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A Note on Injectivity of
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Abstract. Additive cellular automata on finite sequences with peri-
odic boundary conditions are treated in terms of complex polynomials
whose arguments are roots of unity. It is shown that the condition for
a binary one-dimensional additive cellular automaton to be injective
is that the associated complex polynomial have no zeros that are roots
of unity.

1. Introduction

Cellular automata are discrete symbolic dynamical systems defined in terms
of a lattice of sites, L; an alphabet of symbols, K; and an evolution rule,
X, which maps configurations at any given time ¢ to new configurations at
time ¢t + 1. A configuration, or state, is an assignment of a symbol from K
to every site of the lattice L. The set of all possible configurations is called
the configuration space, denoted by E in the generic case.

Given a configuration p(t), the evolution rule generates a new configura-
tion w(t + 1) by assigning to every site in the lattice a symbol chosen from
the alphabet on the basis of the symbols in a neighborhood at that site.

In this note the lattice is taken as a finite set of n sites located on the
circumference of a circle. This gives what has been called a cylindrical cellular
automaton [1], because the evolution can be visualized as occurring on a
cylinder. In this case, the configuration space F, consists of all periodic
sequences of symbols with periods that divide n. In addition, consideration
is restricted to binary cellular automata, for which the alphabet is the set
{0,1}.

The neighborhood of a site consists of a consecutive block of & sites within
which the given site occupies a designated position. Here this position is
assumed to be located at the left-hand endpoint of the neighborhood; that
is, the neighborhoods are left justified.

The evolution rule is defined locally by a rule table specifying the symbols
that are assigned to the designated site, for every neighborhood. This also
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defines a unique global operator X : E,, — E,. The global operator is rep-
resented in terms of local neighborhood maps by defining its ith component
as

where ig...7 — 1, the ith neighborhood, is the binary expression for the
index 7. The component form of X is written as a “vector” with respect to
the “neighborhood basis,”

X = (.’1?0331 s ..Tgk_l). (12)

The map X is surjective if for every configuration § there is a configuration p
such that X (u) = 8. If, in addition, this predecessor configuration is unique,
then the map X is injective. For cellular automata, injectivity is equivalent
to reversibility. Hence, if X is injective, there is another cellular automata
rule X! such that if X(u) = 3, then X~1(8) = p.

It is known that the question of whether or not a particular cellular
automaton is injective is decidable only in dimension one [2, 3]. Recent
theoretical studies of reversible cellular automata have been carried out by
Head [4], Toffoli and Margolus [5], McIntosh [6], and Hillman [7]. Fredkin [§]
has suggested that reversible rules may provide a basis for modeling reversible
physical processes.

In this paper considerations are restricted to additive cellular automata
rules, that is, those that satisfy the condition

X(p+p) =X +X(¢) (1.3)

where all sums are computed modulo 2.

Restriction of the configuration space to E, rather than a set of infinite or
half-infinite binary sequences, is not a serious constraint as far as injectivity
is concerned since it is known that a cellular automata rule is injective on
these larger spaces if and only if it is injective on all periodic configurations
[9].

The additivity condition (1.3) requires that o = 0. In addition, equation
(1.1) for additive rules takes the form

k-1
Xldo.o slp1) =Y, Gals (1.4)
s=0

It also possible to give an expression for an additive rule X in terms of the
left shift operator o, defined by [o(1)]i = i + pi + 1:

k=1
X =) a0 (1.5)
s=0

The coefficients in (1.5) are easily determined in terms of the components of
X by solving equation 1.4 with X (7g...%—1) = ;.
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In section 2 a representation of additive cellular automata defined on E,
is given in terms of complex polynomials. Section 3 proves that an additive
cellular automaton rule X : E, — E, is injective if and only if its associated
complex polynomial has no zeros that are nth roots of unity. Finally, in sec-
tion 4, a restatement is given of a theorem of Martin, Odlyzko, and Wolfram
[10] relating injectivity and reachability of configurations.

2. Representations of additive rules

In their classic study of additive cellular automata, Martin, Odlyzko, and
Wolfram [10] made use of a dipolynomial representation, that is, states p €
E,, were represented as polynomials of the form

n
o Y el (21)

s=1

The action of the cellular automaton rule was represented as multiplication
by a dipolynomial of the form

k-1
2 (2.2)
s=0

with all indices and powers reduced modulo n. This corresponds to the shift
representation (1.5) when r = 0 since left-justified neighborhoods are being
used.

