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Abstract . The concept of neural networks is generalized to include
complex connect ions between complex units. A mathemat ical model
is presented. An expression for the network's energy as well as a com­
plex learning rule are proposed. Th is innovation may lead to new
neural network paradigms, architectures, and applications, and may
help to better understand biological nervous systems. The similar­
ity between the dynamics of some linear complex networks and the
quantum mechanical behavior of atomic systems is shown. The con­
vergence properties of two-neuron complex networks are explored as
extensions of the neural descript ion of the Mandelbrot set , and are
found to possess similar fractal propert ies.

1. Introduction

The dynam ic behavior of neur al net works can be fully describ ed by systems of
differential equat ions [1, 2]. A large amount of information can be extracted
from both theore tical invest igat ion and numerical solution of such systems .
It is also possible, however , to explore the behavior of neural networks by
means of suit able physical models whose behavior is descr ibed by similar
sys tems of different ial equat ions .

Complex functions are commonly used for th e descript ion of physical
qu an ti t ies. A well-known example is the treatment of elect rical networks in
terms of complex potenti als, curre nt s, and impedances. T he dynam ics of
such networks are represented by sys tems of differenti al equat ions in which
the complex impedance matrix represents connect ions between the different
network elements . One can even introdu ce the not ion of complex power as
the inner pr oduct of the complex voltage and cur rent vectors. The real and
imaginary parts of this power are the active (dissipative) and react ive powers,
respect ively.
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Since the nature of information pro cessing in biological nervous systems
is tot ally different from that in digit al comp ut ers, and sti ll most ly un known,
one should not ex cathedra exclude the existence of complex neural networks.
Indeed , there are neuron models based on two-state variables, for example,
phase and frequency (the first det ermines th e shor t-term behavior of the
network, the second reflects th e effect of learnin g and shapes its long-term
evolut ion) . Thus, th e act ivity in t he network model can be viewed as two su­
perimpo sed relaxat ion pro cesses: one for phases and anot her for frequencies
[3] . Therefore, alt hough th e connect ion weight s in the anatomy of macro­
scopic neural networks may be real, there is no evidence that would exclude
t he existe nce of complex neur al networks at the junctional level t hat can be
an atom ically realized , for examp le, between clust ers of neurons.

2 . Comp lex networ k m odel

Let us now consider a complex neur al network. For a fully interconnected
network of N units the network dynamics is described by the system of
differenti al equa t ions [1]

(1)

where t is time, Uj(t) are the state variables that describ e th e t ime dependence
of each unit 's input act ivat ion, j j(Uj ) are the output activat ion functions,
Wjk is the connect ion weight between th e j th and kt h neurons, and Ij is the
external inpu t , j = 1, 2, . . . , N . (For simplicity, we neglect the cont ribution
of leakage curr ents in the network.)

In our case Uj, i j , Wjk , and Ij are all complex:

Uj(t ) = Xj(t) + iYj (t)

j j(Uj) = gj(Xj,Yj) + ihj(xj ,Yj)

Wjk(t ) = Pjk(t ) + iqjk(t )

Ij (t ) = Jj (t ) + iKj (t )

(2)
(3)
(4)
(5)

where Xj, Yj, gj , hj , Pjk, qjk, Jj , and K , are all real , i = A is th e imaginary
unit . T hen equations (1) can be tr ansformed into

(6)

(7)

(j = 1, 2, . . . , N ). T hus we have described the network of N complex neu­
rons by a system of 2N coupled differential equations in real variables; such
behavior cannot be realized by a real Hopfield network of any size.
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The energy of the complex network may be defined as

(8)

where the aste risk represent s the complex conjugate. It can be shown [4]
that this energy is a nonin creasing funct ion of time if the following three
conditions are sat isfied:

(9)

(10)

and

(11)

(the connect ion matrix must be hermit ian). Thus, when these conditions are
satisfied , the network must evolve toward local energy min ima. However,
the network state may "jump" from the neighb orhood of one minimum to
another, provided the jump decreases its energy. Therefore these at tractors
are not Liap unov st able. Next we consider how to tra in the network so that
it has the at t rac tors we desire .

