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Abs t ract . This paper presents a machine-independent study of par­
allel genetic algorithm performance. Our approach utilizes a dataflow
model of computat ion in conjunction with Sisal, an implicit parallel
programming language. We compare problem-solving power and run­
t ime efficiency for several parallel genet ic algorithms under uniform
conditions. The proposed method makes it possible to identify all
sources of potential parallelism, and to locate and measure bot t le­
necks. The dataflow model thus provides a systemat ic way to develop
and evaluate genetic algorithms.

1. Introduct ion

This paper presents a machine-independent st udy of par allel genet ic algo­
rithm performance. Genetic algorithms are search algorithms loosely based
on the principles of natural evolution, particularly genet ic evolut ion. Re­
searchers became interested in parallel implement ations of genet ic algorithms
when it became apparent that par allel models were often outperforming se­
rial models, even when the parallel models were executed serially. By us­
ing a machine-ind ependent analysis and thereby avoiding the more typical
machine-driven ad hoc approaches , exploitable par allelism is revealed in some
cases where it was not previous ly known to exist .

For any comparat ive study of parallel genet ic algorithms to be useful, two
factors must be consid ered: problem-solving power and execut ion efficiency.
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It is reasonable to assume that st ructural changes in a genet ic algorithm
designed to enhance parallelism will impact its ability to solve problems .
If the changes result in slower problem-solving behavior, then it might be
necessary to determine how much parallelism would have to be achieved
in order to compensate for this loss. Conversely, if th e changes result in
fast er prob lem-solving, then the parall el models might be preferable even in
the absence of parallel hardwar e. In this paper these issues are examined
by analyzing the potenti al parallelism of a wide variety of parallel genet ic
algorithms and by testing th e problem-solving abilit ies of these algorithms
on a suite of funct ion optimization t asks.

The genetic algorithms are coded in Sisal, an implicit parallel program­
ming language, and executed on a simulator of t he Manchester Dataflow
Machine [20]. We compare their executio n characterist ics by analyzing vari­
ous machine-independent measures generated by the simulator, such as crit­
ical path lengt h and average parallelism. The simulato r also provides ideal
parallelism profiles of the various algorithms . This approach is not without
limit ations. The dat aflow simulator report s all sources of parallelism, some
of which are not realizable in a pract ical sense. The Sisal code can be altered,
however , to mask parallelism that is judged to be implausible. Further , we
have found that by introducing pseudo-dependencies at various st eps in the
genet ic algorit hm, it is possible to use the crit ical path information output
by the simulator to measure t he severity of serial bottlenecks. Finally, each
algorithm is run on a variety of optimization problems, and the results are
norm alized by the numb er of funct ion evaluat ions.

2. P arallel gene t ic algorit hms

A variety of schemes for parallelizing genet ic algorithms have appeared in
th e literature. Some of the parallel implementations are very different from
th e "t radit ional" genetic algorithm proposed by Holland [21], especially with
regard to pop ulation st ructure and selection mechanisms. To date, imple­
menting parallel genetic algorithms has involved a single population using
global random mating and replacement , or a populat ion with some form of
locality imposed on matin g and replacement st rategies. Researchers have
recognized that t his issue is at the hear t of the debate between Wright and
Fisher concerning the role of spatial st ructure in natural genet ic pop ulat ions
(see, for example, [2] and [25]). Wright claimed that modeling biological evo­
lution requires consideration of local interac t ion and spatial isolat ion [36].
These views were challenged by Fisher , who believed that biological evolu­
t ion could be modeled with unr est ricted interaction between individuals [6].
T hese processes are called local and panmictic interaction, respect ively, and
each has been used as a biological analogy for various genetic algorithms.

Parallel genetic algorithm implementations can be separated into th ree
catego ries: global , island , and cellular . Global models use a single population
and unr estricted random select ion and mating. This includes variants of Hol­
land 's canonical genetic algorithm and Goldberg's Simple Genet ic Algorithm
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(SGA) [7], as well as Wh itley's Genitor [31] and Eshelman 's CHC l [5]. Island
models achieve parallelism by replicating the approach used in global single­
population genet ic algorithms across subpopulat ions . Subpopulations com­
municate by the occasional migra t ion of st rings. The genera l island model
allows migrat ion to occur between all subpopulat ions; in the variant known
as the "stepping-stone model" t he subpopulations have a specific physical
arrangement and migration occurs only between subpopulat ions that are lo­
cally near one another [18]. Cellular models, sometimes called "mass ively
parallel" or "fine grain" genetic algorithms , assign one individual per proces­
sor and limit mating to a set of nearby st rings. Each individual is processed
in parallel at each generation.

Wh en implement ing tradit ional genet ic algorithms, global information is
somet imes required , such as the average fitn ess of the str ings in t he pop ula­
tion. One way to reduce t he need for global inform ation (and thus decrease
overhead in certain parallel implem ent ations) is to use tournament selec­
tion [10] . In one implementation of tournament select ion, two st rings are
randomly sampled, and the st ring with the higher fitness is passed into the
intermediate generat ion. This process cont inues unt il t he intermediate gen­
eration is filled. We can expect t he best st ring to have two copies in the
intermediate genera t ion, the median st ring to have one copy, and the worst
st ring to have no copies. Goldberg and Deb [11] showed that the result ing
selective pressure is ident ical in expectation to a linear rank ing. All of our
implementations utilize tournament select ion.

2.1 Global models

Serial genet ic algorit hms such as SGA [7], Genitor [31], and CHC [5] typ­
ically employ a single population without locality considerations. Parallel
implementations of global pop ulat ion models have not received much at­
tent ion because machine-dependent considerations led implementors toward
other approaches. Some methods for parallelizing global mode ls have been
suggested by Goldberg [7].

SGA and Elitist SGA: Goldberg 's Simple Genetic Algorithm [7] is a well­
known variation on Holland 's original model [21]. In SGA, selection, cross­
over, and mutation are used to generat e successive popul ations of a constant
size.

SGA with tournament selection is highly parallelizable. Although genera­
tion-to-generation processing is done serially, st ring manipulat ions within a
genera t ion can be done simultaneously. This is because the creation of a new
individual does not depend in any way on the creation of another. Every
two slots of each new generation are replaced by the offspr ing of two selected
parent s from t he previous generation. Thus n / 2 pro cesses are utili zed (where
n is the population size), each of which genera tes two members of the next

ITh e acronym CHC stands for the following characterist ic features: Cross-generational
select ion/compet ition; Heterogeneous recombination; Cat aclysmic mutatio n.
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Figure 1: Par allel SGA (left) and pCRC (right) . Th e vert ical columns
represent population s before and after a single generat ion.

generat ion. Each process also perform s crossover , if necessar y, and mutation.
In SGA, there is no guarantee that the very best individual in a population
will survive. In Elitist SGA , a copy of the best indi vidual is always placed in
the next generation.

We divide the population into two int erleaved halves, denoted even and
odd. For each pair of slots in the population, four individuals are randomly
selected from the previous generation. Each slot conducts a tournament ,
keeping the best of two st rings for reproduction. Each pro cess t hus gener­
ates two offspring, and these pair s are collected to form new odd/ even pop­
ulation halves. This is illustrat ed in Figure 1. The probability of crossove r
is simulate d by denoting beforehand which pro cesses perform crossover and
which do not. Since strings are randomly assigned locations in the interme­
diate generation , this is sufficient to achieve a random chance of undergoing
crossover for arbit rary st ring pairs according to the crossover probability. In
Figure 1, crossover does not occur below the heavy line .

pC RC: CHC is a geneti c algorithm model developed by Eshelman [5]. It is
similar to SGA except for the following: (1) the best n st rings are ext rac ted
from both generation t and generation t + 1 to form the new generat ion ; (2)
parents are paired through incest prevention (i.e., by select ing parents which
are dist ant from one another in Hamming space) , rather than according to
fitness; (3) mutatio n is not performed until t he population has converged
to within some convergence criterion, and t hen is done at a very high rate
(ty pically 35%) to reinitialize the population; and (4) HUX (heterogeneous
un iform crossover ) recombination [5] is used. CHC uses survi val of the fitt est
rather than selection of the fittest , bec ause fitn ess do es not play a role in
select ion . Rather , fitn ess is used to det ermine which offspring survive into
the next genera t ion.

