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Abstract. The Vapnik-Chervonenkis dimension has proven to be of
great use in the theoretical study of generalization in artificial neural
networks. The “probably approximately correct” learning framework
is described and the importance of the Vapnik-Chervonenkis dimen-
sion is illustrated. We then investigate the Vapnik-Chervonenkis di-
mension of certain types of linearly weighted neural networks. First,
we obtain bounds on the Vapnik-Chervonenkis dimensions of radial
basis function networks with basis functions of several types. Sec-
ondly, we calculate the Vapnik-Chervonenkis dimension of polynomial
discriminant functions defined over both real and binary-valued in-
puts.

1. Linearly weighted neural networks

In this article we are interested in the study of two specific neural networks,
taken from a very simple and extremely effective class of networks called
linearly weighted neural networks (LWNNs). We are interested in using these
networks to solve the standard two-class pattern classification problem, where
as usual we assume that a sequence of labeled training examples is available
with which we can train a network. We concern ourselves only with pattern
classification problems; we do not consider the use of neural networks for
tasks such as function approximation.
A LWNN computes a function fy : R™ — {0, 1} given by

fw(x) = plwo +w161(x) + - -+ + Wi dm(x)), (1)
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where w?' = [ wy w; - wy, ] is a vector of weights, the basis functions

¢; : R — R are arbitrary, fixed functions, and the function p is defined as
1 ifz>0,

- =Y, 2

pla) {0 otherwise. @)

We define the class F,? of functions computed by the network in the obvious
manner as

Fo ={fw|weR"}, (3)

where ® = {¢1,..., ¢y} is the set of basis functions being used.

Networks of this general form have been studied extensively since the
early 1960s (see, for example, Nilsson [29]). The general class of LWNNs
described contains various popular network types as special cases, the most
notable being the modified Kanerva model [36], regularization networks [32],
and the two networks that we consider here: the radial basis function net-
works (RBFNs) introduced by Broomhead and Lowe [9] and the polynomial
discriminant functions (PDFs) [12].

In the case of RBFNs we use a set of m basis functions of the form

¢i(x) = o(|lx — y:ll) (4)

where y; € R" is a fixed center, || - | is the Euclidean norm, and ¢ : R™ U
{0} — R is a fixed function. These networks are discussed in detail in
section 3, where we also consider more general RBFNs. In the case of PDF's
the basis functions are formed as products of elements of the input vector x;
for example,

$i(x) = 2izya, . (5)

These networks are discussed in full in section 4.

A simple interpretation of the way in which LWNNSs operate is available.
Input vectors are mapped into an extended space' using the basis functions;
extended vectors in the new space are of the form

X" =[p1(x) d2(x) 0 Pm(x)). (6)

The aim here is to produce extended vectors in such a way that the classifica-
tion problem is a linearly separable one in the extended space, because clearly
training the network by choosing a suitable w now corresponds to choosing a
hyperplane (in the extended space) that correctly divides the extended vec-
tors. Several fast training algorithms are available (see, for example, [14]).
The reader may be surprised that we consider networks of the form of
equation (1)—are these networks not completely outperformed by multilayer
perceptrons? The answer is in fact a definite no; these networks have proved
to be highly successful in practice and we believe that any casual dismissal
of this type of network, although quite common, is definitely misguided. We

1We use this term since usually m > n.
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do not discuss this issue at length here; however, the reader is referred to
Broomhead and Lowe [9], Niranjan and Fallside [30], Lowe [24], Renals and
Rohwer [38], KreBel et al. [22] and Boser et al. [8] for examples of the use
of RBFNs, PDFs, and other linearly weighted neural networks in practical
applications. A complete review is given in Holden [20].

2. The Vapnik-Chervonenkis dimension and the theory
of generalization

In this section we introduce the Vapnik-Chervonenkis (VC) dimension and
the growth function, and give a brief review of the associated computational
learning theory in order to illustrate the importance of these parameters.
A comprehensive review of the use of the VC dimension in neural network
theory is given in Anthony [1] and in Holden [19].

A given neural network computes a class F of functions fyw : R* — {0, 1},
the actual function computed depending on the specific weight vector used.

Definition 1. We define the hypothesis hyw associated with a function fy
as the subset of R™ for which fw(x) =1, that is,

w={xeR"[ fw(x)=1}. (7)
The hypothesis space H computed by the network is the set
H={hy |weR"} (8)

of all hypotheses, where W is the total number of weights used by the net-
work. (In the case of LWNNs, we have W =m + 1.)

2.1 The VC dimension

The VC dimension can be regarded as a measure of the ‘capacity’ of a net-
work, or of the ‘expressive power’ of its hypothesis space. It was introduced
along with the growth function by Vapnik and Chervonenkis [43] in their
study of the uniform convergence of relative frequencies to probabilities, and
has recently become important in machine learning. The reasons for its im-
portance in this field are presented below.

Definition 2. Given a finite set S C R"™ and some function fw € F, we
define the dichotomy (S*,S7) of S induced by fw to be the partition of
S into the disjoint subsets ST and S~ where STUS™ = S and x € ST if
fw(x) =1, whereas x € S~ if fw(x) = 0.

Definition 3. Given a hypothesis space H and finite set S C R", we define
Ap(S) as the set

Ax(S) = {hwN S | hw € H}. 9)

We say that S is shattered by H if Ay(S) = 2% where 25 is the set of all
subsets of S.
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Note that in equation 9 in this definition, each hy NS induces a dichotomy
on S, and Ag(S) is the set of dichotomies induced on S by H. The growth
function and the VC dimension are now defined as follows.

