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Abstract. The function fi(z) = 3(z — 1/2) is the Newton map asso-
ciated with the quadratic polynomial 22+ 1. The iterated dynamics of
f on R is usually studied by exploiting the conjugacy between f and
the function z — 22. In this paper we show how to use the technique
of nested intervals to yield a direct analysis of the dynamics. We also
show how to use the same technique to analyze the dynamics of the
function fo(z) =2 —1/z.

1. Introduction

In this note we will show how to utilize the technique of nested intervals to
examine the iterated dynamics of two related functions that map R, the set
of real numbers, to itself. The two functions are

fie) = 3= 1/2) 1)
and
fae) = 2 =1/ @

By studying the iterated dynamics of a function f we mean studying the
infinite sequences generated by iterating the function f on initial seeds zg,
that is,

Io,.’lfl=f(.270),1'2=f(l‘1),...,$i=f(Ii_l),..., = 1,2,... (3)

This sequence is sometimes known as the forward orbit of zy. For f = f;
this sequence has already been extensively studied because f; is the Newton
map used to find the roots of the quadratic function g(z) = 2% + 1. That is,
given an initial seed zg, the sequence (3) will usually converge to either i or
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—1, the two roots of g. The set containing all zo for which the sequence (3)
does not converge is the Julia set associated with f. The Julia set associated
with both fi; and f5 is the real line .

The usual method of analyzing the iterated dynamics of (1) uses the fact
that f, considered as a mapping on the Riemann sphere, is conjugate under
a linear fractional transformation to the function z + 2z2. The purpose of
this note is to illustrate how to analyze the dynamics directly without us-
ing the conjugacy relationship. The only tools we use are simple ones from
elementary calculus and point-set topology. We exhibit a one-to-one corre-
spondence between points in R and integer sequences of alternating sign, for
example, 5, —7,4, —6, . ... This correspondence has some nice properties. For
example, if the sequence associated with zy is periodic/bounded; then (3) is
also periodic/bounded. Furthermore, if the associated sequences of a series
of points converges to the sequence associated with z, then the points them-
selves converge to z. We will use these properties to analyze the dynamics
of fi. We will also show how this analysis, slightly modified, can be used to
analyze the dynamics of f,.

In section 2 we quickly review Newton’s method for finding the roots
of polynomials. We also briefly sketch the conjugacy mapping that forms
the basis for the usual analysis of f;. In section 3 we explain what we
mean by nested intervals. We then show how to use nested intervals to
define the behavior of a point under f; in such a way that there is a one-
to-one correspondence between points in R and possible behaviors. This
correspondence will yield immediate proofs of the standard facts about the
iterated behavior of f. As an example, it will show that the preimages of
any point in R are dense in R. It will also show that the set of points that
have bounded forward orbits is ‘Cantor-like.” Finally, in section 4 we will
show how to modify the analysis of section 3 so that it can be applied to the
iterated behavior of f5.

2. Newton’s method

In this section we provide a quick review of Newton’s method for finding
the roots of a polynomial. For a more complete explanation see [4]. Let
g(2) = 3 ; a;2" be an nth-degree polynomial. The Newton’s map associated
with g is

9(2)
flz)=z- - (4)

g9'(2)
Newton’s method for finding a root of g is to choose an initial seed zg
and iterate f on zp to construct the infinite sequence (3). Later we will

need a more flexible notation: we set f(z) = z and inductively define
fO(z) = f(f%Y(z)) for i > 1. In this new notation (3) is written as

0, f(z0), @ (20), ..., fP(x), . ... (5)
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It is known that if z( is close enough to a root « of g, then the sequence
z; will converge to a. The set containing all points zo € R for which this
sequence doesn’t converge to some root of g is the Julia set associated with
)
As an example, suppose that g(z) = (z — @)? where « € C is an arbitrary
complex number. Then
Z+to

e =2

Therefore, for all z € C,

(6)

o — 2
la— f(2)| = 5 (7)
the sequence z; — « irrespective of the original seed zg, and the Julia set
associated with f is empty.
If g is a quadratic with two distinct roots the situation is more interesting.
Suppose, for example, that g(z) = 2% + 1 = (2 —i)(z + 7). Then

1

1@ =3(:-3). ®

The classical method for analyzing f uses the fact that it is conjugate to the
function h(z) = 2z2. By conjugate we mean that there is some function T

with a two-sided inverse 7! such that
f(z) =T ohoT(z) 9)

where o is the functional composition operator. By a two-sided inverse we
mean that T(T~1(z)) = T~}(T(z)) = z. It is straightforward to check that
equation (9) is true when T'(z) = (z+1)/(z —4). This T has the two-sided
inverse T71(z) =i(z + 1)/(z — 1).