Although CHC has been fully implemented in Sisal , it is not as well suited
for parallel execution as SGA. This is becau se select ing the best n from 2n
st rings involves a global operation equivalent to sort ing. An illustration of a
more par allel algorit hm that simulates CHC, hereaft er called pCHC, is shown
in Figure 1 (and describ ed in [12]).
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In pCRC, each pro cess compares its two newly-produced offspring in gen­
erat ion t + 1 against two particular elements from generation t (based on
iter ation numb er), and retains the best two of th e four . This approach re­
sults in an algorithm similar to CRC but with a weaker select ive pressure.
Note that pCRC does not guarant ee that t he best n out of the 2n individu­
als will surv ive, but it does guarantee that at least t he best two individuals
will sur vive. Tournament select ion is used not to select the fittest st rings,
but to select pairs of individu als that are relatively dissimilar (in Ramming
distance) for mating.

Genitor: Normally in the Genitor algorithm [31] rank-based selection is ap­
plied to a sorted population. Two parents are selected and a single offspring
is produced that displaces an individual with low fitness. Our current im­
plement at ion uti lizes tournament selection and replacement to eliminate th e
need to keep the population in sort ed order. The winners of a small tourna­
ment recombine and the offspr ing rep laces the loser of the tournament if the
offspring has a higher fitness. Whereas in other implementations of Genitor
one of the two possible offspring is chosen randomly before evaluation, here
both offspring are evaluated and the best one is retained.

2.2 Island models

Island mod els were developed for use on machines with a relatively small
numb er of processors. In a parallel island model, the popul at ion is divided
into smaller subpopulat ions, each of which reside on a separa te processor.
Periodic migration of small numbers of individuals between processors allows
locally-converged solutions to mix . Many researchers have reported excellent
results with thi s approach. For example, St arkweather et al. [29] have shown
improved empirical results on severa l prob lems over single-population genet ic
algorithms even when the total numb er of strings and function evaluations
are t he same. Tanese [30] has proposed that the island model is fur th er
enhanced when each subpopulation ut ilizes different parameter settings.

Island-SGA and Eli ti st Island- SGA : Each "island" is an SGA with its
own subpopulation. Migration between islands uses a ring topology, and
a single individual is chosen for migration by tournament selection, where
the losing individual is replaced by the winning individual from the adjacent
subpopulation. T he Elitist Island-SGA involves a st ra ightforward insertion of
the Elit ist -SGA model into the Island model (in place of SGA). Unlike Island­
SGA , the best st ring in each subpopulation is the only one t hat migrates,
since the use of elit ism guarantees that the best string has already been
ident ified.

Island-p CRC and Island-Gen itor: These are st ra ight forward insertions of
pCRC and Genitor into t he Island model (in place of SGA). Migration is the
same as in Island-SGA. The Island-Genitor mod el is analogous to Genitor-
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II [32] , except that we use a migration tournament as described above rather
than migrating the very best st rings.

2.3 Cellu lar models

Cellular genetic algorithms (CGA) are designed to take advantage of mas­
sively parall el machines. In the simplest case, one uses a single large popula­
tion with one string per pro cessor. To avoid high communication overhead ,
CGAs genera lly impose limitations on mating based on dist ance. For exam­
ple, st rings may concept ually be arr anged on a grid , and only be allowed
to perform crossover with nearby st rings. This leads to a form of locality
known as "isolat ion-by-distance" [17]. It has been shown that groups of sim­
ilar individu als (also called niches) can form , and th at th ese groups funct ion
in ways that may be similar to discrete subpopulat ions (islands) . However,
there are no actual boundaries between the groups, and nearby niches can
more easily be overt aken by comp eting niches th an in an island mod el. At
the same time, distant niches may be affected more slowly. Davidor [3] calls
this mod el t he ECO GA .

We consider cellular genet ic algorithms wherein cells reside on a two­
dimensional torus: the individual cells form a square grid where the edges of
the grid wrap around . Each resident individu al (i.e., st ring) selects a mate
from nearby strings, and th e offspring may replace the resident individual
depend ing on th e replacement strate gy used. The neighborhood from which
a mate is selected is called a deme . Each st ring is proc essed in parallel at
each generation. We consider three approaches: fixed topology , random walk ,
and is land.

In a fixed topology implementation, demes consist of st rings residing in
particular grid locations near the cell in question. The same locat ions com­
prise th e deme for every generation. An individual is selected from the set
and crossover is performed with the original individual. (In our experiments,
we consider var ious select ion schemes). The offspring replaces the original
individual depending on the basis of relative fitness. It can be shown that
thi s type of cellular genetic algorit hm is a finite cellular automaton (CA)
with probabilisti c rewrit e ru les, where th e alphabet of the CA is equal to the
set of st rings in th e search space [35].

In a Random Walk implementation, a cell's deme consist s of the strings
th at reside along a random walk starting at that cell. Each st ring along the
walk is compared and th e most fit st ring is chosen for mat ing . The length of
the random walk is a tunable parameter. In our implementations steps can
be up, down, left , or right. It is possible for the walk to traverse t he same
cell more than once, and may traverse the resident individual.

In an Island CGA, the grid is divided into smaller subgrids, each of which
is a torus that is proc essed separate ly using one of the above methods. Mi­
gration betwe en subgrids takes place at predefined intervals.
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3. The d ataflow app r oach an d Sisal

Sisa l is a functional side-effect-free language which provides a machine­
independent way of st udying the implicit parallelism in computer programs .
There are severa l advantages to using Sisal to write parallel programs. First ,
programs written in Sisal can be evaluated using a dat aflow simulator th at
collects statist ics while it executes th e code. The dat aflow simulator gener­
ates parallelism profiles and various machine-independent measures such as
crit ical path length and average parallelism. Second , Sisal programs can be
ported without mod ification to a variety of parallel architectures, including
the Cray 2 vector pro cessor , the shared memory Sequent and Alliant multi­
processors, the distributed memory nCUBE 2, as well as the Manchest er
Dataflow Machine.

In the dataflow model, a program is represented as a depen dency graph,
and dat a flows directly between nodes rather than via shared variables. Since
each node can perform its t ask immediately upon receiving all of its required
input , parallel execut ion can occur at an arbit rarily fine-grained level. The
dataflow mode l is thus capable of expr essing all forms of para llelism , which
makes it an ideal framework for analyzing parallel algorithms. An algorithm's
inherent parallelism and sequent ial threads are exposed when implemented
in a dataflow environment [IJ.

Some of the fine-grained parallelism exposed by using Sisal is exploitable
on SIMD architectures . For example, the Cray-2 Sisal compiler should vector­
ize many of th e parallel features describ ed in this pap er (where not ed). Much
of t he coarse-grai ned parallelism exposed by using Sisal is exploit able on
MIMD architect ures, some of which hasb een described by other researchers
[26].

Parallel profile and crit ical path information also allow one to examine
the sensit ivity of various algorit hms to parameter changes (such as popu­
lation size, st ring length, etc.) from a machine-ind ependent point of view.
This information may help develop more efficient parallel genet ic algorithms
depending on parametric const ra ints .

3.1 Average parallelism and cr itical path

When a Sisal program is executed on t he dataflow simulator, simulat ion
proceeds in discrete time steps during which all enab led inst ructions (those
for which data is available) are executed. It is assumed t hat every inst ruction
execut es and sends the resulting data to its successor instructions in exact ly
one time ste p. The lack of side-effects in Sisal allows for highly optimizable
comp ilation into parallel code, thus exposing inherent parallelism which is
reported afte r execut ion.

Two time-relate d measurement s are recorded: Sl , the total numb er of
inst ructions executed , and Soo , the total number of time ste ps requi red (also
called t he critical path ). Average parallelism is defined as Sd Soo' The sim­
ulator reports values for Sl , Soo , and average para llelism at the conclusion
of program execut ion. These figures are for runs which include init ializat ion
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Figure 2: Profiles for SGA with mutation (left) and without mutation
(right). Here we use a trivial evaluat ion function so that the profiles
primarily illustrate genetic operators acting on the population. For
this example, population size and string length are both 10.

(i.e., randomly generating the pop ulation , etc.). More interesting measures
are the average parallelism and crit ical path for a single generation, which
can be obtained by running each algorithm for t hree generat ions and then
for two generations, and calculating:

Sr - Sf
S~ -S~

and Soo = S~ - S;;' . (1)

The parallelism of the program can be displayed in a parallelism profile by
plotting the numb er of executed instructions at each t ime step. For example,
Figure 2 shows two parallelism profiles of a single generation of SGA, the first
with mutation t urned on and the second with mutation turned off. The X ­
axis is the numb er of t ime ste ps along the crit ical path, and the Y-axis is the
numb er of executed inst ruct ions at each time ste p. The higher the value, t he
greater the parallelism .