Definition 4 (Growth Function) The growth function is defined on the
set of positive integers as

Buli) = _pax (18a(S)). (10)

Definition 5 (Vapnik-Chervonenkis Dimension) The VC dimension
V(H) of a hypothesis space H is the largest integer i such that Ag(i) = 2¢,
or infinity if no such i exists.

The growth function thus tells us the maximum number of different di-
chotomies induced by F for any set of 7 points, and the VC dimension tells us
the size of the largest set of points shattered by H. Note that due to the close
relationship between H and F and the actual neural network with which we
are dealing, we can refer to the growth function and the VC dimension of F
and of the neural network, and can define the quantities Ax(S), Ax(¢), and
V(F) in the obvious way.

‘We now give three examples that, since we shall use them later, we present
as lemmas. Consider first the class of functions of the form

F = {fw(®) = plwo + w1z + - - + way) | w € R}, (11)

known as the class of linear threshold functions (LTFs). The following result
is well-known; a proof may be found in Wenocur and Dudley [45].

Lemma 6. When F is the class of linear threshold functions V(F) =
n + 1. Furthermore, the class of homogeneous LTFs—those linear thresh-
old functions for which wqg = 0—has VC dimension n.

As a more interesting example, consider the class of feedforward networks
of LTFs having W weights and thresholds and N computation nodes. A full
definition of this type of network is given in [5]; it corresponds to the standard
multilayer perceptron network. Note that such networks are generally not
LWNNs. The upper bound in the following result is proved by Baum and
Haussler [5], and the lower bound by Maass [25, 26].

Lemma 7. Let Fw,y be the class of functions computed by a feedforward
network of LTFs having W weights and thresholds and N computation nodes.
Then

V(Fw.n) < 2Wlog,(eN). (12)

Furthermore, there are such networks having VC dimension Q(W log, W).
Thus the upper bound is asymptotically optimal up to a constant.
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Various other bounds on the VC dimension for specific networks in this
class can be found in Bartlett [6]; see also [1].

Consider again the definition of F2, the class of functions computed by
the networks we will consider, given in equation (3). We have the following
result [21, 15]. (See also the theorem of Dudley in section 4.)

Lemma 8. Regardless of the functions in @,
V(EY) <m+1. (13)

Furthermore, if the set of functions ® = {1, ¢y, ..., ¢m} is linearly indepen-
dent, then equality holds in equation (13).

As is easily seen, if we let & = {¢1, s, ..., dm} then V(F2') < m.

There is a well-known result, commonly known as Sauer’s lemma, that,
given the VC dimension of some class F of functions, provides an upper
bound on the growth function.

Lemma 9 (Sauer [40], Blumer et al. [7]) Given a class F of functions
for which V(F) =d > 0 and d < o0,

d
Drlk) < U(dk) =1+ (f) (14)
=1
where k > 1. Whenk >d > 1,
d
U(d, k) < (i;) . (15)

A further useful result, from [7] (see [3]), is that either Az(k) = 2* or
Ax(k) < KO+, (16)
Clearly, if V(F) = oo, then Ax(k) = 2* for all k.

2.2 Using the growth function and the VC dimension
to analyze generalization

Consider a neural network that computes a class F of functions. We can
regard the process of training this network as the process of trying to find
some fyw € F that is a “good approximation” to a given target function fr
on a set of training examples. Let x € R" be chosen at random according
to some arbitrary (but fixed) probability distribution P on R". We define
Tfw as the probability that f., agrees with the target function on an example
chosen at random according to the distribution P; that is,

Tiw = Pr (fW(X) = fT(X)) ) (17)

where the probability is taken over all possible examples x. Let

Tk = ((Xh fT(X1>)7 nay (Xk7 fT(Xk)))
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be a sequence of k training examples where the inputs x; are picked inde-
pendently according to P, and define vg, as the fraction of the inputs in T}
that are classified correctly by fyw, that is,

o = 71| fulo) = Frle).

When we train a neural network, we choose a particular vector of weights
w on the basis of the value of vy, , and we thus need to know whether vy,
converges to Ty, in a uniform way for all fy € F as k becomes large. If this
is not the case then we may end up choosing a function fy, for which the
value of 7y, is in fact relatively low. An inequality derived in [42] yields a
bound on the probability that there is a function fw € F for which 7, and
vg,, differ significantly. Specifically, given a particular value of «,

Pr [there is fw € F such that vpw — Tpw > ay/1 — Tl'fw]

< 4AF(2k) exp <_C;k) . (18)

Here the probability referred to is the distribution, over all sequences T} of
k training examples, obtained by choosing each of the k examples indepen-
dently and at random from R™ according to the probability distribution P.
(The result quoted here is based on a slight improvement of the original re-
sult of Vapnik; see Anthony and Shawe-Taylor [4].) Now, by equation (16),
if V(F) is finite, then Ax(k) is bounded above by a polynomial function of
k and thus, since exp(—a?k/4) decays exponentially in k, we can make the
right-hand side of equation (18) arbitrarily small by choosing k large enough.
Furthermore, equation (18) provides a bound on the rate of convergence that
is independent of the particular probability distribution P and the particular
target function fr. The usefulness of this result will soon become apparent.
Roughly speaking, it tells us that, given any 6 between 0 and 1, then pro-
vided k is larger than some constant that does not depend on either fr or P,
the following holds with probability at least 1 —¢: for any target function fr
and for any probability distribution, 7z, and vy, are close for a randomly
chosen sample. The VC dimension influences the speed of convergence of the
quantity on the right-hand side of equation (18).