Iterating (9) yields

z; =T ' o hD o T(2), (10)

which may be proved by induction. Therefore, the behavior of the sequence
(5) can be examined by studying the behavior of the sequence z,2? 2%,

o T o e

First let S* = {2 : |2| = 1} be the unit circle, H* = {z + iy : z,y € R,
y > 0} be the half-plane with positive imaginary part, and H~ = {z —
iy : z,y € N,y > 0} be the half-plane with negative imaginary part. The
behavior of T" is summarized in the following table.

z |1 |—i|oo| R H* H~
T(z)|oo| 0 | 1|8 |{z:]z] >1}|{z:|2| <1}

7

If |2] < 1, then 2% converges to 0. If [2| > 1 then 2% goes to infinity. If
z € S, the unit circle, then every point in 2?2 is also on S*. If zg € H,
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Figure 1: This figure illustrates the first nine iterates, z; = f® (),
0 < i < 8 of f. Notice how the the sequence flip-flops between
increasing/decreasing subsequences of positive/negative values.

then z = [T'(x)| > 1, 2% tends to infinity, and f@(x,) — 4. Similarly, if
2o € H™, then z = |T(x,)| < 1, 2% tends to 0, and f@(zy) — —i. Finally,
if zp € R, then z = T(zo) € S and 2% is contained in S'. Therefore the
behavior of the sequence f®(z;) can be studied by examining the behavior
of the sequence 22" for z € 5.

In general, if g(2) = (z —a)(z— B) is a quadratic with two roots, then the
analysis given above can be adapted to examine its associated Newton’s func-
tion f(2) =z — g(2)/¢'(z) [4]. For more information on conjugacy methods
and their applications to the study of iterated dynamics see [2].

In the next section we will show how to examine the dynamics of (5)
without using the conjugacy relationship.

3. Nested intervals

A sequence of closed bounded intervals, D; = [a;,b;] C R, 7= 1,2,3,...issaid
to be nested if D; C D;_; for i > 1. An important fact about such sequences
of intervals, one which often occurs in the analysis of dynamical systems [5],
is that the intersection ; D; is a nonempty closed interval, possibly a single
point. In this section we show how to utilize the technique of nested intervals
to analyze the dynamics of (1). That is, for z € R we will study the behavior
of (5).

Examination of f shows that it is a monotonically increasing surjective
function from [1, c0) onto [0, 00) and from (0, 1] to (—oo,0]. Similarly, it is
a monotonically increasing surjective function from (—oo, —1] onto (—o0, 0]
and from [—1,0) onto [0, 00). Therefore, the infinite sequence f@(z) will for-
ever alternate between positive decreasing and negative increasing sequences
(Figure 1) unless, for some 4, f®(z) = 0. In this case we say that the se-
quence terminates since f(0) is undefined. (Alternatively we can say that
f(0) = f(o0) = 0o and fW(z) = oo for j > i.)

The rest of this section will be given over to showing that there is a one-to-
one correspondence between points in & and integer sequences of alternating
sign

10,91, 62,13, . .. such that 7;i;11 <0, for >0
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for example, 1,—-3,5,—7,... or —4,6,—7,5,.... This correspondence pos-
sesses properties useful in the analysis of the iterated sequence (5). For
example, (5) is bounded if and only if the alternating integer sequence asso-
ciated with z is bounded.

We associate with each point z € R two sets: F; and B,. The set F, the
forward orbit of , is the set containing all of the iterates f®(z), while B,,
the backward orbit of x, is the set of all preimages of . Formally

Fpo={fD):4=0,1,2,...}
B, ={z: 3, f9(z) = z}.

A technical note: If z is a preimage of 0 (z € Byp), then there is some 7 such
that f@(z) = 0. In this case f*(2) is undefined and we define F, to be
the finite set {fY)(2):0<j <i}.

Definition 1. A point z € R is bounded if the forward orbit of z is bounded,
that is, if there is some constant k such that F, C [—k, k].

Definition 2. A point z € R is periodic if there is some integer ¢ > 1 such
that fO(z) = .

In this section we will prove the following facts:
Fact 1. Vz € R, the set B, is dense in R.
Fact 2. The set {z : z is periodic} is dense in R.

Fact 3. Theset {z : F; is dense in R} is itself dense in I and has cardinality
N;.

Fact 4. The set {z : z is bounded} is dense in R, has cardinality 8; and
measure 0. In fact, it is the union of a countable number of “Cantor-
like” sets.

Notice that Fact 1 implies that the system that we are studying is chaotic.
That is, it tells us that specifying a point z to a very high degree of precision
is not enough to tell us how = behaves under iteration.