The profiles in Figure 2 suggest th e mutation operator used is highly
parallelizable, as indicated by the very tall "spike" in the graph on th e left .
Parallelism profiles like th is allow us to isolate key operators in terms of their
impact on parallelism. Examinat ion of the Sisal code alongside the paral­
lelism profile also helps reveal where addit ional parallelism in the algorit hms
might be locat ed , since low, fiat areas indicate the absence of parallelism.

Parallelism profiles are highly prob lem-dependent . The profiles shown
in Figure 2 utilize a trivial evaluat ion function (one that simply ret urns
a constant value in a single t ime step) so that th e profiles represent just
genet ic operat ions. Figure 3 shows profiles for one generation of SGA with
th e t rivial evaluat ion versus an actual opt imization problem (Dej ong's F2).
Clear ly the crit ical path is heavily affected by the function (and, in th is case,
th e Graycode t ranslat ion that precedes it ). For more complex functions , one
might expect the evaluat ion function to dominate the profile.
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Figure 3: Profiles for SGA with tr ivial function (left) and F2 (right) .
F2 involves Graycode translat ion and a simple computation. Popula­
tion size is 16; st ring length is 24.

3.2 Distinguishing exploitable parallelism

In some cases , t he parallelism profiles express parallelism that is unrealizable
because the dat aflow simulator makes a numbe r of assumpt ions regarding
machine characterist ics. First , the simulator assumes that each instruction
can be executed in one t ime ste p. This is unr ealistic when the population
is distributed across severa l processors because of communication overhead.
The exte nt to which communicat ion overhead is 'a problem depends on how
well the implementation util izes locality. Second, the simulator assumes that
an unlimited number of pro cessors is available. Generally this is not the
case. Even if unlimit ed processors were available, the simulator does not
take into account overhead associate d with proc essor allocat ion or communi­
cat ion. Third , it is assumed that parallelism can be utilized at an arbit rarily
fine-grained level. However , one cannot expect to have such an ideal envi­
ronment . On a real machine, some of the genet ic operators would have to
be implemented at a coarser gra in . For exam ple, in the previous simulations
a mutation operator was used that caused every bit to be mutated in paral­
lel. Since the datafl ow simulato r assumes an unlimited numb er of processors
with no usage overhead , it reports that mutation of the ent ire popul at ion
can occur in exact ly th e same time as it takes to mutate a single bit . While
this is th eoreti cally valid , a real machine would incur substant ial overhead to
allocate the processors and collect the results. T hus on a machin e wit hout
parallel bit opera t ions, one would prefer a different mut at ion operator even
if it caused the critical path to grow with increases in populat ion size and/or
st ring length.

Parallelism profiles do, however , contain useful information when ana­
lyzed in a systematic manner. The profiles can be viewed as an expression
of the maximum parallelism, and therefore should be adjuste d to eliminate
unr ealist ic parallelism . One approach is to examine the code alongside the
profile in a subject ive mann er. Section 4 describes a more rigoro us meth od
whereby the Sisal code is changed so as to mask parallelism that seems im­
plausible.



190 V. Scott Gordon and Darrell Whitley

Population Avgerage Crit ical Instruct ions
Algorithm size parallelism path executed

SGA 100 658 137 81227
SGA 16 109 137 14996

pCRC 100 520 185 96353
pCRC 16 86 184 15754

Island-SGA (20 x 5) 100 351 275 96731
Island-SGA (4 x 4) 16 66 275 18326

Cellular 100 1061 155 164510
Cellular 16 171 155 26505

Table 1: Average parallelism and critical path measures.

3.3 Parallelism profiles of the algorithms

Table 1 shows average parallelism and critical path for one generation of
two global mod els (SGA, pCRC) , an Island mod el (Island-SGA), and a fixed
topology cellular genet ic algorithm. Data is shown both for population sizes
of 16 and 100. The values for the Island mod el are for a combination of one
genera t ion and one migration.

Figure 4 contains parallelism profiles of three generations for SGA, pCRC,
Island, and Cellular genet ic algorit hms, similar to those reported earlier by
Gordon et al. [12] . Note that in the Island mode l, migration occur s between
the second and third generations. Profil es for Genitor will be examined later
in the pap er.

Clearly, for every mod el, the critical path lengt h is independent of pop u­
lation size. This means t hat in an ideal environment (access to an unlimited
poo l of processors with no usage overhead) , increasing t he population size
does not increase the criti cal path length. Since one of the goals of parallel ge­
net ic algorithms is to facilitate larger population sizes, this is an encouraging
result .

The Island model has the longest crit ical path length in part due to th e
inclusion of migration into th e stat ist ics. The dat a indicates that th e cellular
algorithm performs more operations and has higher average parallelism than
SGA, but is not fast er than SGA since its crit ical path length is slight ly
longer .

It is remarkable that the profiles look so similar for all of the mod els. This
suggest s that while implementors may be doing a good job of mapping th e
algorithms to architectures, very lit tle has been done to change the nature
of the underlying parallelism inherent in th e genetic algorithm. In act uality,
researchers have introduced localit y into the algorithms so that the inherent
parallelism can be exploited .
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Figure 4: Profiles for generat ional models (SGA, pCRC, Island, and
Cellular). Populat ion size is 16 and string length is 10. Three gener­
ations are shown.

3.4 Operator sensitivity to parameters

The dataflow simulator makes it possible to isolat e the impact of genetic
opera tors on parallelism [12]. The parallelism profiles provide a way of mea­
sur ing t he sensit ivity of each operator 's parallelism to different parameter
set t ings. For example, consider two different mutation operators bitwise and
next-point . Bitwise mutation is a fully parallel loop in which each bit in the
populat ion is tested individually for possible mutation. Next-point mut ation
at tempts to correct t he inefficiencies of bitwise mutation by calculating t he
next bit to mutate as follows:

l
Rnd(O, l )JNextPoint = b + CurrentPoint + 1

pro m
(2)

where probm is the probability of mutation per bit. This is applied until
NextPoint > strlen , where sirlen is the st ring length.

Table 2 shows average parallelism and crit ical path for one generat ion
of SGA for both mutation operators , with pop ulat ion sizes of 100 and 16,
and equal mutation rates. Note that both are insensitive to popul ati on size
(critical path is unaffected by changes in popul ati on size). Bitwise mutation
at first appears more efficient than next-point mutation due to t he higher
average parallelism and the shorter crit ical path. However , it is unlikely that
the parallelism in bitwise mutation is exploita ble because it requires parallel
bit operations.
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SGA/bit 100 658 137 81227
SGA/bit 16 109 137 14996
SGA/nxtpt 100 282 271 76507
SGA/nxtpt 16 45 271 12087

I Algorithm ~ PopSize I Avg parallelism I Critical path I Instr executed I

Table 2: Mutatio n operators; sensit ivity to population size.

4. Using the dataflow model to measure bottlenecks

By introducing pseudo-d ependencies at various point s in the Sisal imple­
ment ation of a genetic algorit hm, it is possible to mask parallelism at certai n
levels in order to expose parallelism at other levels. This helps in locating
parallelism bottlenecks in the algorithms.

For each genet ic algorithm, all of the loops in the code are identified,
then categorized as bit-l evel, string-level, or population-level , depending on
whether th ey iterat e t hrough an individu al, severa l individu als, or severa l
populati ons, respectively. A loop that depends on th e st ring length is bit­
level, a loop that depends on the populati on size is string-level, and a loop
that depends on t he number of subpopulat ions is populati on-level. For each
loop , the change in critical path over changes in magnitude of the associated
parameter is measured. Wh en th e loop cannot be executed in parallel, t he
magnitude of th e change represents a potential bottleneck. Wh en a loop
can be executed in parallel, a bottl eneck sti ll may exist , because of overhead
factor s such as t hose describ ed earlier. In t his case the potenti al bottleneck
can be measur ed by modifying the code to force serial execution. This is
done by introducing an art ificial dependency, typically by adding a dummy
variable that is referenced at the st art of the loop and modified at t he end
of the loop.

