . Th e function is SCPD of order 0 if the form 2:~= 1 2:;=1c;cj h(IIXi - Xj II)
is positive definite.

Let P d be th e set of functions th at are in P d(R") over R" for all n , that is,

Pd = nPd(R" ).
,,~ l

(31)

Note tha t for all non-negative integers d, P d ~ Pd+!' An important theorem
due to Micchelli provides us with a simple means of determining whet her a
functi on ¢ is in P d , and hence whet her it is a suitable basis functio n for use
in forming 1w : We first need to define a completely monotonic fun ction.

D efin it ion 12 . A function h is completely monotonic on (0, (0) if h E
COO(O, (0) and its sequence of derivatives is such that

(- l )i h(i)( x) 2: °
for x E (0,00) and i = 0, 1,2 , . .. .

(32)

Theorem 13 (Micchelli [27], Dy n a n d M icch elli [16]) If a function h
is continuous on [0,(0) , h(r 2 ) E COO(O , (0) n C [O, (0) , and (_l)dh(d) is com­
pletely monotonic on (0, 00) but not constant, then h(r2) is in Pd.
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Now consider the special case in which we attempt to interpolate the data
in Tk using

k

1w(X) = L Ai¢(llx - xi iI)·
i = 1

(33)

The function polw now corresponds to the networks most often used in
prac t ice. The interp olati on is possible provided we can find a solut ion to the
set of equations

[0'
¢ ll ¢ 12 ¢1k Al

02 ¢ 21 ¢ 22 ¢2k A2
= ¢ A0 = =

~k ¢kl ¢k2 ¢kk Ak

(34)

where ¢ij = ¢(llxi - Xj ll)· In other words,

(35)

It may be shown (see Powell [35]) that ¢ is nonsingular if ¢ is SCPD of
order 0, or if ¢ is SCPD of order 1 and ¢(O) :::; O. T hus, in some cases,
T heorem 13 will tell us wheth er a part icular ¢ can be used successfully. An
alternative sufficient cond it ion also exists for the special case (33), aga in
proved by Micchelli.

Theorem 14 (Micc helli [27]) If h is continuous on [0,00) , posit ive on
(0,00), and has a first derivative that is completely monotonic but not con­
stant on (0, 00), then for any set of k vectors Xi E R " where ri is arbitrary,

(36)

ow, clearly, if we choose a suitable function ¢ such th at ¢(,fi) satisfies the
condit ions in Theorem 14, it is not possible that det (¢) = 0, which implies
that ¢ must be nonsingular and consequent ly there exists a suitable weight
vector A regardless of the act ual values used for o..

In summary, if we use a basis funct ion ¢ that satisfies t he condit ions given
in Theorems 13 or 14, then our radial basis function network having fixed
centers and as defined in equat ion (22) shatters the set of p vectors {Xi } th at
correspond to t he centers {y;} such that

Xi = Y« where i = 1, . . . , p .

It therefore has a VC dimension of at least p.

(37)
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Form of basis function Typ e of basis funct ion

(PLIN (r) = r Linear
rP CUB(r ) = r3 Cubic
rPTPs(r ) = r 2 ln r Thin plate spline
rPMQ(r) = (r2 + c2)13 , c E R +, 0 < (3 < 1 Generalized multiquadric
rP IMQ(r ) = (r2 + c2)- <> ,c E R +,a> 0 Generalized inverse

rP cAUsS(r) = exp [- ( ~n ,c E R +
multiquadric

Gaussian

Tabl e 1: St andard basis fun ctions used in radi al basis functi on net ­
works.
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3.2 Networks with fixed centers

Table 1 summarizes some of th e usual basis functions rP used in RBFNs.
The use of these functions is justi fied by th e th eory introduced above [32].
Note that the par ameter c is fixed-it is not adapte d during t ra ining . We
imm ediat ely obtain th e following two corollaries.

Corollary 15. Consider simple RBFNs of the form

fw(x) = p (~Ai rP (llx - Yill)) (38)

(39)

where the centers Y: are fixed and distin ct . If cP is one of the functions
rPL IN, rP CAUSS, cPMQ, or rP IMQ, then the VC dimension V(F) of the network is
exactly p.