3. Learning

To make th e network learn some patterns, its energy sur face has to be shaped
according to those patterns. Complex patterns can be quite convenient to
represent images by forming complex vect ors as sets of complex coordinates
of pixels of the given image. The complex equivalent of the Hebb ian learn ing
rule is

(12)

where T) is th e learn ing rate. It can be easily verified that such a learn ing
rule cannot increase th e energy of the network.

We have performed some simple experiments with content-addressable
memory, ut ilizing this learning rule [4]. T he weight mat rix is constructed
analyt ically by using the formula

P

Wjk = L Vj(S)Vk(S)*
8= 1

(13)

where V (s) is t he t raining pattern and p is the num ber of patterns to be
learn ed. A network of N = 24 complex neurons could learn p = 3 randomly
selected pat terns quite successfully (in some cases even vectors with more
than 50% of ent ries altered could be reconst ructed).
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Finding a suitable act ivation function is not easy. The exte nsion of t he
usual sigmoid-type act ivat ion funct ions to the complex plane through ana­
lyt ic cont inuation creates a prob lem. According to Liouville's T heorem, the
only bounded and cont inuously differenti able function in the comp lex plane is
the constant function. T he analyt ic cont inuat ions of the well-known sigmoid
funct ions all have singularit ies and do not satisfy our condi t ions (9) and (10).
The question is, therefore, wheth er to give up analyticity or boundedness.
If we choose th e former , we can ut ilize simp le bounded funct ions without
analyt ic cont inuat ion. For example, in our experiments we have used the
simple act ivat ion function

(14)

(15)

Our search cont inues for workab le act ivation function s that sat isfy our re­
quirements.

On the other hand , the emerging singularities of analyt ically cont inued
act ivation funct ions may result in unexpected and interest ing propert ies.
Systematic invest igations of small complex networks reveal pat terns in thi s
behavior that can be used to define new architectures and applicat ions (see
sect ion 4).

It is natural that nearly all exist ing neural network parad igms can be
genera lized to includ e complex act ivat ions and connections. Some of them
may not be practical but ot hers will be useful. It is expected that a complex
network of given size can perform more complicated funct ions than a real­
valued one.

4. D y nam ic properties

Discrete complex dynami cal systems const itute interesting special cases of
complex neural networks . It has been shown [11] that a single complex neuron
is capable of determining membership in a Iandelbrot or Juli a set . Chao t ic
behavior in more complex networks has been documented. For example, a
general neur al model of an oscillating cortex was shown to exhibit dist inct
nonlineari ties [12J . A more det ailed model of the olfacto ry system has clearly
displayed chaotic behavior , and it was prop osed that this dynamic complexity
act ually enhances the system's function [13J . Extendin g Clarke's model, we
investigated the convergence prope rt ies of a two-neuron complex network.

Discretization of the Hopfield model yields:

N

Uj(t + 1) - Uj (t ) = L Wj k1'k(Uk(t)) + Ij(t) .
k= l

As in th e one-neuron network, convergence was plotted as a function of the
initial (complex) value of one of t he neurons. However, severa l dimensions
are int rodu ced here tha t are not present in the single-neuron case, namely
the out put function and init ial value of the second neuron and the value of
each connect ion matrix element . For simplicity, the outp ut functions h (Uk)
were assumed to be the same and the inpu ts Ij (t ) were set to zero.
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T he convergence criteria were

(16)

and

(17)

Divergence was defined as non convergence within 50 iterations or at tainment
of t he divergence cond it ion

(18)

Note t hat , because convergence was plotted versus Ul(0) , t hese criteria were
imposed on the first neuron . However , it is conceivable that in a complex
two-neuron network, one neuron will converge and the ot her diverge, espe­
cially given our simplified criteria. Also, remember that t he Mandelbrot and
Julia sets are realizable as special cases of a two-neuron network by eliminat­
ing the extra dimensions, for example using a connect ion matri x with zero
determinant . T hus, it is clear that , in genera l, the convergence propert ies
of an lV-neuron complex network are not realizab le by an (lV - l j-neuron
network , and it is natural to think of the former as a generalization of th e
latter. To that ext ent , our two-neuron convergence properties are general­
izat ions of Juli a sets , while propert ies of an lV-neuron network , lV > 2, are
genera lizations of ours. Even for t he simple case of two neurons and a square­
law output function, there is lit t le to say analyt ically about the network 's
convergence. Therefore we present here several empirical observations.