A small amount of residual parallelism remains after serializing a loop ,
because the simulato r identifies all instruction-level parallelism. The mea­
sured values and the actua l values differ by a constant, and it is assumed that
the residu al instruction-level parallelism is sufficient ly small that i t could be
exploited on most mod ern architect ures . Thus it is argued that t he repor ted
critical path values , while not representing absolute measur es, do const itute
a valid relati ve ordering with respect to their sensit ivity to changes in mag­
nitude of the relevant parameter.

Identi cal bit-level bot tlenecks occur in severa l of the algorithms, so they
are measured in SGA (except for one that is specific to pCRC) . String-level
bot tlenecks vary among th e algorit hms, and are measured for SGA, Genitor ,
and the Cellular algorithm . Populat ion-level bot tlenecks are applicable only
to Island mod els, so they are measured in Island-SGA.

Finally, for each bottleneck, the practical implications of th e measure­
ments are discussed. Some of the bottlenecks are easier to remove than



A Machine-Independent Analysis of Parallel Genetic Algorithms 193

Crit ical path lengt h for one generation, various operators

genetic opera tor serialized execut ion parallel execut ion
strlen = 5 10 50 5 10 50

Bitwise mutat ion 159 249 969 116 116 116
Nextpoint mutat ion 131 162 218 no change
One-pt crossover 179 254 854 116 116 116
Two-pt rs crossover 269 393 1324 209 266 409
DeGray 161 197 477 no change
Decode 176 244 787 115 126 206
Hamming Dist (pCHC) 221 276 716 185 195 275

Table 3: Measures of bit- level bot t lenecks in genetic algorithm s.

others. For example, some of the bit- level bottlenecks may be improvable
via vectorization, while others may be difficult or impossible to correct. The
seriousness of some bottlenecks depends on the applicat ion.

Bot tlenecks associated with par t icular opt imizati on problems are not con­
sidered. Rather, the measurements concentrate on the genetic operat ions
themselves. However , for some problems, the overhead for the fitness func­
t ion can have more influence on performance than the performance of the
genetic operators. Note that when there is a high degree of exploitable st ring­
level parallelism, overhead associated with a particular opt imization problem
is incurr ed only once per generat ion , since each of t he st rings can be evalua ted
in parallel.

4.1 Bit-level bottlenecks

Bit-level bottlenecks appear by far most often in loops that depend on string
length . Less often, a loop depends on the crossover rate or the mutat ion
rate. Table 3 lists the bit -level bottlenecks and t heir associated severity
depending on the value of stri ng length . This information is also shown
graphically in Figure 5. The values were obtained by using SGA (except
where noted) with bitwise mutation and one-point crossover. A serialized
version of the various operators was used, replacing the bitwise mutation or
one-point crossover when appropriat e. Thus, variance in bottleneck severity
is due only to th e specific operators indicated. Critical path information for
th e fully parallelized version is shown in the rightmost column, and represents
an upper bound on the performance. Some of the loops (such as for nextp oint
mutat ion) cannot be parallelized because of dependencies.

Decode converts a binary st ring to an integer value, and DeGray con­
verts Gray-coded st rings to binary-encoded st rings. Both are describ ed by
Goldberg [7] and both represent fairly substant ial bottlenecks. Hamming dis­
tance calculation is used in the pCHC algorithm to select parents via incest
prevention.



,

V. Scott Gordon and Darrell Wh itley

... ..--_ ~~ .--- ...

50454 0352 0 25 30
STRIN G LENGTH

1 51 0

,

194

1500

1400

1300

1200

1100

1000

900

800

700

600

50 0

400

300

200

10 0

0
0

SGA basel i ne ­
DECODE _u_.

HAMMING DI$T (CHC)
DEGRAY "

1500 ,------,- ---,,--- ,-------.- - -,-- -r- - ,-- -,-- -,------,

1 4 00

1 300

1 200

110 0

1 000

900

800 .- --

700

50

_..__.....

454035

,
20 25 30

ST RING LENGTH
1510

600

500

400

300 -;::. "

200 _.~~~~-;;;~~~~._.
100

O'--- -'-- ----'- - --'-- -----L- - --'----- ----'-- - -'------- ----"---- - '--- --'
o

Figure 5: String length vs. critical path for various operators. Oper­
ator sensitivity to changes in st ring length is shown, along with the
upper-bound on parallelism (shown here as SGA baseline) .

Exp loit ing the parallelism reported in Table 3 is not always easy. For
example, it is unlikely that the parallelism achieved for bitwise mut ation is
exploitable, and the operat ion does not lend itse lf well to vectorization. But
the bottleneck is far less severe for next-po int mutat ion. It is possible that
the parallelism in one-po int crossover can be exploited by vectori zation if
appropriate masks can be randomly generated at run-t ime. The parallelism
in Decode and Hamming dist ance calculat ion should also be exploitable by
vectori zation. The bottleneck shown for two-point crossover is more severe,
and th e dataflow simulator is unable to report much inherent parallelism.
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Critical path length- one SGA generation

severity corrected
popsize = 16 100 16 100

SGA 900 5782 116 116
Cellular 1218 7573 134 134
Genitor 1084 6858 no change

Table 4: Measures of string-level bot t lenecks in genetic algorithms.

Further , two-po int crossover may be difficult to vectorize because the masks
that would have to be generated are sufficient ly complex that the effort to
create them may be as great as t he effort to perform crossover. DeGr ay is
also not easily parallelized, and does not lend itself to vectorization , since
there are dependencies across the bitstring.

4 .2 String-level bottlenecks

String-level bottlenecks in genet ic algorithms occur in loops that depend on
population size. Table 4 lists the st ring-level bottlenecks and their associ­
ate d severity depending on the value of population size . The measurements
for SGA and the cellular genetic algorithm are for one gener ation, and were
obtained by execut ing a serialized version of the relevant loop that pro cesses
each st ring. Crit ical path information for the fully parallelized version is
shown in the rightmost column, and represents an upper bound on the per­
formance . The same information is shown graphically in Figure 6.

In order for measurement comparisons to be meanin gful across the t hree
genet ic algorithms, normalizati on is done so that the amount of work ex­
pressed per time unit is comparable. We use number of function evaluations,
and crit ical pat h lengths are exp ressed in terms of one SGA generation. In
Genitor, st rings are necessarily processed serially, and consequent ly the bot­
t leneck can be measured directly. The results for Genitor are normalized
as follows. Genitor performs two function evaluations per generation but
only one st ring is retained. T hus it requires n/ 2 (where n is the population
size) generations to perform the same numb er of function evaluations as one
SGA generation. Therefore, when comparing Genitor 's performance with
one genera t ion of SGA , Genitor is executed for n /2 generat ions.

A similar normalization is done for th e cellular genet ic algorithm. Our
algorithm performs two function evaluations for each location in th e two­
dimensional grid. T hus in one generation it performs twice t he number of
function evaluations as SGA. T herefore, when comparing t he performance of
the cellular genetic algorithm against SGA, the results are divided by two.
These normalizations have been describ ed previously by Gord on et al. [13].

The dat aflow simulator indicates that SGA can be fully parallelized at
the st ring level by using n/2 processes (where n is the population size),
each of which generates two members of the population . Each pro cess must



SGA ­
CELLULAR un.

GENITOR'

V. Scot t Gordon and Darrell Whitley

STRING-LEVEL BOTTLENEC KS

196

10000

9000

8000

7000

6000

5000

4000

300 0

2 0 0 0

1000

0
0 10 20 30 40 50 60 70 80 90 1 00 110 12 0

POPULAT I ON SIZE

Figure 6: Population size vs. crit ical path for various algorithms. The
magnitudes of the serial bottlenecks of SGA, Genitor, and the Cellular
model are shown.

7 00 0 n oo N OO 2 ~OO

'TIME STEP~

.J .J -
Figure 7: Profiles for SGA (left) and the cellular GA (right), with
bit-level parallelism masked.

have access to the ent ire population because of the nature of select ion in
SGA , necessit ating the use of a shared memory system. Since tournament
select ion is used , the n /2 pro cesses will access the same population st ructure
tn/ 2 t imes (where t is the tournament size). Thi s would likely result in a
heavy communicat ion bot tleneck [1 5].

The cellular genetic algorithm can be fully parallelized at the st ring level
by using n processes (where n is the popul ation size), each of which genera tes
one memb er of the popul ation. Each pro cess needs access only to those
individu als in its deme. Since deme size is fixed , communication overhead
remains constant regardless of the population size. Communi cati on overhead
in this case is not a bottleneck, and t he par allelism is exploitable, most
obviously on a grid of pro cessors.
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Figure 8: Profiles for standard Genitor (left) and revised Genitor
(right) . In the profile on the right , we assume that collisions occur
after exactly two recombinat ions.

