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Abstract. The concept of neural networks is generalized to include
complex connections between complex units. A mathematical model
is presented. An expression for the network’s energy as well as a com-
plex learning rule are proposed. This innovation may lead to new
neural network paradigms, architectures, and applications, and may
help to better understand biological nervous systems. The similar-
ity between the dynamics of some linear complex networks and the
quantum mechanical behavior of atomic systems is shown. The con-
vergence properties of two-neuron complex networks are explored as
extensions of the neural description of the Mandelbrot set, and are
found to possess similar fractal properties.

1. Introduction

The dynamic behavior of neural networks can be fully described by systems of
differential equations [1, 2]. A large amount of information can be extracted
from both theoretical investigation and numerical solution of such systems.
It is also possible, however, to explore the behavior of neural networks by
means of suitable physical models whose behavior is described by similar
systems of differential equations.

Complex functions are commonly used for the description of physical
quantities. A well-known example is the treatment of electrical networks in
terms of complex potentials, currents, and impedances. The dynamics of
such networks are represented by systems of differential equations in which
the complex impedance matrix represents connections between the different
network elements. One can even introduce the notion of complex power as
the inner product of the complex voltage and current vectors. The real and
imaginary parts of this power are the active (dissipative) and reactive powers,
respectively.
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Since the nature of information processing in biological nervous systems
is totally different from that in digital computers, and still mostly unknown,
one should not ez cathedra exclude the existence of complex neural networks.
Indeed, there are neuron models based on two-state variables, for example,
phase and frequency (the first determines the short-term behavior of the
network, the second reflects the effect of learning and shapes its long-term
evolution). Thus, the activity in the network model can be viewed as two su-
perimposed relaxation processes: one for phases and another for frequencies
[3]. Therefore, although the connection weights in the anatomy of macro-
scopic neural networks may be real, there is no evidence that would exclude
the existence of complex neural networks at the functional level that can be
anatomically realized, for example, between clusters of neurons.

2. Complex network model

Let us now consider a complex neural network. For a fully interconnected
network of N units the network dynamics is described by the system of
differential equations [1]

de i
o = 2 wikfilu(®) + 1;(0) (1)

k=1
where ¢ is time, u;(t) are the state variables that describe the time dependence
of each unit’s input activation, f;(u;) are the output activation functions,
wjx s the connection weight between the jth and kth neurons, and I; is the
external input, j = 1,2,..., N. (For simplicity, we neglect the contribution
of leakage currents in the network.)

In our case u;, fj, wjg, and I; are all complex:

u;(t) = z;(t) + iy, (t) (2)
Filuy) = g;(z5,95) + thj (x5, y5) (3)
wik(t) = pr(t) + ig;(t) (4)
Ii(t) = J;(t) +i15(t) ()

where x5, y;. g5. Iy, Pjk, G, Jj. and Kj are all real, i = +/—1 is the imaginary
unit. Then equations (1) can be transformed into

N
d:lfj

d—f = Z(pjkgk — girhi) + J; -
' k=1

dyj N

ey — Z(p{ikhk, + (Ijk-glc) + K; )
v k=1

(j =1,2,...,N). Thus we have described the network of N complex neu-
rons by a system of 2NV coupled differential equations in real variables; such
behavior cannot be realized by a real Hopfield network of any size.
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The energy of the complex network may be defined as

1 N N N
E:—izz.ﬁwjkfk_l:{e YL (8)

J=1 k=1 j=1
where the asterisk represents the complex conjugate. It can be shown [4]
that this energy is a nonincreasing function of time if the following three
conditions are satisfied:

% >0 and % >0, (9)

O; dy;
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and

Wik = w,’;j (11)

(the connection matrix must be hermitian). Thus, when these conditions are
satisfied, the network must evolve toward local energy minima. However,
the network state may “jump” from the neighborhood of one minimum to
another, provided the jump decreases its energy. Therefore these attractors
are not Liapunov stable. Next we consider how to train the network so that
it has the attractors we desire.

3. Learning

To make the network learn some patterns, its energy surface has to be shaped
according to those patterns. Complex patterns can be quite convenient to
represent images by forming complex vectors as sets of complex coordinates
of pixels of the given image. The complex equivalent of the Hebbian learning
rule is

Awj, =nf;f (12)

where 7 is the learning rate. It can be easily verified that such a learning
rule cannot increase the energy of the network.

We have performed some simple experiments with content-addressable
memory, utilizing this learning rule [4]. The weight matrix is constructed
analytically by using the formula

wie = 3V Valo) (13)

where V'(s) is the training pattern and p is the number of patterns to be
learned. A network of N = 24 complex neurons could learn p = 3 randomly
selected patterns quite successfully (in some cases even vectors with more
than 50% of entries altered could be reconstructed).
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Finding a suitable activation function is not easy. The extension of the
usual sigmoid-type activation functions to the complex plane through ana-
lytic continuation creates a problem. According to Liouville’s Theorem, the
only bounded and continuously differentiable function in the complex plane is
the constant function. The analytic continuations of the well-known sigmoid
functions all have singularities and do not satisfy our conditions (9) and (10).
The question is, therefore, whether to give up analyticity or boundedness.
If we choose the former, we can utilize simple bounded functions without
analytic continuation. For example, in our experiments we have used the
simple activation function

fj(u;) = tanh(z;) + i tanh(y;). (14)

Our search continues for workable activation functions that satisfy our re-
quirements.

