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For the discussion below the following definit ions are helpful. A semito­
talistic CA rule is a rule for a cellular aut omaton (CA) where (a) we tally
the living neighbors to a cell without regard to their orient ation with respect
to th at cell, and (b) the ru le applied to a cell may depend upon its current
status. A lifelike rule (LFR rule) is a semit otalist ic CA rule where (1) cells
have exac t ly two states (alive or dead); (2) the rule giving the state of a cell
for the next generation depends exact ly upon (a) it s state this generation
and (b) the total count of the number of live neighbor cells; and (3) when
tallying neighbors of a cell, we consider exactly those neighbor ing cells that
touch the cell in quest ion. An LFR rule is written EIEhFIFh, where EIEh
(t he "environment" ru le) give th e lower and upper bounds for the tally of
live neighbors of a cur rent ly live cell C so that C remains alive, and FlFh
(the "fert ility " rule) give the lower and upp er bounds for the tally of live
neighbors required for a cur rent ly dead cell to come to life. For an LFR rule
to specify a game of Life we impose two fur ther condit ions: (A) there must
exist at least one glider (t ranslat ing oscillator) t hat is discoverab le with prob­
ability one by st arting with finite random initi al configurat ions (somet imes
called "random primordial soup") , and (B) th e probability is zero that a fi­
nite rando m initial configuration leads to unbounded growth. Note tha t this
second condition does not elimina te th e possibility that some unusual highly
organized configuration can be const ruct ed where the growth is unbounded.
Note also that we may be able to const ruct some ext remely complex config­
uration t hat translates; however, if the possibility of discovering this with a
random experiment is zero then condition (1) has not been met . We shall
call LFR rules that satisfy (A) and (B) GL ("Ga me of Life" ) ru les; they
will usually be written "Life ElEh FlFh" (otherwise we simply write "rule
ElEhFlFh") . To date th ere has been only one GL rule discovered in two
dirnensions: that is of course the famous Conway game, Life 2333, which ex­
ists on a two-dimensiona l grid of square cells, where each cell has 8 touching
neighbors .

An ent ire new un iverse unfolds when we consider th e grid (also called a
tesse llati on or ti ling) of equilatera l tri angles. Here each cell has 12 touching
neighbors: three on the edges and nine on t he vertices (see Figur e 1). We
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Figure 1: Each cell in 6 has 12 touching neighb ors. There are two
types of cells: E and 0 cells. The neighbors for each are shown
as e or 0 , respectively. T he numbers give t he relative locat ions of
t he neighbors if t he cell whose neighb orhood we are evaluating is at
location (0, 0). The squa re dots spec ify cell locati ons as simulated in
a two-dimensional array.

should first take not e of the far grea ter numb er of LFR rules possible in
the t riangular tessellation (hereafter designat ed 6) than in the square grid
(which we will denote D ). The environment rule can be as small as (0 0) and
can encompass all the possibili ties up to (12 12): 13 + 12 + 11 + ... = 91
possible values plus t he rule "no cell remains alive," which can be writ ten
(- - F1Fh ) . The fert ility rule can have similar values, yielding a possible
total of 92 x 92 = 8464 LFR ru les. Before proceeding, we should note some
facts about our t riangular universe.

Theorem 1. Any LFR rule where F/. ::::: 2 leads to unbounded growth.

Proof. The proof is obvious: simply look at Figure 1 and note that once we
place two cells adjacent to each other, growt h will proceed regardless of the
values for the environment rule. •

Theorem 2. Any LFR rule where F/. ::::: 6 cannot grow without bounds. (We
call these rules bounded rules.)

Proof. Again , simply examine Figure 1 or 2 and note that along the outside
of any st ra ight or convex border, no current ly dead cell can possibly touch
more than 5 cells.•

(Similar theorems for 0 yield values of F1 ::::: 2 causing unbounded growth
and F1 ::::: 4 causing bounded growth; for the hexagonal tessellat ion the values
are 1 and 3, respect ively.)

Behavior for a typical bounded rule in 6 , rule 1868, is shown at the left in
Figure 2. For the patterns depicted here, all activity is confined to the area
within the border . For these rules most patterns either disintegrate totally,
stabilize (oscillators of period 1), or evolve into ext remely high-period oscil­
lators tha t are usually contained with in convex enclosures . T he histogram
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Figure 2: Bounded rules with a large range between E, and Eh and
between Fi and Fh can produce configurat ions such as these. The
histograms show the populat ion ta llied after each generat ion. The
curves depict the distr ibution of population counts after the number
of generat ions indicated. Not unexpectedly the distr ibution appears
to be normal.

at the left depicts the population at each generation out to 1500 generations
(the period was not determined). The curve in the middle gives the dis­
tribution of the total live pop ulation at each generation for a to tal of 8100
genera t ions .