For each initial value of neuron one Ul(0), the init ial value of neuron two
U2(0) can be charac terized by its absolut e value and its phase (Ph) relative
to Ul( O) . We found that for all connect ion matrices and output funct ions,
preservation of the network's convergence requires that

Ph(Ul (O)) - Ph(u2(0)) = constant (19)

In other words , when convergence is plotted as a func t ion of Ul(0) , an increase
in Ph(u2(0)) causes a corresponding counter-clockwise rotation in the region
of convergence (Figure 1).

Less intuit ive results are at tained by varying the magnitude of U2(0). In
general, for a given output funct ion and connect ion matrix W , an increase in
IU2(0)1caused a decrease in the size (disintegration) of the region of conver­
gence (ROC) for Ul (O) (Figures 2- 5). Additionally, increasing IU2(0)1caused
the ROC to move in a constant radial direct ion outward from the origin be­
fore disappear ing; t his direction depends on the relative phase of Ul (O) and
U2(0) and on the connect ion matrix but does not seem to depend on the
output function. Also not e th at for real-valued W , the ROC for fk (uk) = Uk
maintains an axial symmetry when disintegratin g (a propert y attributable
to the function's symmetry) , while the ROC for !k(Uk) = ut does not .

Much like initial values, a uniform rotation in the connection weights
causes an opposite rot ation of the ROC when the initial values are close to
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(a) (b ) (e) (d)

Figur e 1: Effect of change in second neuron 's initi al ph ase on t he
network's convergence. P lots show convergence (black) for - 1 <
Re(ul (O)) < 1, - 1 < Im (ul (O)) < 1. Initi al phases of second neu­
ron are (a) 7r / 4, (b) 37r /4, (c) 57r/4, (d) h / 4; IU2(0)1 = 1; f i(Ui) = u;;
W ii = 1, Wij = 0.1.

zero; for th e symmetric output function h(Uk) = uk, this rotation occurs
even when both initial values are nonzero , alt hough this is not generally the
case . Fur th ermore, in general, an increase in the magnitude of t he connection
weights causes a decrease in the size of th e ROC for a given out put funct ion,
although th ere is no motion away from the origin.

The implications of these results for network architect ure, assuming they
are genera lizab le to larger networks, are rath er st ra ightforward . A complex

(a)

(b)

Figur e 2: Disint egration of ROC wit h increasing IU2(0)1for real con­
nections Wi j and symmetric fi. IU2(0)1 is incremented by steps of
.1 from (a) 0 to (b) 1.4; Ph(u2(0)) has the constant value 7r / 4.
f i (Ui) = u;; Wi i = 1, Wij = 0.4. Region shown is - 1 < Re(u l (O)) < 1,
- 1 < Im (u l (O)) < 1.
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Figure 3: Disintegration of ROC with increasing IU2(0)1 for complex
connections Wij and symmetric Ii- IU2(0)1 is incremented by steps of.1
from (a) 0 to (b) 1.9; Ph(u2(O )) has the constant value 7[ / 4. f i(Ui) =

uy; W 12 = O. 5i, W 21 = - O.5i . Region shown is - 1 < Re(ul (O )) < 1,
- 1 < Im(ul(O)) < 1.

network can use unbounded, analyt ic output funct ions and st ill converge un­
der th e right circumst ances . Specifically, one with small connect ion weights
and initi al values will more likely converge (and do so faster) than one with
larger connect ion weights or initial values ; relati ve phases of initial values or
connection weights will not affect the size of the ROC , but may affect its
orient ation . Fin ally, because of their fract al nature, it is impo ssible to know
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Figure 4: Disintegration of ROC with increasing IU2(0)1 for real con­
nect ions Wij and asymmetric f;. IU2(O)[ is incremented by steps
of .1 from (a) 0 to (b) 1.4; Ph(u2(O )) has the constant value O.
! i (Ui ) = uY ; W ii = 1, Wij = 1.5. Region shown is -1 < Re(ul (O )) < 1,
- 1 < Im(ul (O)) < 1.

a priori whether a given network will diverge except in t rivial cases. This
pr esents an alte rnat ive to using bounded , non-an alyt ic output funct ions, but
sets limi ts on its effect ive use.