Taking a different approach to additive rules, Guan and He [1] represented
configurations as n-dimensional vectors and evolution rules as multiplication
of these vectors by certain circulant matrices, with all terms reduced modulo
2. They also made use of left-justified neighborhoods, and the circulant
representation of a rule given in the form of equation (1.5) is obtained by
substitution of the circulant form for the left shift operator:

0100 ...0
0010 ..0

o=circ(010...0)= | : : i i o (2.3)
0000 ... 1
1000 ...0

A connection between these different approaches can be made in terms
of a complex polynomial p associated to each rule. It turns out that what
is important are the values p(w,) where w, = exp(2mi/n) is an nth root of
unity. In what follows the subscript on w, will generally be supressed, with
the understanding that w is defined in terms of whatever value of n is under
consideration.

Configurations are now represented as polynomials in the roots of unity:

= Zﬂswsfl. (2.4)
s=1
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A cellular automaton rule X takes the form of multiplication by the complex
conjugate of the polynomial

p(w) = ni: asw’ (2.5)
s=0

where the coefficients a, are the entries in the circulant representation of
X :circ(apas . . . an-1), and all sums are taken modulo 2. Reduction modulo
n, necessary in the dipolynomial approach, is automatic since w™ = 1.

Much is known about circulants and their relation to roots of unity, and
a brief summary of results that will be useful in this note concludes this
section. These results are taken from the detailed study of circulant matrices
by Davis [12].

Lemma 2.1.

1. Ann xn matrix A is circulant if and only if it commutes with the shift
operator.

2. Ann xn matrix A is circulant if and only if it has the form A = pa(0)
where o is the shift.

Definition 2.2. The Fourier matrix of order n is the matrix

1 1 1 1 e 1
1wl w2 ognd w

1 |1 w2 wv?t Wt .. w?
1 w? w? w® o w2
1 w w? w? coowrh

The Hermitian conjugate of this matrix (i.e., the transpose of the complex
conjugate) is denoted F*. This matrix is unitary, that is, FF* = F*F = I,
and its eigenvalues are £1 and i with multiplicity depending on the value
of n.

Lemma 2.3. Let A = circ(apa; . .. an—1) have associated polynomial p(w)
and let A(A) be the diagonal matrix

A(A) = diag(pa(1), pa(w),...,pa(w™ ).
Then A = F*A(A)F.
Corollary 2.4. The eigenvalues of A are \; = pa(w?).

Remark. Since [o(u)]i = pit1, the shift is equivalent to multiplication by
w™ !, the complex conjugate of w. Hence the action of a rule X, represented
by circulant matrix A, on a state u(w), is obtained by multiplying w(w) by
pa(w™1), the nth eigenvalue of A. '

Corollary 2.5. If A is non-singular, then A™' = F*A~1(A)F.
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3. Injectivity of additive rules

Since reversibility and injectivity are equivalent, an additive cellular automa-
ton rule X : E, — E, represented by a circulant matrix A will be injective
if and only if A~! exists. From Corollary 2.5 we see that this will be the case
if and only if none of the diagonal entries of A(A) are zero. Recalling that
these entries are reduced modulo 2, and noting that p4(1) = Y777 as, this
yields the conditions for injectivity of additive cellular automata rules.

Theorem 3.1. Let X : E, — FE, be an additive cellular automaton repre-
sented by a circulant matrix A = circ(aoa . ..an—1). The rule X is injective
if and only if no nth root of unity is a root of the complex polynomial py
modulo 2.

Remark: Since w™ = 1 is an nth root of unity, this condition requires that
an odd number of the coefficients as be nonzero. We also note that the roots
of complex polynomials come in complex conjugate pairs. Hence if w” is a
root, then so is w™".

The condition in Theorem 3.1 requires that p4 be irreducible with respect
to the nth roots of unity. If we are only interested in whether or not p4 has
roots that are nth roots of unity for some n, rather than for specified values

of n, this can be determined from the contour integral

.1 Pa(2)
Np = lim — ki
0= 20 2mi Joo pal2) ae (3.)

where p/;(2) is the derivative of p4(z), and C(e) is the annular curve indicated
in Figure 1.

It is a well-known result of complex function theory that for any closed
contour C' this integral counts the number of zeros minus the number of poles
of pa(z) that lie inside of C. Since py is a polynomial, it has no poles and
only isolated zeros. Hence Ny given in (3.1) is the number of zeros that lie
on the unit circle, and the rule represented by pa is injective for all n if an
only if Ny = 0.

Since an additive cellular automaton is injective on a configuration space
of infinite or half-infinite binary sequences if and only if it is injective on all
periodic sequences we have as an immediate result.

Corollary 3.2. An additive cellular automaton X : E — E represented by
a circulant matrix A = circ(apay . . . an—1) will be injective if and only if p4(z)
is irreducible with respect to all roots of unity.