At the right of F igure 2 we see a somewha t larger pat tern , along wit h
t he distribution of the count of live cells at each generation after 45,000
genera tions. Here ru le 2769 was used. The vertical scale in F igur e 2 is not
the same for the two distribution plots.

A measur e of the great lengt h of the period for such st ructures is given
as follows. First we are given a boundary (its size is unimportant ) plus an
int erior region of n cells tha t remain in tur moil; we sha ll let k generations
pass. Note that there are 2n possible pattern s. For our discussion we can also
assert tha t 100 < n « k « 2n . We simplify by assuming that each pat tern
from generation to generation is ind epend ent of the previous pat tern . (Our
simplifying assumption is not t rue , bu t the apparent norm al dist ribu tion
of the count of live cells indicates that our assumption is not an invalid
model.) Then the probabi lity P that we will not have create d a pr eviously
encountered pat tern by the (k + l)st generation is

Exp anding and dropping the unimportant terms gives approximately
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Figure 3: The glider for Life 4644 is the most eas ily discovered glider
for any of the GL ru les. It has a period of three, after which it moves
one cell to the right . There are six orientations. The numbers under
each ph ase, and similar numbers on the oth er glider figures, give the
signat ure (see [1]).

hence the probabili ty that we will have encounte red a previous pattern by
t he (k + 1)st genera tion is simply k2/2n+l . Thus, for example, k could be
as large as, say, 2n

/
4 ; with n = 300, th e probability of ente ring a cycle is

ext remely sma ll.
One of the most fascina t ing char acteristics of LFR rules in 6 is that th ere

are (at least ) six GL ru les. This is of int erest since only one two-dim ensional
GL rule (Conway's ru le) is current ly known. These six two-dimensional GL
rules are (in the ord er discovered) Life 4644, 3445, 4546, 2346, 3446, and
2345. It is interesting to not e th at all GL ru les discovered to dat e contain
EIEhFlFh numbers th at lie within the ra nge of values specified by Theorems
1 and 2. Of furth er interest is that , even though t he ru les share many com­
mon environment and fertility ranges, each behaves in its own distinct way.
With one exception each sports at least one glider un ique to th e ru le, and a
host of sma ll oscillators all of which are easily discoverab le by employing ran­
dom "primordial soup" experiments (see [1]). Figur es 3 through 7 depict th e
gliders for these various GL rules, and Figur es 9 through 14 illustrat e some
of the oscillator s. The richest rules in terms of easily discoverab le oscillator s
appear to be Life 4644 and 4546. All of the experiments to produce oscil­
lato rs were run on a Macint osh until new oscillators were not being read ily
produced. A typical run consisted of about 1000 experiments, where each
experiment started wit h a small random pattern . Signatures were utili zed
(see [1]) to help weed out duplicat e pat terns. Note th at Life 2345 and 2346
share the same glider and have severa l oscillators in common. The same is
not true for Life 3445 and 3446.

In Figure 15 we have shown th e rate at which identical random experi­
ments for each GL ru le lead to stable configurations (i.e., all pa t terns have
converged to oscillators with a finit e period ~ 1). Ru le 1246 also sports
a glider (see Figur e 8), but unfortunately leads to unbounded growt h (see
Figur e 16); hence it is not a GL rule.

The left of Figur e 17 shows the growth rate of Life 2333 by compa rison
(here, of course, th e grid is square ra ther th an t riangular). Note t hat exper­
iments und er Conway's ru le yield much more residu e than any of th e 6 GL
rules. Fur th ermore, Life 2333 requi res more tim e to set t le int o a stable con­
figur ation th an any of t he 6 GL rules. The impl ication here is that devices
such as "glider guns" (devices th at spew forth endless supplies of gliders) will
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Figure 4: Th e glider for Life 3445 (and other gliders) are harder to
discover th an the glider in Figure 3. This glider has an unusual period
of 7 and moves one cell per cycle in the direction shown. It has 12
possible orientation s. No other oscillator for any GL rule has been
discovered whose period is seven.

be hard to discover in 6 . Perh ap s this difficulty is overcome somew hat by
the large number of GL rul es available.

