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For the discussion below the following definitions are helpful. A semito-
talistic CA rule is a rule for a cellular automaton (CA) where (a) we tally
the living neighbors to a cell without regard to their orientation with respect
to that cell, and (b) the rule applied to a cell may depend upon its current
status. A lifelike rule (LFR rule) is a semitotalistic CA rule where (1) cells
have exactly two states (alive or dead); (2) the rule giving the state of a cell
for the next generation depends exactly upon (a) its state this generation
and (b) the total count of the number of live neighbor cells; and (3) when
tallying neighbors of a cell, we consider exactly those neighboring cells that
touch the cell in question. An LFR rule is written E;FE,F;F}, where E;FE),
(the “environment” rule) give the lower and upper bounds for the tally of
live neighbors of a currently live cell C so that C remains alive, and F}Fj,
(the “fertility” rule) give the lower and upper bounds for the tally of live
neighbors required for a currently dead cell to come to life. For an LFR rule
to specify a game of Life we impose two further conditions: (A) there must
exist at least one glider (translating oscillator) that is discoverable with prob-
ability one by starting with finite random initial configurations (sometimes
called “random primordial soup”), and (B) the probability is zero that a fi-
nite random initial configuration leads to unbounded growth. Note that this
second condition does not eliminate the possibility that some unusual highly
organized configuration can be constructed where the growth is unbounded.
Note also that we may be able to construct some extremely complex config-
uration that translates; however, if the possibility of discovering this with a
random experiment is zero then condition (1) has not been met. We shall
call LFR rules that satisfy (A) and (B) GL (“Game of Life”) rules; they
will usually be written “Life E}E,F|F),” (otherwise we simply write “rule
E\EyFiF,). To date there has been only one GL rule discovered in two
dimensions: that is of course the famous Conway game, Life 2333, which ex-
ists on a two-dimensional grid of square cells, where each cell has 8 touching
neighbors.

An entire new universe unfolds when we consider the grid (also called a
tessellation or tiling) of equilateral triangles. Here each cell has 12 touching
neighbors: three on the edges and nine on the vertices (see Figure 1). We
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Figure 1: Each cell in A has 12 touching neighbors. There are two
types of cells: E and O cells. The neighbors for each are shown
as e or o, respectively. The numbers give the relative locations of
the neighbors if the cell whose neighborhood we are evaluating is at
location (0,0). The square dots specify cell locations as simulated in
a two-dimensional array.

should first take note of the far greater number of LFR rules possible in
the triangular tessellation (hereafter designated A) than in the square grid
(which we will denote [J). The environment rule can be as small as (00) and
can encompass all the possibilities up to (1212): 13 412+ 11+ .- = 91
possible values plus the rule “no cell remains alive,” which can be written
(= — F, F). The fertility rule can have similar values, yielding a possible
total of 92 x 92 = 8464 LFR rules. Before proceeding, we should note some
facts about our triangular universe.

Theorem 1. Any LFR rule where F; < 2 leads to unbounded growth.

Proof. The proof is obvious: simply look at Figure 1 and note that once we
place two cells adjacent to each other, growth will proceed regardless of the
values for the environment rule. B

Theorem 2. Any LFR rule where F; > 6 cannot grow without bounds. (We
call these rules bounded rules.)

Proof. Again, simply examine Figure 1 or 2 and note that along the outside
of any straight or convex border, no currently dead cell can possibly touch
more than 5 cells. B

(Similar theorems for [J yield values of Fj < 2 causing unbounded growth
and F; > 4 causing bounded growth; for the hexagonal tessellation the values
are 1 and 3, respectively.)

Behavior for a typical bounded rule in A, rule 1868, is shown at the left in
Figure 2. For the patterns depicted here, all activity is confined to the area
within the border. For these rules most patterns either disintegrate totally,
stabilize (oscillators of period 1), or evolve into extremely high-period oscil-
lators that are usually contained within convex enclosures. The histogram
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Figure 2: Bounded rules with a large range between E; and Ej, and
between F; and F} can produce configurations such as these. The
histograms show the population tallied after each generation. The
curves depict the distribution of population counts after the number
of generations indicated. Not unexpectedly the distribution appears
to be normal.

at the left depicts the population at each generation out to 1500 generations
(the period was not determined). The curve in the middle gives the dis-
tribution of the total live population at each generation for a total of 8100
generations.