On the other hand, the emerging singularities of analytically continued
activation functions may result in unexpected and interesting properties.
Systematic investigations of small complex networks reveal patterns in this
behavior that can be used to define new architectures and applications (see
section 4).

It is natural that nearly all existing neural network paradigms can be
generalized to include complex activations and connections. Some of them
may not be practical but others will be useful. It is expected that a complex
network of given size can perform more complicated functions than a real-
valued one.

4. Dynamic properties

Discrete complex dynamical systems constitute interesting special cases of
complex neural networks. It has been shown [11] that a single complex neuron
is capable of determining membership in a Mandelbrot or Julia set. Chaotic
behavior in more complex networks has been documented. For example, a
general neural model of an oscillating cortex was shown to exhibit distinct
nonlinearities [12]. A more detailed model of the olfactory system has clearly
displayed chaotic behavior, and it was proposed that this dynamic complexity
actually enhances the system’s function [13]. Extending Clarke’s model, we
investigated the convergence properties of a two-neuron complex network.
Discretization of the Hopfield model yields:

ui(t+1) —uy(t) = Z_jwj,cfk(uk(t)) + I;(t). (15)

As in the one-neuron network, convergence was plotted as a function of the
initial (complex) value of one of the neurons. However, several dimensions
are introduced here that are not present in the single-neuron case, namely
the output function and initial value of the second neuron and the value of
each connection matrix element. For simplicity, the output functions fi(uy)
were assumed to be the same and the inputs I;(¢) were set to zero.
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The convergence criteria were
| Re(us (t)) — Re(uy (t — 1)) < 1074 (16)
and
| Im (uy (¢)) — Im(uy (t — 1)) < 1074 (17)

Divergence was defined as nonconvergence within 50 iterations or attainment
of the divergence condition

Jus (£)] > 10° (18)

Note that, because convergence was plotted versus u;(0), these criteria were
imposed on the first neuron. However, it is conceivable that in a complex
two-neuron network, one neuron will converge and the other diverge, espe-
cially given our simplified criteria. Also, remember that the Mandelbrot and
Julia sets are realizable as special cases of a two-neuron network by eliminat-
ing the extra dimensions, for example using a connection matrix with zero
determinant. Thus, it is clear that, in general, the convergence properties
of an N-neuron complex network are not realizable by an (N — 1)-neuron
network, and it is natural to think of the former as a generalization of the
latter. To that extent, our two-neuron convergence properties are general-
izations of Julia sets, while properties of an N-neuron network, N > 2, are
generalizations of ours. Even for the simple case of two neurons and a square-
law output function, there is little to say analytically about the network’s
convergence. Therefore we present here several empirical observations.

For each initial value of neuron one w,(0), the initial value of neuron two
u(0) can be characterized by its absolute value and its phase (Ph) relative
to u1(0). We found that for all connection matrices and output functions,
preservation of the network’s convergence requires that

Ph(u1(0)) — Ph(u2(0)) = constant (19)

In other words, when convergence is plotted as a function of u;(0), an increase
in Ph(u2(0)) causes a corresponding counter-clockwise rotation in the region
of convergence (Figure 1).

Less intuitive results are attained by varying the magnitude of u5(0). In
general, for a given output function and connection matrix W, an increase in
|ug(0)] caused a decrease in the size (disintegration) of the region of conver-
gence (ROC) for u;(0) (Figures 2-5). Additionally, increasing |us(0)| caused
the ROC to move in a constant radial direction outward from the origin be-
fore disappearing; this direction depends on the relative phase of u;(0) and
u2(0) and on the connection matrix but does not seem to depend on the
output function. Also note that for real-valued W, the ROC for f.(uz) = u2
maintains an axial symmetry when disintegrating (a property attributable
to the function’s symmetry), while the ROC for fi.(ux) = u} does not.

Much like initial values, a uniform rotation in the connection weights
causes an opposite rotation of the ROC when the initial values are close to
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Figure 1: Effect of change in second neuron’s initial phase on the
network’s convergence. Plots show convergence (black) for —1 <
Re(u1(0)) < 1, =1 < Im(u1(0)) < 1. Initial phases of second neu-
ron are (a) w/4, (b) 37/4, (c) 57/4, (d) Tr/4; |u2(0)] = 1; fi(wi) = u;
Wiy = 1, Wij = 0.1.

zero; for the symmetric output function f(uy) = w3, this rotation occurs
even when both initial values are nonzero, although this is not generally the
case. Furthermore, in general, an increase in the magnitude of the connection
weights causes a decrease in the size of the ROC for a given output function,
although there is no motion away from the origin.