At the right of Figure 17 we see the growt h behavior of the very interest ­
ing 6 ru le 2333. Growth for this ru le decays very slowly, going through wild
gyrat ions . All random configurations test ed did eventually stabilize. The
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Figur e 5: The period-eight Life 4546 glider moves one cell per cycle
in t he dir ection shown. Even t hough it is asymm etric, there are only
six orientations, since t he second half of t he period is a reflection of
the first.
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Figure 6: The symmetric Life 2345 and 2346 glider has a period of
five. T his glider , though somewhat similar to the Life 4644 glider, is
more difficult to discover. It has six orientations and moves one cell
per cycle in the indicated dir ection.
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Figure 7: Here aga in we have an asymmetric glider where t he second
half of t he cycle is a reflection of th e first . This Life 3446 glider has a
period of 12 and moves two cells per cycle.
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Fig ure 8: Rul e 1246 sports a period-six glider that moves one cell per
cycle in the indi cated dir ection. Since 1246 allows unbounded growt h,
it does not qu alify as a GL ru le (see Figure 16).
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Figure 9: Here are th e most common oscillators for Life 4644. The
stable st ructures at t he upper left can be mad e arbitra rily large.
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Figur e 10: Depicted are the most common Life 3445 oscillators . T hese
variet ies are all t hat condense from experiment s afte r a several hour
run on a Macintosh.
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Figure 11: Th e most prolific GL rule appears to be Life 4546. Here
are the most common oscillato rs wit h period j; 2. At t he bottom are
shown oscillators t hat occur for both Life 4546 and 4644. Note th at
t hese forms can be arbit rarily large.
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Figure 12: These are th e common oscillators for Life 4546 where th e
period exceeds two.
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Figure 13: Here are t he common Life 2345 and 2346 oscillators. Al­
though Life 2346, 3446, and 4546 share the same fertility rule, the
t hree rules have few oscillators in common; Life 2345 and 2346 do,
however. At the t op we have oscillators t ha t occur in Life 2345 but
not 2346, At the bot tom we have forms t ha t appear in Life 2346 but
not 2345, Between the dotted lines are oscillators common t o both
rules, T he period-22 oscillator illust rated at the top is the longest pe­
riod GL oscillator discovered to date by primordial soup experiments .
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It is likely t hat if a great many mor e experiment s were run , then all
GL rules would revea l mor e such forms. Although some oscillators
occur for both Life 3445 and 3446, there ap pears to be not nearl y the
overlap as that between 2345 and 2346.
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Figure 15: The plots illust rate the relative rates at which experi­
ments with rando m start ing patterns will stabilize. In each case, 40%
of a 100 x 100 grid was filled with live cells. Alth ough individual
experiments pro duce somewhat different results, t he GL ru les can be
ordered according t o th eir rates of stabilization, from fast est to slow­
est , as: 2345 and 3445, 4644, 3446, 2346, 4546. For Figures 15-20 t he
intervals in the plots each represent 100 generations . (For each of the
plots in Figures 15- 20 the overall size of t he grid was 400 x 400, but
the start ing size for the random blob in the cente r varies.)
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Figur e 16: T he ru le 1246 supports a glider but is not a GL ru le because
growt h is expansive.
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Figur e 17: Here we see for comparison (at the left ) Conway's rule, Life
2333 (in 0) , which requires much more time to stabilize and leaves
behind much more resid ue than any of the GL ru les in 6 . The 6
rule 2333 appears t o have bounded growth and stabilizes even more
slowly than Life 2333. So far no glider has been discovered for this
ru le. T he start ing configur at ion for both ru les is shown at t he upper
left.
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Figure 18: Here are a few of the oscillators for rule 2333. After a
considerable search, no period-two oscillators were found. Of all the
rules whose oscillators were invest igated, rule 2333 was the only rule
with this characteristic.

one lacking feature is the failure of 2333 so far to produce a glider. Other
interesting features ofrule 2333 include th e fact that no period-two oscillators
have yet been discovered , and that among rules 0133, 1233, 2333, and 3433,
rule 2333 is the only ru le where growt h is bounded (see Figures 17 and 19) .
The oscillators th at were discovered for ru le 2333 gyrat e wildly, leading one
to hop e tha t some glider might yet be foun d. Even if t his is the case, this
ru le would probably not yield the rich constructs of Life 2333 because it is
th e relative abunda nce of th e glider th at gives Conway's ru le its allure .

In Figur e 20 we note the effect of altering th e Life 3445 rule slight ly,
changing 3445 to 3544. No glider has yet been discovered for 3544, but
perhaps more surprising is the fact that ru le 3544 requires much more time
to sett le down than does 3445. (Coincident ally, for plots in Figures 17 and
20, rules 2333 and 3544 both required about the same numb er of generations
to st abilize.)