At the right of Figure 2 we see a somewhat larger pattern, along with
the distribution of the count of live cells at each generation after 45,000
generations. Here rule 2769 was used. The vertical scale in Figure 2 is not
the same for the two distribution plots.

A measure of the great length of the period for such structures is given
as follows. First we are given a boundary (its size is unimportant) plus an
interior region of n cells that remain in turmoil; we shall let k generations
pass. Note that there are 2" possible patterns. For our discussion we can also
assert that 100 < n < k <« 2". We simplify by assuming that each pattern
from generation to generation is independent of the previous pattern. (Our
simplifying assumption is not true, but the apparent normal distribution
of the count of live cells indicates that our assumption is not an invalid
model.) Then the probability P that we will not have created a previously
encountered pattern by the (k + 1)st generation is

[Qn . (2n _ 1) . (Qn _ k)}/2(lc+l)n
Expanding and dropping the unimportant terms gives approximately

[2(k+1)n _ (1/2)]€<k + l)zkn]/Z(k-H)n =1 — <k2/2n+1),
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Figure 3: The glider for Life 4644 is the most easily discovered glider
for any of the GL rules. It has a period of three, after which it moves
one cell to the right. There are six orientations. The numbers under
each phase, and similar numbers on the other glider figures, give the
signature (see [1]).

hence the probability that we will have encountered a previous pattern by
the (k + 1)st generation is simply k?/2"*!. Thus, for example, k could be
as large as, say, 2*/%; with n = 300, the probability of entering a cycle is
extremely small.

One of the most fascinating characteristics of LFR rules in A is that there
are (at least) six GL rules. This is of interest since only one two-dimensional
GL rule (Conway’s rule) is currently known. These six two-dimensional GL
rules are (in the order discovered) Life 4644, 3445, 4546, 2346, 3446, and
2345. Tt is interesting to note that all GL rules discovered to date contain
E,Ey Fy Fy, numbers that lie within the range of values specified by Theorems
1 and 2. Of further interest is that, even though the rules share many com-
mon environment and fertility ranges, each behaves in its own distinct way.
With one exception each sports at least one glider unique to the rule, and a
host of small oscillators all of which are easily discoverable by employing ran-
dom “primordial soup” experiments (see [1]). Figures 3 through 7 depict the
gliders for these various GL rules, and Figures 9 through 14 illustrate some
of the oscillators. The richest rules in terms of easily discoverable oscillators
appear to be Life 4644 and 4546. All of the experiments to produce oscil-
lators were run on a Macintosh until new oscillators were not being readily
produced. A typical run consisted of about 1000 experiments, where each
experiment started with a small random pattern. Signatures were utilized
(see [1]) to help weed out duplicate patterns. Note that Life 2345 and 2346
share the same glider and have several oscillators in common. The same is
not true for Life 3445 and 3446.

In Figure 15 we have shown the rate at which identical random experi-
ments for each GL rule lead to stable configurations (i.e., all patterns have
converged to oscillators with a finite period > 1). Rule 1246 also sports
a glider (see Figure 8), but unfortunately leads to unbounded growth (see
Figure 16); hence it is not a GL rule.

The left of Figure 17 shows the growth rate of Life 2333 by comparison
(here, of course, the grid is square rather than triangular). Note that exper-
iments under Conway’s rule yield much more residue than any of the A GL
rules. Furthermore, Life 2333 requires more time to settle into a stable con-
figuration than any of the A GL rules. The implication here is that devices
such as “glider guns” (devices that spew forth endless supplies of gliders) will
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Figure 4: The glider for Life 3445 (and other gliders) are harder to
discover than the glider in Figure 3. This glider has an unusual period
of 7 and moves one cell per cycle in the direction shown. It has 12
possible orientations. No other oscillator for any GL rule has been
discovered whose period is seven.

be hard to discover in A. Perhaps this difficulty is overcome somewhat by
the large number of GL rules available.

At the right of Figure 17 we see the growth behavior of the very interest-
ing A rule 2333. Growth for this rule decays very slowly, going through wild
gyrations. All random configurations tested did eventually stabilize. The
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Figure 5: The period-eight Life 4546 glider moves one cell per cycle
in the direction shown. Even though it is asymmetric, there are only

six orientations, since the second half of the period is a reflection of
the first.