Figure 7 contains parallelism profiles of SGA and the Cellular genet ic al­
gorithm, with the bit-level parallelism masked (population size is 16). Com­
pared with the graphs in Figure 4, these profiles are flat ter and more elon­
gated , reflecting the removal of bit-level parallelism. T he first long, flat area
represents crossover and mutation , and the second, somewhat higher flat area
represents decode and evaluation of the two child st rings. T hese only appear
once per generation, since both algorithms are fully parallel at the st ring
level.

G enitor: The simulator does not report any st ring-level parallelism for Gen­
itor because of t he data dependency associated with insert ing one offspring
at a t ime into the population. However, it is possible to execute Genitor
with a fairly high degree of para llelism by re-ordering the opera t ions. Rath er
t han generating t he tournament and then immediately performing recombi­
nation , we can instead generate triples of indices in the range (l ,popsize)
until a collision occurs (that is, unt il we generate an index that was gener­
ate d before), and then perform the recombinations in para llel. The larger the
population size, the less chance of collision and the greater the resulting par­
allelism. Figure 8 shows parallelism profiles both for Genito r and the revised
version of Genitor, assuming that two tournament s are generat ed before a
collision occurs. In this example, we have run 10 string replacements, with
a pop ulation size of 10 and a string lengt h of 10.

Note that parallelism is increased roughly by a factor of two (t he "spikes"
are twice as high) and that crit ical path has been cut in half (the grap h is
half as wide). Speedup approaches linear as the complexity of t he evaluation
function increases, because lengthy evaluation functions dominate the crit ical
path for string generation. Gordon referred to revised Genitor as "PreGen­
itor," and showed that in an act ua l implementation on a shared memory
Sequent Balance, speedup was nearly linear even for a simple evaluation
function [16].
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Crit ical path length-one I-SGA genera t ion

severity corrected
#subpops = 4 8 4 8

Generat e for all subpops 2089 4203 297 297
Migra te between subpops 458 975 110 115

Table 5: Measur es of population- level bottlenecks in genetic algo­
rithms.

The effectiveness of PreGenit or as a parallel algorit hm dep ends on the
probabili ty of collisions. It can be shown that the probability of a collision is

n!
Ck = 1 - (n _ k) !nk (3)

where n is the population size and k is the numb er of pro cessors. Gordon [16]
showed how equat ion (3) can be used to predict the number of pro cessors that
can be utili zed simultaneously, while st ill ret aining nearly linear speedup.
For example, a populatio n size of 100 can utilize four pro cessors, while a
population size of 500 can ut ilize nine pro cessors.

4.3 Population-level bottlenecks

Population-level bot tlenecks occur in loops t hat depend on the num ber of
subpopulations . Table 5 lists the population-level bottlenecks and t heir asso­
ciated severity depending on the numb er of subpopulations. Since all of the
Island mod els share these loops, measurement s are reported just for Island­
SGA. Critical path information for the fully parallelized version is shown in
th e rightm ost column, and represents an upp er bound on th e perform ance.

The dat aflow simulator confirms that I-SGA can be fully parallelized at
the population level by using s proc esses, where s is the numb er of subpop­
ulations. Generation-to-generati on pro cessing can be done for all subpop­
ulations in a fully parallel fashion because th ere are no dat a dependencies
and no communicat ion requir ements. Migra t ion is also highly parallel, since
the determination of which st rings migrat e can be done for each subpopu­
lation independently, and the migration itself involves lit tle communicat ion
overhead . Fur th ermore, migration only occurs at periodic intervals.

Para llelism exists to varying degrees among all the genetic algorit hms. At
th e lowest level, parallelism is sometimes exploitable by vectorization. String­
level parallelism is equivalent in all of the algorithms except Genitor, which
has the least. However , the parallelism that Genitor does contain is fully
exploitable, whereas thi s is not th e case for SGA. Genitor is a good choice for
shared memory machines with a relatively sma ll numb er of processors. Island
mod els are preferable for distributed memor y machines with a relatively small
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numb er of pro cessors. Cellular mod els are best suited for massively parallel
machines because they are best able to exploit st ring-level parall elism.

5. Problem-solving performance

To examine problem-solving power , several parallel genet ic algorithms are
compared across a wide range of optimization function s. Serial execut ion
is assum ed in order to measure problem-solving power independent of ac­
tual parall el execut ion. The genet ic algorithms have been reduced to simple
configurations in order to compare the effectiveness of basic st ruct ural alter­
natives and selection mechanisms. Whil e it is infeasible to test every possible
combination of model s, prob lems, and parameters, it is possible to look for
t rends.

5.1 Exp er im ent a l method

Each of the genetic algorithms describ ed earlier is run on a variety of opt i­
mization problems under uniform condit ions, and the result s are normalized
by the numb er of function evalua tions (described earlier in Section 4.2). Two
sets of experiments are described, one th at compares different genet ic algo­
rithms, and one that focuses on cellular algorithms.

No attempt is made to optimize the parameter settings for the various
algorithms. Instead, we picked a reasonably general set of parameter values
for use throughout the experiments (we did try to adjust mutation for best
problem-solving speed). It is well known th at adding local search to a geneti c
algorithm often improves its perform ance, but the effects of including local
hill-climbing as a supplementary operator are not considered here.

Other researchers have reported better results [28] optimizing some of the
test functions used in our comparative studies. However, different researchers
use different prob lem represent at ions in their experiments , such as num eric
represent ations, standard binary represent ation , or Gray-coded binar y rep­
resent ations. Mathias and Whit ley [22] have shown th at even changing from
standard binary coding to a Gray coding can have a dramatic effect on the
numb er of local minim a in a test function . Real-valued numeric codings of
the parameters will also ind uce different search spaces . This can radically
alter th e performance of search algorithms, both hill-climbers and genetic
algorithms. This also create s a dilemma for comparat ive work. If one's ob­
ject ive is to solve a particular problem, then of course the appropriate t hing
to do is to pick the algorithm and the associated representation that yields
the best perform ance. However, if one is attempting to compare algorithms
and the algorithms are app lied to different representations of th e problem,
th en it is unclear that th e comparison is a fair way to judge algorithm perfor­
mance, since the search spaces induced by different problem represent at ions
are so different. Mathias and Whitley [22] have specifically looked at the
effect of problem represent ation for prob lems in the test suit e used here and
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have shown that representation radical ly changes th e numb er of local optima
and the relative size of the basins of attraction.

For these reasons, we make no comparison outsid e of the parameter set­
tings presented in th is pap er. The comparisons use a uniform problem rep­
resent at ion across experiments for each individual prob lem in the test set.

In t he first set of experiments, nine genetic algorithms are run across the
test suite for 30 runs. Population size is fixed at 400 (for island models, eight
subpopulat ions of size 50 are used, and for the cellular mod el a 20 x 20 grid is
used). Crossover probability is 0.7 (where applicable). Mut ation is adj ust ed
to maximize problem-solving speed. All of the implementat ions employ two­
point reduced sur roga te crossover and next-point mutation . Swap intervals
for island models are 5 generations for easy problems and 50 generations for
hard ones. In the CGA used here (which we later refer to as Deme4), each
st ring recombin es with the most fit st ring among its four nearest neighbors.
If an offspr ing has a higher fitn ess than the individual, the latter is replaced
by the most fit offspring.

It is imp ortant to not e that performance data is reported in two different
ways depending on the test problem. Some of the functions are easy for t he
genetic algorithms and are executed unt il th e global opt imum is found in all
30 runs. In thi s case, t he average numb er of generat ions that it takes for each
genet ic algorit hm to solve t he funct ion is reported along with its standard
deviat ion. For hard er problems, t he algorithms are run for a set numb er of
genera tions (normalized to SGA generations). In thi s case, the numb er of
run s (out of 30) in which the global optimum is found is reported , along with
the average fitn ess of t he best st rings found at the end of each of the 30 run s.
Convergence graphs are included for the hardest prob lems.

In the second set of experiments, we run a variety of cellular genet ic algo­
rithms with larger pop ulat ion size (50 x 50 = 2500) on the hardest problems.
Again , all of our implementations use two-po int reduced surrogate crossover
and next-point mutat ion. Migration intervals for the island mode ls are set
to 5 (generations) for easy problems and 50 for hard ones.