We define a set of intervals that partition the real line. First, for any
given z the equation f(z) = z has exactly two solutions: zy = z £+ V22 + L.
Furthermore f(—1/z) = f(z), so z_ = —1/z;. Thus one of z;. has absolute
value greater than or equal to 1 while the other has the opposite sign and
absolute value less than or equal to 1. We will denote these two solutions by
g(z) and h(z). These functions are defined in such a way that (for z # 0)
g(~2) = —g(z) and h(~z) = —h(z):

] = z+Vzi+1, >0 and Bl = r—+vz2+1, >0
I = \e—vVa2 11, z<0 “lz4+v2® 1, z<0°

Notice that g and h are both monotonically increasing functions in the
intervals (—o0,0) and (0, c0). Thus, if D is a bounded interval not containing
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Figure 2: The top figure illustrates the location of the a;: ag = 0,
ai+1 = g(a;), @ > 0 and a—; = —a;. The intervals I; (¢ > 0) are
defined as I; = (aj—1,a;] with I_; = —I;. The bottom figure illus-
trates the first eight applications of f on the point z = zp. We have
set 2; = f®(z). The behavior of the sequence associated with z is
9, —8,8, —Lyu s

0, then both ¢g(D) and h(D) will be bounded intervals that do not contain
0. These facts will be important later.
Next, we define a doubly infinite sequence a; as follows.

ap =0, a; =g(a;—1), ©>0, a;=—a_;, 1<0.

This permits us to define a set of intervals that partition . Set Iy = [0, 0]
and

. ((1,7;_1,0,.,;], 1>0
Il T {[aiaai+1)7 1<0° (11)

Note that I; = —I_; (see Figure 2). The functions f, ¢, and h operate rather
remarkably on the intervals I;. Recall that f is a monotonically increasing
function from [1,00) onto [0,00) and f(a;) = a;—y for ¢ > 1. It follows that
f(L;) = I;_; for i > 1. (We use the notation f(S) = {f(z) : z € S} where S
is an arbitrary set.) Symmetrically, f(I;) = I;41 for ¢ < 1. There are similar
results for g and h. We summarize them in the following table:

) =] =-1|>1|<-1

f(IZ) = (‘—OO, 0) (Oa OO) Ii—-l I’i+1 (12)
g(L;) = I Iy | Liy1| Liey

WEe] Za | & 1E:il &

We can associate with every z € R a unique interval I; that contains it
(because the I; form a partition of ) and thus with the iterated sequence

z, f(z), fA(z),..., fO (@), ...
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we can associate a unique sequence of integers
905805 825+ ooy By o+

such that f@(z) € I;;. As an example the point z = x pictured in Figure 2
has the associated sequence

2,1,-3,—2,-1,3,2,1,—1,... (13)

because = € I, f(x) € I, f@(z) € I_3, and so forth. If z € By, then its
associated integer sequence is finite and ends at 0 since /o = {0} and f(0) is
undefined. For example, if z = g(g(h(as))), then its associated sequence is

~3,-2,-1,5,4,3,2,1,0. (14)

If z & By, then the sequence associated with z is infinite.

Notice that both (13) and (14) share a peculiar property: they are com-
posed of concatenations of positive subsequences that step down by one to
1 and negative subsequences that step up by one to —1. This property is a
direct result of the first row of (12). More specifically, if z € I;, 7 > 1, then
f(z) € Liy, ..., f&Y(z) € I and f(z) € I; where j < 0. Symmetrically,
if z € I;, i < —1, then f(z) € Liy1,..., f7(z) € I_; and fU(2) € I;
where j7 > 0. The process terminates if and only if ¢ = 0, since then z = 0
and f(0) is undefined.

What we have just described is a more detailed description of the “flip-
flopping” behavior illustrated in Figure 1. In the next few pages (culminating
in Theorem 1) we will show that there is a one-to-one correspondence between
sequences of flip-flops and points in . We will then use this correspondence
to prove Facts 1, 2, 3, and 4.

Thus, given x € I;, the first iterate of f on x whose location is unknown is
fU(z). The sequence associated with z can therefore be reconstructed from
a sequence containing only the first elements of the increasing (decreasing)
sequences, that is, 2, —3,3,—1,... in place of (13) and —3,5,0 in place of
(14). We will call this abbreviated sequence the behavior of the sequence
associated with z, or simply the behavior of z. We denote the behavior by
Sz. The formal definition of S, follows.

Definition 3. For a point x € R its behavior, S, is the sequence defined
recursively as follows. Let i be the index of the interval containing z, that
is, x € I.

1. If i = 0, then S, is the one item sequence 0.
2. If1#0, then S, =1, Sf(|.-|)(z).
For a given point z we will denote S, by
Se =815 5 < v
From the definition we see that

FUBHE D () e I; .
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Definition 4. A sequence of nonzero integers i, i1, 12, .. . (finite or infinite)
alternates if sign(i;) = —sign(ij+1), 7=0,1,2....