Cellular Automata in the Triangular Tessellation

6 &

6002020012886
&% °

4
2240001214802

%X

2240001612224

Coc

442200001264800002

S

6400620 14 4

Figure 6: The symmetric Life 2345 and 2346 glider has a period of
five. This glider, though somewhat similar to the Life 4644 glider, is
more difficult to discover. It has six orientations and moves one cell

per cycle in the indicated direction.
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Figure 7: Here again we have an asymmetric glider where the second
half of the cycle is a reflection of the first. This Life 3446 glider has a
period of 12 and moves two cells per cycle.
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Figure 8: Rule 1246 sports a period-six glider that moves one cell per
cycle in the indicated direction. Since 1246 allows unbounded growth,
it does not qualify as a GL rule (see Figure 16).
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Figure 9: Here are the most common oscillators for Life 4644. The
stable structures at the upper left can be made arbitrarily large.
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Figure 10: Depicted are the most common Life 3445 oscillators. These
varieties are all that condense from experiments after a several hour
run on a Macintosh.
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Figure 11: The most prolific GL rule appears to be Life 4546. Here
are the most common oscillators with period < 2. At the bottom are
shown oscillators that occur for both Life 4546 and 4644. Note that
these forms can be arbitrarily large.
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Figure 12: These are the common oscillators for Life 4546 where the
period exceeds two.
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Figure 13: Here are the common Life 2345 and 2346 oscillators. Al-
though Life 2346, 3446, and 4546 share the same fertility rule, the
three rules have few oscillators in common; Life 2345 and 2346 do,
however. At the top we have oscillators that occur in Life 2345 but
not 2346. At the bottom we have forms that appear in Life 2346 but
not 2345. Between the dotted lines are oscillators common to both
rules. The period-22 oscillator illustrated at the top is the longest pe-
riod GL oscillator discovered to date by primordial soup experiments.
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Figure 14: Random experiments produce these forms for Life 3446.
It is likely that if a great many more experiments were run, then all
GL rules would reveal more such forms. Although some oscillators
occur for both Life 3445 and 3446, there appears to be not nearly the
overlap as that between 2345 and 2346.
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Figure 15: The plots illustrate the relative rates at which experi-
ments with random starting patterns will stabilize. In each case, 40%
of a 100 x 100 grid was filled with live cells. Although individual
experiments produce somewhat different results, the GL rules can be
ordered according to their rates of stabilization, from fastest to slow-
est, as: 2345 and 3445, 4644, 3446, 2346, 4546. For Figures 15-20 the
intervals in the plots each represent 100 generations. (For each of the
plots in Figures 15-20 the overall size of the grid was 400 x 400, but
the starting size for the random blob in the center varies.)
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Figure 16: The rule 1246 supports a glider but is not a GL rule because

growth is expansive.
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Figure 17: Here we see for comparison (at the left) Conway’s rule, Life
2333 (in [), which requires much more time to stabilize and leaves
behind much more residue than any of the GL rules in A. The A
rule 2333 appears to have bounded growth and stabilizes even more
slowly than Life 2333. So far no glider has been discovered for this
rule. The starting configuration for both rules is shown at the upper

left.
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Figure 18: Here are a few of the oscillators for rule 2333. After a
considerable search, no period-two oscillators were found. Of all the
rules whose oscillators were investigated, rule 2333 was the only rule
with this characteristic.

one lacking feature is the failure of 2333 so far to produce a glider. Other
interesting features of rule 2333 include the fact that no period-two oscillators
have yet been discovered, and that among rules 0133, 1233, 2333, and 3433,
rule 2333 is the only rule where growth is bounded (see Figures 17 and 19).
The oscillators that were discovered for rule 2333 gyrate wildly, leading one
to hope that some glider might yet be found. Even if this is the case, this
rule would probably not yield the rich constructs of Life 2333 because it is
the relative abundance of the glider that gives Conway’s rule its allure.

In Figure 20 we note the effect of altering the Life 3445 rule slightly,
changing 3445 to 3544. No glider has yet been discovered for 3544, but
perhaps more surprising is the fact that rule 3544 requires much more time
to settle down than does 3445. (Coincidentally, for plots in Figures 17 and
20, rules 2333 and 3544 both required about the same number of generations
to stabilize.)