5 .2 Test su ite

Our test suite includes the following numerical optimi zation problems: De­
Jong's original test suite FI-F5 [4]; Rastri gin, Schwefel, and Griewank func­
tions [24]; Ugly 3 and 4-bi t deceptive functions; and zero-one knapsack prob­
lems. These functions were chosen for one or more of the following reasons:
(1) they require long bitstrings, (2) they contain many local minima , and/or
(3) they frequent ly appear in the literature.

5.2.1 D eJong test su ite

Dejong's suite contains five functions. F l is a linear combination of three
identical unim odal nonlin ear functions, each with a hamming cliff at the opti­
mum. F2 is a nonlinear combination of two variables, resul tin g in a "saddle"
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Average generations (gen) and standard deviation (std) to solve
Dejong's test suite for various genetic algorithms

function F 1 F2 F3 F4 F5

algorithm gen st d gen st d gen st d gen std gen st d

SGA 30.7 7.4 284 198 16.7 4.2 161 40 14.6 4.4
ESGA 28.9 6.8 83 55 15.3 4.1 153 49 14.3 4.4
pCRC 28.4 6.5 153 139 16.9 3.7 223 104 16.0 3.9
Geni tor 17.0 4.1 190 160 8.2 2.1 135 67 7.9 2.5
I-SGA 41.3 11.2 417 253 22.0 5.3 405 192 20.3 6.9
I-ESGA 32.3 7.6 81 40 18.3 5.0 375 197 13.8 4.7
I-pCRC 33.2 7.4 78 57 18.8 4.4 495 239 16.3 5.3
I-Genitor 23.2 5.3 112 94 12.3 3.6 208 162 11.2 3.7
Cellular 32.5 8.0 105 94 17.9 4.6 397 204 15.3 4.3

Table 6: Performance of nine GAs on Dejong's test suite.

function. F3 is a linear combinat ion of five identi cal discontinuous "step lad­
der" funct ions. F4 is a linear combination of 30 identical unim odal nonlinear
noisy functions, wit h a large solut ion space (2240) plus the addit ion of fairly
substantial Gaussian noise. F4 is considered solved when the best st ring
in the population reaches -2.5 . F5 is a linear combin ation of two identi­
cal severely multimodal functions (i.e., each contains severa l local minim a).
Gray coding was used on F1, F2, and F5.

We carefully considered the pros and cons of including Dejong's functions
in our suite because they are somet imes describ ed as being too easy. We
decided to include them because they have been widely used by other genetic
algorithm researchers, and thus are well understood. Performa nce results are
shown in Table 6. For the Island models, t he swap interval is 5, except F4
where the swap interval is 50.

5.2.2 Rastrigin, Schwefel, and Griewank functions

The Rastri gin, Schwefel, and Griewank funct ions have been used by Miihlen­
bein as a testbed for comparing parallel genet ic algorithms [24]. They requir e
longer bit strings and have more local minim a than the functions in Dejong's
suite .

Rastrigin 's function (F6) is a 200-bit linear combination of 20 t ilted sine
waves wit h severa l local minima. Schwefel's function (F7) is a 100-bit linear
combinat ion of 10 functions, each characterized by a second-best minimum
that is far away from the global optimum. In the Schwefel function , V is
the negative of th e global minimum, which is added to the function so as to
move th e global minimum to zero. The exact value of V dep ends on system
precision ; for our experiments V = 4189.829101. Griewank 's function (F8)
is a IOO-bit problem similar to Rastrigin, except that th e subproblems are
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Number of runs solved (ns ) and average best of 30 runs (avg) after 1000 gener at ions

funct ion F6 F7 F8 function F6 F7 F8
algorit hm ns avg ns avg ns av g a lgorithm ns avg ns avg ns avg

SG A 0 6.8 0 17.4 0 .161 I-SGA 0 3.8 9 6.5 7 .050
ESGA 2 1.5 16 17.3 1 .107 I-ESGA 13 0.6 13 2.6 3 .066
pCR C 23 0.3 15 5.9 0 .072 I-pCRC 10 0.9 28 0.2 3 .047
Genito r 0 7.9 20 13.2 3 .053 I-Genitor 23 0.2 24 0.9 6 .035

Cellu lar 24 0.2 26 0.7 1 .106

Table 7: Performance of nine GAs on Rastrigin (F6) , Schwefel (F7),
and Griewank (F8) functions.

mult iplied together rather th an added, forming a nonlinear combination of
the 10 subst rings.

Table 7 shows perform ance data on F6, F7, and F8 afte r 1000 generations .
The migration interval was set to 50 for the island mod els. Gray coding was
used for F6 and F8. Convergence graphs are given in App endix A.

20

F6 : f (xl ,X2,'" , X20) = 200 + L xi - 10 cOS(27fXi ), Xi E [- 5.12,5 .11]
i=1

10

F7: f (xl , x2, '" , XlO ) = V + L - Xi sin (vr;J), Xi E [- 512, 511]
,=1

F8: 10 xi 10 ( Xi)f (xI, X2 , .. . , XlO) = L - - II cos r + 1,
i=1 4000 i=1 Y Z

Xi E [-512, 511]

5.2 .3 D eceptive fu nctions

The ugly 3-bit problem (D3) is a 30-bi t art ificially constructe d prob lem in­
t roduced by Goldb erg , Korb , and Deb [9] in which ten fully decept ive 3-bit
subproblems are interleaved. In genera l, the three bits of each subprob lem
X appear in posit ions X , 10 + X , and 20 + X. The ugly 4-bit problem (D4)
is a similarly constructed 40-bit problem in which ten fully-decept ive 4-bit
subproblems are interleaved [33].

Ugly deceptive pro blems are very often misunderstood . These prob lems
isolate interactions in t he hyperplane sampling abilit ies of a genet ic algo­
rithm as well as the linkage between bits. This linkage is relat ed to the
disruptive effects of crossover. As such, ugly deceptive problems should per­
haps be viewed more as ana lyt ical too ls rath er than "hard test problems"
Miihlenbein [27] has presented results th at indicat e such problems can of­
ten be solved by hill-climbing; this does not cont radict the goals behind t he
design of fully deceptive problems, since th ey were not designed to mislead
hill-climbing algorithms.

T he original ugly decept ive probl ems [8, 32] were used to test geneti c
algorithm implementations that use no mutation and a 100% probability of
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Ugly 3-bit : Generations to solve (gen) and standard dev. (std)
Ugly 4-bit: # solved (ns) and avg best of 30 runs (avg) (5000 gens)

D 3 D4 D 3 D 4
gen std ns avg gen std ns avg

SGA 1547 675 0 22.1 I-SGA 944 273 0 22.2
ESGA 1564 1549 0 9.9 I-ESGA 172 49 30 0.0
pCHC 455 192 17 1.3 I-pCHC 345 139 6 2.0
Genitor 399 133 6 2.1 I-Genitor 439 158 6 2.6

Cellular 572 240 7 2.4

Table 8: Performance of nine GAs on ugly deceptive functions.

crossover. Whit ley et al. [34] have shown analyt ically that using low crossover
ra tes also makes ugly decept ive problems easier to solve (since it reduces th e
effects of the linkage prob lem). Also, ugly decept ive prob lems are par t icu­
larly designed to mislead tradit ional simple genet ic algorithms of the kind
developed by Holland and Dejong and described by Goldb erg [7J . It does not
automatically follow th at ugly fully deceptive problems are generally hard for
oth er search algorithms, or even for oth er forms of genet ic algorithms.

In the current set of experiments , all of the algorithms tested solve the
ugly order-S deceptive prob lem. SGA , for example, reliably solves t he ugly
order-3 deceptive problem using a crossover rate of 0.7 and a mutation rat e
of 1.5%. Furth er, th e Island and CGA mode ls appear to be particularly well
suited to solving ugly deceptive functions; different subprob lems are solved in
various subpopulat ions (or virtual neighborhoods). The various subproblems
can then be exploited and recombined to build up full solut ions.

Tab le 8 shows perform ance dat a on the 3-bit and 4-bit deceptive functions
(lab eled D3 and D4, respectively). The 3-bit probl em is easy enough so that
it is executed until the global opt imum is found in all 30 runs. The 4­
bit prob lem, on the oth er hand , is harder , and each run is executed for a
maximum of 5000 generations. It is important to note th at performance
data is reported different ly for the two problems. Migration intervals are set
to 5 for the 3-bit problem and 50 for the 4-bit prob lem in the island models.