Definition 5. An integer sequence S that satisfies one of the following two
conditions will be called a legal behavior.

1. S is an infinite alternating sequence; or

2. §=5'",0 where S’ is a finite alternating sequence.

For example, S = 1,—1,1,0 and 1,—2,3,—4,5,—6, ... are legal behaviors,
whereas 1,—1 and 1,1,1,1,1,... are not. We will use the notation S =
10,11, 12,13, . . . tO represent the component integers of S. Thus the behavior
S =1,-2,3,—4,5,—6,... can be expressed by writing iy = (—1)¥(k + 1),
k>0.

Definition 6. Let ig,11,...,%, be a finite alternating sequence. Then
D(Z'Oyilv"'yin):{zliizi]ﬁ Osk‘sn}

is the set of all x such that the first n + 1 components of S, are identical
with io,’il, aas ,in.

For example, D(2, —3, 3) contains all points x € I, such that f®(z) € I_3
and f®+3) ¢ 3. This is illustrated in Figure 3. The set D(ig, %1, . . .,in) can be
constructed explicitly as follows. First note that D(ip) = {z :z € I;,} = I,.
We also have the following lemma.

Lemma 1. Suppose ig,11,...,i, is an alternating sequence. Then
. .\ _ | D(io+1,42,...,%n), 4o >0
g(D(2077'1a cee ,Zn)) = {D(Zo —1,4g,. .. ,,L'n)’ ig <0 (15)
and
n 2 _ D(—l,io,ig,...,in), 19 >0
h(D(ZOJIa--‘:'Ln)) = {D(l,io,ig,...,’in), io < 0. (16)
An immediate application of Lemma 1 is that for 4g,41,. .., i,, an alternating
sequence
D, i1, - . ., 4n) = g0V (R(D(i1, 42, .. -, in)))- (17)

As an example, we show how to apply the lemma to construct the intervals
illustrated in Figure 3.

1. D) = Iy;
2. D(~3) = Iy s0 D(2,~3) = g(h(Is));

3. D(3) = I3 so D(—3,3) = g®@(h(I3)) and D(2,-3,3) = g(h(D(-3,3)))
= g(h(g® (h(I))))-
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D(2)

D(-3) D(2,-3)

Figure 3: This figure exhibits how the nested intervals converge to a
point. In the example we show the first three steps in the process of
finding a point z with S, = 2,-3,3,.... The top row shows D(2), the
middle row D(2,—3), and the bottom row D(2, —3,2).

In general, to explicitly construct D(ig, 1, .. .,i,) wWe set
to(z) =z, tn(Z) = ta_q 0 gl—117D o B(z). (18)
Repeated application of (17) yields
D(ig, i1, - - 1 n) = ta(D(in)) = tn(L;,)-

As mentioned before, if D is an interval not containing zero, then so are h(D)
and g(D); thus t,(D) is an interval not containing zero. This proves that
D(ig, 41, .- .,1,) is an interval that does not contain zero. Furthermore, 4 and
g are one-to-one functions so t, is a one-to-one function that maps I,, onto
D(ig,%1,...,%,). This will be important in the proof of Theorem 1.

Another consequence of Lemma 1 is an upper bound on the size of
D(ip,t1,...,1n) that decreases geometrically with n. We use u(D) to de-
note the standard Lebesgue measure of set D.

Lemma 2. Setr = 1—(a3+1)"Y2 =~ .6173. Forig,iy,...,in, an alternating
sequence,

w(Dio, in, .. . 1n)) < 200l 7,

Proof. Our main tool will be the following variant of the the mean value
theorem: if D is an interval and s a continuously differentiable function, then

w(s(D)) = |s'(€)| - (D) for some § € D. (19)
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As a first application, notice that ho go f(z) = h(—1/z) for 0 < z < 1.
Since, for z # 0, we have #'(z) = 1 — |z|/v/1 + 22, we immediately find that
forall0 <z <1

2. I 3.
(hogof)’(z)z\/1+z 1< L4424 —1
221+ 22 z?

Applying the mean value theorem gives that for any interval D C (0, 1),

1
< -
—2

ulhogo f(D)) < gu(D). (20)

To begin, let 7 > 0. Then from Lemma 1 and the equation f(h(z)) =z
we have

D(-1,4) = h(L)
= h(g“‘”(h)‘)
= (hogo f)*V(h(L)).

An immediate consequence is that p(D(—1,1)) < 2'7%. Since D(-1,i) =
—D(1, —1i) we have just proven that for g, ¢; alternating, ig = £1,

#(D(io, i1)) < 2'1l. (21)

Next, let ig,11,...,7, be an alternating sequence with i = —1. Again
using Lemma 1 we can write

D(=1,i1,...,in) = hog® V(D(,ig,...,in))
= (hogo f)OD(h(D(®,ig,...,i))).