In each case in Figure 15 the configuration started out as a random block,
100 x 100, filled 40% with live cells. For Figures 17 and 20 the starting block
was 25 x 25, and for Figures 16 and 19 it was 10 x 10. The overall grid size
was 400 x 400 for each of the plots.

Figure 21 depicts some of the oscillators for rule 3544. It should be
pointed out that a great many rules have small unique oscillators, regardless
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Figure 19: Another interesting fact about rule 2333 is that it is the
only rule among 0133, 1233, 2333, and 3433 that does not allow un-
bounded growth. A typical random 10 x 10 starting configuration
leads to the patterns shown. The tiny plot for rule 2333 is at the
same scale as the others. It was not run out to stabilization, which
did eventually occur. (See also Figure 17.) Growth for rule 4533
decayed very quickly; rule 4633 led to unbounded growth.

of whether they are GL rules. In our search for GL rules we investigated
several LFR rules, many of which satisfied criterion (B) but not (A); that is,
no glider has yet been discovered. At least 10° glider search experiments were
performed on each of the following rules: 1245, 4533, 3444, 4544, 3544, 4545,
2233, 2333, 3433, 3333, 2444, 2445, 4446, 4645, 5646, 1246, 2345, 5746, and
0145. Many rules not listed here were abandoned once it was determined that
they supported unbounded growth. Although the rules listed above seemed
to the author to be the most likely candidates for supporting gliders, there
remain many rules to examine.
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Figure 20: Every experiment run with rule 3544 went through vio-
lent changes in population but eventually stabilized. This experiment
stabilized at 11,910 generations.
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Figure 21: Here are some oscillators for rule 3544, which is probably
not a GL rule since no glider has yet been discovered. The form at
the right tries, but does not move very far, revolving about the point
indicated by the intersection of the dotted lines. A great many LFR

but non-GL rules in A support small oscillators that are unique to
the rule.

Programming method

Perhaps the most straightforward way to implement A is to utilize the config-
uration shown in Figure 1. Here each cell contains a dot positioned in such a
way as to define a rectangular array. Note that we have “even” cells (triangles
resting on their bases) and “odd” cells. We then utilize a two-dimensional
array and “neighborhood” templates. For a cell at relative location (0,0)
the template specifies the neighbors. For the even (E) cells the template is
(-1,-1; -1,0; =1,1; 0,—2; 0,—1; 0,1; 0,2; 1,—2; 1,—1; 1,0; 1, 1; 1, 2), and
for odd (O) cells it is (—1,—2; —1,—1; —1,0; —1,1; —1,2; 0, —2; 0,—1; 0, 1;
0,2; 1,—1; 1,0; 1,2). We determine whether a cell is even or odd by finding
(I + J) mod 2, where I and J are subscripts for the two-dimensional array.
Depending upon what kind of templates we place in our program, we can
thus utilize the same program to explore cellular automata in many regular
tessellations—for example, the hexagonal tessellation, the Cairo tessellation
(a tiling of identical equilateral pentagons), or the square tessellation. We
can even investigate tessellations composed of more than one type of polygon
(see Figure 22). Here we would require templates for each different polygon
type; the proper template(s) would be employed when we investigate the
neighborhood for that polygon. Of course we must alter the graphic output
to depict the proper cell layout for each tessellation being run.
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Figure 22: Templates for other tessellations can be easily constructed
and simulated with a square array. When more than one type of
polygon is present we can easily find which we are dealing with by
looking at (I + J) mod n, where n is usually two or some other small
number. Of course the graphic output for each polygon or orientation
must be set up properly.
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With relatively small populations in large universes we gain speed if at
each generation we only examine cells that will die (i.e., live cells whose
neighbor count lies outside the environment range), or cells that will come to
life (dead cells whose neighbor count lies within the fertility range). Hence
each cell contains a count of the number of live neighbors along with a flag
to indicate whether it is dead or alive. We need only store a list of changes
as we evaluate each new generation by rapidly scanning over the grid of cells.
Then we update the neighbor count for each neighbor of each changed cell.

References

[1] Carter Bays, “Patterns for Simple Cellular Automata in a Universe of Dense
Packed Spheres,” Complex Systems, 1 (1987) 853-875.

[2] Stephen Wolfram, Theory and Applications of Cellular Automata (Singapore:
World Scientific, 1986).