Proof. The funct ions rP CAUSS and cPIMQ are in P o by Theorem 13, and
the functions Vi and (r + c2)13 where 0 < (3 < 1 sat isfy the condit ions
in Theorem 14 (see [32]). This means that by the arguments given above,
V(F) 2': p for all four cases. Also, from Lemma 8 we know that V(F) ::; p,
and consequent ly we must have V(F) = p.•

Corollary 16 . Consider RBFNs of the form

fw (x) = P (~AicP ( llx - Yill) + 1/J ({} ,x))

where 1/J({} ,x) is the degree-l polynomial

1/J ({} ,x) = 8 0 + 81 Xl + 82X2 + ...+ 8n x n , (40)

Xi are the elements of x , and p 2': n + 1. Again, the centers Y: are fixed and
distinct. If cP is the function cPCUB or rP TPS, then the VC dimension of the
network satisfies p ::; V(F) ::; p + n + 1.

Proof. By Theorem 13, both rP CUB and cP TPS are in P 2 (see [32]) and hence
V(F) 2': p. From Lemm a 8, we know that V(F) ::; p + n + 1 and th e result
follows.•
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3.3 Networks wi th variable ce nters

What happens to the VC dimension of a radial basis function network if
we allow its centers Y« to adapt during tra ining, rath er than force them to
remain fixed? Obviously, the results presented above provide lower bounds
on the VC dimension of RBF Ns having basis funct ions cP of th e appropriate
type. We also have the following simple result .

Corollary 17 . Consider the networks of the types mentioned in Corollar­
ies 15 and 16. If the centers Yi are allowed to adapt, then the networks can
form arbit rary dichotomies of any set of p distinct poin ts.

The proof of th is result is t rivial: t he networks can shat ter the set of p
points correspo nding to th e p centers Y«, and these centers can now be placed
anywhere. It is interestin g that there is no requirement that the p points be
in any kind of general posit ion , as is often the case in similar results for other
types of network (see Cover [12]).

Corollary 17 suggests that the lower bounds suggested for the VC dimen­
sion of this type of network are unlikely to be tight . We have not been able to
improve them, however , an d we leave as an open question whether it is possi­
ble to obtain a lower bound similar to th at recent ly proved by Maass [25, 26]
for certain feedforward networks, mentioned in Lemma 7. Lee et al. [23]
have shown that the VC dimension of an RBF J of the type considered in
Corollary 15 having variable cente rs and Gaussian basis functions with c = 1
is at least n (p - 1), which is (approximately) proportional to the numb er
of variable parameters in the network. However , it is not known whether a
similar result also applies for oth er standard bas is functions such as those
given in Tabl 1. Similarly, we have not been able to prove upp er bounds on
the VC dimension of th ese networks for all but the simplest cases, such as
when

cP (r) = r i where i is even. (41 )

T hen the network computes a class of polynomial discriminant funct ions and
the results of sect ion 4 apply.

4 . Polynomial d iscriminant functions

In this sect ion, we discuss the polynomial discriminant functions (PDFs) ,
determ ining the VC dimension in two dist inct situa t ions: when the inpu ts
are real numb ers and when th e input s are restr icted to binary values (that
is, 0 or 1). As ment ioned in sect ion 1, the PDFs are linearly weighted neural
networks in which the basis functions comp ut e some of the products of the
ent ries of th e input vectors . In other words,

where each cPi is of t he form

cPi (X) = II x?
l ~j~n

(42)

(43)
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for some non-negati ve integers rio We say that t he P DF f is of order at
most k when the largest degree of any of the multino mial basis functions cPi
used to define f is k, that is, if f is a LWNN over those basis functions in
equation (43) having 2:;'=1 r, ::;; k . Furthermore, the order of a PDF f is said
to be precisely k when f has order at most k bu t not at most k - 1, that
is, when in every representation of f in t he form given in equa tion (1), one
of the basis funct ions required has degree k . Thus the PDFs of order 1 are
precisely the linear threshold funct ions of Lemm a 6. For example, the PD Fs
of order 2 defined on R 3 are of the form

p (W o + W1X1 + W2X2 + W3X3 + W4Xr + W5X~ + W6X§ + W7 X1 X2

+ WSX1X3 + W9X2 X3)
(44)

for some constants ui; (0 ::;; i ::;; 9), in which at least one of the ter ms of degree
2 has a nonzero coefficient. (Note that a PDF of thi s form , over {O, 1p, can
be redu ced to one of degree 1 unless one of W7 , Ws, or Wg is nonzero , simply
because if Xi is °or 1, th en xT = x. , This simple observation will prove useful
below.)