In each case in Figure 15 th e configurat ion started out as a random block,
100 x 100, filled 40% with live cells. For Figur es 17 and 20 the start ing block
was 25 x 25, and for Figures 16 and 19 it was 10 x 10. The overall grid size
was 400 x 400 for each of the plots.

Figure 21 depicts some of the oscillators for rule 3544. It should be
pointed out that a great many ru les have small unique oscillato rs, regard less
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Figure 19: Another interesting fact about rule 2333 is that it is the
only rule among 0133, 1233, 2333, and 3433 that does not allow un­
bounded growth. A typical random 10 x 10 start ing configuration
leads to the patterns shown. The tiny plot for rule 2333 is at the
same scale as the others. It was not run out to stabi lization, which
did eventually occur. (See also Figure 17.) Growth for rule 4533
decayed very quickly; rule 4633 led to unbounded growth.

of whet her they are GL ru les. In our search for GL rules we investigated
severa l LFR ru les, many of which sat isfied criterion (B) but not (A) ; tha t is,
no glider has yet been discovered. At least 106 glider search experiments were
performed on each of the following ru les: 1245, 4533, 3444, 4544, 3544, 4545,
2233, 2333, 3433, 3333, 2444, 2445, 4446, 4645, 5646, 1246, 2345, 5746, and
0145. Many ru les not listed here were aba ndoned once it was determined t hat
they supported unbounded growth. Altho ugh the rules listed above seemed
to the author to be the most likely candida tes for supporting gliders, there
remain many ru les to examine.
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Figure 20: Every experiment run with rule 3544 went through vio­
lent changes in population but eventually stabilized. This experiment
stabilized at 11,910 genera t ions .
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Figur e 21: Here are some oscillators for ru le 3544, which is probab ly
not a GL ru le since no glider has yet been discovered . The form at
the right tries, bu t does not move very far , revolving about the point
indicat ed by the int ersect ion of the dot ted lines. A great many LFR
but non-GL rules in f'::, support small oscillators that are unique to
the ru le.

P rogramming method

Perhaps the most st ra ight forward way to implement f'::, is to utilize the config­
uration shown in Figure 1. Here each cell contains a dot posit ioned in such a
way as to define a rectangular array . Note th at we have "even" cells (t riangles
resting on their bases) and "odd" cells. We then utilize a two-dimensional
array and "neighborhood" templates. For a cell at relative locat ion (0, 0)
the template specifies th e neighbors. For the even (E) cells the template is
(- 1, - 1; - 1, 0; -1 ,1 ; 0, -2; 0, - 1; 0,1 ; 0,2 ; 1, - 2; 1, -1 ; 1,0 ; 1,1 ; 1,2 ), and
for odd (0) cells it is (-1, -2; - 1, - 1; -1 ,0 ; - 1, 1; -1 ,2 ; 0, - 2; 0, -1 ; 0,1 ;
0, 2; 1, - 1; 1, 0; 1,2 ). We determin e whether a cell is even or odd by find ing
(I + J ) mod 2, where I and J are subscripts for the two-dim ensional array .
Dependin g upon what kind of templates we place in our program , we can
thus ut ilize th e same progr am to explore cellular automat a in many regular
tessellations-for example, t he hexagonal tesse llat ion, the Cairo tessellation
(a t iling of identical equilatera l pent agons), or the square tessellati on . We
can even invest igat e t essellat ions composed of more than one type of polygon
(see Figure 22). Here we would requir e template s for each different polygon
type; the proper template(s) would be employed when we investigate th e
neighborhood for tha t polygon. Of course we must alter th e graphic out put
to depict the prop er cell layout for each tessellat ion being run.
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Figure 22: Templ ates for ot her tess ellations can be eas ily constructed
and simulated with a square array. W hen mor e than one ty pe of
polygon is present we can easily find which we are dealing wit h by
looking at (I + J ) mo d n , where n is usually two or some ot her small
number. Of course the grap hic outpu t for each po lygon or orientat ion
must be set up prope rly.
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With relatively small populations in large universes we gain speed if at
each genera t ion we only examine cells that will die (i.e., live cells whose
neighbor count lies outside the environment range), or cells th at will come to
life (dead cells whose neighbor count lies within the fertili ty range). Hence
each cell contains a count of the numb er of live neighbors along with a flag
to indi cate whet her it is dead or alive. We need only store a list of changes
as we evaluate each new genera t ion by rapidly scanning over th e grid of cells.
Then we update the neighb or count for each neighbor of each changed cell.
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