5. P hysica l a p p lica t ion s

In the case of linear networks the activation function is t rivial: fj (U j) = Uj '

An interesting special case of a complex linear network is represented by the
quantum mechan ical Hami ltonian equations [5]. Schrodinger 's wave equat ion
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Figure 5: Disintegration of ROC with increasing IU2(0)1for complex
connections Wij and asymmetric k IU2(0)1 is incremented by steps
of .1 from (a) 0 to (b) 1.9; Ph(u2(O)) has t he constant value 1r/4.
!i(Ui) = uy;Wii = 1, W 12 = 1.5(1 + i)/1.414, W21 = 1.5(1 - i )/1.414.
Region shown is - 1 < Re(ul (O )) < 1, -1 < Im(ul(O)) < 1.

can be written in the form of t he following sys tem of N coupled differenti al
equat ions [6]:

i h.dCj = f. HjkCk (j = 1,2 , . . . , N ) (20)
dt k= l

where N is the number of base states, ti = h/21f , h is Pl anck 's constant , Hj k
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is an element of the Hamil tonian matrix, and Ck is the probability amplit ude
of finding the state of the system in the kt h base state at t ime t.

The system of different ial equations (20) descr ibes the t ime dependence of
all these pro bab ility amplit udes , that is, th e global dyn amic behavior of the
entire atomic system. The elements of the Hamiltonian matri x characterize
the probabili ty amplit udes of the genera t ion of one base state from anot her,
that is, the coupling between the system 's different base states.

In general, the probab ility amplit udes as well as the elements of the
Hamiltonian matrix are complex. However, since the Hamiltonian matri x
is hermitian , its diagonal elements are all real.

Equ at ion (20) is a special case of equa t ion (1). T he state variables
are the probab ility amplitudes: f j = Uj = Cj . We also have Ij = 0 and
Wjk = - (i l h)Hj k . Thus, the connection matrix is anti-herm itian , since all
its diagonal elements are imaginary, and such a network does not sa t isfy
our condition (11) and the energy formula (8) cannot be ut ilized. However,
the system 's dynamics is ident ical to th at of a specific linear complex neural
network. Of course , th is does not imp ly that a classical model of quant um
mechanics is possible, but the analogy may shed some light on t he act ual
function of biological nervous syst ems.

For example, Penrose suggests that somewhere deep in th e brain one may
find cells of single quant um sensitivity (perhaps in the intercellular micro­
tubules). If this is true, then quant um mechanics is indeed direct ly involved
in brain act ivity [7].

In addit ion, we have previously shown that the respo nse of biological
neurons to st imuli can be represented as a measuring process, and there is
evidence that the quantum mechanical theory of measurement can be applied
to it . A simple form of this model takes into account two observab les, the
st imulus int ensity and length , measur ed by individual neurons with only
one threshold for each. An uncertainty relation can be derived between th e
possible accuracy of the measured intensity and lengt h of t ime. The model
is exte nded to measurements by neuron pop ulat ions [8] .

The idea of comp lex neur al networks was first proposed by Szilagyi in 1988
[5]. An applicat ion of th is idea has led to the hologra phic model of memory
and learni ng [9], and even to the developm ent of a commercial product [10J.
Thanks to their ab ility to accept inputs with two real dimensions (amplit ude
and phase) , comp lex networks are well suited for visual and auditory pattern
recognit ion , the signal amplit ude occupying one dimension and its frequency
the ot her.

6 . C onclusions

A Hopfield-like model for comp lex neur al networks, including network energy
and a Hebb ian learn ing rule, has been presented. This model and ot hers
based on complex neurons and connect ion weights should lead to useful new
architec tures , par adigms, and applicat ions , and may help to better under­
stand biological nervous systems.
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' 1I/e generalized Clarke's neural description of t he Mandelbrot and Julia
sets to mult iple neur ons . T he Mandelbrot and Julia sets can be produced as
spec ial cases of t hese networks (degenerate connection mat rices). The effects
of certain two-neuron network features on its converge nce have been detailed ,
and their implicati ons for network architectures out lined .
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