2.3 VC dimension and computational learning theory

The above discussion illustrates one reason for the importance of the VC
dimension and growth function in the analysis of generalization in neural
networks and other systems. In their analysis of valid generalization in gen-
eral feedforward networks of LTFs, Baum and Haussler [5] used a modified
form of Probably Approzimately Correct (PAC) learning theory, introduced
by Blumer et al. [7] and based on the work of Valiant [41], to relate network
size to generalization ability. This work has recently been extended to a class
of networks described in section 1 by Holden and Rayner [21], to networks
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with more than one output node by Anthony and Shawe-Taylor [4], and to
networks with real-valued outputs by Haussler [18]. In this section we give a
brief introduction to the formalism.

2.3.1 Standard PAC learning

Consider a neural network having a hypothesis space H. We define a concept
class C' in a similar manner as a set of subsets of R™. In general, we also
impose some further restrictions on C' and H, details of which can be found
in [7]; these are rather technical and do not introduce problems for the neural
networks likely to be used in practice. The concept class C' may or may not
be equal to the hypothesis space H. Now, given a target concept ¢y € C,
training corresponds to choosing a weight vector w such that the hypothesis
hw is a good approximation to cr.

Once again we have a sequence Tj, = ((x1,01),. .., (Xx, 0x)) of k training
examples where the inputs x; are drawn independently from an arbitrary
distribution P on R"™, and o; is equal to 1 if x; € ¢y and 0 otherwise. We
define a learning function for C' as a function that, given a T} for large
enough k and any cr € C, will return a hypothesis hy € H that is, with high
probability, a good approximation to c¢r. Formally, the error of a hypothesis
hw with respect to ¢r and P is the probability, over R", according to P of
the symmetric difference hwAcr. Given small, fixed values of € and 8, we
demand that there is some k, which does not depend on either the probability
distribution P or cr, such that the hypothesis hyw produced by the learning
function satisfies

Pr(Error of hy > €) < 6. (19)

The probability referred to here is that distribution on all possible sequences
of k training examples that results when each of the k£ examples is chosen from
R™ according to the distribution P, independently of the other examples. It
is worth emphasizing again that we require there to be a suitable £ that
depends only on € and 6. The sample complezity of the learning function is
the smallest value of k£ guaranteed to achieve this, and any concept class for
which there is such a learning function is said to be uniformly learnable.
An important result proved in [7] is that C' is uniformly learnable if and
only if V(C') is finite. An account of PAC learning theory can be found in [3].

2.3.2 Extended PAC learning

Some shortcomings of PAC learning as described above should immediately
be apparent. In this formalism, there is no satisfactory way in which to deal
with a sequence T} that contains misclassifications. There is also no way
in which to deal with a target concept that has been defined in a stochas-
tic manner—a common assumption in pattern recognition—as opposed to a
deterministic concept cr.

PAC learning is extended in [7] in such a way that T} is generated by
drawing examples independently from an arbitrary distribution 2" on R™ x
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{0,1}. The error with respect to P’ of a function fw computed by a neural
network is then defined as

Pr(fw(x) # 0), (20)

where the probability is over all (x,0). In general, we might not have a deter-
ministic target concept, since given some x € R™, both (x, 1) and (x,0) may
have nonzero probability. Note, however, that a (deterministic) target con-
cept, together with a probability distribution P on R™, may be represented
as such a distribution P’ (see [7, 1]). Thus, the present model encompasses
the basic model. We are now able to model the situation in which examples
in T}, are generated as in the standard PAC learning model, but where x; or
0; are subsequently modified by some random process.

In a similar manner to that described above, this extended PAC learning
formalism requires us to search for a (deterministic) hypothesis hyw € H that,
with high probability, is a good approximation to a particular stochastic
target concept. To illustrate the importance of the growth function and the
VC dimension, we state the following theorem that, like equation (18), follows
from a general result of Vapnik. Some measurability conditions on the class F
of functions computed by the network must be satisfied (see Blumer et al. 7]
and Pollard [33] for details). These are, once again, not a cause for concern
in practice. (For applications of this theorem, see Baum and Haussler [5],
Holden and Rayner [21], and Anthony and Shawe-Taylor [4].) Before stating
the theorem, it is useful to introduce some notation. For fy € F, and for
Ti = ((x1,01), . .., (Xx, 0)) € (R™ x {0,1})¥, we define Vs tO be

1
Ufw = Z HZ | fw(xz‘> = Oi}‘,

the fraction of examples (x, 0) in the sample that “agree” with fw. Further,
let 7, = P {(x,0) | fw(x) =o0}. Thus, vy, is a sample-based estimate of
Ttw- Lhe following result enables us to bound the probability that a sample
is misleading, in the sense that vy, is large, yet 7y, is substantially smaller.
More specifically, given two numbers 7 and € between 0 and 1, we should like
it to be the case that, with high probability, if the “agreement” of a function
on a random sample satisfies vg, > 1 — (1 — )¢, then the “true agreement”
Tty Satisfies mg, > 1 —e. The following result is a consequence of the result
of Vapnik described in equation (18).