Polynomial discriminators have been st udied in the context of pattern
classification (see, for example, [14, 13, 29]), where the aim is to classify a
given set of tr aining data point s into two categories correctly, with the hope
that th is classification might be used as a valid means of classifying fur th er
points. In addit ion, PDFs have recently been employed in signa l pro cess­
ing [37] . It is t herefore an import ant prob lem to determine th e "power" of
classification achievable by such discriminators and to quant ify t he sample
size required for valid learning.

Much work has been done on the represent at ion of funct ions by PDFs;
we refer the reader to [39, 10, 2, 31, 44].

We shall denote by P (n, k) the (full) class of P DFs of ord er at most k
defined on R" , Thus, P (n,k) is t he set of linearly weighte d neural networks
formed from all basis funct ions of degree at most k of the form cPi given
in equation (43) . Further, we sha ll denote by PB(n,k) t he (full) class of
boolean P DFs obtained by restri cting P (n,k) to binary-valued inputs, th at
is, to {O, l}n. Thus P (n,k) is the set of {O , I } functions on R " whose positive
and negat ive examples are separated by some surface th at can be describ ed
by a mult inomial equation of degree at most k, and PB(n,k) is th e set
of {O, I } functions on {O , l}n (i.e., Boolean funct ions of n variables) whose
positive and negat ive examp les can be separated in this way. To start with,
we consider only these two classes of PDFs. Later we sha ll discuss more
restri cted classes; for example, one may be interested only in PD Fs over a
restri cted set of all basis functions cPi of at most a given degree.

4. 1 Further notations and definitions

Let us denote the set {I , 2, . . . , n} by [n] . We shall denote the set of all
subsets of at most k objects from [n] by [n](k) , and we shall denote by [n]k
th e set of all select ions, in which repet it ion is allowed , of at most k objects
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(45)

from [nJ. Thus, [n]k may be thought of as a collect ion of "mult i-sets ." For
exa mple, [3JC2) consists of the sets

0,{I},{2},{3} ,{I,2},{I,3},{2,3} ,

while [3]2 consists of the mult i-sets

0,{I} ,{I, I} ,{2} ,{2,2},{3} ,{3,3} ,{I,2},{I,3} ,{2,3}.

In genera l, [n](k) consists of L:~o (7) sets, and [n]k consists of (ntk) mult i­

sets. With a slight abuse of mathemati cal notation, [n](k ) ~ [n]k For each
of. S E [n]k, and for any x = (X l ,X2 , ' " , xn ) E R n, Xs denotes th e product
of the Xi for i E S (with repet itions as requir ed). For exa mple, X {1,2,3} =
X IX2X3 and X {1,1,2} = X iX2 ' We define X0 = 1 for all x.

It is clear th at the basis functions <Pi for PDFs may be written in the form
<Pi(X) = Xs for some non-empty mult i-set S. Therefore a function defined on
R " is a PDF of order at most k if and only if th ere are const ants Ws, one for
each S E [n]k , such that

f(x ) = P ( L wsxs ) .
SE[n ]k

Restr ict ing attent ion to {O, I} inpu ts, note that any term Xs in which S
contains a repeti tion is redundant , simply because for X = 0 or 1, x" = x for
all r; thus, for example, for binary inpu ts, XIX~X~ = XIX 2X3 . Vve therefore
arr ive at th e following characterization of PB(n, k). A funct ion f : {O, I} n ->

{O,I} is in PB(n,k) if and only if th ere are constants Ws, one for each
5 E [nJCk) , such that

f( x) = P ( L WS Xs) . (46)
SE[n] (k)