Therefore,
w(D(=1,4, .. .,4n)) < 27 p(R((D(1, 3, . . - ,3n))))- (22)
But #'(z) =1 — (|z]/v/1+ z?) and

D(l,ig,...,in)g[ . 1],

]
A1—jp Q—jp
so another application of the mean value theorem gives

W(A(D(L,in, ... i) < (1 - ﬁ) W(D(Li, .. i), (23)

Substituting back into (22) and taking symmetry into account we have just
proven that for ig,41,...,%,, an alternating sequence with ¢y = £1,

1—(af, 14 +1)72 ;
/‘I’(D(ZOaZlaa'Ln)) S( ( ‘2|:—1—1 ) )lu’ D Z~_1ﬂi2ai33-~-ain .
olix] |21|

(24)




Newton’s Method for Quadratics, and Nested Intervals 171

We unravel this inequality by recursively applying it to its own right-hand
side n — 1 times and then apply (21) once, obtaining

, 1
B(D (L 6, %, -, W) S JI 24H (1 = 7) .
2<j<n Vo 1

We now examine this product on a term-by-term basis. If |i;| = 1, then
1—(af,j41 + 1)7Y2 = r, while if |i;| > 1, then 2!~14l < 1/2 < r. Therefore,

p (D (£1,41,19,. .. ,1,)) <771

Until now we assumed that 7o = +1. We conclude the proof of the lemma
by noting that, for arbitrary g,

D(ig, 1, ... ,in) = g° ™D (D (1,41,12,...,1a)).

For all z # 0, we have ¢'(z) = 1 + |z|/v/1+ 2% < 2. The lemma therefore
follows from another application of the mean value theorem. l

Definition 7. Let S = ig,41,%9,... be an infinite legal behavior. Let S* =
ik i%, 4%, ... be a sequence of (finite or infinite) behaviors. We say that S*
converges to S (and write S* — S) if the S* converge to S component-wise,
that is,

Vj, 3N; such that Vk> N;, Vj' <j, i =ij.

For example, let S be the sequence S; = (—1)7(j + 1) and S* the sequences
8F = (=1)7 ((j mod k) + 1) . Then

S=1,-2,3,-4,5—6,...
St=1-1,1,-1,1,-1,1,-1,...
$?2=1,-2,1,-2,1,-2,1,-2,...
§%=1,-2,38<1,2,-83,1,-2,...

and S — S.

We now formulate and prove our main theorem.
Theorem 1. The correspondence
T S
is a one-to-one and onto mapping between R and the set of legal behaviors.

Furthermore, if z is a point and x; is a sequence of points such that S, — S,
then x; — x.
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Proof. To prove the first part, we must show that for every legal behavior
S there is a unique point z such that S, = 5. We will treat the two cases S
finite and S infinite separately.

First assume that S is a finite alternating sequence

S =g, i1, ... ,in, 0.
Recall the function ¢, defined in (18), a one-to-one function with the property
D(io, 7;1, . ;in) =1 tn(-[zn)

We claim that = = ¢,(a;,) is the unique point such that S, = S. This = sat-
isfies S, = S because © € D(ig,i1,...,in) and f(D(a; ) = 0. Suppose now
that z # t,(a;,) is another point such that S, = S. Then z € D(ig, i1, ..,%,)
so there is a unique ¢’ € I;, such that « = ¢(z'). Furthermore, we must have
fUnD(2") = 0. The unique 2’ that satisfies this last condition is 2’ = a;,.
Therefore x = ¢,(a;,) is the unique point satisfying S, = S.

Now assume that S =ig,%1,...,4%n,,... is infinite. By definition,

By =8 = xeﬂD(io,il,...,z‘n).

To simplify our notation we set D,, = D(ig, 11, ...,%,). We have already seen
that the D,, are nested intervals with p(D,) | 0. If the intervals were also
closed, then as mentioned in the first paragraph in this section, there would
be a unique z such that N, D, = {z} and we would be finished.

But the D,, are not closed; they are half-open intervals such as D(5) =
I5 = (a4, as]. Thus D,, the closure of D,, is closed, that is, D(5) = [a4, as)-
Furthermore, u(D,) = u(D,) | 0 so there is a unique z such that N,D,, =
{z}. To prove that there is a unique z such that S, = S, it therefore suffices
to show that N,D, = Ny Da.

Recall that D(ig, %1, ..,%,) = tn(l;,) where

to(z) =z, tn(Z) = ta_y 0 gl=11"D o h(z).