Theorem 10 (Vapnik [42], Blumer et al. [7]) Consider the class F of
functions fw : R® — {0,1} and a sequence T} of examples as described
above. Let v and e be such that 0 < 7,e < 1 and define P as the probability
that every function fw € F such that vy, > 1 — (1 — v)e also satisfies
Trw > 1 — €. Then P satisfies

A2
P > 1—4AF(2k) exp ( ”4“) . (21)
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This theorem is important because, clearly, if we can find an upper bound on
the growth function of the network—for example, by finding its VC dimension
and applying Sauer’s lemma—then we can say something about its ability
to generalize. Specifically, if our network can be trained to classify correctly
a fraction 1 — (1 — 7)e of the k training examples, then the probability that
its error is less than € is at least P. This is exactly the type of analysis
carried out in [5, 21], and as the growth function and VC dimension tend
to depend quite specifically on the size of the network measured in terms
of, for example, the total number of parameters adapted during training,
this type of analysis generally allows us to relate the size of a network to the
number of examples on which the network should be trained in order to obtain
valid generalization with high probability. We remark that such analysis is
independent of the particular learning function or learning algorithm being
used; in this sense, Theorem 10 may appear to be stronger than is necessary
in practice. Nonetheless, there are results [7, 17, 3] showing that, no matter
what learning function is used, the required number of training samples for
PAC learning must still be bounded below by a quantity that depends on
the VC dimension.

3. Radial basis function networks

Radial basis function networks in their most general form (when used for
classification, rather than function approximation) compute functions fy :
R" — {0,1} where

fw = p(fw(x)). (22)
The function fy, : R® — R is of the form

P q
Fw(x) =3 Nio(llx = yill) + 3 0itpi(x) where ¢ <p (23)
=1 i=1

in which wl' =X\ Ay -+ A\, 61 6 --- 6,]is a vector of weights, y; €
R™ are the centers of the basis functions, ¢ : RTU{0} — R, | -] is a
norm (which in this article is assumed to be the Euclidean norm), and {t; |
i=1,...,q} is a basis of the vector space m4_1(R") of algebraic polynomials
from R™ to R of degree at most (d — 1) for some specified d.

Networks of this type were originally introduced by Broomhead and
Lowe [9], whose work should be consulted for further details. Their main
motivation was that, as we shall see below, networks have a sound theo-
retical basis in interpolation theory. The networks can also be regarded
as a special case of the regularization networks introduced by Poggio and
Girosi [32] and thus have a theoretical justification in terms of standard reg-
ularization theory. Networks of this general type have been shown to perform
well in comparison to many available alternatives (see, for example, Niran-
jan and Fallside [30]) and training algorithms are available that are consid-
erably faster than hidden-layer back-propagation (see, for example, Moody

and Darken [28] and Chen et al. [11]).
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It is usual in practice not to include the polynomial terms in the network,
so that the network computes functions

P
) = p (3 sollx = 3i) ) 24

i=1
A single constant offset term ) is often added to the summation, but is
omitted here.

In this section we investigate the VC dimension of radial basis function
networks, using various standard choices for the basis function ¢. We will
mostly be interested in networks where the centers y; are fixed, although
we briefly mention networks with variable centers in section 3.3. Our proof
technique relies on the interpolation properties of the functions f,, and in
particular on the use of two well-known theorems due to Micchelli [27].

3.1 Interpolation and Micchelli’s theorems

Why use functions of the form in equation (22)? Broomhead and Lowe [9]
introduced RBFNs on the basis that functions of the form of f,, had previ-
ously proved very useful in the theory of multivariable interpolation (a review
is given by Powell [34, 35]; see also [32], on which our review is based).

Consider the problem of finding a function ¢g : R" — R that is a member
of a given class of functions G and that exactly interpolates a set T}, of k
examples, namely,

Ty = {(x1,01), ..., (X, 0)} (25)

where x; € R™ are distinct vectors and o; € R are arbitrary. This means
that g must satisfy

g(xi)=0; fori=1,... k. (26)

Now let G’ denote the class of functions G’ = {po g | g € G} where o denotes
function composition. Suppose we have a particular set Sy = {X1,..., x5} of
k points where x; € R", and form a corresponding set T having arbitrary
0;. Clearly if we can prove that given such a set T} there exists, regardless
of the o; used, a g € G that performs the interpolation, then V(G') > k.
This is because, given any particular dichotomy (S;, S} ) of the initial set
Sk, we may simply pick o; to be an arbitrary positive quantity when x; €
S;7 and an arbitrary negative quantity when x; € S;. Because there is a
g € G that interpolates the corresponding T}, the corresponding ¢' = po g
induces the required dichotomy; and because this applies to any dichotomy,
G’ shatters S;.

The functions f,, are useful because it is always possible to interpolate &
points in such a set S using a function

k

fw(x) = Z/\i(b(Hx —x) + i@iwi(x) where ¢ < k, (27)
i=1

i=1
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regardless of the values chosen for o;, provided ¢ satisfies some simple con-
ditions that we discuss below. The class of functions G is now simply

G={fw|weR"} (28)

where f, is as defined in equation (27). Notice that in equation (27) the
original centers y; of f,, have been made to correspond to the points x;.
Notice also that when using functions fy, in this manner, the constraints of
equation (26) give us a set of k linear equations with (k+¢) coefficients. The
remaining degrees of freedom are fixed by requiring that

k
Z)\zwj(XI):O f01]:1q (29)
i=1

A sufficient condition on ¢ for the existence of an interpolating function of

the form of equation (27) is that ¢ € Py(R") where the latter is the set of

strictly conditionally positive definite (SCPD) functions of order d, defined
as follows.

Definition 11. Suppose h is a continuous function on [0, c0). This function
is strictly conditionally positive definite of order d > 1 on R™ if for any k
distinct points X1, . . ., X, in R™ and ¢y, . . ., ¢k € R (not all 0) that satisfy

k
i=1

for all v € m4_1(R™), the quadratic form % Z;‘f:l cicih(||x; — x;l|) is posi-

tive. The function is SCPD of order 0 if the form Y%, S5, cic;h(||x; — %)
is positive definite.