As an example, consider the well-known three-site rule 150 defined by
[X(1)]i = i + pis1 + pir2- The action of this rule on a configuration pu(w) is
obtained by multiplication of p(w) by pa(w™™!) = 1+w" ! +w"~2. For this
rule p4(z) = 1+ z + 2%, which has roots given by z = —§ + Z—‘Q/—g These are
powers of w = exp(2mi/3). Hence rule 150 is not injective when 3 | n, and is
injective on all periodic sequences for which n # 3m for any integer m. The
next theorem extends this well-known result [11,13].
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Figure 1: Contour for computation of Ny in equation (3.1). Integra-
tion is counterclockwise around the circle of radius 1+¢, and clockwise
around the circle of radius 1 —e.

Theorem 3.3. Let X : E, — E, be k-site additive cellular automaton for
which every coeflicient as in equation (1.5) is equal to 1. If k is even, X is
never injective. If k is odd, X is injective for all values of n which are not
divisible by k.

Proof. If all coefficients in equation (1.5) are unity, then pa(z) = 14+2z+2%+
-+ 2F71 If & is even, then there are an even number of nonzero coefficients
as, and p4(1) =0 (mod 2). Hence X cannot be injective in this case.

If kis odd, pa(l) =1 (mod 2), but w = exp(2nri/k) is a root for
1 < r < k. Hence for n = mk, exp(2rmi/n) will be a root. Further, p4 has
degree k — 1, and hence has only & — 1 roots, so no other values of n can
yield roots. Thus, so long as n # mk, the rule is injective. B

Table 1 lists the additive rules for up to five site neighborhoods, and
indicates conditions for their reversibility.

In those cases where a rule is injective, its inverse can be computed. The
example of rule 150 acting on E, and Fs indicates, however, that this inverse
must generally be expected to depend on the period n. For n = 4, the inverse
of rule 150 is computed to be I + o2 + o2, while for n = 5 it is o(I + 0 +03).
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Qs Shift Form of Number of | Injectivity
coefficients Rule Sites Conditions
00000 0 1 never
00001 ot 5 always
00010 o® 4 always
00011 o+t 5 never
00100 o? 3 always
00101 o+ ot 5 never
00111 o2+ o3+ ot 5 n # 3m
01000 o 2 always
01001 o+ot 5 never
01010 o+od 4 never
01011 o+o®+ot 5 always
01100 o+ o? 3 never
01101 o+o?+ct 5 always
01110 o+o?+o° 4 n# 3m
01111 o+o0?+ 0% +o* 5 never
10000 I 1 always
10001 146" 5 never
10010 I+03 4 never
10011 I+03+0* 5 always
10100 I+ 0?2 3 never
10101 I+0*+0! 5 n # 3m
10110 I+0%+08 4 always
10111 I+0%+0%+0" 5 never
11000 I+o 2 never
11001 I+o+o0! 5 always
11010 I+o+03 4 always
11011 I+o0+d®+ot 5 never
11100 I+0+0? 3 n# 3m
11101 I+o0+0%+0* 5 never
11110 I+o0+0*+o° 4 never
11111 I+o+0*+03+0* 5 n # 5m

Table 1: Injectivity of additive rules for five sites or less.

157



158 Burton Voorhees

4. Injectivity and reachability

A question of major interest for studies of cellular automata is whether or
not a given configuration x has a predecessor. Clearly, ifarule X : E,, — E,
is injective, then all configurations have predecessors. In general, however,
this is not the case. In their classic analysis of additive cellular automata,
Martin, Odlyzko, and Wolfram[10] prove a lemma specifying the conditions
under which a configuration is reachable, that is, has a predecessor. Using
the dipolynomial notation of equations (2.1) and (2.2) their result is given in
the next lemma:

Lemma 4.1 (10, Lemma 4.4) A configuration u(t) is reachable in the evo-
lution of a size n additive cellular automaton over Z,, as described by T(t),
if and only if p(t) is divisible by the greatest common divisor Ai(t) =
ged(z™ — 1, T(x)).

In terms of the nth roots of unity, this can be restated in a form that
makes the connection to injectivity explicit. For simplicity, the alphabet is
restricted to Zs.

Lemma 4.2. Let X : E, — E, be an additive cellular automaton repre-
sented by the polynomial pa. Further, let pa(w) be decomposed into irre-
ducible factors

r S
pa(w) = I_Im(w) 1:[ Q;(w) (4.1)

where each m;(w) represents an injective rule and the Q;(w) represent non-
injective rules.
A configuration p(w) is reachable if and only if

s
I19(w) | ute). (42)
j=1
Proof: If pu(w) is reachable, then there is a y/(w) such that ps(w)y'(w) =
u(w) and (4.2) is satisfied as a consequence of equation (4.1).
Conversely, suppose that equation (4.2) is satisfied. Since each 7; repre-

sents an injective rule, there exists an inverse 7; ! that is also a polynomial
in w. Thus

T194(w) = pa(w) [T (). (43)
But (51.221) implies that .

u(w) = T] %4(w)plew) for some p(w).
Hence, by (4.:;):,1

uw) = paw) [T o), (44)

which provides a predecessor for p(w). B
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