5.2.4 Zer o-one knap sack problems

The zero-one knapsack problem is defined as follows. Given n objects with
positive weights Wi and posit ive profits Pi, and a knapsack cap acity M,
determine a subset of the objects represented by a bit vector X i such that

n

L X iWi :S: M and
i = 1

n

L XiPi maximal.
i= 1

A greedy approx imation to the global optimum can be found by selecting
objects by profit/weight ratio until the knapsack cannot be further filled.
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gen and std for 20 and 80 object zero-one knapsack problems
K 20 K 80 K 20 K 80

gen std gen std gen std gen std
SGA 88.7 302.1 32.5 7.9 I-SGA 43.0 31.2 41.0 10.6
ESGA 62.2 64.5 41.9 11.8 I-ESGA 100.3 253.8 33.0 7.7
pCHC 31.3 12.6 32.7 8.2 I-pCHC 34.7 12.9 37.2 8.9
Genitor 24.7 9.9 17.8 4.8 I-Genitor 25.8 17.6 22.0 5.8

Cellular 32.3 12.5 34.7 7.9

Table 9: P erformance of nine GAs on small kn apsack problems.

A simple encoding scheme is to let each bit represent the inclusion or
exclusion of one of t he ti objects from the knapsack. Thus, a bit st ring of
length n can be used to represent candida te solut ions. If the objects are
sorted by profit / weight ratio , th en th e greedy approximation appears as a
series of Is followed by a series of as.

The difficulty with this representation is t hat it is possible to generate
infeasible solut ions. Set tin g too many bits to 1 might overflow the capacity
of the knapsack. We consider two methods of handling overflow. The first
penalty meth od assigns a penalty equa l to t he amount of overflow. The
second method , partial scan , adds items to the knapsack one at a tim e,
scanning th e bitstring left to right , stopping at th e end of the string or
when the knapsack overflows, in which case the last item added is removed.
T he par tial scan meth od has the interesting property th at a st ring of all Is
evaluates to the greedy approximation.

The tes t cases includ e a 20-obj ect probl em and an SO-obj ect probl em.
The 20-obj ect problem has a global optimum of 445 and a greedy approxi­
mation of 275. The SO-obj ect problem has a global opt imum of 25729 and
a closer greedy approximation of 25713. Gordon, Bohrn , and Whi tley [14]
have argued that genet ic algorithms perform poorly on these knap sack prob­
lems (and much larger problem inst ances) when compared with depth-first
and branch-and-bound search methods. The knapsack experiments presented
here are th erefore useful only for comparing the various genetic algorithms
aga inst each other.

Using our genetic algorithms, the 20-object knapsack problem is hard er to
solve than t he SO-object knapsack prob lem. Furth er, t he penalty evaluation
method works bet ter on th e 20-obj ect problem, and the partial scan met hod
works better on the SO-object problem. Performance results are shown in
Table 9. The migration int erval for Island mod els is 5.

5.3 Summary of performance results

Table 10 shows th e relati ve ranking of the genet ic algorithms on each of th e
functions. Table 11 shows t he relative performance of the algorithms on each
probl em, normalized on a scale of a to 1 (where 1 is the worst) . T his is done
by dividing each perform ance value by the worst performance score on that
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Algorit hm F l F2 F3 F4 F5 F6 F7 F8 0 3 0 4 K20 K80 Avg rnk

SGA 5 8 4 3 5 8 9 9 8 8 8 3 6.5 8
ESGA 4 3 3 2 4 6 8 8 9 7 7 9 5.8 7
pCHC 3 6 5 5 7 3 5 6 5 2 3 4 4.5 4
Gen itor 1 7 1 1 1 9 7 4 3 4 1 1 3.3 2
I-SGA 9 9 9 8 9 7 6 3 7 9 6 8 7.5 9
I-ESGA 6 2 7 6 3 4 4 5 1 1 9 5 4.4 3
I-pCHC 8 1 8 9 8 5 1 2 2 3 5 7 4.9 5
I-Genitor 2 5 2 4 2 2 3 1 4 6 2 2 2.9 1
Cellular 7 4 6 7 6 1 2 7 6 5 4 6 5.1 6

Table 10: Ranking of performance of nine GAs on test suite.

Alg. F l F2 F3 F 4 F5 F6 F 7 F8 03 04 K20 K80 Avg rnk

SGA .74 .68 .76 .33 .72 .86 1.0 1.0 .99 .99 .88 .78 .81 9
ESGA .69 .19 .69 .31 .70 .19 .99 .66 1.0 .45 .62 1.0 .62 7
pCHC .68 .37 .77 .45 .79 .04 .34 .45 .29 .06 .31 .78 .44 3
Genitor .41 .46 .37 .27 .39 1.0 .76 .33 .26 .09 .25 .42 .42 2
I-SGA 1.0 1.0 1.0 .81 1.0 .48 .37 .31 .60 1.0 .43 .98 .75 8
I-ESGA .78 .19 .83 .76 .68 .08 .15 .41 .11 0 1.0 .79 .48 6
I-pCHC .80 .18 .85 1.0 .80 .11 .01 .29 .22 .09 .35 .89 .47 4
I-Genitor .56 .27 .56 .49 .55 .03 .05 .22 .28 .12 .26 .53 .33 1
Cellular .79 .25 .81 .80 .75 .03 .04 .65 .37 .11 .32 .83 .48 5

Table 11: Normalized performance of nine GAs on test suite. Nor­
malization is done by dividing each performance value by the worst
performance score on that problem.

probl em. Aggregate values for Tables 10 and 11 are given in the right most
columns. Table 12 gives the same aggregate inform ati on for the hardest
prob lems (F2, F4 , Rast rigin , Schwefel, Griewank , D3, D4, and K20), and for
the problems with th e longest bitst rings (F4 , Rastri gin , Schwefel, Griewank ,
and K80).

The non-elit ist algorit hms (SGA and Island-SGA) clearly perform the
worst overa ll, ranking 8th and 9th in every category. The parallel algorithms
seem to perform better on hard er funct ions. Island-Genitor gets th e best
marks, and the pC RC and Cellular genetic algorithms also are consistent ly
good in spite of simp lified implement ations. It is reasonable to expect a full
implementation of CRC to perform better than the pCRC results reported
here.

5. 4 A closer look a t cellular models

In the previous sect ion, one simple cellular genet ic algorithm was tested . It
is logical to assume that changes to t he topological configuration of a CGA
will affect its performance. This sect ion compares t he problem-solving perfor­
mance of several CGA alternatives. The goal is to determine the effect iveness
of different CGA topologies, regardless of actual par allel execut ion.

Three fixed to pology CGA s are implemented:
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Algorithm Avg rnk Nrm rnk
SGA 7.6 9 .84 9
ESGA 6.3 7 .55 7
pCHC 4.4 4 .29 3
Genitor 4.5 5-6 .43 6
I-SGA 6.9 8 .63 8
I-ESGA 4.0 3 .34 5
I-pCHC 3.5 2 .28 2
I-Genitor 3.4 1 .22 1
Cellular 4.5 5-6 .32 4

Algorithm Avg rnk Nrm rnk

SGA 6.4 7-8 .79 9
ESGA 6.6 9 63 8
pCH C 4.6 3-4 .41 2
Genito r 4.4 2 .56 6
I-SGA 6.4 7-8 .59 7
I-ESGA 4.8 5-6 .44 3
I-pCH C 4.8 5-6 .46 4
I-Genitor 2.4 1 .26 1
Cellular 4.6 3-4 .47 5

Table 12: Performance on hard problem s (left ) and long bitstring
problems (r ight).

1. Deme-L. This algorit hm was used in th e previous experiments. The
best of the four st rings above, below, left , and right of an ind ividual is
chosen for mating. If either offspring has a higher fitness, th e individu al
is replaced by the most fit offspring.

2. Deme-4+Migration. Thi s algorithm is identical to Deme-4, but an
addit iona l operator, migrati on , is employed that copies one st ring to
a random locat ion at predefined intervals. The use of migration in a
CGA was proposed by Gordon et al. [12] and Gorges-Schleut er [19], as
a way of allowing dist ant niches to int eract .