Of course, each boolean PD F is the rest rict ion to {O, I}n of a PDF ; what
we have emphas ized here is that when the inpu ts are rest ricted to be 0 or
1, some redundan cy can be eliminated immediately. This last observation
shows that in considering the classes PB(n,k), it suffices to use extended
vectors of th e form

where each 'lj;i is of t he form

'lj;i(X) = Xs = II Xi
i ES

(47)

(48)

for a non-empty subset 5 of at most k elements of [n]. The number of such

5 , and hence the length of th ese extended vectors, is L:7=1 (7) · For general
PD Fs of order at most k, one uses the extended vectors of equat ion (43), of
lengt h (nt k

) - 1; the ent ries here are Xs for 0 f. 5 E [n]k
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4.2 VC dimension a n d independ ence of basi s functions

As noted earlier , classification by LWN IS corresponds to classification by lin­
ear th reshold functions of the extended vectors in the correspo nding higher­
dimensional space. This is explicit in the context of PDFs and boo lean PDFs
from equations (45) and (46).

We shall make use of the following well-known characterization of sets
shattered by hom ogeneous linear th reshold fun ct ions, a proof of which we
include for complete ness.

Lemma 18. A finit e subset S = {YI, Y2, '" .v.l of R d can be shattered by
th e set of homogeneous linear threshold functions on R d if and only if S is a
linearly independent set of vectors.

Proof. Suppose that the vectors are linearly dependent . Then at least
one of the vect ors is a linear combination of t he others. Without loss of
generality, suppose that YI = L:t=2'\;Yi for some constants Ai (2 ::; i ::; s).
Let (x ,y) denote the standard (Euclidean) inner product on R d Suppose
w is such that for 2 ::; j ::; s , (w ,Yj ) > 0 if and only if Aj > O. Then
(w ,YI) = L:t=2Ai(W, Yi) ~ O. It follows that there is no homogeneous linear
threshold function for which YI is a negat ive example and, for 2 ::; j ::; s , Yj
is a positive example if and only if Aj > O. T hat is, the set S of vectors is
not shattered .

For the converse, it suffices to prove the resul t when s = d. Let A be the
matrix whose rows are the vecto rs YI,Y2, '" , Y d and let v be any of the 2d

vecto rs with ent ries ±1. T hen A is nonsingular and so the matrix equat ion
Aw = v has a solution . T he homogeneous linear threshold funct ion t defined
by t his solution weight -vector w sat isfies t(Yj ) = 1 if an d only if ent ry j of
v is 1. T hus all possible classificat ions of the set of vecto rs can be realized ,
and the set is shattered . •

Recall that a set {hI , h2 , . . . , hs } of fun ctio ns defined on a set X is linearly
dependent if there are constant s Ai (1 ::; i ::; s) , not all zero , such that, fo r
all x E X ,

(49)

that is, if some nontri vial linear combina t ion of the functions is t he zero
fun ct ion on X . The following result is due to Dudl ey [15]; we present here a
new proof based on the idea of extended vectors.

Theorem 19. Let 71. be a vector space of real-valued funct ions defined on
a set X. Suppose that 71. has (vector space) dim ension d. For any h E 71. ,
define the {O, 1}-valued function h on X by

( )_ (-( ))_{I if h(x) ~ 0
h x - p h x - 0 if h(x) < 0 ' (50)
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and define

Th en the VC dimension of H is d.

Martin Anthony and Sean B. Holden

(51)

PEoof. Suppose tha t {hI ,h2 , . . . , hd} is a basis for H and , for x E X , let
xH = (hI (x),h2(x) , ... ,hd(x)) . The subset S of X is shattered by H if and
only if for each S + <;;; S th ere is hE H such tha t h(x) 2: 0 if x E S+ whereas
h(x) < 0 if x E S - = S \ S +. But , since {hI , .. . ,hd} is a basis for H , for any
h E H there are constants ui, (1 :::; i :::; d) such that h = 'Lf=lWihi . Thus,
equivalent ly, S is shattered by H if and only if for every subset S+ of S there
are constants ui; such tha t

~ -h . ( ) { 2: 0 if x E S + .
~w" x . S'i=l < 0 If x E -

(52)

that is, the inner product \ w , x'Fi ) is non-negati ve for x E S + and is nega tive
for x E S - . But t his says precisely tha t the linear threshold function fw given
by