The function ¢, is the repeated composition of the functions h and g. Both
of these functions are continuous except at z = 0 and map # to ® \ {0}.
Thus

D(iO: 7;1: SR >Zn) = tn(IZn)
= tp_1 0 gllin-1l=D o B(I; )
= tn1 0 gD (R(L,)).

The next step is to calculate h(l;) for all ¢ #£ 0. If ¢ > 0, then [; = (a;—1, a4
and so h(;) = ( o J. Thus h(I;) = h(I;) U{—=}. A similar calcula-
tion shows that this remains true even when g < 0. Therefore we have shown
that

D(ig, i1, . .- ,tn) = D(ig, i1, . ,in) U {tn-1 0 gU¥=11"D (uy)}
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where u, = —1/a;,. We can rewrite this as D, = D,, U {z,} where z, =
tn_1 0 g1 (y,)). By definition we have

f(|i0|+|i1|+-"+|in-2l+|in—l|_1) () = tn (25)

and thus z,, € By, the set of preimages of 0.

Suppose now that {z} = N,D,, # N, D,,. Because the D,, are nested there
must be some integer N such that for all n > N, z € D,; but z &€ D,,, so
T = z, for all n > N. From what we have seen above we know that z = zy €
By, so S, is finite. Thus there is some m such that f™(z) = 0; any further
iterate of z will be undefined. In particular, f(ol+liil+-+im-1l+liml) () will be
undefined. But this contradicts (25) so we must have {z} = N, D, = N,D,,
and thus for every S, there is a unique point z with S, = S.

We now prove that S;, — S, implies z; — . We must show that for every
€ > 0 there is an N such that for all n > N, |z, — x| < e. This is straight-
forward. Given s let j be the first integer such that u(D(%,%1,...,%;)) < €
Lemma 2 tells us that such a j must exist. Since S;;, — S, there must
be an N such that for all n > N and for all ¥ < j, iy* = if. Therefore
Zp, 2 € D(io,11,...,%;) and so |z, —z| < e. B

The theorem lets us derive properties describing the iterated dynamics of
f. We use the fact that if Sy is a suffiz of S;, then y € F; and = € B,. By
suffix we mean that there is some n > 0 such that zé’ = It for all j > 0.
Theorem 1 tells us that for a given z and fixed n there is a unique y that fulfills
this condition. The definition of S, tells us that y = fliol+rl++lin1l(g),
Thus y € F, and z € B,

As an example, suppose that

8, =1,~9,3, 4.5, ~6,7,—8,0, 10,11, ~13,.....
S, =13,-13,13,—13,1,-2,3,—4,5,—6,7, -8, ....

Then S, is a suffix of S;.

Recall that a point is periodic if there is some j such that fU)(z) = z.
The discussion in the previous paragraph implies that if .S, is periodic in
the sense that there is some n > 0 such that ¢f =47, for all j > 0, then z
is periodic (the converse is almost but not quite true). Thus we can prove
Fact 2.

Lemma 3. Let P = {z : 3j > 0 such that f9)(z) = z} be the set of periodic
points. Then P is dense in R.

Proof. We will actually show that P is dense in the set of all points with
infinite behaviors, R \ By. Since By is countable the proof will follow. The
general idea is to construct a sequence of periodic behaviors S, that converge
to S;. For example, if

S, =1,—2,3,—4,5,—6,7,—8,9,—10,...,
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then we might choose x,, so that

Sy =1,-2,1,-2,1,-2,1,-2,1,-2, ...

Sy, =1,-2,3,-4,1,-2,3,-4,1,-2,...

Sy =1,-2,3,—4,5,—6,1,-2,3,—4, ...
and so forth.

Formally let € R\ By with S, = 4%, ¢%, . ... Then by choice, S, is infinite.

For n > 0, let z, be the unique point that satisfies #;" = 15,,,4(on)- Then

S, = 18,18, 6T AT
(The modulus is taken 2n and not n to ensure that S, alternates.) By
definition, z,, € P. It is not hard to see that S,, — S, so z, — = and we
have finished the proof. B

We use the same technique to prove Fact 1.
Lemma 4. For all x € R, the set B, is dense in R.