Let P, be the set of functions that are in Py(R™) over R" for all n, that is,
P, = () Pa(R"). (31)
n>1

Note that for all non-negative integers d, Py C Py.1. An important theorem
due to Micchelli provides us with a simple means of determining whether a
function ¢ is in P4, and hence whether it is a suitable basis function for use
in forming f,,. We first need to define a completely monotonic function.

Definition 12. A function h is completely monotonic on (0,00) if h €
C*(0,00) and its sequence of derivatives is such that

(-1)'h9(z) 2 0 (32)
for x € (0,00) and i =0,1,2,....

Theorem 13 (Micchelli [27], Dyn and Micchelli [16]) If a function h
is continuous on [0, 00), h(r?) € C=(0,00) N C[0, o0), and (—1)?h@ is com-
pletely monotonic on (0,00) but not constant, then h(r?) is in Py.
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Now consider the special case in which we attempt to interpolate the data
in 7}, using

k

Fw(x) =3 ig(llx — xi])- (33)

i=1

The function p o f, now corresponds to the networks most often used in
practice. The interpolation is possible provided we can find a solution to the
set of equations

01 o1 612 - | [M
oo 0:2 _ ¢:21 05:22 ¢:2k /\:2 N (34)

Oy O P2 Ork| Mk

where ¢;; = ¢(||x; — x;]|). In other words,
R din, (35)

It may be shown (see Powell [35]) that ¢ is nonsingular if ¢ is SCPD of
order 0, or if ¢ is SCPD of order 1 and ¢(0) < 0. Thus, in some cases,
Theorem 13 will tell us whether a particular ¢ can be used successfully. An
alternative sufficient condition also exists for the special case (33), again
proved by Micchelli.

Theorem 14 (Micchelli [27]) If h is continuous on [0,00), positive on
(0,00), and has a first derivative that is completely monotonic but not con-
stant on (0, 00), then for any set of k vectors x; € R™ where n is arbitrary,

(=1)* " det h(||x; — x;]*) > 0. (36)

Now, clearly, if we choose a suitable function ¢ such that ¢(y/7) satisfies the
conditions in Theorem 14, it is not possible that det(¢) = 0, which implies
that ¢ must be nonsingular and consequently there exists a suitable weight
vector A regardless of the actual values used for o;.

In summary, if we use a basis function ¢ that satisfies the conditions given
in Theorems 13 or 14, then our radial basis function network having fixed
centers and as defined in equation (22) shatters the set of p vectors {x;} that
correspond to the centers {y;} such that

x; =y; wherei=1,...,p. (37)

It therefore has a VC dimension of at least p.
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Form of basis function Type of basis function
brv(r) =71 Linear
boup(r) =r® Cubic
drps(r) =r’lnr Thin plate spline

ouo(r) = (r*+ )% c € R*,0 < B < 1 | Generalized multiquadric
bmo(r) = (r*+ )™ ce RT,a>0 | Generalized inverse

. multiquadric
deavss(r) = exp {— (E) J .ceRT Gaussian

Table 1: Standard basis functions used in radial basis function net-
works.

3.2 Networks with fixed centers

Table 1 summarizes some of the usual basis functions ¢ used in RBFNs.
The use of these functions is justified by the theory introduced above [32].
Note that the parameter ¢ is fixed—it is not adapted during training. We
immediately obtain the following two corollaries.

Corollary 15. Consider simple RBFNs of the form

Fldi (z N(lx - yl-||>) (39)

i=1
where the centers y; are fixed and distinct. If ¢ is one of the functions

LN, beavss, Pmq, or $mq, then the VC dimension V(F) of the network is
exactly p.

Proof. The functions ¢gavss and ¢ are in Py by Theorem 13, and
the functions /7 and (r + ¢?)® where 0 < 3 < 1 satisfy the conditions
in Theorem 14 (see [32]). This means that by the arguments given above,
V(F) > p for all four cases. Also, from Lemma 8 we know that V(F) < p,
and consequently we must have V(F) = p. B

Corollary 16. Consider RBFNs of the form

Bl (Z N — +w<e,x>) (30)

i=1
where 1(0,x) is the degree-1 polynomial
2/)(9,)() 290+91$1 +92$2+ +0n1‘n7 (40)

z; are the elements of x, and p > n + 1. Again, the centers y; are fixed and
distinct. If ¢ is the function ¢oyp or ¢rpsg, then the VC dimension of the
network satisfies p < V(F) <p+n+ 1.

Proof. By Theorem 13, both ¢y and drpg are in Py (see [32]) and hence
V(F) > p. From Lemma 8, we know that V(F) < p+n+ 1 and the result
follows. B
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3.3 Networks with variable centers

What happens to the VC dimension of a radial basis function network if
we allow its centers y; to adapt during training, rather than force them to
remain fixed? Obviously, the results presented above provide lower bounds
on the VC dimension of RBFNs having basis functions ¢ of the appropriate
type. We also have the following simple result.

Corollary 17. Consider the networks of the types mentioned in Corollar-
ies 15 and 16. If the centers y; are allowed to adapt, then the networks can
form arbitrary dichotomies of any set of p distinct points.

The proof of this result is trivial: the networks can shatter the set of p
points corresponding to the p centers y;, and these centers can now be placed
anywhere. It is interesting that there is no requirement that the p points be
in any kind of general position, as is often the case in similar results for other
types of network (see Cover [12]).