The implications of these results for network architecture, assuming they
are generalizable to larger networks, are rather straightforward. A complex
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Figure 2: Disintegration of ROC with increasing |u»(0)| for real con-
nections w;; and symmetric f;. |ug(0)] is incremented by steps of
.1 from (a) 0 to (b) 1.4; Ph(u2(0)) has the constant value 7/4.
fi(w;) = u?; wy = 1, wi; = 0.4. Region shown is —1 < Re(u1(0)) < 1,
—1 <Im(u1(0)) < 1.
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Figure 3: Disintegration of ROC with increasing |u2(0)| for complex
connections w;; and symmetric f;. |ug(0)| is incremented by steps of .1
from (a) 0 to (b) 1.9; Ph(ug(0)) has the constant value m/4. f;(u;) =
u?; w2 = 0.54, wo; = —0.5i. Region shown is —1 < Re(u1(0)) < 1,
-1 < Im(u;(0)) < 1.

network can use unbounded, analytic output functions and still converge un-
der the right circumstances. Specifically, one with small connection weights
and initial values will more likely converge (and do so faster) than one with
larger connection weights or initial values; relative phases of initial values or
connection weights will not affect the size of the ROC, but may affect its
orientation. Finally, because of their fractal nature, it is impossible to know
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Figure 4: Disintegration of ROC with increasing |uz(0)] for real con-
nections wi; and asymmetric f;. |ug(0)] is incremented by steps
of .1 from (a) 0 to (b) 1.4; Ph(u(0)) has the constant value O.
Filui) = ud; wy =1, w;j = 1.5. Region shown is —1 < Re(u1(0)) < 1,
-1 < Im(u;(0)) < 1.

a priori whether a given network will diverge except in trivial cases. This
presents an alternative to using bounded, non-analytic output functions, but
sets limits on its effective use.

5. Physical applications

In the case of linear networks the activation function is trivial: f;(u;) = u;.
An interesting special case of a complex linear network is represented by the
quantum mechanical Hamiltonian equations [5]. Schrodinger’s wave equation
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Figure 5: Disintegration of ROC with increasing |u2(0)| for complex
connections w;; and asymmetric f;. |ug(0)| is incremented by steps
of .1 from (a) 0 to (b) 1.9; Ph(u2(0)) has the constant value /4.
filw) = wd; wi; = 1, wip = 1.5(1 +4)/1.414, woy = 1.5(1 — 1) /1.414.
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Region shown is —1 < Re(u1(0)) < 1, =1 < Im(u1(0)) < 1.
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can be written in the form of the following system of N coupled differential

equations [6]:

N

=Y HuyC, (j=12,...,N)
k=1

(20)

where N is the number of base states, h = h/2m, h is Planck’s constant, Hj
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is an element of the Hamiltonian matrix, and C}, is the probability amplitude
of finding the state of the system in the kth base state at time .

The system of differential equations (20) describes the time dependence of
all these probability amplitudes, that is, the global dynamic behavior of the
entire atomic system. The elements of the Hamiltonian matrix characterize
the probability amplitudes of the generation of one base state from another,
that is, the coupling between the system’s different base states.

In general, the probability amplitudes as well as the elements of the
Hamiltonian matrix are complex. However, since the Hamiltonian matrix
is hermitian, its diagonal elements are all real.

Equation (20) is a special case of equation (1). The state variables
are the probability amplitudes: f; = u; = C;. We also have [; = 0 and
wj, = —(i/h)Hjz. Thus, the connection matrix is anti-hermitian, since all
its diagonal elements are imaginary, and such a network does not satisfy
our condition (11) and the energy formula (8) cannot be utilized. However,
the system’s dynamics is identical to that of a specific linear complex neural
network. Of course, this does not imply that a classical model of quantum
mechanics is possible, but the analogy may shed some light on the actual
function of biological nervous systems.

For example, Penrose suggests that somewhere deep in the brain one may
find cells of single quantum sensitivity (perhaps in the intercellular micro-
tubules). If this is true, then quantum mechanics is indeed directly involved
in brain activity [7].

In addition, we have previously shown that the response of biological
neurons to stimuli can be represented as a measuring process, and there is
evidence that the quantum mechanical theory of measurement can be applied
to it. A simple form of this model takes into account two observables, the
stimulus intensity and length, measured by individual neurons with only
one threshold for each. An uncertainty relation can be derived between the
possible accuracy of the measured intensity and length of time. The model
is extended to measurements by neuron populations [8].

The idea of complex neural networks was first proposed by Szilagyi in 1988
[5]. An application of this idea has led to the holographic model of memory
and learning [9], and even to the development of a commercial product [10].
Thanks to their ability to accept inputs with two real dimensions (amplitude
and phase), complex networks are well suited for visual and auditory pattern
recognition, the signal amplitude occupying one dimension and its frequency
the other.

6. Conclusions

A Hopfield-like model for complex neural networks, including network energy
and a Hebbian learning rule, has been presented. This model and others
based on complex neurons and connection weights should lead to useful new
architectures, paradigms, and applications, and may help to better under-
stand biological nervous systems.
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We generalized Clarke’s neural description of the Mandelbrot and Julia
sets to multiple neurons. The Mandelbrot and Julia sets can be produced as
special cases of these networks (degenerate connection matrices). The effects
of certain two-neuron network features on its convergence have been detailed,
and their implications for network architectures outlined.
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