Proof. Fix z € R. The behavior S, = ¢%,47,... can be finite or infinite. As
in the previous lemma it will be enough to show that B, is dense in & \ By.
Let y be an arbitrary point in  \ By, that is, S, = i}, ¢, ... is infinite.
We construct a sequence of points z, such that S, — Sy. Furthermore, S
will be a suffix of each of the S, so z, € B,. The proof of the lemma will
follow from Theorem 1. As an example suppose that
8, =1,-1,1,-1,1,~1,1,—1,1,~1,...
Sy=1,-2,3,-4,5,-6,7,-8,9,-10,.. ..
We can choose the z,, such that
Sy =1,-2,1,-1,1,-1,1,-1,1—,1,...
Sy =1,-2,3,-4,1,-1,1,-1,1—,1,....
Sp =1,-2,3,—4,5,—6,1,—1,1—,1,....
Sey=1,-2,1,-1,5,-6,7,-8,1—,1,...
Formally, we construct the z,, so that .S, starts out as S, but ends as S;. To

do this we define a parameter ¢ that ensures that the copies of .S, commence
at locations in the S, that have the proper parity. Let

O if sign(if) = sign(if)
T if sign(sf) # sign(i¥)
where sign(é) = i/|i|. We now set z,, to be the unique point such that

P 4 0<k<2n+9$6
BT angsey k= 204641

The points z, are all in B, and S;, — Sy; therefore z, — y and we have
finished the proof. B

Utilizing the same technique, we now prove Fact 3.
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Lemma 5. The set
D = {z : F, is dense in R}

is itself dense in R and has cardinality N;.

Proof. We start by showing how to construct a point x € D. Let A be
the set of all finite alternating sequences with odd length whose first element
is positive. It includes sequences such as o = 1,—3,5. For any sequence
a, we write —a to denote the sequence whose elements are the negatives of
those in a. For the given example —a = —1,3,—5. Now A is a countable
set so we can enumerate all the sequences in A as g, as,.... Let S be the
concatenation of all of the pairs a;, —a;. That is,

S= Oy, — O, 0, —0lg, O3, — 8y v vv

Let x be the unique point with S, = S. We claim that F, is dense in R.

Let y € R\ By and ¢ > 0. We must show that there is some 7 such
that |f®(z) — y| < e. From Lemma 2 we know that there is some n such
that if ' € D(#,4,...,i¥), then |y — y| < e. Now, by definition, if the
sequence 1§,4Y,...,1¥ appears anywhere in S,, then there is some i such
that f@(z) € D(#§,4,...,#). By construction we know that every finite
alternating sequence appears somewhere in S,. Thus there is some 7 such
that |f®(z) — y| < e. Since y and € were chosen arbitrarily we have just
shown that F} is dense in R.

It is easy to modify the construction to show that D has cardinality ;.
For each 1 = 1,2,3,... choose [3; to be one of the two sequences 1,—1 or
2,—2. Let S be the concatenation of all of the triplets «;, —ay;, 5;. That is

S = ay, —a1, B, 0, —g, By, a3, —3, B3, .. ...

Let z be the unique point with S, = S. The analysis of the previous para-
graph shows that F} is dense in R. Since there are N; possible choices of the
sequences (31, 02, fs, . . ., there are at least N; points z with F, € D.

It remains to be shown that D itself is dense in . This is trivial. If
xz € D, then f(z) € D so F, C D. Since F, is dense in R sois D. il

We conclude this section by analyzing the structure of the set of all
bounded points. This set will be shown to be the union of a countable

number of sets, each possessing a structure similar to that of the Cantor set
(Fact 4).

Theorem 2. The set of bounded points
S={z:3c¢>0 suchthat F,C [—c,c]}

has cardinality 8; and measure 0.
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Figure 4: This figure illustrates the first three steps in the construction
of S3, the set of all points whose forward iterates are in the bounded
interval [—ag, ag]. The unshaded area in the top diagram is Dy, in the
middle Dy, and in the bottom Djy. At each step Dpt1 = Dy, \ Cp.

Proof. We define S,,, the set of points whose forward orbit is in [—am,, @m):
S ={z: F; € |—0m,04]}: (26)

Since a,, T oo we have S; C S, C S;...and S = US,,. We will prove that the
cardinality of Sy is N; and therefore so is the cardinality of S. We will also
prove that for every m, u(Sn,) = 0 and thus u(S) = p(UnSn) = 0 because
the countable union of sets of measure 0 has measure 0.

Our main tool will again be the correspondence z «+ S,. As before, for
z € R we denote

S =507+ Tays v
With this notation it is easy to see that (26) can be rewritten as

Sm = {z : V3, ]ij| <m}. (27)
For example, S; = {z, —z} where z is the unique point such that

8y = 1 ~1, Ty, T T, 0

In fact, z = 1/4/3. (This point z can be found by solving f(z) = —z.)

That S (and therefore S) has cardinality R; follows from Theorem 1
together with the fact that the set of infinite alternating sequences that can
be constructed utilizing the integers 1,—1,2, —2 has cardinality 8;. The
second part, that p(Sy,) = 0, will be more difficult to prove.
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For the rest of the proof we assume that m > 1 is fixed. We set

Dn= U D(i07i17"'7in)
10,815---3%n
Visnm, |5|<Sm

where the union is taken over all alternating sequences of length n+ 1. With
this definition S,, = N, D, so it will be enough to show that p(D,) — 0.