Corollary 17 suggests that the lower bounds suggested for the VC dimen-
sion of this type of network are unlikely to be tight. We have not been able to
improve them, however, and we leave as an open question whether it is possi-
ble to obtain a lower bound similar to that recently proved by Maass [25, 26]
for certain feedforward networks, mentioned in Lemma 7. Lee et al. [23]
have shown that the VC dimension of an RBFN of the type considered in
Corollary 15 having variable centers and Gaussian basis functions with ¢ =1
is at least n(p — 1), which is (approximately) proportional to the number
of variable parameters in the network. However, it is not known whether a
similar result also applies for other standard basis functions such as those
given in Table 1. Similarly, we have not been able to prove upper bounds on
the VC dimension of these networks for all but the simplest cases, such as
when

o(r) =" where i is even. (41)

Then the network computes a class of polynomial discriminant functions and
the results of section 4 apply.

4. Polynomial discriminant functions

In this section, we discuss the polynomial discriminant functions (PDFs),
determining the VC dimension in two distinct situations: when the inputs
are real numbers and when the inputs are restricted to binary values (that
is, 0 or 1). As mentioned in section 1, the PDFs are linearly weighted neural
networks in which the basis functions compute some of the products of the
entries of the input vectors. In other words,

iT — [¢1 (X) ¢2(X) L s (bm(X)], (42)
where each ¢; is of the form

oi(x) = H a:;] (43)

1<j<n
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for some non-negative integers ;. We say that the PDF f is of order at
most k when the largest degree of any of the multinomial basis functions ¢;
used to define f is k, that is, if f is a LWNN over those basis functions in
equation (43) having 7' ; r; < k. Furthermore, the order of a PDF f is said
to be precisely k when f has order at most k& but not at most & — 1, that
is, when in every representation of f in the form given in equation (1), one
of the basis functions required has degree k. Thus the PDFs of order 1 are
precisely the linear threshold functions of Lemma 6. For example, the PDFs
of order 2 defined on R? are of the form

p(wo + wiz1 + WaTs + WaTz + WaT? + W53 + WeT; + WrT1To (44)

+ wsx1T3 + ngng)
for some constants w; (0 <4 < 9), in which at least one of the terms of degree
2 has a nonzero coefficient. (Note that a PDF of this form, over {0,1}?, can
be reduced to one of degree 1 unless one of wr, ws, or wy is nonzero, simply
because if 2; is 0 or 1, then #? = ;. This simple observation will prove useful
below.)

Polynomial discriminators have been studied in the context of pattern
classification (see, for example, [14, 13, 29]), where the aim is to classify a
given set of training data points into two categories correctly, with the hope
that this classification might be used as a valid means of classifying further
points. In addition, PDFs have recently been employed in signal process-
ing [37]. It is therefore an important problem to determine the “power” of
classification achievable by such discriminators and to quantify the sample
size required for valid learning.

Much work has been done on the representation of functions by PDFs;
we refer the reader to [39, 10, 2, 31, 44].

We shall denote by P(n, k) the (full) class of PDFs of order at most k
defined on R™. Thus, P(n, k) is the set of linearly weighted neural networks
formed from all basis functions of degree at most k£ of the form ¢; given
in equation (43). Further, we shall denote by Pg(n,k) the (full) class of
boolean PDF's obtained by restricting P(n, k) to binary-valued inputs, that
is, to {0, 1}"™. Thus P(n, k) is the set of {0, 1} functions on R™ whose positive
and negative examples are separated by some surface that can be described
by a multinomial equation of degree at most k, and Pg(n,k) is the set
of {0,1} functions on {0,1}" (i.e., Boolean functions of n variables) whose
positive and negative examples can be separated in this way. To start with,
we consider only these two classes of PDFs. Later we shall discuss more
restricted classes; for example, one may be interested only in PDFs over a
restricted set of all basis functions ¢; of at most a given degree.

4.1 Further notations and definitions

Let us denote the set {1,2,...,n} by [n]. We shall denote the set of all
subsets of at most k objects from [n] by [n]®, and we shall denote by [n]*
the set of all selections, in which repetition is allowed, of at most k objects
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from [n]. Thus, [n]* may be thought of as a collection of “multi-sets.” For
example, [3]® consists of the sets

0. {1}, {2}, {3}, {1,2},{1,3},{2,3},

while [3]? consists of the multi-sets
0. {1}, {1, 1}, {2}, {2, 2}, {3}, {3,3}, {1,2}, {1,3}, {2, 3}.
f n—]:k

In general, [n]*) consists of Y% (’;‘) sets, and [n]* consists o (
sets. With a slight abuse of mathematical notation, [n]® C [n]*. For each
0 # S € [n]F, and for any x = (z1,y,...,T,) € R™, x5 denotes the product
of the z; for i € S (with repetitions as required). For example, X123 =
T12223 and Xq1,1,0) = 21T2. We define xg = 1 for all x.

It is clear that the basis functions ¢; for PDFs may be written in the form
¢:(x) = xg for some non-empty multi-set S. Therefore a function defined on
R" is a PDF of order at most & if and only if there are constants wg, one for
each S € [n]*, such that

fx)=p ( > wsxs) . (45)

Seln)k

) multi-

Restricting attention to {0, 1} inputs, note that any term xg in which S
contains a repetition is redundant, simply because for x =0 or 1, 2" = z for
all r; thus, for example, for binary inputs, z 2323 = z;2923. We therefore
arrive at the following characterization of Pg(n, k). A function f : {0,1}" —
{0,1} is in Pg(n,k) if and only if there are constants wg, one for each
S € [n]®, such that

fx)=p ( >, wsxs) ! (46)

Se[n®

Of course, each boolean PDF is the restriction to {0,1}" of a PDF; what
we have emphasized here is that when the inputs are restricted to be 0 or
1, some redundancy can be eliminated immediately. This last observation
shows that in considering the classes Pg(n, k), it suffices to use extended
vectors of the form

2 =[h(x) $a(x) - Pmx)], (47)
where each v; is of the form
Qpl(X) = Xg = H z; (48)
=

for a non-empty subset S of at most k elements of [n]. The number of such
S, and hence the length of these extended vectors, is Zle (’Z) For general
PDFs of order at most k, one uses the extended vectors of equation (43), of
length ("Zk) — 1; the entries here are xg for § # S € [n]*.
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4.2 VC dimension and independence of basis functions

As noted earlier, classification by LWNNSs corresponds to classification by lin-
ear threshold functions of the extended vectors in the corresponding higher-
dimensional space. This is explicit in the context of PDFs and boolean PDF's
from equations (45) and (46).