(53)

satisfies

(54)

It follows th at th e set S is sha ttered by H if and only if the set {xH IXE S} is
shattered by homogeneous linear threshold functi ons in Rd Because V(H )
is th e size of the largest set shattered by H and because Lemma 18 now
shows that S cannot be sha t tered by H if lSI> d, it follows tha t V (H) :::; d.
Fur ther, by Lemm a 18, the VC dimension equals d if and only if th ere is a set
{xii , ... , x~} of linearly independ ent exte nded vectors in R d Suppose this
is not so. T hen the vector subspace of Rd spa nned by the set {x 'Fi I x E X }
is of dimension at most d - 1 and therefore is contained in some hyperplane.
Hence there are constants AI , " " Ad, not all zero , such tha t for every x E X ,
'Lf=l Ai(X'Fi )i = O. But this means that for all x E X , 'Lf=l Aihi(x) = 0, and
hence the function 'Lf=l Aihi is identi cally zero on X , contradict ing th e linear
independ ence of hI , " . ,hd. It follows that the VC dimension of H is d, as
claimed.•

This theorem is very useful and was ment ioned in earlier parts of this
pap er. In its statement we have denoted the dom ain of th e class of functions
by X . In th e applicat ions here, X will be either R '' or {O, l}n, for some n .
For th e moment , it is convenient to phrase the t heorem and t he next result in
terms of genera l X . The t heorem applies directly to linearly weighte d neur al
networks as follows.
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Theorem 20. Let <I> = {cPl , . . . , cPm} be a given set of basis functions defined
on a set X and let F iJ> be the set of linearly weighted neural networks on X
based on <I> . If { 1} U <I> is a linearly independent set in the vector space of
real-valued funct ions on X , where 1 denotes the identica11y-l function on X ,
then V(F iJ» = tri + 1. In general, V(F iJ» is the maximum cardinality of a
linearly independent subset of {1} U <I> .

Proof. Let H = span( {1} U <I» be th e vector space of real functions on X
spanned by { 1} U <I>. Then H consist s of all functions of the form

(55)

for all possible choices of constants uu, It is clear from this and equation (1)
th at

(56)

wit h the notat ion as in Theorem 19, so that the VC dimension of F iJ> is the
vect or-space dimension of H = span( {1} U <I» . The result follows. •

4.3 VC dimension of PDFs

We now apply the above results to the classes P(n , k) and PB(n , k ). For
P (n , k) , the full class of P DFs of order at most k , t he basis funct ions are
given by cPi (X) = Xs for non empty S E [n]k For PB(n , k) , th e basis func tions
can be taken to be 'ljJi (X) = Xs where S E [n](k) is non empty. Let

and

<I>B(n , k) = {x s 10=I S E [n] (k) } .

T hen we have the following resu lt .

(57)

P roposition 21. For all nand k, the set {1} U <I> (n , k ) is a linearly inde­
pendent set of real functions on R ".

T he proof is omitted; see Anthony [2] for details.
Now consider <I>B(n , k ), regarded as a set of real func tio ns on the dom ain

X = {O, l}n.

Proposi tion 22. For all n, k with k :::; n , {1 } U <I>B (n , k) is a linearly inde­
pendent set of real functions defined on {O , 1}n.

Pro of. Let n 2': 1, and supp ose that for some constants a o and as, an d for
all x E {O, 1}n, we have

A(x ) = a o + :L asxs = 0
SE[nj<k)

(58)
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for nonempty S. Set x to be th e zero vector and deduce that 0:0 = O. Let
1 ::::; r ::::; k and assume, inductively, that O:s = 0 for all S <;;; [n] with lS I < r .
Let S <;;; [n] with lSI = r . Set ting X i = 1 if i E Sand Xj = 0 if .i ~ S, we
deduce th at A( x) = O:s = O. Thus for all S of cardinality r , O:s = O. Hence
O:s = 0 for all S, and th e functions are linearly independent .•

The above two results, coupled with Theorem 20, enable us to determine
th e VC dimensions of the classes of PDFs and boo lean PDFs.