In Figure 4, we illustrate Dy, D;, and D, for the case m = 3. Notice
how D,, 1 is constructed by erasing m subintervals from each interval in D,,.
This can be thought of as a generalization of the construction of the standard
Cantor set.

To proceed, we define

Ol b1, o) = f@ ij =145, 0<j<n, ligq1l > m}
and

C, = U Clig, i1, - - - ,in)-

0,815-00n
Vji<n, Imgm

That is, C, is the set of points in D,, that are not in D, ;.
With this definition we have C,, C D, and D,31 = D, \ C,,. We will show
that there is a constant u > 0 such that

HGn) 5 o, (28)

w(Dp) ~

This will prove our assertion since it implies that

#(Dr) = p(Dn-1) = p(Cp-1) < (1 — w)pp(Dn—1) < -+~
< (1—=u)"u(Do),

and u(D,) | 0.
We will actually prove something stronger, that is, for any alternating
Sequence %o, i1, - - -, in

w(C (0,1, -, tn))
#(D(’éo,il, — ,in))

and (28) will follow because the D() partition D, and the C() partition C,.
We again use our old trick of constructing

>u

D(ig, 1, . . . ,in) = gU®I"D (R(D(i1, iz, . . . ,in)))- (29)
Similarly,

Cligy i1, .- -, in) = g1V (R(C (i1, 1, . . . ,in)))- (30)
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We have already seen that D(ip, 1, ...,%,) is an interval. Similarly, C(io, 71,
,---,0n) is an interval. This follows from (30) and the fact that C(i,) is an
interval. We can therefore apply (19) twice to get
I‘L(C(Zm 7;11 o 0y ,Ln)) _ }I(C(il,i27 e 77:71)) i vl(cl) (31)
/‘L(D(z()allha?'n)) /‘L(D(Zl'll?aan)) 'U/(Cz)
Cl) <2 (S D(iO: il: oo ,'Ln)

where v(z) = gol=1 (h(z)).
Let r = 1 — (a2 + 1)™%/2 < 1. We will now show that there is some
constant ¢ such that ¢r™ < 1 for n large enough, that is,

v'(G1)
v'(C2)

When z # 0 both g(z) and h(z) are doubly continuously differentiable
functions with bounded first and second derivatives so v(z) is as well. Recall
that we are considering only points whose forward orbits lie in [—ay,, Gm).
We may therefore assume that

1

a'm+1

<1-—cr

< |Gl 1ée] < am.

Let

— . 1!
= e i @)

Recall that Lemma 2 implies |¢; —(o| < 2™r™. Together with Taylor’s theorem
with remainder this yields

[v'(¢1) — V()] € alG — ] < e2™r™. (32)
Let

- 3 /
2= Vomsidigen "

By the definition of v we have ¢, > 0. If n is large enough that ¢;2™r" /¢y < 1,
then (32) implies that

V(@) 5, |6 v
v'(C2) v'(G2)
where ¢ = ¢;2™/c,. Now set
_ . N(C(iOaila"')in))
Un = iositorsin @(D(ig, i1, - -+ 14n))
and let N be such that er < 1. Substituting into equation (31) tells us that
Up, > Up—1(1 — cr™). Telescoping this inequality yields

Up > UN H (1 —crt).
N<t<n

s

>1—cr
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Figure 5: This figure illustrates how the intervals I; partition  when

flz)=z—-1/z.

The sum 3, r* converges and therefore the product [Jy;(1 — crt) con-
verges to some constant greater than 0. Furthermore, we know that for all
n, u, > 0. Therefore, u = inf u,, exists and is greater than 0. B

To review, in this section we have exhibited a one-to-one correspondence
between sequences of alternating integers and points on the real axis. This
correspondence, given by Theorem 1, was used to derive many properties
of the iterated dynamics of f. Basically, the theorem showed that a point
is uniquely defined by its dynamic behavior and there exists a point corre-
sponding to every behavior.

4. Dynamics of f(z) =2z —1/z

In this section, we sketch how to modify the analysis of the previous section
to analyze the iterates of

1
=z—-. 33
OEFSE (33)
The analysis is almost the same as that of (1). The only difference is in the
definition of the functions g(z) and h(z). The inverses of (33) are

z+ z+4’ >0 —-I_VI+4’ >0
g(z) = 22 N and h(z) = 2 o
vl <0 sVEH <0

Otherwise the analysis is exactly the same (although some of the constants
differ). Figure 5 shows the partition ® by the I; under the new definitions.
Notice that whereas in the previous section u(I;) ~ 2/ here u(I;) ~ In|d.
This does not cause any changes in the analysis.
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