We shall make use of the following well-known characterization of sets
shattered by homogeneous linear threshold functions, a proof of which we
include for completeness.

Lemma 18. A finite subset S = {y1,ys,...,ys} of R? can be shattered by
the set of homogeneous linear threshold functions on R if and only if S is a
linearly independent set of vectors.

Proof. Suppose that the vectors are linearly dependent. Then at least
one of the vectors is a linear combination of the others. Without loss of
generality, suppose that y; = 37, \;y; for some constants ); (2 < i < s).
Let (x,y) denote the standard (Euclidean) inner product on R%. Suppose
w is such that for 2 < j < s, (w,y;) > 0 if and only if A; > 0. Then
(W, y1) = 355 Ai{w,y;) > 0. It follows that there is no homogeneous linear
threshold function for which y, is a negative example and, for 2 < j <s, y;
is a positive example if and only if A\; > 0. That is, the set S of vectors is
not shattered.

For the converse, it suffices to prove the result when s = d. Let A be the
matrix whose rows are the vectors yi,ys,....yq and let v be any of the 2¢
vectors with entries £1. Then A is nonsingular and so the matrix equation
Aw = v has a solution. The homogeneous linear threshold function ¢ defined
by this solution weight-vector w satisfies ¢(y;) = 1 if and only if entry j of
v is 1. Thus all possible classifications of the set of vectors can be realized,
and the set is shattered. B

Recall that a set {hq, ha, ..., hs} of functions defined on a set X is linearly
dependent if there are constants ); (1 < i < s), not all zero, such that, for
allx € X,

Arhy (%) + Agha(xX) + - - - + Asha(x) = 0; (49)

that is, if some nontrivial linear combination of the functions is the zero
function on X. The following result is due to Dudley [15]; we present here a
new proof based on the idea of extended vectors.

Theorem 19. Let H be a vector space of real-valued functions defined on
a set X. Suppose that H has (vector space) dimension d. For any h € H,
define the {0, 1}-valued function h on X by

e = o) = {5 HE0I 20, 50
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and define
H={h:heH}. (51)
Then the VC dimension of H is d.

Proof. Suppose that {h1,ha, ..., hq} is a basis for H and, for x € X, let
x" = (hy(x), ha(x), ..., ha(x)). The subset S of X is shattered by H if and
only if for each S* C S there is h € H such that h(x) > 0 if x € ST whereas

h(x) <0ifx € S~ =S\ S*. But, since {h1, ..., hq} is a basis for H, for any
h € H there are constants w; (1 < i < d) such that » = ¢ w;h;. Thus,
equivalently, S is shattered by H if and only if for every subset ST of S there

are constants w; such that

d

= >0 ifxe St
Wil - . ; 2
th(x){<0 ifxe S~ (52)

=1

that is, the inner product <W, XH>

for x € S~. But this says precisely that the linear threshold function fy given
by

is non-negative for x € ST and is negative

Jw(x) = plwrz1 + wexs + -+ - + WaTa) (53)
satisfies
fwx) =1 xe 5" (54)

It follows that the set S is shattered by H if and only if the set {x™ | x € S} is
shattered by homogeneous linear threshold functions in R?%. Because V(H)
is the size of the largest set shattered by H and because Lemma 18 now
shows that S' cannot be shattered by H if |\S| > d, it follows that V (H) < d.
Further, by Lemma 18, the VC dimension equals d if and only if there is a set
{xI, ..., x]t} of linearly independent extended vectors in R®. Suppose this
is not so. Then the vector subspace of R¢ spanned by the set {x™ | x € X}
is of dimension at most d — 1 and therefore is contained in some hyperplane.
Hence there are constants A, ..., Ag, not all zero, such that for every x € X,
4 \i(x™); = 0. But this means that for all x € X, ¥4, \;hi(x) = 0, and
hence the function 3¢, A\;h; is identically zero on X, contradicting the linear
independence of Ay, ..., hq. It follows that the VC dimension of H is d, as
claimed. B

This theorem is very useful and was mentioned in earlier parts of this
paper. In its statement we have denoted the domain of the class of functions
by X. In the applications here, X will be either R™ or {0,1}", for some n.
For the moment, it is convenient to phrase the theorem and the next result in
terms of general X. The theorem applies directly to linearly weighted neural
networks as follows.
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Theorem 20. Let ® = {¢y, ..., ®m} be a given set of basis functions defined

on a set X and let F® be the set of linearly weighted neural networks on X
based on ®. If {1} U ® is a linearly independent set in the vector space of
real-valued functions on X, where 1 denotes the identically-1 function on X,
then V(F®) = m + 1. In general, V(F®) is the maximum cardinality of a
linearly independent subset of {1} U ®.