Corollary 23. For all nand k ,

(
n +k)V (P (n , k)) = k '

and for all n , k with k ::::; n ,

(59)

(60)

Note tha t if all inputs are restri cted to be binary and if m > 1, th en
the VC dimension of th e corresponding LWNN is lower than if th e inputs
were arbit ra ry real numb ers. We remark that the VC dimensions coincide
for m = 1, th e case of linear threshold functions.

T heorem 20 tells us a little more than this. As mentioned near the be­
ginning of this sect ion, one may only be interested in LWNNs th at are based
on a st rict subset of the basis funct ions <lJ(n , k) . For example, the special
case of RBFNs in which th e centers are fixed or variable and the function ¢
is of the form ¢(r ) = ri for an even positive integer i, reduces essent ially to
PDFs based on some of the funct ions ¢i(X) = TI l :S; j :S;n x? as in equa t ion (43).
But since th e set {I , <lJ(n , k )} is a linearly independent set for any nand k ,
it follows that any LWNN based on a st rict subset of m of the functions in
Uk> l <lJ (n , k) has VC dimension m + 1. A similar comment applies to binary­
input LWNNs that are based on strict subsets of <lJ B(n , k ) for all n and for
any k ::::; n . These observations may be summarized as follows.

Theorem 24. Any class of PDFs that are based on m of the standard basis
functions Uk> l <lJ(n , k) has VC dimension m + 1. Any class of boolean PDFs
that are bas~d on m of the standard boolean PDF basis functions <lJB(n ,n )
has VC dimension m + 1.

5 . Conclusion

The Vapn ik-Chervonenkis (VC) dimension has, in recent years, become an
imp ort ant combinatorial quantity in th e analysis of generalization in neural
networks and other syste ms. At present , no genera l t echnique exists with
which we can calculate this dimension or even obt ain bounds on its value.
Consequently, in order to investigate the VC dimension of a given syste m we
must construct techniques specifically for the case of interest .



Quantifying Generalization III

In thi s article we have provided moti vation for the use of the VC dimen­
sion and an intro duction to the basic accompanying t heory. In particular,
we have given a det ailed introduction to PAC learning theory and one of its
most important exte nsions. We have also provided some ent ry points into
the literature on more advanced techniques . F ina lly, we have perform ed an
extensive investigation of th e VC dimension of two members of the class of
linearly weighte d neural networks: rad ial basis function networks and poly­
nomial discriminant functions. The genera l class of linearly weighted neural
networks contains as special cases several simple and highly effect ive st anda rd
network typ es in addition to t he two that we investigate.

In the case of rad ial basis function networks having fixed centers, we
have shown, using result s from th e th eory of interpolation , that for severa l
commonly used basis functions the VC dimension is eit her exact ly equal to
the number W of weights in the network or is bounded above by Wand
below by th e numb er of cente rs . In th e case where the cent ers are variable,
our resul ts provide simple lower bound s on t he VC dimension of th e network;
th is case provides some int eresting and important open problems th at we
mention br iefly below.

In t he case of polynom ial discriminant functions we have shown t hat
for real-valued inputs, th e VC dimension of t he network is exact ly equal to
W , and for binary-valued inputs th e VC dimension of the network has a
well-defined value that is less th an W except in t he case where th e network
computes a linear thr esho ld funct ion , in which case the VC dimension is
again exac t ly equal to W . In proving these results, we obtain a new proof of
a well-known theorem due to Dud ley [15].

Two final points are worth ment ioning . First , we not e that it is usual
to assume tha t the VC dimension of a pat tern classifier is about equa l to
the numb er of its variable par ameters. 'vVe have shown th at for many of the
networks considered, this assumpt ion is eit her exactly correct , or provides a
value close to the correc t one. Second ly, for radial basis fun ction networks
with variable centers, two impo rtant open problems remain: first , the deter­
mination of upp er bounds on the VC dimension (or even an answer to the
question of whether or not it is finite); second, the investigation of whet her
lower bounds of D(W log W) on the VC dimension for this type of network
can be obtained in ana logy with exist ing result s for feedforward networks of
linear th reshold functions.
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