3. Dem e-12. Demes consist of the twelve nearest st rings. To reduce se­
lect ive pressur e, four st rings are chosen randomly from the twelve, and
the best of the four is selected for matin g. The individual is replaced by
the offspring probabilistically according to an adjust able replacement
pressur e.

Three random-walk CGAs are considered:

1. Walk3. A deme consists of the st rings that reside along a random walk
of length 3 start ing at the cell in question. Step s along the walk can
be up , down , left , or right . The best st ring along the walk is chosen for
mating.

2. WalkS. Same as Walk3 (above) , but with a walk length of 5.

3. Walk7. Same as Walk3 (above), but with a walk length of 7 and prob­
abilist ic replacement ; the offspring is compared with th e individu al in
question, and the better of the two is replaced according to an ad­
just able replacement pressure.

In an Island-OtlA , t he grid is divided into smaller subgrids , each of which
is a to rus that is proc essed separately using one of th e above methods. Mi­
gration between subgrids occurs at predefined intervals. In the experiments
pr esented here, each island uses the Deme-4 algorithm described above.
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Average genera t ions to solve (avg)
and standard deviation (std)

function Rast rigin Schwefel
algorithm avg std avg st d

Deme-4 485 95 137 26
Deme-4+ mig 485 93 136 26
Deme-12 557 109 126 25
RW-3 606 115 160 31
RW-5 535 102 148 28
RW-7 685 141 158 30
Island-CGA 521 103 152 29

Number solved (ns)
and average best (avg)

Griewank
algorithm ns avg

Deme-4 20 .009
Deme-4+ mig 24 .007
Deme-12 21 .016
RW-3 29 .005
RW-5 25 .006
RW-7 23 .016
Island-CGA 19 .012

Table 13: CGA performance on Rastrigin, Schwefel, and Griewank.
Population size = 2500, mutation = .005, crossover probability =
100%, replacement pressure = 90% (where applicable). For Island­
CGA, number of subpopulations = 25, subpopulat ion size = 100 (10x
10), migrat ion interval = 5 (generations). For Deme-d-l-Migration,
migration interval = 50. The Griewank function is run for a maximum
of 500 generations.

We run each algorithm on the Rastrigin, Schwefel, and Griewank func­
tions, keeping the following parameters constant : populat ion size = 2500
(50 x 50), mutat ion = .005, probab ility of crossover = 100%, and replace­
ment pressur e = 90% (for Deme-12 and Walk7). For the Island-CGA the
numb er of subpopulat ions is 25, each of which are of size 100 (10 x 10),
and the swap interval is 5 generat ions. The migration interval for Deme­
4+Migrat ion is set to 50 generations. All implementations employ two-point
reduced surrogate crossover and next-point mutation. Gray coding is used
on the Rast rigin and Griewank funct ions, but not on th e Schwefel function.

The performance of each of t he seven CGAs on the the Rast rigin and
Schwefel functions is shown in Table 13. For each funct ion, we report the
average number of generations it takes for each CGA to find the opt imum
(averaged over 30 run s), and the standard deviat ion. Append ix B contains
convergence graphs for each algorithm on th e th ree functions.

The performance of each of th e seven CGAs on the Griewank function
is also shown in Tab le 13. The algorithms are not always able to solve the
prob lem within 500 CGA generations, so we report t he number of run s (out
of 30) in which the global optimum is found, along with the average fitn ess
of the best strings found at t he end of 500 generations.

Table 14 contains a summary of the ranked performance of the CGAs on
each of the functions. Since it is evident that the Schwefel function is the
easiest for the CGAs and that the Griewank is the hard est (t his concurs with
other researchers) , we list the functions from left to right in increasing order
of difficulty.
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algorit hm Schwefel Rastrigin Griewank

Deme-4 3 2 4
Deme-4+mig 2 1 3
Deme-12 1 5 6
RW-3 7 6 1
RW-5 4 4 2
RW-7 6 7 5
Island-CGA 5 3 7

Table 14: Performance of CGAs on the test suite.

CGAs with the most locality (i.e., the sma llest fixed demes and t he short­
est random walks) perform worse on the easiest function (Schwefel) and best
on the hard est function (Griewank). The Island-CGA performs rather poorly
throughout t he suite , which is a surprise considering our earlier results (Sec­
tion 5.3). Adding a small amount of migration to Deme-4 improved perfor­
mance on all three problems, but somet imes only slight ly. Overall , Deme­
4+Migration performed the best of all the cellular algorithms on thi s test
suite .

6. Conclusions

This pap er introduced a machin e-independent way of analyzing parallel ge­
netic algorit hms using the Sisal programming language and a dataflow model
of computat ion. Using the dat aflow mod el made it possible to compare, on
equal terms, severa l parallel genet ic algorithms with regards to both probl em­
solving power and runtime efficiency. The perform ance of severa l parallel
genetic algorithms has been examined by comparing their ability to solve
hard function optimi zation probl ems, and by using the dataflow simulat or to
generat e th eir parallelism profiles.

Examination of the Sisal code alongside th e parallelism profiles has helped
reveal new areas where parallelism could be exploited (especially in SGA and
Genitor ). Parallelism exists to varying degrees among all of the genetic algo­
rithms. At the lowest level, parallelism is somet imes exploitable by vector­
ization. String-level parallelism is equivalent in all of the algorit hms except
Genito r, which has the least. However, th e parallelism th at Genitor does
contain is fully exploitable, whereas thi s is not the case, say, for SGA due to
overhead .

Using the dat aflow mod el made it possible to identify several potenti ally
removable bot tlenecks in the algorit hms. The worst bit -level bottlenecks
found were in the two-point reduced surrogate opera to r, and t he DeGray
operator. DeGray is prob ably not a serious bot tleneck in real applicat ions,
but two-point crossover is more of a problem. At coarser levels of granularity,
algorit hmic bot tlenecks and/or communication overhead necessitate the use
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of Cellular or Island mod els, and measur ement s confirm t hat bottlenecks in
these mod els are fully removable on a parallel arch itecture.

The relationship between parallelism and problem-solving power was ex­
amined by comparing severa l para llel genetic algorithms across a wide range
of optimization funct ions. The results show that speedup due to parallelism
is not offset by declines in problem-solving capabilit ies. In fact, parallel ge­
netic algorithms using some form of rest ricted select ion and mating based
on locality that are executed serially yield better performance th an single
population implementations with global "panmict ic" matin g. Alternative
population st ructures such as Cellular , steady-state (i.e. , Genitor ) , and CHC
approaches are at least as effective as elit ist (and non-elitist ) versions of th e
standard "Holland-style" genetic algorithm. However , combining island and
cellular approaches seems to have a negat ive effect . The study also confirms
that elit ist strategies perform better th an non-elit ist ones, repo rt ed previ­
ously by other researchers. T he results do not address Holland 's original
conte nt ion that SGA displays superior performance with respect to t he av­
erage fitness of all st rings throughout a run (a measure th at he referred to
as online performance).

Locality also affects pr oblem-solving power. Cellular algorit hms with high
locality (small fixed demes or short walks) perform bet ter than those with
low locality on our most difficult test function . Adding migration to a cellular
mod el results in slight ly improved performance on each of the test functions.

Finally, the machine-independent nature of this st udy has led to th e de­
velopment of some new genetic algorithms: pCHC, CGA + Migration , Island­
pCHC, Island Cellular , and PreGenitoL Of these, Island Cellular is the least
important , but the others represent improvements over part icular previously
exist ing algorithms, either in ter ms of parallelism or probl em-solving power .

Two areas of future work would st rengt hen our research. Firs t , we need
a more rigorous measure of locality. Periodi cally we have had to use fairly
subject ive means to express the effects of communication overhead on the
perform ance of a parallel implementation. The development of a locality
metric would allow act ua l speedup and/or overhead est imates to be quanti­
fied for var ious scenarios. Some simple metri cs have been proposed (see [15]),
but they are st ill preliminary in nature. Second , it would be sat isfying to
rea lize more of the new algorithms on real hardware.

The approach int roduced in th is pap er opens the door to further empirical
st udies of parallel genet ic algorithm implement ations via common measures.
T he use of Sisal and the dataflow mod el offers flexibili ty without sacrificing
the capacity for high perform ance. Perhaps by continuing to st udy genet ic
algorithms from a machine-independent algorithmic perspective , researchers
will discover even better ways of impr oving t heir performance.
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A p pen d ix A. C onvergence gra p hs
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Appendix B. Cellular m odels

V. Scott Gordon and Darrell Whitley
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