Proof. Let H = span({1} U ®) be the vector space of real functions on X
spanned by {1} U ®. Then H consists of all functions of the form

E(X) = wy + Wi (X) +--F wm,(;bm(x) (55)

for all possible choices of constants w;. It is clear from this and equation (1)
that
F*=H, (56)

with the notation as in Theorem 19, so that the VC dimension of F ® is the
vector-space dimension of H = span({1} U ®). The result follows. B

4.3 VC dimension of PDF's

We now apply the above results to the classes P(n, k) and Pg(n,k). For
P(n, k), the full class of PDFs of order at most k, the basis functions are
given by ¢;(x) = xg for nonempty S € [n]*. For Pg(n, k), the basis functions
can be taken to be 1;(x) = x5 where S € [n]*®) is nonempty. Let

O(n, k) = {xs |0 # S € [n]*}
and (57)
op(n, k) = {xs |0 # S € [n]¥}.

Then we have the following result.

Proposition 21. For all n and k, the set {1} U ®(n, k) is a linearly inde-
pendent set of real functions on R"™.

The proof is omitted; see Anthony [2] for details.
Now consider ®g(n, k), regarded as a set of real functions on the domain
X ={0,1}",

Proposition 22. For all n,k with k <n, {1} U ®g(n, k) is a linearly inde-
pendent set of real functions defined on {0, 1}".

Proof. Let n > 1, and suppose that for some constants ay and «g, and for
all x € {0,1}", we have

Alx) = ap + Z agxg =0 (58)
Sen)®
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for nonempty S. Set x to be the zero vector and deduce that g = 0. Let
1 < r < k and assume, inductively, that ag = 0 for all S C [n] with |S] < r.
Let S C [n] with |S| =r. Setting z; =1ifi € Sand z; =01if j € S, we
deduce that A(x) = ag = 0. Thus for all S of cardinality r, ag = 0. Hence
ag = 0 for all S, and the functions are linearly independent. B

The above two results, coupled with Theorem 20, enable us to determine
the VC dimensions of the classes of PDFs and boolean PDFs.

Corollary 23. For all n and k,

(P, ) = ("Z")

and for all n, k with k < n,

V(Pa(n k) =3 (") (60)

i=0 \?

Note that if all inputs are restricted to be binary and if m > 1, then
the VC dimension of the corresponding LWNN is lower than if the inputs
were arbitrary real numbers. We remark that the VC dimensions coincide
for m = 1, the case of linear threshold functions.

Theorem 20 tells us a little more than this. As mentioned near the be-
ginning of this section, one may only be interested in LWNNs that are based
on a strict subset of the basis functions ®(n, k). For example, the special
case of RBFNs in which the centers are fixed or variable and the function ¢
is of the form ¢(r) = r® for an even positive integer i, reduces essentially to
PDFs based on some of the functions ¢;(x) = [T1<j<, %, as in equation (43).
But since the set {1, ®(n,k)} is a linearly independent set for any n and k,
it follows that any LWNN based on a strict subset of m of the functions in
Uk>1®(n, k) has VC dimension m + 1. A similar comment applies to binary-
input LWNNs that are based on strict subsets of ®g(n, k) for all n and for
any k < n. These observations may be summarized as follows.

Theorem 24. Any class of PDFs that are based on m of the standard basis
functions Ug>1®(n, k) has VC dimension m + 1. Any class of boolean PDF's
that are based on m of the standard boolean PDF basis functions ®g(n,n)
has VC dimension m + 1.

5. Conclusion

The Vapnik-Chervonenkis (VC) dimension has, in recent years, become an
important combinatorial quantity in the analysis of generalization in neural
networks and other systems. At present, no general technique exists with
which we can calculate this dimension or even obtain bounds on its value.
Consequently, in order to investigate the VC dimension of a given system we
must construct techniques specifically for the case of interest.
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In this article we have provided motivation for the use of the VC dimen-
sion and an introduction to the basic accompanying theory. In particular,
we have given a detailed introduction to PAC learning theory and one of its
most important extensions. We have also provided some entry points into
the literature on more advanced techniques. Finally, we have performed an
extensive investigation of the VC dimension of two members of the class of
linearly weighted neural networks: radial basis function networks and poly-
nomial discriminant functions. The general class of linearly weighted neural
networks contains as special cases several simple and highly effective standard
network types in addition to the two that we investigate.

In the case of radial basis function networks having fixed centers, we
have shown, using results from the theory of interpolation, that for several
commonly used basis functions the VC dimension is either exactly equal to
the number W of weights in the network or is bounded above by W and
below by the number of centers. In the case where the centers are variable,
our results provide simple lower bounds on the VC dimension of the network;
this case provides some interesting and important open problems that we
mention briefly below.

In the case of polynomial discriminant functions we have shown that
for real-valued inputs, the VC dimension of the network is exactly equal to
W, and for binary-valued inputs the VC dimension of the network has a
well-defined value that is less than W except in the case where the network
computes a linear threshold function, in which case the VC dimension is
again exactly equal to WW. In proving these results, we obtain a new proof of
a well-known theorem due to Dudley [15].

Two final points are worth mentioning. First, we note that it is usual
to assume that the VC dimension of a pattern classifier is about equal to
the number of its variable parameters. We have shown that for many of the
networks considered, this assumption is either exactly correct, or provides a
value close to the correct one. Secondly, for radial basis function networks
with variable centers, two important open problems remain: first, the deter-
mination of upper bounds on the VC dimension (or even an answer to the
question of whether or not it is finite); second, the investigation of whether
lower bounds of Q(W log W) on the VC dimension for this type of network
can be obtained in analogy with existing results for feedforward networks of
linear threshold functions.
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